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INTRODUCTION

Let K be a �eld and R = K〈x〉, x = (x1, . . . , xm) be the ring of algebraic
power series in x over K, that is the algebraic closure of the polynomial ring
K[x] in the formal power series ring R̂ = K[[x]]. Let f = (f1, . . . , fq) be a
system of polynomials in Y = (Y1, . . . , Yn) over R and ŷ be a solution of f in
the completion R̂ of R.

Theorem 1 (M. Artin [3]). For any c ∈ N there exists a solution y(c) in
R such that y(c) ≡ ŷ mod (x)c.

In general, we say that a local ring (A,m) has the Artin approximation

property if for every system of polynomials f = (f1, . . . , fq) ∈ A[Y ]q, Y =
(Y1, . . . , Yn), a solution ŷ of f in the completion Â and c ∈ N there exists a
solution y(c) in A of f such that y(c) ≡ ŷ mod mc. In fact A has the Artin
approximation property if every �nite system of polynomial equations over A
has a solution in A if and only if it has a solution in the completion Â of A. We
should mention that M. Artin proved already in [2] that the ring of convergent
power series with coe�cients in C has the Artin approximation property as it
was later called.
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A ring morphism u : A→ A′ of Noetherian rings has regular �bers if for all
prime ideals P ∈ SpecA the ring A′/PA′ is a regular ring, i.e. its localizations
are regular local rings. It has geometrically regular �bers if for all prime ideals
P ∈ SpecA and all �nite �eld extensions K of the fraction �eld of A/P the
ring K ⊗A/P A′/PA′ is regular.

A �at morphism of Noetherian rings u is regular if its �bers are geometri-
cally regular. If u is regular of �nite type then u is called smooth. A localization
of a smooth algebra is called essentially smooth.

A Henselian Noetherian local ring A is excellent if the completion map
A→ Â is regular. For example, a Henselian discrete valuation ring V is excel-
lent if the completion map V → V̂ induces a separable fraction �eld extension.

Theorem 2 (M. Artin [3]). Let V be an excellent Henselian discrete va-

luation ring and V 〈x〉 the ring of algebraic power series in x over V , that is
the algebraic closure of the polynomial ring V [x] in the formal power series ring

V [[x]]. Then V 〈x〉 has the Artin approximation property.

The proof used the so called N�eron Desingularization, which says that
an unrami�ed extension V ⊂ V ′ of valuation rings inducing separable �eld
extensions on the fraction and residue �elds, is a �ltered inductive union of
essentially �nite type subextensions V ⊂ A, which are regular local rings, even
essentially smooth V -subalgebras of V ′.

N�eron Desingularization is extended by the following theorem.

Theorem 3 (General N�eron Desingularization, Popescu [27,28,30], Andr�e
[1], Teissier [42], Swan [41], Spivakovski [39]). Let u : A → A′ be a regular

morphism of Noetherian rings and B an A-algebra of �nite type. Then any

A-morphism v : B → A′ factors through a smooth A-algebra C, that is v is a

composite A-morphism B → C → A′.

The smooth A-algebra C given for B by the above theorem is called a
General N�eron Desingularization. Note that C is not uniquely associated to B
and so we better speak about a General N�eron Desingularization.

The above theorem gives a positive answer to a conjecture of M. Artin [4].

Theorem 4 ( [28, 31]). An excellent Henselian local ring has the Artin

approximation property.

This paper is a survey on the Artin approximation property, the General
N�eron Desingularization and their applications. It relies mainly on some lectu-
res given by the author within the special semester On Artin Approximation of
the Chaire Jean Morlet at CIRM, Luminy, Spring 2015 (see http://hlombardi.
free.fr/Popescu-Luminy2015.pdf).

We owe thanks to the Referee for very useful comments on our paper.
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1. ARTIN APPROXIMATION PROPERTIES

First we show how one recovers Theorem 4 from Theorem 3. Indeed, let f
be a �nite system of polynomial equations over A in Y = (Y1, . . . , Yn) and ŷ a
solution of f in Â. Set B = A[Y ]/(f) and let v : B → Â be the morphism given
by Y → ŷ. By Theorem 3, v factors through a smooth A-algebra C, that is v is
a composite A-morphism B → C → Â. Thus changing B by C we may reduce
the problem to the case when B is smooth over A. Since Â is local, changing
B by Bb for some b ∈ B \ v−1(mÂ) we may assume that 1 ∈

(
(g) : I

)
MB for

some polynomials g = (g1, . . . , gr) from (f) and a r×r-minorM of the Jacobian

matrix

(
∂g

∂Y

)
. Thus g(ŷ) = 0 andM(ŷ) is invertible. By the Implicit Function

Theorem there exists y ∈ A such that y ≡ ŷ modulo mÂ.

The following consequence of Theorem 3 was noticed and hinted by N.
Radu to M. Andr�e. This was the origin of Andr�e's interest to read our theorem
and to write later [1].

Corollary 5. Let u : A→ A′ be a regular morphism of Noetherian rings.

Then the di�erential module ΩA′/A is �at.

For the proof, note that by Theorem 3 it follows that A′ is a �ltered
inductive limit of some smooth A-algebras C and so ΩA′/A is a �ltered inductive
limit of A′ ⊗C ΩC/A, the last modules being free modules.

De�nition 6. A Noetherian local ring (A,m) has the strong Artin ap-

proximation property if for every �nite system of polynomial equations f in
Y = (Y1, . . . , Yn) over A there exists a map ν : N → N with the following
property:

If y′ ∈ An satis�es f(y′) ≡ 0 modulo mν(c), c ∈ N, then there exists
a solution y ∈ An of f with y ≡ y′ modulo mc.

M. Greenberg [14] proved that excellent Henselian discrete valuation rings
have the strong Artin approximation property and ν is linear in this case.

Theorem 7 (M. Artin [3]). The algebraic power series ring over a �eld

has the strong Artin approximation property.

Note that in general ν is not linear as it is showed in [37]. The following
theorem was conjectured by M. Artin in [4].

Theorem 8 ([25]). Let A be an excellent Henselian discrete valuation ring

and A〈x〉 the ring of algebraic power series in x over A. Then A〈x〉 has the

strong Artin approximation property.
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Theorem 9 (P�ster-Popescu [21], see also [17,26]). The Noetherian com-

plete local rings have the strong Artin approximation property. In particular,

a Noetherian local ring A has the strong Artin approximation property if and

only if it has the Artin approximation property.

Thus Theorem 8 is a consequence of Theorem 2 and the above theorem.
Together with Theorem 4 the above theorem says that excellent Henselian local
rings have the strong Artin approximation property. An easy direct proof of
the last fact is given in [28, Corollary 4.5] using Theorem 3 and the ultrapower
methods.

What about the converse implication in Theorem 4? It is clear that A
is Henselian if it has the Artin approximation property. On the other hand, if
A is reduced and it has the Artin approximation property, then Â is reduced,
too. Indeed, if ẑ ∈ Â is nonzero and satis�es ẑr = 0 then choosing c ∈ N such
that ẑ 6∈ mcÂ we get a z ∈ A such that zr = 0 and z ≡ ẑ modulo mcÂ. It
follows that z 6= 0, which contradicts our hypothesis. It is easy to see that a
local ring B which is �nite as a module over A has the Artin approximation
property if A has it. It follows that if A has the Artin approximation property,
then it has the so called reduced formal �bers. In particular, A must be a so
called universally japanese ring.

Using the strong Artin approximation property we may prove that given
a system of polynomial equations f ∈ A[Y ]r, Y = (Y1, . . . , Yn) and another one
g ∈ A[Y,Z]t, Z = (Z1, . . . , Zs) then the sentence

LA := there exists y ∈ An such that f(y) = 0 and g(y, z) 6= 0 for all z ∈ As

holds in A if and only if LÂ holds in Â provided that A has the Artin ap-
proximation property. In this way it was proved in [8] that if A has the Artin
approximation property, then A is a normal domain if and only if Â is a normal
domain, too (this was actually the starting point of the quoted paper). Later,
Cipu and myself [10] used this fact to show that the formal �bers of A are
the so called geometrically normal domains if A has the Artin approximation
property. Finally, Rotthaus [38] proved that A is excellent if A has the Artin
approximation property.

Next, let (A,m) be an excellent Henselian local ring, Â its completion
and MCM(A) (resp. MCM(Â)) be the set of isomorphism classes of maximal
Cohen Macaulay modules over A (resp. Â). Assume that A is an isolated
singularity. Then a maximal Cohen-Macaulay module is free on the punctu-
red spectrum. Since Â is also an isolated singularity we see that the map
ϕ :MCM(A)→MCM(Â) given by M → Â⊗AM is surjective by a theorem of
Elkik [13, Theorem 3].

Theorem 10 (Popescu-Roczen [35]). ϕ is bijective.
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Proof. Let M,N be two �nite A-modules. We may suppose that M =
An/(u), N = An/(v), uk =

∑
j∈[n] ukjej , k ∈ [t], vr =

∑
j∈[n] vrjej , r ∈ [p],

where ukj , vrj ∈ A and (ej) is the canonical basis of An. Let f : An → An

be an A-linear map de�ned by an invertible n× n-matrix (xij) with respect to
(ej). Then f induces a bijection M → N if and only if f maps (u) onto (v),
that is there exist ykr, zrk ∈ A, k ∈ [t], r ∈ [p] such that

1) f(uk) =
∑

r∈[p] ykrvr, k ∈ [t] and

2) f(
∑

k∈[t] zrkuk) = vr, r ∈ [p].

Note that 1), 2) are equivalent to

1′)
∑

i∈[n] ukixij =
∑

r∈[p] ykrvrj , k ∈ [t], j ∈ [n],

2′)
∑

k∈[t] zrk(
∑

i∈[n] ukixij) = vrj , r ∈ [p], j ∈ [n].

Therefore, if Â ⊗AM ∼= Â ⊗A N there exist (x̂ij), (ŷkr), (ẑrk) in Â such
that det(x̂ij) 6∈ m and

1′′)
∑

i∈[n] ukix̂ij =
∑

r∈[p] ŷkrvrj , k ∈ [t], j ∈ [n],

2′′)
∑

k∈[t] ẑrk(
∑

i∈[n] ukix̂ij) = vrj , r ∈ [p], j ∈ [n].

Then by the Artin approximation property there exists a solution of 1′′),
2′′), let us say (xij), (ykr), (zrk) in A, such that xij ≡ x̂ij , ykr ≡ ŷkr, zrk ≡
ẑrk modulo mÂ. It follows that det(xij) ≡ det(x̂ij) 6≡ 0 modulo mÂ and so
M ∼= N . �

Corollary 11. In the hypothesis of the above theorem if M ∈ MCM(A)
is indecomposable, then Â⊗AM is indecomposable, too.

Proof. Assume that Â⊗AM = N̂1⊕ N̂2. Then N̂i ∈ MCM(Â) and by the
surjectivity of ϕ we get N̂i = Â⊗ANi for some Ni ∈MCM(A). Then Â⊗AM ∼=
(Â⊗A N1)⊕ (Â⊗A N2) and the injectivity of ϕ gives M ∼= N1 ⊕N2. �

Remark 12. If A is not Henselian then the above corollary is false. For
example, let A = C[X,Y ](X,Y )/(Y

2 − X2 − X3). Then M = (X,Y )A is

indecomposable in MCM(A) but Â ⊗A M is decomposable. Indeed, for û =√
1 +X ∈ Â we have Â⊗AM = (Y − ûX)Â⊕ (Y − ûX)Â.

Remark 13. Let Γ(A), Γ(Â) be the so called AR-quivers of A, Â. Then ϕ
induces also an inclusion Γ(A) ⊂ Γ(Â) (see [35]).

Remark 14. It is known that MCM(Â) is �nite if and only if Â is a simple
singularity. What about a complex unimodal singularity R? Certainly in this
case MCM(R) is in�nite but maybe there exists a special property which cha-
racterizes the unimodal singularities. For this purpose it would be necessary to
describe somehow MCM(R) at least in some special cases. Small attempts are
done by Andreas Steenpass [40].
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For most of the cases when we need the Artin approximation property, it
is enough to apply Artin's Theorem 1. Sometimes we might need a special kind
of Artin approximation, the so called Artin approximation in nested subring

condition, namely the following result which was also considered as possible by
M. Artin in [4].

Theorem 15 ( [28], [31, Theorem 3.6]). Let K be a �eld, A = K〈x〉,
x = (x1, . . . , xm), f = (f1, . . . , fr) ∈ K〈x, Y 〉r, Y = (Y1, . . . , Yn) and 0 ≤ s1 ≤
. . . ≤ sn ≤ m, c be some non-negative integers. Suppose that f has a solution

ŷ = (ŷ1, . . . , ŷn) in K[[x]] such that ŷi ∈ K[[x1, . . . , xsi ]] for all 1 ≤ i ≤ n. Then
there exists a solution y = (y1, . . . , yn) of f in A such that yi ∈ K〈x1, . . . , xsi〉
for all 1 ≤ i ≤ n and y ≡ ŷ mod (x)cK[[x]].

Corollary 16. The Weierstrass Preparation Theorem holds for the ring

of algebraic power series over a �eld.

Proof. Let f ∈ K〈x〉, x = (x1, . . . , xm) be an algebraic power series
such that f(0, . . . , 0, xm) 6= 0. By Weierstrass Preparation Theorem f is
associated in divisibility with a monic polynomial ĝ = xpm +

∑p−1
i=0 ẑix

i
m ∈

K[[x1, . . . , xm−1]][xm] for some p ∈ N, ẑi ∈ (x1, . . . , xm−1)K[[x1, . . . , xm−1]].
Thus the system F1 = f − Y (xpm +

∑p−1
i=0 Zix

i
m), F2 = Y U − 1 has a solution

ŷ, û, ẑi in K[[x]] such that ẑi ∈ K[[x1, . . . , xm−1]]. By Theorem 15 there exists
a solution y, u, zi in K〈x〉 such that zi ∈ K〈x1, . . . , xm−1〉 and is congruent
modulo (x) with the previous one. Thus y is invertible and f = yg, where
g = xpm +

∑p−1
i=0 zix

i
m ∈ K〈x1, . . . , xm−1〉[xm]. By the unicity of the (formal)

Weierstrass Preparation Theorem it follows that y = ŷ and g = ĝ. �
Now, we see that Theorem 15 is useful to get algebraic versal deformations

(see [5]). Let D = K〈Z〉, A = K〈T 〉/J , Z = (Z1, . . . , Zs), T = (T1, . . . , Tn)
and N = D/(f1, . . . , fd). A deformation of N over A is a
P = K〈T,Z〉/(J) ∼= ((A⊗K D)(T,Z))

h-module L such that
1) L⊗A K ∼= N ,
2) L is �at over A,

where above Bh denotes the Henselization of a local ring B. The condition 1)
says that L has the form P/(F1, . . . , Fd) with Fi ∈ K〈T,Z〉, Fi ∼= fi modulo
(T ) and 2) says that

2′) TorA1 (L,K) = 0

by the Local Flatness Criterion, since L is (T )-adically ideal separated because
P is local Noetherian. Let

P e
ν−→ P d → P → L→ 0

be part of a free resolution of L over P , where the map P d → P is given by
(F1, . . . , Fd). Then 2′) says that tensorizing with K ⊗A − the above sequence



7 Artin approximation property and the General N�eron Desingularization 177

we get an exact sequence

De → Dd → D → N → 0,

because P is �at over A. Therefore, 2′) is equivalent to

2′′) For all g ∈ Dd with
∑d

i=1 gifi = 0 there exists G ∈ K〈T,Z〉d with

G ≡ g modulo (T ) such that G modulo J ∈ Im ν, that is
∑d

i=1GiFi ∈ (J).

We would like to construct a versal deformation L (see [17, pages 157�
159]), that is for any A′ = K〈U〉/J ′, U = (U1, . . . , Un′), P

′ = ((A′⊗KD)(U,Z))
h

and L′ = K〈U〉/(F ′) a deformation of N to A′ there exists a morphism α : A→
A′ such that P ′ ⊗P L ∼= L′, where the structural map of P ′ over P is given by
α. If we replace above the algebraic power series with formal power series then
this problem is solved by Schlessinger in the in�nitesimal case followed by some
theorems of Elkik and M. Artin. Set Â = K[[T ]]/(J), P̂ = ((Â ⊗K D)(T,Z))

h.

We will assume that we have already L such that L̂ = P̂ ⊗P L is versal in the
frame of complete local rings. How to get the versal property for L in the frame
of algebraic power series?

Let A′, P ′, L′ be as above. Since L̂ is versal in the frame of complete local
rings, there exists α̂ : Â → Â′ such that P̂ ′ ⊗P̂ L̂ ∼= L̂′ = P̂ ′ ⊗P ′ L′, where
the structure of P̂ ′ as a P̂ -algebra is given by α̂. Assume that α̂ is given by
T → t̂ ∈ (U)K[[U ]]n. Then we have

i) J(t̂) ≡ 0 modulo (J ′).

On the other hand, we may suppose that α̂ induces an isomorphism P̂ ′⊗P̂
L̂ → L̂′ which is given by (T,Z) → (t̂, ẑ) for some ẑ ∈ (U,Z)K[[U,Z]]s with
ẑ ≡ Z modulo (U,Z)2 and the ideals (F (t̂, ẑ)), (F ′) of K[[U,Z]] coincide. Thus
there exists an invertible d× d-matrix Ĉ = (Ĉij) over K[[U,Z]] with

ii) F ′i =
∑d

j=1 ĈijFj(t̂, ẑ)).

By Theorem 15 we may �nd t ∈ (U)K〈U〉n and z ∈ (U,Z)K〈U,Z〉s,
Cij ∈ K〈U,Z〉 satisfying i), ii) and such that t ≡ t̂, z ≡ ẑ, Cij ≡ Ĉij modulo
(U,Z)2. Note that det(Cij) ≡ det Ĉ modulo (U,Z)2 and so (Cij) is invertible. It
follows that α : A→ A′ given by T → t is the wanted one, that is P ′⊗P L ∼= L′,
where the structure of P ′ as a P -algebra is given by α.

Next we give an idea of the proof of Theorem 15 in a particular, but
essential case.

Proposition 17. Let K be a �eld, A = K〈x〉, x = (x1, . . . , xm), f =
(f1, . . . , fr) ∈ K〈x, Y 〉r, Y = (Y1, . . . , Yn) and 0 ≤ s ≤ m, 1 ≤ q ≤ n, c be

some non-negative integers. Suppose that f has a solution ŷ = (ŷ1, . . . , ŷn)
in K[[x]] such that ŷi ∈ K[[x1, . . . , xs]] for all 1 ≤ i ≤ q. Then there exists a

solution y = (y1, . . . , yn) of f in A such that yi ∈ K〈x1, . . . , xs〉 for all 1 ≤ i ≤ q
and y ≡ ŷ mod (x)cK[[x]].
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Proof. Note that B = K[[x1, . . . , xs]]〈xs+1, . . . , xm〉 is excellent Henselian
and so it has the Artin approximation property. Thus the system of polynomials
f((ŷi)1≤i≤q, Yq+1, . . . , Yn) has a solution (ỹj)q<j≤n in B with ỹj ≡ ŷj modulo
(x)c. Now it is enough to apply the following lemma for A = K〈x1, . . . , xs〉. �

An etale neighborhood of a local ring (A,m) is a local smooth A-algebra
B, which is essentially �nite (that is a localization of a �nite A-algebra) and
such that mB is maximal in B with A/m ∼= B/mB. The structure of an etale
neighborhood is given for example in [41, Theorem 2.5].

Lemma 18. Let (A,m) be an excellent Henselian local ring, Â its comple-

tion, A[x]h, x = (x1, . . . , xm), Â[x]h be the Henselizations of A[x](m,x) respecti-

vely Â[x](m,x), f = (f1, . . . , fr) a system of polynomials in Y = (Y1, . . . , Yn)

over A[x]h and 1 ≤ q < n, c be some positive integers. Suppose that f has a

solution ŷ = (ŷ1, . . . , ŷn) in Â[x]h such that ŷi ∈ Â for all i ≤ q. Then there

exists a solution y = (y1, . . . , yn) of f in A[x]h such that yi ∈ A for all i ≤ q
and y ≡ ŷ mod mcÂ[x]h.

Proof. Â[x]h is a �ltered union of etale neighborhoods of Â[x]. Take an
etale neighborhood B of Â[x](m,x) such that ŷi ∈ B for all q < i ≤ n. Then

B ∼= (Â[x, T ]/(ĝ))(m,x,T ) for some monic polynomial ĝ in T over Â[x] with
ĝ(0) ∈ (m, x) and ∂ĝ/∂T (0) 6∈ (m, x), let us say

ĝ = T e +

e−1∑
j=0

(
∑

k∈Nm,|k|<u

ẑjkx
k)T j ,

for some u high enough and ẑjk ∈ Â. Note that ẑ00 ∈ mÂ and ẑ10 6∈ mÂ.
Changing if necessary u, we may suppose that

ŷi ≡
e−1∑
j=0

(
∑

k∈Nm,|k|<u

ŷijkx
k)T j mod ĝ

for some ŷijk ∈ Â, q < i ≤ n. Actually, we should take ŷi as a fraction but for
an easier expression we will skip the denominator. Substitute Yi, q < i ≤ n by

Y +
i =

e−1∑
j=0

(
∑

k∈Nm,|k|<u

Yijkx
k)T j

in f and divide by the monic polynomial

G = T e +

e−1∑
j=0

(
∑

k∈Nm,|k|<u

Zjkx
k)T j

in Â[x, T, Y1, . . . , Yt, (Yij), (Zj)], where (Yijk), (Zjk) are new variables.
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We get

fp(Y1, . . . , Yq, Y
+) ≡

e−1∑
j=0

(
∑

k∈Nm,|k|<u

Fpjk(Y1, . . . , Yq, (Yijk), (Zjk))x
kT j mod G,

1 ≤ p ≤ r. Then ŷ is a solution of f in B if and only if (ŷ1, . . . , ŷq, (ŷijk), (ẑjk))

is a solution of (Fpjk) in Â. As A has the Artin approximation property we
may choose a solution (y1, . . . , yq, (yijk), (zjk)) of (Fpjk) in A which coincides

modulo mcÂ with the former one. Then

yi =
e−1∑
j=0

(
∑

k∈Nm,|k|<u

(yijk))x
kT j ,

q < i ≤ n together with yi, 1 ≤ i ≤ q form a solution of f in the etale
neighborhood B′ = (A[x, T ]/(g))(m,x,T ),

g = T e +
e−1∑
i=0

(
∑

k∈Nm,|k|<u

zjkx
k)T j

of A[x](m,x), which is contained in A[x]h. Clearly, y is the wanted solution. �

2. APPLICATIONS TO THE BASS-QUILLEN CONJECTURE

Let R[T ], T = (T1, . . . , Tn) be a polynomial algebra in T over a regular
local ring (R,m). An extension of Serre's Problem proved by Quillen and Suslin
is the following

Conjecture 19 (Bass-Quillen). Every �nitely generated projective mo-

dule over R[T ] is free.

Theorem 20 (Lindel [19]). The Bass-Quillen Conjecture holds if R is

essentially of �nite type over a �eld.

Swan's unpublished notes on Lindel's paper (see [29, Proposition 2.1])
contain two interesting remarks.

1) Lindel's proof works also when R is essentially of �nite type over a
DVR A such that its local parameter p 6∈ m2.

2) The Bass-Quillen Conjecture holds if (R,m) is a regular local ring
containing a �eld, or p =char R/m 6∈ m2 providing that the following question
has a positive answer.

Question 21 (Swan). Is a regular local ring a �ltered inductive limit of
regular local rings essentially of �nite type over Z?
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Indeed, suppose for example that R contains a �eld and R is a �ltered in-
ductive limit of regular local rings Ri essentially of �nite type over a prime �eld
P . A �nitely generated projective R[T ]-module M is an extension of a �nitely
generated projective Ri[T ]-module Mi for some i, that is M ∼= R[T ]⊗Ri[T ]Mi.
By Theorem 20 we get Mi free and so M is free, too.

Theorem 22 ( [29]). Swan's Question 21 holds for regular local rings
(R,m, k) which are in one of the following cases:

(1) R contains a �eld,

(2) the characteristic p of k is not in m2,

(3) R is excellent Henselian.

Proof. (1) Suppose that R contains a �eld k. We may assume that k is
the prime �eld of R and so a perfect �eld. Then the inclusion u : k → R is
regular and by Theorem 3 it is a �ltered inductive limit of smooth k morphisms
k → Ri. Thus Ri is a regular ring of �nite type over k and so over Z. Therefore
R is a �ltered inductive limit of regular local rings essentially of �nite type over
Z. Similarly we may treat (2).

(3) First assume that R is complete. By the Cohen Structure Theorem
we may also assume that R is a factor of a complete local ring of type A =
Z(p)[[x1, . . . , xm]] for some prime integer p. By (2) we see that A is a �ltered
inductive limit of regular local rings Ai essentially of �nite type over Z. Since
R,A are regular local rings we see that R = A/(x) for a part x of a regular
system of parameters of A. Then there exists a system of elements x′ of a
certain Ai which is mapped into x by the limit map Ai → A. It follows that
x′ is part of a regular system of parameters of At for all t ≥ j for some j > i
and so Rt = At/(x

′) are regular local rings. Now, it is enough to see that R is
a �ltered inductive limit of Rt, t ≥ j.

Next assume that R is excellent Henselian and let R̂ be its completion.
Using [7], or [41] it is enough to show that given a �nite type Z-subalgebra E of
R the inclusion α : E → R factors through a regular local ring E′ essentially of
�nite type over Z, that is there exists β : E′ → R such that α is the composite

map E → E′
β−→ R.

As above, R̂ is a �ltered inductive limit of regular local rings and so
the composite map α̂ : E

α−→ R → R̂ factors through a regular local ring F
essentially of �nite type over Z. We may choose a �nite type Z-subalgebra
D ⊂ F such that F ∼= Dq for some q ∈ SpecD and the map E → F factors
through D, i.e. D is an E-algebra. As D is excellent, its regular locus Reg D
is open and so there exists d ∈ D \ q such that Dd is a regular ring. Changing
D by Dd we may assume that D is regular.

Let E = Z[b1, . . . , bn] for some bi ∈ E ⊂ R and let D = Z[Y ]/(h),
Y = (Y1, . . . , Yn) for some polynomials h. SinceD is an E-algebra we may write
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bi ≡ Pi(Y ) modulo h, i = 1, . . . , n for some polynomials Pi ∈ E[Y ] ⊂ R[Y ].
Note that there exists ŷ ∈ R̂n such that bi = Pi(ŷ), h(ŷ) = 0 because α̂ factors
through D. As R has the Artin approximation property, by Theorem 4 there
exists y ∈ Rn such that bi = Pi(y), h(y) = 0. Let ρ : D → R be the map given
by Y → y. Clearly, α factors through D and we may take E′ = Dρ−1m. More
precisely, we have the following diagram which is commutative except in the
right square,

E

��

α // R // R̂

D

ρ

OO

// F

OO

�

Corollary 23 ([29]). The Bass-Quillen Conjecture holds if R is a regular

local ring in one of the cases (1), (2) of the above theorem.

Remark 24. Theorem 22 is not a complete answer to Question 21, but (3)
says that a positive answer is expected in general. Since there exists no result
similar to Lindel's saying that the Bass-Quillen Conjecture holds for all regular
local rings essentially of �nite type over Z we decided to wait with our further
research. So we have waited already for 25 years.

Another problem is to replace in the Bass-Quillen Conjecture the poly-
nomial algebra R[T ] by other R-algebras. The tool is given by the following
theorem.

Theorem 25 (Vorst [43]). Let A be a ring, A[x], x = (x1, . . . , xm) a

polynomial algebra, I ⊂ A[x] a monomial ideal and B = A[x]/I. Then every

�nitely generated projective B-module M is extended from a �nitely generated

projective A-module N , that is M ∼= B ⊗A N , if for all n ∈ N every �nitely

generated projective A[T ]-module, T = (T1, . . . , Tn) is extended from a �nitely

generated projective A-module.

Corollary 26 ([34]). Let R be a regular local ring in one of the cases

(1), (2) of Theorem 22, I ⊂ R[x] be a monomial ideal with x = (x1, . . . , xm)
and B = R[x]/I. Then any �nitely generated projective B-module is free.

For the proof, apply the above theorem using Corollary 23.
The Bass-Quillen Conjecture could also hold when R is not regular as the

following corollary shows.

Corollary 27 ([34]). Let R be a regular local ring in one of the cases

of Theorem 22, I ⊂ R[x] be a monomial ideal with x = (x1, . . . , xm) and

B = R[x]/I. Then every �nitely generated projective B[T ]-module is free, where

T = (T1, . . . , Tn).
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This result holds because B[T ] is a factor of R[x, T ] by the monomial ideal
IR[x, T ].

Remark 28. If I is not monomial, then the Bass-Quillen Conjecture may
fail when replacing R by B. Indeed, if B = R[x1, x2]/(x

2
1 − x32) then there

exist �nitely generated projective B[T ]-modules of rank one which are not free
(see [18, (5.10)]).

Now, let (R,m) be a regular local ring and f ∈ m \m2.

Question 29 (Quillen [36]). Is free a �nitely generated projective module
over Rf?

A positive answer to this question could solve completely the Bass-Quillen
Conjecture (see [36]). Indeed, let (A,m) be a regular local ring, P a �nitely ge-
nerated projective A[T ]-module and A(T ) the localization of A[T ] with respect
to all monic polynomials in T . If P ⊗A[T ] A(T ) is free over A(T ) then P is free
over A[T ] as it was already known. Set R = A[T ](m,T ). A positive answer of
Quillen's question will give that P ⊗A[T ]RT is free and so P ⊗A[T ]A(T ) is free,
which is enough.

Theorem 30 (Bhatwadeckar-Rao [9]). Quillen's Question has a positive

answer if R is essentially of �nite type over a �eld.

Theorem 31 ([33]). Quillen's Question has a positive answer if R contains

a �eld.

This goes similarly to Corollary 23 using Theorem 30 instead of Theo-
rem 20.

Remark 32. Paper [33] was not accepted for publication in many journals
since the referees said that it "relies on a theorem [that is Theorem 3] which
is still not recognized by the mathematical community". Since our paper was
quoted as an unpublished preprint in [41] we published it later in the Bulletin
Math�ematique de la Societ�e des Sciences Mat�ematiques de Roumanie, and it
was noticed and quoted by many people (see for instance [16]).

3. GENERAL NERON DESINGULARIZATION

Using Artin's methods from [2], Ploski gave the following theorem, which
is the �rst form of a possible extension of Neron Desingularization in dim > 1.

Theorem 33 ([23]). Let C{x}, x = (x1, . . . , xm), f = (f1, . . . , fs) be

some convergent power series from C{x, Y }, Y = (Y1, . . . , Yn) and ŷ ∈ C[[x]]n

with ŷ(0) = 0 be a solution of f = 0. Then the map v : B = C{x, Y }/(f) →
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C[[x]] given by Y → ŷ factors through an A-algebra of type B′ = C{x, Z} for
some variables Z = (Z1, . . . , Zs), that is v is a composite map B → B′ → C[[x]].

Using Theorem 3 one can get an extension of the above theorem.

Theorem 34 ([34]). Let (A,m) be an excellent Henselian local ring, Â its

completion, B a �nite type A-algebra and v : B → Â an A-morphism. Then v
factors through an A-algebra of type A[Z]h for some variables Z = (Z1, . . . , Zs),
where A[Z]h is the Henselization of A[Z](m,Z).

Suppose that B = A[Y ]/I, Y = (Y1, . . . , Yn). If f = (f1, . . . , fr), r ≤ n is
a system of polynomials from I, then denote by ∆f the ideal generated by all

r×r−minors of the Jacobian matrix

(
∂fi
∂Yj

)
. After Elkik [13], let HB/A be the

radical of the ideal
∑
f

(
(f) : I

)
∆fB, where the sum is taken over all systems of

polynomials f from I with r ≤ n. Then BP , P ∈ SpecB is essentially smooth
over A if and only if P 6⊃ HB/A by the Jacobian criterion for smoothness. Thus
HB/A measures the non smooth locus of B over A.

In the linear case we may easily get cases of Theorem 3 when dimA > 1.

Lemma 35 ([27, (4.1)]). Let A be a ring and a1, a2 a weak regular sequence
of A, that is a1 is a non-zero divisor of A and a2 is a non-zero divisor of A/(a1).
Let A′ be a �at A-algebra and set B = A[Y1, Y2]/(f), where f = a1Y1 + a2Y2.
Then HB/A is the radical of (a1, a2) and any A-morphism B → A′ factors
through a polynomial A-algebra in one variable.

Proof. Note that all solutions of f = 0 in A are multiples of (−a2, a1).
By �atness, any solution of f in A′ is a linear combination of some solutions of
f in A and so again a multiple of (−a2, a1). Let h : B → A′ be a map given
by Yi → yi ∈ A′. Then (y1, y2) = z(−a2, a1) and so h factors through A[Z],
that is h is the composite map B → A[Z] → A′, the �rst map being given by
(Y1, Y2)→ Z(−a2, a1) and the second one by Z → z. �

Proposition 36 ([27, Lemma 4.2]). Let fi =
∑n

i=1 aijYj ∈ A[Y1, . . . , Yn],

i ∈ [r] be a system of linear homogeneous polynomials and y(k) = (y
(k)
1 , . . . , y

(k)
n ),

k ∈ [p] be a complete system of solutions of f = (f1, . . . , fr) = 0 in A. Let

b = (b1, . . . , br) ∈ Ar and c a solution of f = b in A. Let A′ be a �at A-algebra
and B = A[Y1, . . . , Yn]/(f − b). Then any A-morphism B → A′ factors through
a polynomial A-algebra in p variables.

Proof. Let h : B → A′ be a map given by Y → y′ ∈ A′n. Since A′ is
�at over A we see that y′ − h(c) is a linear combinations of y(k), that is there
exists z = (z1, . . . , zp) ∈ A′p such that y′ − h(c) =

∑p
k=1 zkh(y(k)). Therefore,
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h factors through A[Z1, . . . , Zp], that is h is the composite A-morphism B →
A[Z1, . . . , Zp]→ A′, where the �rst map is given by Y → c+

∑p
k=1 Zky

(k) and
the second one by Z → z. �

Another form of Theorem 3 is the following theorem which is a positive
answer to a conjecture of M. Artin [6].

Theorem 37 (Cipu-Popescu [11]). Let u : A→ A′ be a regular morphism

of Noetherian rings, B an A-algebra of �nite type, v : B → A′ an A-morphism

and D ⊂ SpecB the open smooth locus of B over A. Then there exist a smooth

A-algebra C and two A-morphisms t : B → C, w : C → A′ such that v = wt
and C is smooth over B at t∗−1(D), with t∗ : SpecC → SpecB being induced

by t.

There exists also a form of Theorem 3 recalling us the strong Artin ap-
proximation property.

Theorem 38 ( [32, 34]). Let (A,m) be a Noetherian local ring with the

completion map A→ Â regular, B an A-algebra of �nite type and ν the Artin

function over Â associated to the system of polynomials f de�ning B. Then

there exists a function λ : N → N, λ ≥ ν such that for every positive integer

c and every morphism v : B → A/mλ(c) there exists a smooth A-algebra C
and two A-algebra morphisms t : B → C, w : C → A/mc such that wt is the
composite map B

v−→ A/mλ(c) → A/mc.

Sometimes, we may �nd some information about λ (and so about ν).
Let A be a discrete valuation ring, x a local parameter of A, A′ = Â its
completion and B = A[Y ]/I, Y = (Y1, . . . , Yn) an A-algebra of �nite type. If
f = (f1, . . . , fr), r ≤ n is a system of polynomials from I then we consider
a r × r-minor M of the Jacobian matrix (∂fi/∂Yj). Let c ∈ N. Suppose
that there exists an A-morphism v : B → A′/(x2c+1) and N ∈ ((f) : I) such
that v(NM) 6∈ (x)c/(x2c+1), where for simplicity we write v(NM) instead of
v(NM + I).

Theorem 39 ([34, Theorem 10]). There exists a B-algebra C which is

smooth over A such that every A-morphism v′ :B → A′ with v′ ≡ v modulo x2c+1

(that is v′(Y ) ≡ v(Y ) modulo x2c+1) factors through C.

Corollary 40 ([34, Theorem 15]). With the assumptions and notation

of Theorem 39 there exists a canonical bijection

A′s → {v′ ∈ HomA(B,A′) : v′ ≡ v modulo x2c+1}

for some s ∈ N.
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Let k be a �eld and F a k-algebra of �nite type, let us say F = k[U ]/J ,
U = (U1, . . . , Un). An arc Spec k[[x]] → SpecF is given by a k-morphism
F → A′ = k[[x]]. Assume that HF/k 6= 0 (this happens for example when F is
reduced and k is perfect). Set A = k[x](x), B = A⊗k F . Let f = (f1, . . . , fr),
r ≤ n be a system of polynomials from J and M a r× r-minor of the Jacobian
matrix (∂fi/∂Uj). Let c ∈ N. Assume that there exists an A-morphism g :
F → A′/(x2c+1) and N ∈ ((f) : J) such that g(NM) 6∈ (x)c/(x2c+1). Note
that A⊗k − induces a bijection Homk(F,A

′)→ HomA(B,A′) by adjunction.

Corollary 41 ([34, Corollary 16]). The set {g′ ∈ Homk(F,A
′) : g′ ≡

g modulo x2c+1} is in bijection with an a�ne space A′s over A′ for some s ∈ N.

Next we give a possible extension of Greenberg's result on the strong
Artin approximation property [14]. Let (A,m) be a Cohen-Macaulay local
ring (for example a reduced ring) of dimension one, A′ = Â the completion
of A, B = A[Y ]/I, Y = (Y1, . . . , Yn) an A-algebra of �nite type and c, e ∈
N. Suppose that there exists f = (f1, . . . , fr) in I, a r × r-minor M of the
Jacobian matrix (∂f/∂Y ), N ∈ ((f) : I) and an A-morphism v : B → A/m2e+c

such that (v(MN)) ⊃ me/m2e+c. Then we may construct a General Neron
Desingularization in the idea of Theorem 39, which could be used to get the
following theorem.

Theorem 42 (A. Popescu-D. Popescu [24]). There exists an A-morphism

v′ : B → Â such that v′ ≡ v modulo mcÂ, that is v′(Y + I) ≡ v(Y +
I) modulo mcÂ. Moreover, if A is also excellent Henselian then there exists

an A-morphism v′ : B → A such that v′ ≡ v modulo mc.

Remark 43. The above theorem could be extended for Noetherian local
rings of dimension one (see [22]). In this case, the statement depends also on a
reduced primary decomposition of (0) in A.

Using [24] we end this section with an algorithmic attempt to explain the
proof of Theorem 3 in the frame of Noetherian local domains of dimension one.
Let u : A→ A′ be a �at morphism of Noetherian local domains of dimension 1.
Suppose that A ⊃ Q and the maximal ideal m of A generates the maximal ideal
of A′. Then u is a regular morphism. Moreover, we suppose that there exist
canonical inclusions k = A/m→ A, k′ = A′/mA′ → A′ such that u(k) ⊂ k′.

If A is essentially of �nite type over Q, then the ideal HB/A can be com-
puted in Singular by following its de�nition but it is easier to describe only
the ideal

∑
f

(
(f) : I

)
∆fB de�ned above. This is the case considered in our

algorithmic part, let us say A ∼= k[x]/(F ) for some variables x = (x1, . . . , xm),
and the completion of A′ is k′JxK/(F ). When v is de�ned by polynomials y
from k′[x] then our problem is easy. Let L be the �eld obtained by adjoining
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to k all coe�cients of y. Then R = L[x]/(F ) is a subring of A′ containing Im v
which is essentially smooth over A. Then we may take B′ as a standard smooth
A-algebra such that R is a localization of B′. Consequently, we suppose usually
that y is not in k′[x].

We may suppose that v(HB/A) 6= 0. Indeed, if v(HB/A) = 0 then v
induces an A-morphism v′ : B′ = B/HB/A → A′ and we may replace (B, v) by
(B′, v′). Applying this trick several times we reduce to the case v(HB/A) 6= 0.
However, the fraction �eld of Im v is essentially smooth over A by separability,
that is HIm v/AA

′ 6= 0 and in the worst case our trick will change B by Im v
after several steps.

Choose P ′ ∈
(
∆f ((f) : I)

)
\ I for some system of polynomials f =

(f1, . . . , fr) from I and d′ ∈
(
v(P ′)A′

)
∩ A, d′ 6= 0. Moreover, we may

choose P ′ to be from M
(
(f) : I

)
where M is a r × r-minor of

(
∂f

∂Y

)
. Then

d′ = v(P ′)z ∈
(
v(HB/A)

)
∩ A for some z ∈ A′. Set B1 = B[Z]/(fr+1), where

fr+1 = −d′ + P ′Z and let v1 : B1 → A′ be the map of B-algebras given by
Z → z. It follows that d′ ∈

(
(f, fr+1) : (I, fr+1)

)
and d′ ∈ ∆f , d

′ ∈ ∆fr+1 .
Then d = d′2 ≡ P modulo (I, fr+1) for P = P ′2Z2 ∈ HB1/A. Replace B by
B1 and the Jacobian matrix J = (∂f/∂Y ) will be now the new J given by(
J 0
∗ P ′

)
. Thus we reduce to the case when d ∈ HB/A ∩A.

But how to get d with a computer if y is not polynomial de�ned over k′?
Then the algorithm is complicated because we are not able to tell the computer
who is y and so how to get d′. We may choose an element a ∈ m and �nd a
minimal c ∈ N such that ac ∈ (v(M)) + (a2c) (this is possible because dimA =
1). Set d′ = ac. It follows that d′ ∈ (v(M)) + (d′2) ⊂ (v(M)) + (d′4) ⊂ . . .
and so d′ ∈ (v(M)), that is d′ = v(M)z for some z ∈ A′. Certainly we cannot
�nd precisely z, but later it is enough to know just a kind of truncation of it
modulo d′6.

Thus we may suppose that there exist f = (f1, . . . , fr), r ≤ n a system
of polynomials from I, a r × r-minor M of the Jacobian matrix (∂fi/∂Yj),
N ∈ ((f) : I) such that 0 6= d ≡ P = MN modulo I. We may assume
that M = det((∂fi/∂Yj)i,j∈[r]). Set Ā = A/(d3), Ā′ = A′/d3A′, ū = Ā ⊗A u,
B̄ = B/d3B, v̄ = Ā⊗Av. Clearly, ū is a regular morphism of Artinian local rings
and it is easy to �nd a General Neron Desingularization in this frame. Thus
there exists a B̄-algebra C, which is smooth over Ā such that v̄ factors through
C. Moreover, we may suppose that C ∼= (Ā[U ]/(ω))τ for some polynomials
ω, τ ∈ k[U ] which are not in m(Ā[U ]/(ω)) (note that k ⊂ A). Then D ∼=
(A[U ]/(ω))τ is smooth over A and u factors through D. Usually, v does not
factor through D, though v̄ factors through C ∼= Ā⊗A D.
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Let y′ ∈ Dn be such that the composite map B̄ → C → D̄ is given by
Y → y′ + d3D. Thus I(y′) ≡ 0 modulo d3D. We have d ≡ P modulo I and so
P (y′) ≡ d modulo d3 . Thus P (y′) = ds for a certain s ∈ D with s ≡ 1 modulo
d. Let H be the n×n-matrix obtained by adding down to (∂f/∂Y ) as a border
the block (0|Idn−r). Let G′ be the adjoint matrix of H and G = NG′. We have

GH = HG = NM Idn = P Idn

and so
dsIdn = P (y′)Idn = G(y′)H(y′).

Set h = s(Y − y′)− dG(y′)T , where T = (T1, . . . , Tn) are new variables. Since

s(Y − y′) ≡ dG(y′)T modulo h

and

f(Y )− f(y′) ≡
∑
j

∂f

∂Yj
(y′)(Yj − y′j)

modulo higher order terms in Yj − y′j , by Taylor's formula we see that for
p = maxi deg fi we have

spf(Y )− spf(y′) ≡ sp−1dP (y′)T + d2Q

modulo h, where Q ∈ T 2D[T ]r. This is because (∂f/∂Y )G = (P Idr|0). We
have f(y′) = d2b for some b ∈ dDr. Set gi = spbi + spTi +Qi, i ∈ [r]. Then we
may take B′ to be a localization of (D[Y, T ]/(I, h, g))s.
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