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In this paper, we obtain the Fekete-Szeg6 inequalities for the functions of com-
plex order associated with Prajapat operator. Also, find upper bounds of the
second Hankel determinant |a2a4 — ag{ for functions belonging to the class
Sh(m, A, 6 A, B).
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1. INTRODUCTION

Let A denote the class of analytic functions of the form:

oo
(1) f)=2+) apz" (z€U={z:2€Cand|z| <1})

k=2
and S be the subclass of A, which are univalent functions. Furthermore, let P
be the family of functions p(z) € A (class of analytic function in U) satisfying
p(0) =1 and R (p(2)) > 0.

If f and g are analytic functions in U, we say that f is subordinate to g,
written f < g if there exists a Schwarz function w, which is analytic in U with
w(0) = 0 and |w(z)| < 1for all z € U, such that f(z) = g(w(z)). Furthermore,
if the function ¢ is univalent in U, then we have the following equivalence (see
[6] and [16]):

f(z) < g(z) & f(0) = g(0) and f(U) C g(U).
In [21, with p = 1] Prajapat defined a generalized multiplier transforma-
tion operator J" (X, ¢) : A — A, as follows (see also |25, with p = 1]):

@ 0016 =i () s

A>0;£>—-1;, meZ={0,£1,..}; z€ ).
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It is readily verified from (2) that (see [21, with p = 1])

(3) Az (J™ (N 0) f(2))
=L+ 1) IO f(z) = [0+ 1= X7 (M) f(z) (A>0).

By specializing the parameters m, A and £, we obtain the following operators
studied by various authors:

(i) J"NE) f(z) = I™(NOf(z) (0 > -1, A > 0and m € Ng = NU
{0}, N={1,2,..}) (see [7]);

(if) J™ (1,0) f(2) = I"f(z) (£ = 0 and m € No) (see [8, 9]);

(iii) m( ,0) f(2) = DY f(2) (A > 0 and m € Ny) (see [1]);
(iv) J ( 0) f(z) = D™ f(z) (m € No) (see [24]);
(v) J ( ,0) f(2) =1, f(2) (A >0 and m € Np) (see [3, 20]);
(vi) T~ (1,1) f(2) = P f(2) (m € No) (see [11]).

In 1976, Noonan and Thomas [19] discussed the ¢** Hankel determinant, of
a locally univalent analytic function f(z) for ¢ > 1 and n > 1 which is defined
by

Qp, Gp4+1 - Anig—1
a a Qa
Hq (n) _ n+1 n+2 n+q
Qntq—1 Qn+4q .- Qn42¢—2

For our present discussion, we consider the Hankel determinant in the case
q=2and n =2, i.e. Hy(2) = agas—a3. This is popularly known as the second
Hankel determinant of f.

In this paper, we define the following class Sg (m, A\, ¢; A, B) as follows:

Definition 1. Let 0 <y <1, A >0, £ > -1, m € Z, be C*=C\{0} and
n € Ny. A function f(z) € A is said to be in the class Sg (m, A\, 0; A, B) if

()
g (-0 FEHE oo s 1) < 155

beC, 0<y<1,A>0,¢{>-1,meZ, -1<B<A<LI1, z€l),
which is equivalent to say that

(1— ) ZHADICEL 4y (g (A, 0) f(2)) — 1

<1
[B+ (A= B)b] = B|(1—7) Z20LIE 1o (m (0, 0) £(2)) ]

We note that for suitable choices of b, v, A, B, A\, £ and m we obtain
the following subclasses:

(i) $9(0,1,0;A,B) = S5(A,B) (0<y<1,beC", -1<B<ALI)
(see Bansal [5]);
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(i) S,’; (m,1,0;1,-1) = Gp(v,0) (beC*, 0<y<1, meNy (see
Aouf [2]);

(iii) SY(m,1,0;4,B) = Gn(y,b,A,B) (0<~<1, beC*, meN,,
—1 < B < A<1) (see Sivasubramanian et al. [26]).

Also, we note that:

(i) 8% (m, A, 0;A,B) = S (\,m; A, B)

1

(5) :{f@)eA:1+b(ﬂ—V)D?ﬁ@4“MDTﬂ@y—1)<

14+ Az
1+ Bz’

beC 0<y<1ly;meNy; A>0;, -1<B<A<1; z€U) };
(i) SY (=n, A, 0; A, B) = G% (\,n; A, B)

I f(z) 1+ Az
z

1+ Bz’

© ={reairsg(a-

b SN 1) <

beC 0<y<1;neN; A>0; -1<B<A<1; z€l) }
(iti) S§ 7" (m, A, 6, A, B) = S7 [m, p,, A, B]

0 ={re e dzen @y TEIE L gm ey ]
1+ Az

< (1 —p)cosn - 135 + pcosn +isiny,

(<% 0<y<L0<p<l; A>0; £>—1; meZ;
—1§B<A§1;zeU)}.

In this paper, we obtain the Fekete-Szego inequalities for the functions in
the class Sf’y (m, A\, ¢; A, B). We also obtain an upper bound to the functional
Hy(2) for f(2) € Sg (m, A\, ¢; A, B) . Earlier Janteng et al. [13], Mishra and
Gochhayat [17], Mishra and Kund [18|, Bansal [4] and many other authors
have obtained sharp upper bounds of H(2) for different classes of analytic
functions.

2. PRELIMINARIES

To prove our results, we need the following lemmas.
LeMMA 1 ([23]). Let
(8) h(z) =142 2" <142, Cpz" = H(z) (z€U).
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If the function H is univalent in U and H(U) is a convex set, then
(9) len] < |Chl.
LEMMA 2 ([10]). Let a function p € P be given by
(10) p(z)=1+cz+ 22+ ... (ze€),
then, we have
(11) len] <2 (neN).
The result is sharp.

LemMA 3 (|14, 15]). Let p € P be given by the power series (10), then
for any complex number v, then

(12) {CQ—VC%‘ < 2max{l;|2v — 1|}.

The result is sharp for the functions given by

14 22 1+ 2

LeEMMA 4 ([12]). Let a function p € P be given by the power series (10),
then

(13) 20y = c% + (4 — c%)

p(2)

for some s, || <1, and
(14) des=c+24—Derx—c1(4— ) +24 - ) (1 - \%|2> z,

for some z, |z] < 1.

3. MAIN RESULTS

Unless otherwise mentioned, we assume throughout this paper that : b €
CL0<~A<1, A>0,¢>-1, meZ, —1<B<A<1land z€U.

We give the following result related to the coefficient of f(z) € Sg(m, W2
A, B).

THEOREM 1. Let f(z) € A given by (1) belongs to the class Sg(m,)\,&
A, B), then
(A—=B)(1+0)™|b]
1+ k-1D]Q+L+X(k-1)"

(15l < (k€ N\ {1}).
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Proof. If f(z) of the form (1) belongs to the class S,’; (m, A\, ¢; A, B), then

1 <(1_7) Jm()\,j)f(z) 1+ Az

00 £(2) 1) < — h(z)

14 =
+b 1+ Bz

where h(z) is convex univalent in U, we have
1 mO) . :
(16) 145 ((1=7) ZRAIE o (m (0, 0) £(2)) — 1)

b
— 14 Z (1+(kb—1)~,) (H—é—i—)\(k—l)) akzkfl
k=2

1+4

<1+(A-B)z—B(A-B)z* +....(z€U).
Now, by applying Lemma 1, we get the desired result. U

Remark 1. Putting m = 0 in Theorem 1, we obtain the result obtained
by Bansal [5,Theorem 2.1].

It is easy to derive a sufficient condition for f(z) to be in the class
Sﬁ; (m, A\, ¢; A, B) using standard techniques (see [22]). Hence we state the fol-
lowing result without proof.

THEOREM 2. Let f(z) € A given by (1), then a sufficient condition for
f(2) to be in the class Sf; (m, X\, 0; A, B) is

(17) gu (k1) (%ﬁ*”)m‘ak‘ < (Al—fzm

Remark 2. Putting m = 0 in Theorem 2, we obtain the result obtained
by Bansal |5, Theorem 2.2].

In the next two theorems, we obtain the result concerning Fekete-Szegd
inequality and upper bound on second Hankel determinant for the class
S,l;(m, N0 A)B).

THEOREM 3. Let f(z) € A given by (1) belongs to the class Sg(m,)\,&
A, B), then
(A-B)(1+60)™b|
14+2y)(1+£+20)"

ub (A= B) (1+27) (12

2m
2
1+ (542

(18)  |as — pa3| < (

-max < 1, |B +

This result is sharp.
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Proof. Let f(z) € S,l; (m, A, ¢; A, B), then there is a Schwarz function
w(z) in U with w(0) = 0 and |w(z)| < 1 in U and such that

(19)

Ly (= OB (o sy - 1) = e e D)
where

(20) ®(z) = {42 =1+ (A-B)z—B(A—B)2*+B*(A—B)2* — ..

= 1+Blz+B222+Bgz?’+ ....... (ZEU).

If the function p;(z) is analytic and has positive real part in U and p;(0) =
1, then

(21) pr(z) = L)

1 —w(2)

Since w(z) is a Schwarz function. Define

=1+4ciz4 22+ ... (z € U).

m ¢ ,
@) s =143 (-0 ODIE ) 1)
=1+diz+dyz’+....... (z € V).

In view of the equations (19) and (21), we have

Since

pi(z)—1 1 A\ o e 3
2 —_— = — - = — —c1c | 27+ ... .
(23) @)+l 2 c1z+ | e 5 )% + es+ L ez +

Therefore, we have

-1 1 1 2 1
(24) d <]71(Z)> =1+ 531012 + [Bl <CQ — Cl) + 4BQC%:| Z2—|-

pi(z) +1 2 2
B 3 B 2 Bsc}] .
o5 (omamr )+ 55 (o= )+ B
and from this equation and (22), we obtain
1 1 Ad\ 1
(25) d1 = 53101, do = 531 <CQ — 21> + ZBQC%,

and

B 3 B 2 Bac3
(26) ds = 71 <C3 —c1c + Cl) + 261 <c2 — Cl) + 301'

4 2 2 8
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Then, from (19), we see that

m
1) (1552) 0

m
(1 2) (52) " g

d — d =
1 b ) 2 b
1o (52)

(27) and d3 = 2
Now from (21), (22) and (27), we have
(28)

A—-B)b b(A—-B

az = ( 1) ;1/\ s a3 = ( : é) o m{2c —cf (1+ B)}
2(1+7)<§;€;) 4(1+27)<%>
and
b(A-B

(29) as = ( ) o {4dcs — 4eiea (1+ B) + (1 + B)?} .

8 (14 37) <1+e+3,\>

Therefore, we have

(30) az — paz = b(A 1il2>\ o {ea —vel},
where

! Hb(A — B) (1+27) (LE2)"
(31) v=—|1+B+

9 2m

A+ (552)
Our result now follows by an application of Lemma 3. The result is sharp for
the functions

@ e (-
and

3 1y (0-) PO £~ 1) = 0).
This completes the proof of Theorem 3. [

O )

z

T 1(2) — 1) — a(?)

A0 f(2)

Remark 3. Putting m = 0 in Theorem 3, we obtain the result obtained
by Bansal |5, Theorem 2.3].

THEOREM 4. Let f(z) € A given by (1) belongs to the class Sg(m,)\,f;
A, B), then

(A= B)* b

2m
2
(1+27)” (LE2)

(34) }a2a4 — a%‘ <
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Proof. Using (28) and (29), we have
(A—B)* b’
16.(1 ) (1+37) (1552)" (1462)
|deres — 4ciea(1+ B) + cf(1 + B)?
()43 (LN (L0430
(1427)% (1 + £+ 20"
[4c3 — dcjea(1 4+ B) + c{(1+ B)?]|
= M |dcics — 4ciea(1 + B) + cf(1 + B)?
—N [4c5 — 4cfea(1 + B) + cf(1 + B)?] |,

(35) |azas — a%‘ =

(A—B)*|p?
16(1+) (1+37) (552) " (1462)
(T4 (1T4+3y) A +£+XN)"(1+£+3N)"
(1427)% (1 +£+2)0)*"

(36) M =

and N =

The above equation (35) is equivalent to

(37) ‘a2a4 — a%‘ =M |4clcg + dQC%CQ + dgcg + d4c‘ﬂ ,

where

(38) dy =4, dy=—4(1+B)(1—-N), d3=—4N, d;=(1— N)(1+ B)>

Since the functions p(z) and p(re®) (§ € R) are members of the class P
simultaneously, we assume without loss of generality that ¢; > 0. For conve-
nience of notation, we take c¢; = ¢ (c € [0,2], see (11)). Also, substituting the
values of cg and c3, respectively, from (13) and (14) in (37), we have

M
lasas —a3| = T |t (dy + 2ds + d3 + 4dy) + 23¢¢*(4 — ¢®)(dy + do + d3)
(4 — @R (—di + ds(d — ) + 2dic(4 — 2) (1 s z) )

An application of triangle inequality, replacement of || by v and substi-
tuting the values of dy, ds, ds and dy from (38), we have

(39) |asas — a3| < % [4¢*(1 = N)B? + 8|B| (1 — N)vc?(4 — )+
(4— A2 (4 +AN(4 - *)) +8c(4 — &) (1 —v?)],

= M[c*(1-N)B*+2c(4—c*) +2v|B|(1 - N)*(4 -
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+12(4—c?) (* (1 — N) — 2¢+4N)]
(40) = F(c,v).

Next, we assume that the upper bound for (40) occurs at an interior
point of the rectangle [0,2] x [0,1]. Differentiating F(c,v) in (40) partially
with respect to v, we have
(41)
OF (c,v)

5, =M [2|B|(1 = N)*(4—c*) +2v(4—*) (> (1 — N) —2c+4N)].

For 0 < v < 1 and for any fixed ¢ with 0 < ¢ < 2, from (41), we observe that
%—f > 0. Therefore F(c,v) is an increasing function of v, which contradicts our
assumption that the maximum value of F'(c,v) occurs at an interior point of
the rectangle [0,2] x [0, 1] . Moreover, for fixed ¢ € [0,2],

(42) Max F(c,v) = F(c,1) = G(c).

Thus
(43)
G(c)=M[c*(1—-N)(B*-2|B| — 1) +4c*(2|B| (1 = N) +1—2N) + 16N] .

Next,
(44) G'(c) =4Mc[c*(1—N)(B?>=2|B| - 1) +2(2|B|(1 - N) +1 — 2N]
=4Mc[*(1 - N) (B*-2[B| - 1) +2{(1 - N)(2|B| +1) = N}].

So G'(¢) < 0for 0 < ¢ < 2 and has real critical point at ¢ = 0. Also G(c) > G(2).
Therefore, maximum of G(c¢) occurs at ¢ = 0. Therefore, the upper bound of
F(c,v) corresponds to v = 1 and ¢ = 0. Hence,

(A—B)*p]
2m
(14 27)> (%)

This completes the proof of the Theorem 4. [

‘a2a4 — a%‘ <16MN =

Remark 4. Putting m = 0 in Theorem 4, we obtain the result obtained
by Bansal |5, Theorem 2.4].
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