ADDITIVITY OF MAPS ACTING IN A SUM OF TRIPLE PRODUCTS ON TRIANGULAR ALGEBRAS

JOÃO CARLOS DA MOTTA FERREIRA
and MARIA DAS GRAÇAS BRUNO MARIETTO

Communicated by Vasile Brînzănescu

In this paper, we prove that surjective maps acting in a sum of triple products on triangular algebras are automatically additive.

AMS 2010 Subject Classification: 16W99, 47B47.

Key words: Triangular algebras, additive maps.

1. INTRODUCTION

Let \mathcal{A} and \mathcal{B} be two algebras over a commutative ring \mathcal{R} and \mathcal{X} a faithful $(\mathcal{A}, \mathcal{B})$-bimodule (see [1]). The \mathcal{R}-algebra

$$\text{Tri}(\mathcal{A}, \mathcal{X}, \mathcal{B}) = \left\{ \begin{pmatrix} a & x \\ b & 0 \end{pmatrix} : a \in \mathcal{A}, \ x \in \mathcal{X}, \ b \in \mathcal{B} \right\}$$

under the usual matrix addition and formal matrix multiplication will be called a Triangular algebra. Let $\mathcal{I} = \text{Tri}(\mathcal{A}, \mathcal{X}, \mathcal{B})$ be a Triangular algebra. We set

$$\mathcal{I}_{11} = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in \mathcal{A} \right\},$$

$$\mathcal{I}_{12} = \left\{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} : x \in \mathcal{X} \right\},$$

and

$$\mathcal{I}_{22} = \left\{ \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} : b \in \mathcal{B} \right\}.$$

Then we can may write $\mathcal{I} = \mathcal{I}_{11} + \mathcal{I}_{12} + \mathcal{I}_{22}$, and every element $c \in \mathcal{I}$ can be written as $c = c_{11} + c_{12} + c_{22}$, where $c_{ij} \in \mathcal{I}_{ij}$ ($1 \leq i \leq j \leq 2$). Note that $a_{ij}b_{kl} = 0$ if $j \neq k$.

Ji in [1] studied the additivity of maps $M : \mathcal{I} \to \mathcal{G}$ and $M^* : \mathcal{G} \to \mathcal{I}$, where \mathcal{G} is an arbitrary ring, acting on sums of double products of type $M^*(x)a + aM^*(x)$ and $M(a)x + xM(a)$, for all $a \in \mathcal{I}$ and $x \in \mathcal{G}$, respectively. He proved the following theorem.
Theorem 1.1. Let \mathfrak{A} and \mathfrak{B} be two algebras over a commutative ring \mathfrak{R}, \mathfrak{X} a faithful $(\mathfrak{A}, \mathfrak{B})$-bimodule and let \mathfrak{T} be the Triangular algebra $\text{Tri}(\mathfrak{A}, \mathfrak{X}, \mathfrak{B})$ satisfying the following conditions:

(i) If $a \in \mathfrak{A}$ is such that $aa_1 + a_1a = 0$ for all $a_1 \in \mathfrak{A}$, then $a = 0$;
(ii) If $b \in \mathfrak{B}$ is such that $bb_1 + b_1b = 0$ for all $b_1 \in \mathfrak{B}$, then $b = 0$;
(iii) If $x \in \mathfrak{X}$ is such that $ax = 0$, for all $a \in \mathfrak{A}$, or $xb = 0$, for all $b \in \mathfrak{B}$, then $x = 0$.

Let \mathfrak{S} be an arbitrary ring. If $M : \mathfrak{T} \to \mathfrak{S}$ and $M^* : \mathfrak{S} \to \mathfrak{T}$ are surjective maps such that

$$M(M^*(x)a + aM^*(x)) = xM(a) + M(a)x,$$

$$M^*(M(a)x + xM(a) = aM^*(x) + M^*(x)a,$$

for all $a, b \in \mathfrak{T}$ and $x, y \in \mathfrak{S}$, then both M and M^* are additives.

In this paper, we investigate the additivity of maps $M : \mathfrak{T} \to \mathfrak{S}$ and $M^* : \mathfrak{S} \to \mathfrak{T}$, where \mathfrak{S} is an arbitrary ring, acting on sums of triple products of type $M^*(x)ab + M^*(x)ba + aM^*(x)b + bM^*(x)a + abM^*(x) + baM^*(x)$ and $M(a)xy + M(a)yx + xM(a)y + yM(a)x + xyM(a) + yxM(a)$, for all $a, b \in \mathfrak{T}$ and $x, y \in \mathfrak{S}$, respectively.

2. THE MAIN RESULT

Our main result is the following theorem.

Theorem 2.1. Let \mathfrak{A} and \mathfrak{B} be two algebras over a commutative ring \mathfrak{R}, \mathfrak{X} a faithful $(\mathfrak{A}, \mathfrak{B})$-bimodule and let \mathfrak{T} be the Triangular algebra $\text{Tri}(\mathfrak{A}, \mathfrak{X}, \mathfrak{B})$ satisfying the following conditions:

(i) If $a \in \mathfrak{A}$ is such that $aa_1a_2 + aa_2a_1 + a_1aa_2 + a_2aa_1 + a_1a_2a + a_2a_1a = 0$ for all $a_1, a_2 \in \mathfrak{A}$, then $a = 0$;
(ii) If $b \in \mathfrak{B}$ is such that $bb_1b_2 + bb_2b_1 + b_1bb_2 + b_2bb_1 + b_1b_2b + b_2b_1b = 0$ for all $b_1, b_2 \in \mathfrak{B}$, then $b = 0$;
(iii) If $x \in \mathfrak{X}$ is such that $ax = 0$, for all $a \in \mathfrak{A}$, or $xb = 0$, for all $b \in \mathfrak{B}$, then $x = 0$.

Let \mathfrak{S} be an arbitrary ring. If $M : \mathfrak{T} \to \mathfrak{S}$ and $M^* : \mathfrak{S} \to \mathfrak{T}$ are surjective maps such that

$$M(M^*(x)ab + M^*(x)ba + aM^*(x)b + bM^*(x)a + abM^*(x) + baM^*(x)) = xM(a)M(b) + xM(b)M(a) + M(a)xM(b) + M(b)xM(a)$$

(1) $$+ M(a)M(b)x + M(b)M(a)x,$$

$$M^*(M(a)xy + M(a)yx + xM(a)y + yM(a)x + xyM(a) + yxM(a))$$
\[aM^*(x)M^*(y) + aM^*(y)M^*(x) + M^*(x) aM^*(y) + M^*(y) aM^*(x) \]
\[+ M^*(x)M^*(y)a + M^*(y)M^*(x)a, \]

for all \(a, b \in \mathfrak{S} \) and \(x, y \in \mathcal{S} \), then both \(M \) and \(M^* \) are additives.

Based on the techniques presented in [1] and [2], we shall organize the proof of Theorem 2.1 in a series of lemmas. We begin with the following lemma

Lemma 2.1. \(M(0) = 0 \) and \(M^*(0) = 0 \).

Proof. From a direct calculation we have

\[
M(0) = M(M^*(0)00 + M^*(0)00 + 0M^*(0)0 + 0M^*(0)0 + 00M^*(0)) \\
= 0M(0)M(0) + 0M(0)M(0) + M(0)0M(0) + M(0)0M(0) \\
+ M(0)M(0)0 + M(0)M(0)0 \\
= 0.
\]

Similarly, we prove \(M^*(0) = 0 \). \(\square \)

Lemma 2.2. \(M \) and \(M^* \) are bijective.

Proof. It suffices to prove that \(M \) and \(M^* \) are injective. First show that \(M \) is injective. Let \(c_1 \) and \(c_2 \) be in \(\mathfrak{S} \) and suppose that \(M(c_1) = M(c_2) \). From the equality (2), we have

\[
m^*(M(c_i)xy + M(c_i)yx + xM(c_i)y + yM(c_i)x + xyM(c_i) + yxM(c_i)) \\
= c_i M^*(x)M^*(y) + c_i M^*(y)M^*(x) + M^*(x)c_i M^*(y) + M^*(y)c_i M^*(x) \\
+ M^*(x)M^*(y)c_i + M^*(y)M^*(x)c_i
\]

for all \(x, y \in \mathcal{S} \) and \(i = 1, 2 \). Hence, we have

\[
c_1 M^*(x)M^*(y) + c_1 M^*(y)M^*(x) + M^*(x)c_1 M^*(y) + M^*(y)c_1 M^*(x) \\
+ M^*(x)M^*(y)c_1 + M^*(y)M^*(x)c_1 = c_2 M^*(x)M^*(y) + c_2 M^*(y)M^*(x) \\
+ M^*(x)c_2 M^*(y) + M^*(y)c_2 M^*(x) + M^*(x)M^*(y)c_2 + M^*(y)M^*(x)c_2.
\]

The above equality leads to the conclusion that

\[
(c_1 - c_2) M^*(x)M^*(y) + (c_1 - c_2) M^*(y)M^*(x) + M^*(x)(c_1 - c_2) M^*(y) \\
+ M^*(y)(c_1 - c_2)M^*(x) + M^*(x)M^*(y)(c_1 - c_2) + M^*(y)M^*(x)(c_1 - c_2) = 0.
\]

From the surjectivity of \(M^* \) we conclude that

\[
(c_1 - c_2)ab + (c_1 - c_2)ba + a(c_1 - c_2)b \\
+ b(c_1 - c_2)a + ab(c_1 - c_2) + ba(c_1 - c_2) = 0
\]

\]
for all $a, b \in \mathfrak{S}$. Let us write $c_1 - c_2 = c_{11} + c_{12} + c_{22}$, where $c_{ij} \in \mathfrak{S}_{ij}$ ($1 \leq i \leq j \leq 2$). Then, for arbitrary elements $a_{11}, b_{11} \in \mathfrak{S}_{11}$ we have $c_{11}a_{11}b_{11} + c_{11}b_{11}a_{11} + a_{11}c_{11}b_{11} + b_{11}c_{11}a_{11} + a_{11}b_{11}c_{11} + b_{11}a_{11}c_{11} = 0$ which implies $c_{11} = 0$, by condition (i) of the Theorem. Also, for arbitrary elements $a_{22}, b_{22} \in \mathfrak{S}_{22}$ we have $c_{22}a_{22}b_{22} + c_{22}b_{22}a_{22} + a_{22}c_{22}b_{22} + b_{22}c_{22}a_{22} + a_{22}b_{22}c_{22} + b_{22}a_{22}c_{22} = 0$ which yields $c_{22} = 0$, by condition (ii) of the Theorem. Yet, for arbitrary elements $a_{11} \in \mathfrak{S}_{11}$ and $b_{22} \in \mathfrak{S}_{22}$ we have $c_{12}a_{11}b_{22} + c_{12}b_{22}a_{11} + a_{11}c_{12}b_{22} + b_{22}c_{12}a_{11} + a_{11}b_{22}c_{12} + b_{22}a_{11}c_{12} = 0$ which results in $a_{11}c_{12}b_{22} = 0$. Thus, $c_{12} = 0$, by condition (iii) of the Theorem. It follows that $c_1 - c_2 = 0$ and therefore $c_1 = c_2$.

Now, to prove the injectivity of M^* let x_1 and x_2 be in \mathfrak{S} and suppose $M^*(x_1) = M^*(x_2)$. From the equality (1), we have

$$
M^*M(M^*(x_i)ab + M^*(x_i)ba + aM^*(x_i)b + bM^*(x_i)a + abM^*(x_i) + baM^*(x_i)) = M^*(x_iM(a)M(b) + x_iM(b)M(a) + M(a)x_iM(b) + M(b)x_iM(a)) = M^*(MM^{-1}(x_i)M(a)M(b) + MM^{-1}(x_i)M(b)M(a) + M(a)MM^{-1}(x_i)M(b) + M(b)MM^{-1}(x_i)M(a)) = M^{-1}(x_i)M^*M(a)M^*M(b) + M^{-1}(x_i)M^*M(b)M^*M(a) + M^*M(a)M^{-1}(x_i)M^*M(b) + M^*M(b)M^{-1}(x_i)M^*M(a) + M^*M(a)M^*M(b)M^{-1}(x_i) + M^*M(b)M^*M(a)M^{-1}(x_i)
$$

for all $a, b \in \mathfrak{S}$ and $i = 1, 2$. It follows that

$$
M^{-1}(x_1)M^*M(a)M^*M(b) + M^{-1}(x_1)M^*M(b)M^*M(a) + M^*M(a)M^*M(b)M^{-1}(x_1) + M^*M(b)M^*M(a)M^{-1}(x_1)
$$

which results in

$$
(M^{-1}(x_1) - M^{-1}(x_2))M^*M(a)M^*M(b) + (M^{-1}(x_1) - M^{-1}(x_2))M^*M(b)M^*M(a) + M^*M(a)(M^{-1}(x_1) - M^{-1}(x_2))M^*M(b) + M^*M(b)(M^{-1}(x_1) - M^{-1}(x_2))M^*M(a) + M^*M(a)M^*M(b)(M^{-1}(x_1) - M^{-1}(x_2)) + M^*M(b)M^*M(a)(M^{-1}(x_1) - M^{-1}(x_2))
$$

$$
= 0.
$$
Noting that M^*M is also surjective and using a similar argument as applied in the previous case, we can show that $M^{-1}(u_1) = M^{-1}(u_2)$. Consequently $u_1 = u_2$. □

Lemma 2.3. The maps $M^{*-1} : \mathcal{S} \to \mathcal{S}$ and $M^{-1} : \mathcal{S} \to \mathcal{S}$ satisfy:

(i) \[M^{*-1}(M^{-1}(x)ab + M^{-1}(x)ba + aM^{-1}(x)b + bM^{-1}(x)a) \]
\[+ abM^{-1}(x) + baM^{-1}(x)) = xM^{*-1}(a)M^{*-1}(b) \]
\[+ xM^{*-1}(b)M^{*-1}(a) + M^{*-1}(a)xM^{*-1}(b) + M^{*-1}(b)xM^{*-1}(a) \]
\[+ M^{*-1}(a)M^{*-1}(b)x + M^{*-1}(b)M^{*-1}(a)x, \]

(ii) \[M^{-1}(M^{*-1}(a)xy + M^{*-1}(a)yx + xM^{*-1}(a)y + yM^{*-1}(a)x) \]
\[+ xyM^{*-1}(a) + yxM^{*-1}(a)) = aM^{-1}(x)M^{-1}(y) \]
\[+ aM^{-1}(y)M^{-1}(x) + M^{-1}(x)aM^{-1}(y) + M^{-1}(y)aM^{-1}(x) \]
\[+ M^{-1}(x)M^{-1}(y)a + M^{-1}(y)M^{-1}(x)a, \]

for all $a, b \in \mathcal{S}$ and $x, y \in \mathcal{S}$.

Proof. From the equality (2) we have
\[M^*(xM^{*-1}(a)M^{*-1}(b) + xM^{*-1}(b)M^{*-1}(a) + M^{*-1}(a)xM^{*-1}(b) \]
\[+ M^{*-1}(b)xM^{*-1}(a) + M^{*-1}(a)xM^{*-1}(b) + M^{*-1}(b)xM^{*-1}(a) \]
\[= M^*(MM^{-1}(x)M^{*-1}(a)M^{*-1}(b) + MM^{-1}(x)M^{*-1}(b)M^{*-1}(a) \]
\[+ M^{*-1}(a)MM^{-1}(x)M^{*-1}(b) + M^{*-1}(b)MM^{-1}(x)M^{*-1}(a) \]
\[+ M^{*-1}(a)MM^{-1}(b)MM^{-1}(x) + M^{*-1}(b)MM^{-1}(a)MM^{-1}(x) \]
\[= M^{-1}(x)ab + M^{-1}(x)ba + aM^{-1}(x)b + bM^{-1}(x)a + abM^{-1}(x) \]
\[+ baM^{-1}(x) \]

for all $a, b \in \mathcal{S}$ and $x \in \mathcal{S}$. Applying M^{*-1} in the above equality, we obtain the equality (i).

The second equality follows in a similar way. □

Lemma 2.4. Let $a, b, c \in \mathcal{S}$ such that $M(c) = M(a) + M(b)$. Then

(i) \[M(cst + cts + sc + tcs + stc + tsc) \]
\[= M(ast + ats + sat + tas + sta + tsa) \]
\[+ M(bst + bts + sbt + tbs + stb + tsb) \]

for all $s, t \in \mathcal{S}$;
(ii)
\[M^{*^{-1}}(cst + cts + sct + tcs + stc + tsc) = M^{*^{-1}}(ast + ats + sat + tas + sta + tsa) + M^{*^{-1}}(bst + bts + sbt + tbs + stb + tsb) \]

for all \(s, t \in \mathcal{F} \).

Proof. From the equality (1), for arbitrary elements \(s, t \in \mathcal{F} \) we have

\[
\begin{align*}
M(cst + cts + sct + tcs + stc + tsc) &= M(cM^{*^{-1}}(s)t + ctM^{*^{-1}}(s) + M^{*^{-1}}(s)ct) \\
+ tcM^{*^{-1}}(s) + M^{*^{-1}}(s)tc + tM^{*^{-1}}(s)c) &= M(a)M^{*^{-1}}(s)M(t) + M(a)M(t)M^{*^{-1}}(s) + M^{*^{-1}}(s)M(a)M(t) \\
+ M(t)M(a)M^{*^{-1}}(s) + M^{*^{-1}}(s)M(t)M(a) + M(t)M^{*^{-1}}(s)M(a) \\
+ M(b)M^{*^{-1}}(s)M(t) + M(b)M(t)M^{*^{-1}}(s) + M^{*^{-1}}(s)M(b)M(t) \\
+ M(t)M(b)M^{*^{-1}}(s) + M^{*^{-1}}(s)M(t)M(b) + M(t)M^{*^{-1}}(s)M(b) \\
= M(aM^{*^{-1}}(s)t + atM^{*^{-1}}(s) + M^{*^{-1}}(s)at \\
+ taM^{*^{-1}}(s) + M^{*^{-1}}(s)ta + tM^{*^{-1}}(s)a) \\
+ M(bM^{*^{-1}}(s)t + btM^{*^{-1}}(s) + M^{*^{-1}}(s)bt \\
+ tbM^{*^{-1}}(s) + M^{*^{-1}}(s)tb + tM^{*^{-1}}(s)b) &= M(ast + ats + sat + tas + sta + tsa) + M(bst + bts + sbt + tbs + stb + tsb). \\
\end{align*}
\]

By a similar argument, we prove the equality (ii), from the equality (i) in the Lemma 2.3. \(\square \)

Lemma 2.5. Let \(a_{11} \in \mathcal{F}_{11} \) and \(b_{12} \in \mathcal{F}_{12} \). Then

(i) \(M(a_{11} + b_{12}) = M(a_{11}) + M(b_{12}) \);

(ii) \(M^{*^{-1}}(a_{11} + b_{12}) = M^{*^{-1}}(a_{11}) + M^{*^{-1}}(b_{12}) \).

Proof. From the surjectivity of \(M \), there exists \(c \in \mathcal{F} \) such that \(M(c) = M(a_{11}) + M(b_{12}) \), where \(c = c_{11} + c_{12} + c_{22} \). Hence, for arbitrary elements
Additivity of maps on triangular algebras

$s_{11} \in \mathfrak{T}_{11}$ and $t_{22} \in \mathfrak{T}_{22}$ we have

\[
M(cs_{11}t_{22} + ct_{22}s_{11} + s_{11}ct_{22} + t_{22}cs_{11} + s_{11}t_{22}c + t_{22}s_{11}c) \\
= M(a_{11}s_{11}t_{22} + a_{11}t_{22}s_{11} + s_{11}a_{11}t_{22} + t_{22}a_{11}s_{11} + s_{11}t_{22}a_{11} \\
+ t_{22}s_{11}a_{11}) + M(b_{12}s_{11}t_{22} + b_{12}t_{22}s_{11} + s_{11}b_{12}t_{22} + t_{22}b_{12}s_{11} \\
+ s_{11}t_{22}b_{12} + t_{22}s_{11}b_{12}) \\
= M(s_{11}b_{12}t_{22}),
\]

by Lemma 2.4(i). It follows that $s_{11}ct_{22} + t_{22}cs_{11} = s_{11}b_{12}t_{22}$ which implies $s_{11}c_{12}t_{22} = s_{11}b_{12}t_{22}$. Hence, $c_{12} = b_{12}$, by condition (iii) of the Theorem. Also, for arbitrary elements $s_{22} \in \mathfrak{T}_{22}$ and $t_{22} \in \mathfrak{T}_{22}$ we have

\[
M(cs_{22}t_{22} + ct_{22}s_{22} + s_{22}ct_{22} + t_{22}cs_{22} + s_{22}t_{22}c + t_{22}s_{22}c) \\
= M(a_{11}s_{22}t_{22} + a_{11}t_{22}s_{22} + s_{22}a_{11}t_{22} + t_{22}a_{11}s_{22} + s_{22}t_{22}a_{11} \\
+ t_{22}s_{22}a_{11}) + M(b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22} + s_{22}b_{12}t_{22} + t_{22}b_{12}s_{22} \\
+ s_{22}t_{22}b_{12} + t_{22}s_{22}b_{12}) \\
= M(b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22}),
\]

by Lemma 2.4(i) again. This shows that $cs_{22}t_{22} + ct_{22}s_{22} + s_{22}ct_{22} + t_{22}cs_{22} + s_{22}t_{22}c + t_{22}s_{22}c = b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22}$ which results in $c_{22}s_{22}t_{22} + c_{22}t_{22}s_{22} + s_{22}c_{22}t_{22} + t_{22}c_{22}s_{22} + s_{22}t_{22}c_{22} + t_{22}s_{22}c_{22} = 0$. Thus $c_{22} = 0$, by condition (ii) of the Theorem. Yet, for arbitrary elements $s_{12} \in \mathfrak{T}_{12}$ and $t_{22} \in \mathfrak{T}_{22}$ we have

\[
M(cs_{12}t_{22} + ct_{22}s_{12} + s_{12}ct_{22} + t_{22}cs_{12} + s_{12}t_{22}c + t_{22}s_{12}c) \\
= M(a_{11}s_{12}t_{22} + a_{11}t_{22}s_{12} + s_{12}a_{11}t_{22} + t_{22}a_{11}s_{12} + s_{12}t_{22}a_{11} \\
+ t_{22}s_{12}a_{11}) + M(b_{12}s_{12}t_{22} + b_{12}t_{22}s_{12} + s_{12}b_{12}t_{22} + t_{22}b_{12}s_{12} \\
+ s_{12}t_{22}b_{12} + t_{22}s_{12}b_{12}) \\
= M(a_{11}s_{12}t_{22}).
\]

We can thus conclude that $cs_{12}t_{22} + s_{12}ct_{22} + t_{22}cs_{12} + s_{12}t_{22}c = a_{11}s_{12}t_{22}$ which yields $c_{11}s_{12}t_{22} = a_{11}s_{12}t_{22}$. Therefore, $c_{11} = a_{11}$, by condition (iii) of the Theorem and the hypothesis that \mathfrak{T} is a faithful module. □

Similarly, we prove the following lemma.

Lemma 2.6. Let $a_{22} \in \mathfrak{T}_{22}$ and $b_{12} \in \mathfrak{T}_{12}$. Then

(i) $M(a_{22} + b_{12}) = M(a_{22}) + M(b_{12})$;

(ii) $M^{*-1}(a_{22} + b_{12}) = M^{*-1}(a_{22}) + M^{*-1}(b_{12})$.

Lemma 2.7. Let $t_{11} \in \mathfrak{T}_{11}$, $a_{12}, b_{12} \in \mathfrak{T}_{12}$ and $c_{22} \in \mathfrak{T}_{22}$. Then

(i) $M(t_{11}a_{12}c_{22} + t_{11}b_{12}c_{22}) = M(t_{11}a_{12}c_{22}) + M(t_{11}b_{12}c_{22})$;

(ii) $M^{*-1}(t_{11}a_{12}c_{22} + t_{11}b_{12}c_{22}) = M^{*-1}(t_{11}a_{12}c_{22}) + M^{*-1}(t_{11}b_{12}c_{22})$.
Proof. First of all, we note that the following identity is valid
\[
t_{11}a_{12}c_{22} + t_{11}b_{12}c_{22} = t_{11}(a_{12} + c_{22})(b_{12} + c_{22}) + t_{11}(b_{12} + c_{22})(a_{12} + c_{22})
+ (a_{12} + c_{22})t_{11}(b_{12} + c_{22}) + (b_{12} + c_{22})t_{11}(a_{12} + c_{22})
+ (a_{12} + c_{22})(b_{12} + c_{22})t_{11} + (b_{12} + c_{22})(a_{12} + c_{22})t_{11}.
\]
Hence, from the equality (1) we compute
\[
M(t_{11}a_{12}c_{22} + t_{11}b_{12}c_{22})
= M(t_{11}(a_{12} + c_{22})(b_{12} + c_{22}) + t_{11}(b_{12} + c_{22})(a_{12} + c_{22})
+ (a_{12} + c_{22})t_{11}(b_{12} + c_{22}) + (b_{12} + c_{22})t_{11}(a_{12} + c_{22})
+ (a_{12} + c_{22})(b_{12} + c_{22})t_{11} + (b_{12} + c_{22})(a_{12} + c_{22})t_{11})
= M(M^*M^{-1}(t_{11}))(a_{12} + c_{22})(b_{12} + c_{22})
+ M^*M^{-1}(t_{11})(b_{12} + c_{22})(a_{12} + c_{22})
+ (a_{12} + c_{22})M^*M^{-1}(t_{11})(b_{12} + c_{22})
+ (b_{12} + c_{22})M^*M^{-1}(t_{11})(a_{12} + c_{22})
+ (a_{12} + c_{22})(b_{12} + c_{22})M^*M^{-1}(t_{11})
+ (b_{12} + c_{22})(a_{12} + c_{22})M^*M^{-1}(t_{11})
= M^{-1}(t_{11})(M(a_{12}) + M(c_{22}))M(b_{12} + c_{22})
+ M^{-1}(t_{11})M(b_{12} + c_{22})(M(a_{12}) + M(c_{22}))
+ (M(a_{12}) + M(c_{22}))M^{-1}(t_{11})M(b_{12} + c_{22})
+ M(b_{12} + c_{22})M^{-1}(t_{11})(M(a_{12}) + M(c_{22}))
+ (M(a_{12}) + M(c_{22}))M(b_{12} + c_{22})M^{-1}(t_{11})
+ M(b_{12} + c_{22})(M(a_{12}) + M(c_{22}))M^{-1}(t_{11})
= M^{-1}(t_{11})M(a_{12})M(b_{12} + c_{22}) + M^{-1}(t_{11})M(b_{12} + c_{22})M(a_{12})
+ M(a_{12})M^{-1}(t_{11})M(b_{12} + c_{22}) + M(b_{12} + c_{22})M^*-1(t_{11})M(a_{12})
+ M(a_{12})M(b_{12} + c_{22})M^*-1(t_{11}) + M(b_{12} + c_{22})M(a_{12})M^*-1(t_{11})
+ M^*-1(t_{11})M(c_{22})M(b_{12} + c_{22}) + M^*-1(t_{11})M(b_{12} + c_{22})M(c_{22})
\[+M(c_{22})M^{-1}(t_{11})M(b_{12} + c_{22}) + M(b_{12} + c_{22})M^{-1}(t_{11})M(c_{22}) \\
+M(c_{22})M(b_{12} + c_{22})M^{-1}(t_{11}) + M(b_{12} + c_{22})M(c_{22})M^{-1}(t_{11}) \]
\[= M(t_{11}a_{12}(b_{12} + c_{22}) + t_{11}(b_{12} + c_{22})a_{12} + a_{12}t_{11}(b_{12} + c_{22}) \\
+(b_{12} + c_{22})t_{11}a_{12} + a_{12}(b_{12} + c_{22})t_{11} + (b_{12} + c_{22})a_{12}t_{11} \\
+M(t_{11}c_{22}(b_{12} + c_{22}) + t_{11}(b_{12} + c_{22})c_{22} + c_{22}t_{11}(b_{12} + c_{22}) \\
+(b_{12} + c_{22})t_{11}c_{22} + c_{22}(b_{12} + c_{22})t_{11} + (b_{12} + c_{22})c_{22}t_{11} \\
= M(t_{11}a_{12}c_{22}) + M(t_{11}b_{12}c_{22}). \]

Similarly, we prove (ii), using the Lemma 2.3(i). □

Lemma 2.8. Let $a_{11}, b_{11} \in \mathfrak{T}_{11}$. Then

(i) $M(a_{11} + b_{11}) = M(a_{11}) + M(b_{11})$;

(ii) $M^{-1}(a_{11} + b_{11}) = M^{-1}(a_{11}) + M^{-1}(b_{11})$.

Proof. Choose $c = c_{11} + c_{12} + c_{22} \in \mathfrak{T}$ such that $M(c) = M(a_{11}) + M(b_{11})$. For arbitrary elements $s_{11} \in \mathfrak{T}_{11}, t_{22} \in \mathfrak{T}_{22}$, we have

\[M^{-1}(cs_{11}t_{22} + ct_{22}s_{11} + s_{11}ct_{22} + t_{22}cs_{11} + s_{11}t_{22}c + t_{22}s_{11}c) \]
\[= M^{-1}(a_{11}s_{11}t_{22} + a_{11}t_{22}s_{11} + s_{11}a_{11}t_{22} + t_{22}a_{11}s_{11} + s_{11}t_{22}a_{11} \\
+ t_{22}s_{11}a_{11}) + M^{-1}(b_{11}s_{11}t_{22} + b_{11}t_{22}s_{11} + s_{11}b_{11}t_{22} + t_{22}b_{11}s_{11} \\
+ s_{11}t_{22}b_{11} + t_{22}s_{11}b_{11}) = 0. \]

Hence, $s_{11}ct_{22} + t_{22}cs_{11} = 0$ which results $s_{11}c_{12}t_{22} = 0$. Therefore, $c_{12} = 0$, by condition (iii) of the Theorem. Also, for arbitrary elements $s_{22} \in \mathfrak{T}_{22}, t_{22} \in \mathfrak{T}_{22}$ we have

\[M^{-1}(cs_{22}t_{22} + ct_{22}s_{22} + s_{22}ct_{22} + t_{22}cs_{22} + s_{22}t_{22}c + t_{22}s_{22}c) \]
\[= M^{-1}(a_{11}s_{22}t_{22} + a_{11}t_{22}s_{22} + s_{22}a_{11}t_{22} + t_{22}a_{11}s_{22} + s_{22}t_{22}a_{11} \\
+ t_{22}s_{22}a_{11}) + M^{-1}(b_{11}s_{22}t_{22} + b_{11}t_{22}s_{22} + s_{22}b_{11}t_{22} + t_{22}b_{11}s_{22} \\
+ s_{22}t_{22}b_{11} + t_{22}s_{22}b_{11}) = 0 \]

which implies

\[c_{22}s_{22}t_{22} + c_{22}t_{22}s_{22} + s_{22}c_{22}t_{22} + t_{22}c_{22}s_{22} + s_{22}t_{22}c_{22} + t_{22}s_{22}c_{22} = 0. \]

Thus, $c_{22} = 0$, by condition (ii) of the Theorem. Yet, for arbitrary elements $s_{12} \in \mathfrak{T}_{12}$ and $t_{22} \in \mathfrak{T}_{22}$, we have

\[M^{-1}(cs_{12}t_{22} + ct_{22}s_{12} + s_{12}ct_{22} + t_{22}cs_{12} + s_{12}t_{22}c + t_{22}s_{12}c) \]
\[= M^{-1}(a_{11}s_{12}t_{22} + a_{11}t_{22}s_{12} + s_{12}a_{11}t_{22} + t_{22}a_{11}s_{12} + s_{12}t_{22}a_{11} \\
+ t_{22}s_{12}a_{11}) + M^{-1}(b_{11}s_{12}t_{22} + b_{11}t_{22}s_{12} + s_{12}b_{11}t_{22} + t_{22}b_{11}s_{12} \\
+ s_{12}t_{22}b_{11} + t_{22}s_{12}b_{11}) = 0 \]
Hence, from the equality (1) and Lemmas 2.6(i) and 2.9(i), we compute

\[+ s_{12} t_{22} b_{11} + t_{22} s_{12} b_{11} \]

\[= M^{*-1}(a_{11} s_{12} t_{22}) + M^{*-1}(b_{11} s_{12} t_{22}) \]

\[= M^{*-1}(a_{11} s_{12} t_{22} + b_{11} s_{12} t_{22}), \]

by Lemma 2.7(ii). It follows that \(c s_{12} t_{22} + s_{12} c t_{22} + t_{22} c s_{12} + s_{12} t_{22} c = a_{11} s_{12} t_{22} + b_{11} s_{12} t_{22} \) which yields \(c_{11} s_{12} t_{22} = a_{11} s_{12} t_{22} + b_{11} s_{12} t_{22}. \) So \(c_{11} = a_{11} + b_{11}, \) by condition (iii) of the Theorem and the hypothesis that \(\mathcal{X} \) is a faithful module. \(\square \)

Similarly, we prove the following Lemma.

Lemma 2.9. Let \(a_{22}, b_{22} \in \mathfrak{T}_{22}. \) Then

(i) \(M(a_{22} + b_{22}) = M(a_{22}) + M(b_{22}); \)

(ii) \(M^{*-1}(a_{22} + b_{22}) = M^{*-1}(a_{22}) + M^{*-1}(b_{22}). \)

Lemma 2.10. Let \(a_{12}, b_{12} \in \mathfrak{T}_{12} \) and \(s_{22}, t_{22} \in \mathfrak{T}_{22}. \) Then

(i) \(M(a_{12} s_{22} t_{22} + a_{12} t_{22} s_{22} + b_{12} s_{22} t_{22} + b_{12} t_{22} s_{22}) = M(a_{12} s_{22} t_{22} + a_{12} t_{22} s_{22}) + M(b_{12} s_{22} t_{22} + b_{12} t_{22} s_{22}); \)

(ii) \(M^{*-1}(a_{12} s_{22} t_{22} + a_{12} t_{22} s_{22} + b_{12} s_{22} t_{22} + b_{12} t_{22} s_{22}) = M^{*-1}(a_{12} s_{22} t_{22} + a_{12} t_{22} s_{22}) + M^{*-1}(b_{12} s_{22} t_{22} + b_{12} t_{22} s_{22}). \)

Proof. First of all, we note that the following identity is valid

\[2 s_{22}^2 t_{22} + 2 s_{22} t_{22} s_{22} + 2 t_{22}^2 s_{22} \]

\[+ a_{12} s_{22} t_{22} + a_{12} t_{22} s_{22} + b_{12} s_{22} t_{22} + b_{12} t_{22} s_{22} \]

\[= (a_{12} + s_{22})(b_{12} + s_{22}) t_{22} + (a_{12} + s_{22}) t_{22} (b_{12} + s_{22}) \]

\[(b_{12} + s_{22})(a_{12} + s_{22}) t_{22} + t_{22}(a_{12} + s_{22})(b_{12} + s_{22}) \]

\[(b_{12} + s_{22}) t_{22}(a_{12} + s_{22}) + t_{22}(b_{12} + s_{22})(a_{12} + s_{22}). \]

Hence, from the equality (1) and Lemmas 2.6(i) and 2.9(i), we compute

\[M(2 s_{22}^2 t_{22} + 2 s_{22} t_{22} s_{22} + 2 t_{22}^2 s_{22}) \]

\[+ M(a_{12} s_{22} t_{22} + a_{12} t_{22} s_{22} + b_{12} s_{22} t_{22} + b_{12} t_{22} s_{22}) \]

\[= M(2 s_{22}^2 t_{22} + 2 s_{22} t_{22} s_{22} + 2 t_{22}^2 s_{22} + a_{12} s_{22} t_{22}) \]

\[+ a_{12} t_{22} s_{22} + b_{12} s_{22} t_{22} + b_{12} t_{22} s_{22} \]

\[= M((a_{12} + s_{22})(b_{12} + s_{22}) t_{22} + (a_{12} + s_{22}) t_{22} (b_{12} + s_{22}) \]

\[(b_{12} + s_{22})(a_{12} + s_{22}) t_{22} + t_{22}(a_{12} + s_{22})(b_{12} + s_{22}) \]

\[(b_{12} + s_{22}) t_{22}(a_{12} + s_{22}) + t_{22}(b_{12} + s_{22})(a_{12} + s_{22})), \]

\[= M((a_{12} + s_{22})(b_{12} + s_{22})) M^{*} M^{*-1}(t_{22}) \]

\[+ (a_{12} + s_{22}) M^{*} M^{*-1}(t_{22})(b_{12} + s_{22}) \]

\[+ (b_{12} + s_{22})(a_{12} + s_{22}) M^{*} M^{*-1}(t_{22}) \]

\[+ (b_{12} + s_{22})(a_{12} + s_{22}) M^{*} M^{*-1}(t_{22}). \]
\[\begin{align*} &+ M^* M^{-1}(t_{22})(a_{12} + s_{22})(b_{12} + s_{22}) \\
&\quad + (b_{12} + s_{22})M^* M^{-1}(t_{22})(a_{12} + s_{22}) \\
&\quad + M^* M^{-1}(t_{22})(b_{12} + s_{22})(a_{12} + s_{22}) \\
&= M(a_{12} + s_{22})M(b_{12} + s_{22})M^*^{-1}(t_{22}) \\
&\quad + M(a_{12} + s_{22})M^*^{-1}(t_{22})M(b_{12} + s_{22}) \\
&\quad + M(b_{12} + s_{22})M(a_{12} + s_{22})M^*^{-1}(t_{22}) \\
&\quad + M^*^{-1}(t_{22})M(a_{12} + s_{22})M(b_{12} + s_{22}) \\
&\quad + M(b_{12} + s_{22})M^*^{-1}(t_{22})M(a_{12} + s_{22}) \\
&\quad + M^*^{-1}(t_{22})M(b_{12} + s_{22})M(a_{12} + s_{22}) \\
&\quad + (M(a_{12}) + M(s_{22}))M(b_{12} + s_{22})M^*^{-1}(t_{22}) \\
&\quad + (M(a_{12}) + M(s_{22}))M^*^{-1}(t_{22})M(b_{12} + s_{22}) \\
&\quad + M(b_{12} + s_{22})(M(a_{12}) + M(s_{22}))M^*^{-1}(t_{22}) \\
&\quad + M^*^{-1}(t_{22})(M(a_{12}) + M(s_{22}))M(b_{12} + s_{22}) \\
&\quad + M(b_{12} + s_{22})M^*^{-1}(t_{22})(M(a_{12}) + M(s_{22})) \\
&\quad + M^*^{-1}(t_{22})M(b_{12} + s_{22})(M(a_{12}) + M(s_{22})) \\
&\quad = M(a_{12})M(b_{12} + s_{22})M^*^{-1}(t_{22}) + M(a_{12})M^*^{-1}(t_{22})M(b_{12} + s_{22}) \\
&\quad + M(b_{12} + s_{22})M(a_{12})M^*^{-1}(t_{22}) + M^*^{-1}(t_{22})M(a_{12})M(b_{12} + s_{22}) \\
&\quad + M(b_{12} + s_{22})M^*^{-1}(t_{22})M(a_{12}) + M^*^{-1}(t_{22})M(b_{12} + s_{22})M(a_{12}) \\
&\quad + M(s_{22})M(b_{12} + s_{22})M^*^{-1}(t_{22}) + M(s_{22})M^*^{-1}(t_{22})M(b_{12} + s_{22})M(a_{12}) \\
&\quad + M(b_{12} + s_{22})M(s_{22})M^*^{-1}(t_{22}) + M^*^{-1}(t_{22})M(s_{22})M(b_{12} + s_{22})M(a_{12}) \\
&\quad + M(b_{12} + s_{22})M^*^{-1}(t_{22})M(s_{22}) + M^*^{-1}(t_{22})M(b_{12} + s_{22})M(s_{22}) \\
&\quad = M(a_{12}(b_{12} + s_{22})M^* M^*^{-1}(t_{22}) + a_{12}M^* M^*^{-1}(t_{22})(b_{12} + s_{22}) \\
&\quad + (b_{12} + s_{22})a_{12}M^* M^*^{-1}(t_{22}) + M^* M^*^{-1}(t_{22})a_{12}(b_{12} + s_{22}) \\
&\quad + (b_{12} + s_{22})M^* M^*^{-1}(t_{22})a_{12} + M^* M^*^{-1}(t_{22})M(b_{12} + s_{22})a_{12} \\
&\quad + M(s_{22}(b_{12} + s_{22})M^* M^*^{-1}(t_{22}) + s_{22}M^* M^*^{-1}(t_{22})(b_{12} + s_{22}) \\
&\quad + (b_{12} + s_{22})s_{22}M^* M^*^{-1}(t_{22}) + M^* M^*^{-1}(t_{22})s_{22}(b_{12} + s_{22}) \\
&\quad + (b_{12} + s_{22})M^* M^*^{-1}(t_{22})s_{22} + M^* M^*^{-1}(t_{22})(b_{12} + s_{22})s_{22} \\
&\quad = M(a_{12}s_{22}t_{22} + a_{12}t_{22}s_{22}) + M(s_{22}^2t_{22} + s_{22}t_{22}s_{22} + b_{12}s_{22}t_{22} + s_{22}^2t_{22} \\
&\quad + t_{22}s_{22}^2 + b_{12}t_{22}s_{22} + s_{22}t_{22}s_{22} + t_{22}s_{22}^2) \\
&\quad = M(a_{12}s_{22}t_{22} + a_{12}t_{22}s_{22}) + M(b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22}) \\
&\quad + M(2s_{22}^2t_{22} + 2s_{22}t_{22}s_{22} + 2t_{22}s_{22}^2).\end{align*}\]
It follows that
\[M(a_{12}s_{22}t_{22} + a_{12}t_{22}s_{22} + b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22}) = M(a_{12}s_{22}t_{22} + a_{12}t_{22}s_{22}) + M(b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22}). \]

Similarly, we prove (ii), using the Lemma 2.3(i). \(\square \)

Lemma 2.11. Let \(a_{12}, b_{12} \in \mathfrak{T}_{12} \). Then

(i) \(M(a_{12} + b_{12}) = M(a_{12}) + M(b_{12}) \);

(ii) \(M^{-1}(a_{12} + b_{12}) = M^{-1}(a_{12}) + M^{-1}(b_{12}) \).

Proof. By the surjectivity of \(M \), there exists \(c \in \mathfrak{T} \) such that \(M(c) = M(a_{12}) + M(b_{12}) \), where \(c = c_{11} + c_{12} + c_{22} \). Hence, for arbitrary elements \(s_{11} \in \mathfrak{T}_{11}, t_{22} \in \mathfrak{T}_{22} \) we have

\[M^{-1}(cs_{11}t_{22} + ct_{22}s_{11} + s_{11}ct_{22} + t_{22}cs_{11} + s_{11}t_{22} + t_{22}s_{11}) = M^{-1}(a_{12}s_{11}t_{22} + a_{12}t_{22}s_{11} + s_{11}a_{12}t_{22} + t_{22}s_{11}a_{12} + s_{11}t_{22} + t_{22}s_{11}) = M^{-1}(s_{11}a_{12}t_{22}) + M^{-1}(s_{11}b_{12}t_{22}) = M^{-1}(s_{11}a_{12}t_{22} + s_{11}b_{12}t_{22}), \]

by Lemma 2.7(ii). It follows that \(s_{11}ct_{22} + t_{22}cs_{11} = s_{11}a_{12}t_{22} + s_{11}b_{12}t_{22} \) which implies \(s_{11}c_{12}t_{22} = s_{11}a_{12}t_{22} + s_{11}b_{12}t_{22} \). Therefore, \(c_{12} = a_{12} + b_{12} \), by condition (iii) of the Theorem. Also, for arbitrary elements \(s_{22} \in \mathfrak{T}_{22} \) and \(t_{22} \in \mathfrak{T}_{22} \), we have

\[M^{-1}(cs_{22}t_{22} + ct_{22}s_{22} + s_{22}ct_{22} + t_{22}cs_{22} + s_{22}t_{22}c + t_{22}s_{22}) = M^{-1}(a_{12}s_{22}t_{22} + a_{12}t_{22}s_{22} + s_{22}a_{12}t_{22} + t_{22}s_{22}a_{12} + s_{22}t_{22} + t_{22}s_{22}b_{12}) = M^{-1}(a_{12}s_{22}t_{22} + a_{12}t_{22}s_{22}) + M^{-1}(b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22}) = M^{-1}(a_{12}s_{22}t_{22} + a_{12}t_{22}s_{22} + b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22}). \]

by Lemma 2.10(ii). It follows that \(cs_{22}t_{22} + ct_{22}s_{22} + s_{22}ct_{22} + t_{22}cs_{22} + s_{22}t_{22}c + t_{22}s_{22}c = a_{12}s_{22}t_{22} + a_{12}t_{22}s_{22} + b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22} \) which implies \(c_{22} = 0 \), by condition (ii) of the Theorem.

Now, for arbitrary elements \(s_{11}, t_{11} \in \mathfrak{T}_{11} \), we have

\[M^{-1}(cs_{11}t_{11} + ct_{11}s_{11} + s_{11}ct_{11} + t_{11}cs_{11} + s_{11}t_{11}c + t_{11}s_{11}c) = M^{-1}(a_{12}s_{11}t_{11} + a_{12}t_{11}s_{11} + s_{11}a_{12}t_{11} + t_{11}a_{12}s_{11} + s_{11}t_{11}a_{12} + t_{11}a_{12}s_{11}). \]
$+t_{11}s_{11}a_{12}) + M^*^{-1}(b_{12}s_{11}t_{11} + b_{12}t_{11}s_{11} + s_{11}b_{12}t_{11}$
$+t_{11}b_{12}s_{11} + s_{11}t_{11}b_{12} + t_{11}s_{11}b_{12})$

$= M^*^{-1}(s_{11}t_{11}a_{12} + t_{11}s_{11}a_{12}) + M^*^{-1}(s_{11}t_{11}b_{12} + t_{11}s_{11}b_{12})$
$= M^*^{-1}(s_{11}t_{11}a_{12} + t_{11}s_{11}a_{12} + s_{11}t_{11}b_{12} + t_{11}s_{11}b_{12})$.

This shows that $cs_{11}t_{11} + ct_{11}s_{11} + s_{11}ct_{11} + t_{11}cs_{11} + s_{11}t_{11}c + t_{11}s_{11}c = s_{11}t_{11}a_{12} + t_{11}s_{11}a_{12} + s_{11}t_{11}b_{12} + t_{11}s_{11}b_{12}$ which results in $c_{11}s_{11}t_{11} + c_{11}t_{11}s_{11} + s_{11}c_{11}t_{11} + t_{11}c_{11}s_{11} + s_{11}t_{11}c_{11} + t_{11}s_{11}c_{11} = 0$. So $c_{11} = 0$, by condition (i) of the Theorem.

The proof of (ii) is similar. \(\square \)

Lemma 2.12. Let $a_{11} \in \mathfrak{T}_{11}$ and $b_{22} \in \mathfrak{T}_{22}$. Then

(i) $M(a_{11} + b_{22}) = M(a_{11}) + M(b_{22})$;

(ii) $M^*^{-1}(a_{11} + b_{22}) = M^*^{-1}(a_{11}) + M^*^{-1}(b_{22})$.

Proof. Choose $c = c_{11} + c_{12} + c_{22} \in \mathfrak{T}$ such that $M(c) = M(a_{11}) + M(b_{22})$. For arbitrary elements $s_{11} \in \mathfrak{T}_{11}$ and $t_{22} \in \mathfrak{T}_{22}$, we have

$M^*^{-1}(cs_{11}t_{22} + ct_{22}s_{11} + s_{11}ct_{22} + t_{22}cs_{11} + s_{11}t_{22}c + t_{22}s_{11}c)$

$= M^*^{-1}(a_{11}s_{11}t_{22} + a_{11}t_{22}s_{11} + s_{11}a_{11}t_{22} + t_{22}a_{11}s_{11} + s_{11}t_{22}a_{11} + t_{22}s_{11}a_{11})$

$+ M^*^{-1}(b_{22}s_{11}t_{22} + b_{22}t_{22}s_{11} + s_{11}b_{22}t_{22} + t_{22}b_{22}s_{11} + s_{11}t_{22}b_{22} + t_{22}s_{11}b_{22}) = 0.$

It follows that $s_{11}ct_{22} + t_{22}cs_{11} = 0$ which implies $s_{11}c_{12}t_{22} = 0$. Hence, $c_{12} = 0$, by condition (iii) of the Theorem. Also, for arbitrary elements $s_{22} \in \mathfrak{T}_{22}$ and $t_{22} \in \mathfrak{T}_{22}$, we have

$M^*^{-1}(cs_{22}t_{22} + ct_{22}s_{22} + s_{22}ct_{22} + t_{22}cs_{22} + s_{22}t_{22}c + t_{22}s_{22}c)$

$= M^*^{-1}(a_{11}s_{22}t_{22} + a_{11}t_{22}s_{22} + s_{22}a_{11}t_{22} + t_{22}a_{11}s_{22} + s_{22}t_{22}a_{11} + t_{22}s_{22}a_{11})$

$+ M^*^{-1}(b_{22}s_{22}t_{22} + b_{22}t_{22}s_{22} + s_{22}b_{22}t_{22} + t_{22}b_{22}s_{22} + s_{22}t_{22}b_{22} + t_{22}s_{22}b_{22})$

$= M^*^{-1}(b_{22}s_{22}t_{22} + b_{22}t_{22}s_{22} + s_{22}b_{22}t_{22} + t_{22}b_{22}s_{22} + s_{22}t_{22}b_{22} + t_{22}s_{22}b_{22}).$

We can then conclude that $cs_{22}t_{22} + ct_{22}s_{22} + s_{22}ct_{22} + t_{22}cs_{22} + s_{22}t_{22}c + t_{22}s_{22}c = b_{22}s_{22}t_{22} + b_{22}t_{22}s_{22} + s_{22}b_{22}t_{22} + t_{22}b_{22}s_{22} + s_{22}t_{22}b_{22} + t_{22}s_{22}b_{22}$ which yields $(c_{22} - b_{22})s_{22}t_{22} + (c_{22} - b_{22})t_{22}s_{22} + s_{22}(c_{22} - b_{22})t_{22} + t_{22}(c_{22} - b_{22})s_{22} + s_{22}t_{22}(c_{22} - b_{22}) + t_{22}s_{22}(c_{22} - b_{22}) = 0$. Thus, $c_{22} = b_{22}$, by condition (ii) of the Theorem. Yet, for arbitrary elements $s_{11} \in \mathfrak{T}_{11}$ and $t_{11} \in \mathfrak{T}_{11}$, we have

$M^*^{-1}(cs_{11}t_{11} + ct_{11}s_{11} + s_{11}ct_{11} + t_{11}cs_{11} + s_{11}t_{11}c + t_{11}s_{11}c)$

$= M^*^{-1}(a_{11}s_{11}t_{11} + a_{11}t_{11}s_{11} + s_{11}a_{11}t_{11} + t_{11}a_{11}s_{11} + s_{11}t_{11}a_{11} + t_{11}s_{11}a_{11})$

$+ M^*^{-1}(b_{22}s_{11}t_{11} + b_{22}t_{11}s_{11} + s_{11}b_{22}t_{11} + t_{11}b_{22}s_{11} + s_{11}t_{11}b_{22} + t_{11}s_{11}b_{22})$

$= M^*^{-1}(a_{11}s_{11}t_{11} + a_{11}t_{11}s_{11} + s_{11}a_{11}t_{11} + t_{11}a_{11}s_{11} + s_{11}t_{11}a_{11} + t_{11}s_{11}a_{11}).$
This allows us to conclude again that $cs_{11}t_{11} + ct_{11}s_{11} + s_{11}ct_{11} + t_{11}cs_{11} + s_{11}t_{11}c + t_{11}s_{11}c = a_{11}s_{11}t_{11} + a_{11}t_{11}s_{11} + s_{11}a_{11}t_{11} + t_{11}a_{11}s_{11} + s_{11}t_{11}a_{11} + t_{11}s_{11}a_{11}$ which results in $c_{11} = a_{11}$, by condition (i) of the Theorem.

Lemma 2.13. Let $a_{11} \in \mathfrak{T}_{11}$, $b_{12} \in \mathfrak{T}_{12}$ and $c_{22} \in \mathfrak{T}_{22}$. Then

(i) $M(a_{11} + b_{12} + c_{22}) = M(a_{11}) + M(b_{12}) + M(c_{22})$;

(ii) $M^{-1}(a_{11} + b_{12} + c_{22}) = M^{-1}(a_{11}) + M^{-1}(b_{12}) + M^{-1}(c_{22})$.

Proof. Choose $d = d_{11} + d_{12} + d_{22} \in \mathfrak{T}$ such that $M(d) = M(a_{11}) + M(b_{12}) + M(c_{22})$ and write $M(d) = M(a_{11} + b_{12} + c_{22})$. For arbitrary elements $s_{11} \in \mathfrak{T}_{11}$, $t_{11} \in \mathfrak{T}_{11}$, we have

$$M^{-1}(fs_{11}t_{11} + ft_{11}s_{11} + s_{11}ft_{11} + t_{11}fs_{11} + s_{11}t_{11}f + t_{11}s_{11}f)$$

$$= M^{-1}((a_{11} + b_{12})s_{11}t_{11} + (a_{11} + b_{12})t_{11}s_{11} + s_{11}(a_{11} + b_{12})t_{11}$$

$$+ t_{11}(a_{11} + b_{12})s_{11} + s_{11}t_{11}(a_{11} + b_{12}) + t_{11}s_{11}(a_{11} + b_{12}))$$

$$+ M^{-1}(c_{22}s_{11}t_{11} + c_{22}t_{11}s_{11} + s_{11}c_{22}t_{11} + t_{11}c_{22}s_{11} + s_{11}t_{11}c_{22}$$

$$+ t_{11}s_{11}c_{22}) = M^{-1}(a_{11}s_{11}t_{11} + a_{11}t_{11}s_{11} + s_{11}a_{11}t_{11} + t_{11}a_{11}s_{11}$$

$$+ s_{11}t_{11}a_{11} + t_{11}s_{11}a_{11} + s_{11}t_{11}b_{12} + t_{11}s_{11}b_{12}).$$

It follows that $fs_{11}t_{11} + ft_{11}s_{11} + s_{11}ft_{11} + t_{11}fs_{11} + s_{11}t_{11}f + t_{11}s_{11}f = a_{11}s_{11}t_{11} + a_{11}t_{11}s_{11} + s_{11}a_{11}t_{11} + t_{11}a_{11}s_{11} + s_{11}t_{11}a_{11} + t_{11}s_{11}a_{11} + s_{11}t_{11}b_{12} + t_{11}s_{11}b_{12}$ which implies $f_{11}s_{11}t_{11} + f_{11}t_{11}s_{11} + s_{11}f_{11}t_{11} + t_{11}f_{11}s_{11} + s_{11}t_{11}f_{11} + t_{11}s_{11}f_{11} = a_{11}s_{11}t_{11} + a_{11}t_{11}s_{11} + s_{11}a_{11}t_{11} + t_{11}a_{11}s_{11} + s_{11}t_{11}a_{11} + t_{11}s_{11}a_{11}$. Hence, $f_{11} = a_{11}$, by condition (i) of the Theorem. Also, for arbitrary elements $s_{11} \in \mathfrak{T}_{11}$ and $t_{22} \in \mathfrak{T}_{22}$, we have

$$M^{-1}(fs_{11}t_{22} + ft_{22}s_{11} + s_{11}ft_{22} + t_{22}fs_{11} + s_{11}t_{22}f + t_{22}s_{11}f)$$

$$= M^{-1}((a_{11} + b_{12})s_{11}t_{22} + (a_{11} + b_{12})t_{22}s_{11} + s_{11}(a_{11} + b_{12})t_{22}$$

$$+ t_{22}(a_{11} + b_{12})s_{11} + s_{11}t_{22}(a_{11} + b_{12}) + t_{22}s_{11}(a_{11} + b_{12}))$$

$$+ M^{-1}(c_{22}s_{11}t_{22} + c_{22}t_{22}s_{11} + s_{11}c_{22}t_{22} + t_{22}c_{22}s_{11} + s_{11}t_{22}c_{22}$$

$$+ t_{22}s_{11}c_{22}) = M^{-1}(s_{11}b_{12}t_{22}).$$

This shows that $s_{11}ft_{22} + t_{22}fs_{11} = s_{11}b_{12}t_{22}$ which yields $s_{11}f_{12}t_{22} = s_{11}b_{12}t_{22}$ Therefore, $f_{12} = b_{12}$, by condition (iii) of the Theorem. Yet, for arbitrary elements $s_{22} \in \mathfrak{T}_{22}$ and $t_{22} \in \mathfrak{T}_{22}$, we have

$$M^{-1}(fs_{22}t_{22} + ft_{22}s_{22} + s_{22}ft_{22} + t_{22}fs_{22} + s_{22}t_{22}f + t_{22}s_{22}f)$$

$$= M^{-1}((a_{11} + b_{12})s_{22}t_{22} + (a_{11} + b_{12})t_{22}s_{22} + s_{22}(a_{11} + b_{12})t_{22}$$

$$+ t_{22}(a_{11} + b_{12})s_{22} + s_{22}t_{22}(a_{11} + b_{12}) + t_{22}s_{22}(a_{11} + b_{12}))$$

$$+ M^{-1}(c_{22}s_{22}t_{22} + c_{22}t_{22}s_{22} + s_{22}c_{22}t_{22} + t_{22}c_{22}s_{22} + s_{22}t_{22}c_{22} + t_{22}s_{22}c_{22})$$
Additivity of maps on triangular algebras

\[M^{*-1}(b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22}) + M^{*-1}(c_{22}s_{22}t_{22} + c_{22}t_{22}s_{22} + s_{22}c_{22}t_{22} + t_{22}c_{22}s_{22} + s_{22}t_{22}c_{22} + t_{22}s_{22}c_{22}) = M^{*-1}(b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22} + c_{22}s_{22}t_{22} + c_{22}t_{22}s_{22} + s_{22}c_{22}t_{22} + t_{22}c_{22}s_{22} + s_{22}t_{22}c_{22} + t_{22}s_{22}c_{22}), \]

by Lemma 2.6(ii). This allows us to conclude that \(f_{22}s_{22}t_{22} + ft_{22}s_{22} + s_{22}ft_{22} + t_{22}fs_{22} + s_{22}t_{22}f + t_{22}s_{22}f = b_{12}s_{22}t_{22} + b_{12}t_{22}s_{22} + c_{22}s_{22}t_{22} + c_{22}t_{22}s_{22} + s_{22}c_{22}t_{22} + t_{22}c_{22}s_{22} + s_{22}t_{22}c_{22} + t_{22}s_{22}c_{22} \) which results in \(f_{22}s_{22}t_{22} + f_{22}t_{22}s_{22} + s_{22}f_{22}t_{22} + t_{22}f_{22}s_{22} + s_{22}t_{22}f_{22} + t_{22}s_{22}f_{22} = c_{22}s_{22}t_{22} + c_{22}t_{22}s_{22} + s_{22}c_{22}t_{22} + t_{22}c_{22}s_{22} + s_{22}t_{22}c_{22} + t_{22}s_{22}c_{22} \). Thus, \(f_{22} = c_{22} \), by condition (ii) of the Theorem.

Now we are able to prove the Theorem 2.1. Our proof is similar to those presented by Ji [1].

Proof of Theorem. Let \(a = a_{11} + a_{12} + a_{22} \) and \(b = b_{11} + b_{12} + b_{22} \) be arbitrary elements of \(\mathfrak{T} \). From lemmas 2.8, 2.9, 2.11 and 2.13, we compute

\[
M(a + b) = M((a_{11} + b_{11}) + (a_{12} + b_{12}) + (a_{22} + b_{22})) = M(a_{11} + b_{11}) + M(a_{12} + b_{12}) + M(a_{22} + b_{22}) = M(a_{11}) + M(b_{11}) + M(a_{12}) + M(b_{12}) + M(a_{22}) + M(b_{22}) = M(a_{11} + a_{12} + a_{22}) + M(b_{11} + b_{12} + b_{22}) = M(a) + M(b).
\]

This shows that the map \(M \) is additive.

Now, we prove that \(M^* \) is additive. For any \(x, y \in \mathfrak{S} \), there exist elements \(c \) and \(d \) in \(\mathfrak{T} \) such that \(c = M^*(x + y) \) and \(d = M^*(x) + M^*(y) \). Hence, for arbitrary \(s, t \in \mathfrak{T} \), by the additivity of \(M \), we have

\[
M(cst + cts + sct + tcs + stc + tsc)
= M(M^*(x + y)st + M^*(x + y)ts + sM^*(x + y)t + tM^*(x + y)s + sM^*(x + y) + tsM^*(x + y))
= (x + y)M(s)M(t) + (x + y)M(t)M(s) + M(s)(x + y)M(t)
+ M(t)(x + y)M(s) + M(s)M(t)(x + y) + M(t)M(s)(x + y)
= xM(s)M(t) + xM(t)M(s) + M(s)xM(t) + M(t)xM(s)
+ M(s)M(t)x + M(t)M(s)x + yM(s)M(t) + yM(t)M(s)
+ M(s)yM(t) + M(t)yM(s) + M(s)M(t)y + M(t)M(s)y
= M(M^*(x)st + M^*(x)ts + sM^*(x)t + tM^*(x)s + stM^*(x) + tsM^*(x))
\]
\[+M(M^*(y)st + M^*(y)ts + sM^*(y)t + tM^*(y)s + stM^*(y) + tsM^*(y)) \\
= M((M^*(x) + M^*(y))st + (M^*(x) + M^*(y))ts + s(M^*(x) + M^*(y))t \\
+ t(M^*(x) + M^*(y))s + st(M^*(x) + M^*(y)) + ts(M^*(x) + M^*(y))) \\
= M(dst + dts + st + tds + std + tsd). \]

Therefore, \(cst + cts + sc + tcs + stc + tsc = dst + dts + st + tds + std + tsd\) and by a similar argument used in the proof of Lemma 2.2 we can conclude that \(c = d\). Thus, \(M^*(x + y) = M^*(x) + M^*(y)\). The Theorem is proved. \(\square\)

REFERENCES