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1. INTRODUCTION

We consider families of mixed boundary value problems on a bounded,
domain Ω ⊂ Rd with conical points (d ≥ 2). The associated di�erential ope-
rators belong to suitable families of strongly elliptic, second order di�erential
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operators with singular coe�cients. In our method, it is necessary to consider
certain singular coe�cients even if one is interested only in the case of regular
coe�cients. Using appropriate weighted Sobolev spaces, we obtain concrete
estimates on the norm and on the regularity of the solutions of our boundary
value problems in terms of the norms of the coe�cients of the operators and
their coercivity constants. In addition, we provide weighted Sobolev space con-
ditions on the coe�cients that ensure an analytic dependence of the solution
on the coe�cients of the operators and on the forcing terms (the free term).

To better explain our results, it is useful to put them into perspective.
A classical result in Partial Di�erential Equations states that a second order,
strongly coercive, strongly elliptic partial di�erential operator P induces an
isomorphism

(1) P : Hm+1(G) ∩ {u|∂Ω = 0} → Hm−1(G) ,

for all m ∈ Z+ := {0, 1, . . .}, provided that G is a smooth, bounded domain
in some euclidean space. See, for example, [2, 28, 30, 39] and the references
therein. This result has many applications and extensions. However, it does
not extend directly to non-smooth domains. In fact, on non-smooth domains,
the solution u of Pu = F will have singularities, even if the right hand side
F is smooth. See Kondratiev's fundamental 1967 paper [33] for the case of
domain with conical points and Dauge's comprehensive Lecture Notes [25] for
the case of polyhedral domains. See [8, 9, 12, 22, 29, 34�36, 43, 46] for a sample
of related results. These theoretical results have been a critical ingredient in
developing e�ective numerical methods approximating singular solutions. See
for example [7, 14]. In addition, we mention that estimates for equations on
conical manifolds can also be obtained using the method of layer potentials
(see, for example, [17,27,32,41,45] and references therein).

For polygonal domains (and, more generally, for domains with conical
points), Kondratiev's results mentioned above extend the isomorphism in (1)
to polygonal domains by replacing the usual Sobolev spaces Hm(Ω) with the
Kondratiev type Sobolev spaces. Let Ω be then a curvilinear polygonal domain
(see De�nition 3.1, in particular, the sides are not required to be straight), and
rΩ > 0 be a smooth function on Ω that coincides with the distance to its vertices

close to the vertices. We let

(2) Kma (Ω) := {u : Ω→ C, r|α|−aΩ ∂αu ∈ L2(Ω), |α| ≤ m } ,

where ∂i := ∂
∂xi

, i = 1, . . . , d, and ∂α := ∂α1
1 ∂α2

2 . . . ∂αdd . Kondratiev's re-

sults [33] (see also [22, 34]) give that the Laplacian ∆ :=
∑

i≤d ∂
2
i induces an

isomorphism of weighted Sobolev spaces. More precisely,

(3) ∆ : Km+1
a+1 (Ω) ∩ {u|∂Ω = 0} → Km−1

a−1 (Ω)
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is a continuous bijection with continuous inverse for m ∈ Z+ := {0, 1, . . .} and
|a| < π/αMAX , where αMAX is the maximum angle of Ω. One can extend this
result by interpolation to the usual range of values for m [39]. A similar result
holds also for more general strongly elliptic operators [34]. In [12], this result of
Kondratiev was extended to three dimensional polyhedral domains and in [10]
it was extended to general d-dimensional polyhedral domains using as a main
ingredient a suitable generalization of Hardy's inequality. In three dimensions
and higher, this type of results is not enough for numerical methods. Thus,
in [13], an anisotropic regularity and well-posedness result was proved for three
dimensional polyhedral domains, building on previous results of Babu�ska and
Guo [6] and Bu�a, Costabel, and Dauge [15]. See also [22] for further references
and for related results, including analytic regularity.

In this paper, we generalize Kondratiev's result by allowing families of
operators, by allowing low-regularity coe�cients, and by studying the quan-
titative and qualitative dependence of the solution on these coe�cients. To
state our main result, let us �x some notation. Let β := (aij , bi, c) denote the
coe�cients of

(4) pβu := −
d∑

i,j=1

∂i(aij∂ju) +

d∑
i=1

bi∂iu−
d∑
i=1

∂i(bd+iu) + cu ,

a second order di�erential operator in divergence form on our domain Ω ⊂ Rd.
Many concepts discussed in the paper make sense for any dimension d ≥ 1.
Nevertheless, the main results we prove are for d = 2. Thus, we assume for
the rest of this introduction that Ω is a two-dimensional curvilinear polygonal
domain. The coe�cients β of the operator pβ are obtained using weighted
Wm,∞-type space de�ned by

(5) Wm,∞(Ω) := {u : Ω→ C | r|α|Ω ∂αu ∈ L∞(Ω), |α| ≤ m } ,

where rΩ is as in Equation (2) (that is, it is equal to the distance function to the
conical points when close to those points). We �x for the rest of the introduction
m ∈ Z+ := {0, 1, . . .} and we assume that aij , rΩbi, r

2
Ωc ∈ Wm,∞(Ω). We let

(6) ‖β‖Zm := max{‖aij‖Wm,∞(Ω), ‖rΩbi‖Wm,∞(Ω), ‖r2
Ωc‖Wm,∞(Ω) } ,

(notice the factors involving rΩ!), and for P = pβ and V = H1
0 (Ω), de�ne

(7) ρ(β) := ρ(P ) := inf
<(Pv, v)

‖v‖2
H1(Ω)

, v ∈ V , v 6= 0 ,

where <(z) = <z denotes the real part of z. Our main result for Dirichlet

boundary conditions in two dimensions is as follows.
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Theorem 1.1. Let Ω ⊂ R2 be a curvilinear polygonal domain, η0 > 0,
m ≥ 0, and Nm = 2m+2 −m− 3 ≥ 0. Then there exist γ and Cm with the fol-

lowing property. For any β ∈ Zm and any |a| < η := min{η0, γ
−1‖β‖−1

Z0
ρ(β)},

the operator pβ de�ned in Equation (4) induces an isomorphism

(8) pβ : Km+1
a+1 (Ω) ∩ {u|∂Ω = 0 } → Km−1

a−1 (Ω)

such that p−1
β : Km−1

a−1 (Ω)→ Km+1
a+1 (Ω) ∩ {u|∂Ω = 0} depends analytically on the

coe�cients β := (aij , bi, c) and has norm

‖p−1
β ‖ ≤ Cm(ρ(β)− γ|a|‖β‖Z0)−Nm−1‖β‖NmZm .

The parameter η0 has to role of ensuring that a belongs to a �xed boun-
ded set, so we can bound a2 with |a| in the estimates involving β(a) (see The-
orem 4.4). The bounds γ1 and Cm depend only on m, (Ω, ∂DΩ), and η0.

Since the solution u of the equation pβu = F , u = 0 on the boundary,
is in Km+1

a+1 (Ω) for F ∈ Km−1
a−1 (Ω), |a| < η, we obtain the usual applications

to the Finite Element Method on straight polygonal domains for m ≥ 1 and
a > 0 [1, 11, 36].

Theorem 1.1 is a consequence of Theorem 4.4, which deals with the mixed
boundary value problem

(9)


pβu = f in Ω

u = 0 on ∂DΩ

∂βν u = h on ∂NΩ ,

where (∂βν v) :=
∑d

i=1 νi(
∑d

j=1 aij∂jv + bd+iv
)
. An exotic example to which

Theorem 4.4 applies is that of the Schr�odinger operator H := −∆ + cr−2
Ω on

Ω with pure Neumann boundary conditions (and suitable positivity conditions
on c), see Theorem 5.4.

The main novelties of Theorem 4.4 (and of the paper in general) are the
following:

(i) The precise estimate on the norm of the inverse of P β seems to be new
even in the smooth case.

(ii) We deal with singular coe�cients of a type that has not been syste-
matically considered in the literature on non-smooth domains. Thus our
coe�cients have both singular parts at the corners of the form r−jΩ (j ≤ 2)
and have limited regularity away from the corners.

(iii) We provide a new method to obtain higher regularity in weighted Sobolev
spaces using divided di�erences; a method that is, in fact, closer to the
one used in the classical case of smooth domains.

(iv) Our method of obtaining higher regularity for the solution also yields
regularity for the dependence on the coe�cients, more precisely, in this
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case, an analytic dependence on the coe�cients and the free term (f in
Problem (9)).

The paper is organized as follows. In Section 2, we introduce the notation
and necessary preliminary results for our problem in the usual Sobolev spaces.
In particular, an enhanced Lax-Milgram Lemma (Lemma 2.5) provides uniform
estimates for the solution of our problem (9) and analytic dependence of this
solution on the coe�cients β. In Section 3, we �rst de�ne curvilinear polygo-
nal domains (De�nition 3.1). We then provide several equivalent de�nitions of
the weighted Sobolev spaces Kma (Ω) and the form of our di�erential operators.
Then, in Section 4, using local coordinate transformations, we derive our main
result, the analytic dependence of the solution on the coe�cients in high-order
weighted Sobolev spaces (Theorem 4.4). Finally, Section 5 contains some con-
sequences of Theorem 4.4 and some extensions. In particular, we consider a
framework for the pure Neumann problem with inverse square potentials at
vertices. For notational simplicity, we do not consider systems, although many
of the techniques below apply to this more general setting.

2. COERCIVITY IN CLASSICAL SOBOLEV SPACES

In this section, we recall some needed results on coercive operators, on
(uniformly) strongly elliptic operators, and on analytic functions de�ned on
open subsets of Banach spaces.

2.1. Function spaces and boundary conditions

Throughout the paper, Ω ⊂ Rd, d ≥ 1, denotes a connected, bounded
domain. Further conditions on Ω will be imposed in the next section. As usual,
Hm(Ω) denotes the space of (equivalence classes of) functions on Ω with m
derivatives in L2(Ω). When we write A ⊂ B, we allow also A = B. In what
follows, ∂DΩ is a suitable closed subset of the boundary ∂Ω, where we impose
Dirichlet boundary conditions.

We shall rely heavily on the weak formulation of Problem (9). Thus, let
us recall that H−1(Ω) is de�ned as the dual space of

(10) H1
0 (Ω) := {u ∈ H1(Ω) | u|∂Ω = 0 } ,

with pivot L2(Ω). We introduce homogeneous essential boundary conditions
abstractly, by considering a subspace V ,

(11) H1
0 (Ω) ⊂ V ⊂ H1(Ω) ,
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such that V has the norm induced either from H1(Ω) or from K1
1(Ω) and H1

0 (Ω)
is a closed subspace of V . In many applications, V is closed in H1(Ω), but
this is not the case in our application to the Neumann problem with inverse
square potentials at vertices (see Theorem 5.4). Let V ∗ be the dual of V with

pivot space L2(Ω). Therefore, by ( , ) we shall denote both the inner product
(f, g) =

∫
Ω f(x)g(x) dx on L2(Ω), and by continuous extension, also the duality

pairing between V ∗ and V . Thus, V ∗ = H−1(Ω) if V = H1
0 (Ω); otherwise, V ∗

will incorporate also non-homogeneous natural boundary conditions.

For Problem (9), we choose

(12) V = H1
D(Ω) := {u ∈ H1(Ω) | u = 0 on ∂DΩ } ,

and assume that the Neumann part of the boundary contains no adjacent edges.

2.2. The weak formulation

Recall from Equation (4) the di�erential operator pβu := −
d∑

i,j=1

∂i
(
aij∂ju

)
+

d∑
i=1

bi∂iu−
d∑
i=1

∂i(bd+iu) + cu, which is used in Problem (9), where aij , bi, c :

Ω → C denote measurable complex valued functions as in (4) and β denotes
the coe�cients (aij , bi, c). We shall make suitable further assumptions on these
coe�cients below.

Equation (9), makes sense as formulated only if u is regular enough (at
least in H3/2+ε, to validate the Neumann derivatives at the boundary). In order
to use the Lax-Milgram Lemma for the problem (9), we formulate our problem
in a more general way that allows u ∈ V . To this end, let us introduce the
Dirichlet form Bβ associated to (9), that is, the sesquilinear form

Bβ(u, v) :=

d∑
i,j=1

(
aij∂ju, ∂iv

)
+

d∑
i=1

(
bi∂iu, v

)
+

d∑
i=1

(
bd+iu, ∂iv

)
+
(
cu, v

)
=

∫
Ω

[ d∑
i=1

( d∑
j=1

aij(x)∂ju(x) + bd+i(x)u(x)
)
∂iv(x)

+
( d∑
i=1

bi(x)∂iu(x) + c(x)u(x)
)
v(x)

]
dx ,

where dx denotes the volume element in the Lebesgue integral on Ω ⊂ Rd.
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Remark 2.1. Let F (v) =
∫

Ω f(x)v(x)dx+
∫
∂NΩ h(x)v(x)dS. Then the weak

variational formulation of Equation (9) is: Find u ∈ V , such that

(13) Bβ(u, v) = F (v) , for all v ∈ V .

We then de�ne P β : V → V ∗ by

(14) (P βu, v) := Bβ(u, v) , for all u, v ∈ V .

Thus, the weak formulation of Equation (9) is equivalent to

(15) P βu = F ∈ V ∗ .

We are interested in the dependence of u on F and on the coe�cients β :=
(aij , bi, c) of P β . We notice that if the Neumann part of the boundary ∂NΩ is
empty, then pβ and P β can be identi�ed, but this is not possible in general.
In fact, we are looking for an analytic dependence of the solutions on the
coe�cients. For this reason, it is useful to consider complex Banach spaces and
complex valued coe�cients.

2.3. Bounded forms and operators

For two Banach spaces X and Y , let L(X;Y ) denote the Banach space of
continuous, linear maps T : X → Y endowed with the operator norm

(16) ‖T‖L(X;Y ) := sup
x 6=0

‖Tx‖Y
‖x‖X

.

We write L(X) := L(X;X).
Let us de�ne Z to be the set of coe�cients β = (aij , bi, c) such that the

form Bβ is de�ned and continuous on V ×V , and we give Z the induced norm.
Thus Z is given the induced topology from L(V ;V ∗).

It will be convenient to use a slightly enhanced version of the well-known
Lax-Milgram Lemma stressing the analytic dependence on the operator and on
the data. We thus �rst review a few basic de�nitions and results on analytic
functions [26].

Let X and Y be Banach spaces. In what follows, Li(Y ;X) will denote
the space of continuous, multi-linear functions L : Y ×Y × . . .×Y → X, where
i denotes the number of copies of Y . The norm on the space Li(Y ;X) is

‖L‖Li(Y ;X) := sup
‖yj‖≤1

‖L(y1, y2, . . . , yi)‖X .

Of course, L1(Y ;X) = L(Y ;X), isometrically. We shall need analytic functions
de�ned on open subsets of a Banach space. Let U ⊂ Y and consider the spaces
Ck(U ;X), k ∈ Z+∪{∞, ω} de�ned as follows. If k ∈ Z+∪{∞}, then Ck(U ;X)
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denotes the space of functions v : U → X with continuous (Fr�echet) derivatives
Div : U → Li(Y ;X), i ≤ k. Similarly, Ckb (U ;X) ⊂ Ck(U ;X), k ∈ Z+ ∪ {∞},
denotes the subspace of those functions v ∈ Ck(U ;X) for which the derivatives
Div, i ≤ k, are bounded on U . For each �nite j, we let

(17) ‖v‖Cjb (U ;X)
:= sup

i≤j, y∈U
‖Di

yv‖Li(Y ;X)

denote the natural Banach space norm on Cjb (U ;X), with Di
av ∈ Li(Y ;X)

denoting the value of Div at a.

The space Cω(U ;X) consists of the functions f : U → X that have, for
any a ∈ U , an expansion

f(x) =
∞∑
k=0

1

k!
Dk
af(x− a, x− a, . . . , x− a)

that is uniformly convergent for x in a small, non-empty open ball centered at
a. We let Cωb (U ;X) := Cω(U ;X)∩C∞b (U ;X). If k is not �nite, that is, if k =∞
or k = ω, we endow Ckb (U ;X) with the Fr�echet topology de�ned by the family
of seminorms ‖ · ‖Cjb (U ;X)

, j ≥ 1. We shall use that multilinear functions are

analytic. We shall need the following standard result.

Lemma 2.2. Let Y1, Y2 be Banach spaces.

(i) The map L(Y1;Y2)× Y1 3 (T, y)→ Ty ∈ Y2 is analytic.

(ii) The map T → T−1 ∈ L(Y1) is analytic on the open set Linv(Y1) of inver-
tible operators in L(Y1) := L(Y1;Y1).

Proof. In (i), the given map is bilinear, and hence analytic. To prove
(ii), we simply write the Neumann series (T − R)−1 =

∑∞
n=0 T

−1(RT−1)n,
which is uniformly and absolutely convergent for ‖R‖‖T−1‖ ≤ 1 − ε, for any
1 ≥ ε > 0. �

2.4. An enhanced Lax-Milgram Lemma

We now recall the classical Lax-Milgram Lemma, in the form that we will
need.

De�nition 2.3. Let H1
0 (Ω) ⊂ V ⊂ H1(Ω). A continuous operator P : V →

V ∗ is called strongly coercive on V (or simply strongly coercive when there is
no danger of confusion) if

0 < ρ(P ) := inf
v∈V r{0}

<(Pv, v)

‖v‖2V
.
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We shall usually write ρ(β) = ρ(P β), where ρ(P β) is as de�ned in Equa-
tion (7). For P = P β , we thus have ρ(β)‖v‖2H1(Ω) = ρ(P β)‖v‖2H1(Ω)≤<B

β(v, v),
for all v ∈ V . We shall need the following simple observation:

Remark 2.4. If P : V → V ∗ is strongly coercive on V and P1 : V → V ∗

satis�es ‖P1‖ := ‖P1‖L(V,V ∗) < ρ(P ), then P + P1 is also strongly coercive on
V and ρ(P + P1) ≥ ρ(P )− ‖P1‖. Indeed,
(18) <

(
(P + P1)u, u

)
≥ <(Pu, u)− ‖P1‖‖u‖2V ≥ (ρ(P )− ‖P1‖)‖u‖2V ,

and hence the set L(V ;V ∗)c of strongly coercive operators is open in L(V ;V ∗).

Recall now the standard way of solving Equation (13) using the Lax-
Milgram Lemma for strongly coercive operators.

Lemma 2.5 (Analytic Lax-Milgram Lemma). Assume that P : V → V ∗

is strongly coercive. Then P is invertible and ‖P−1‖ ≤ ρ(P )−1. Moreover, the

map L(V ;V ∗)c × V ∗ 3 (P, F )→ P−1F ∈ V is analytic. Consequently,(
Z ∩ L(V ;V ∗)c

)
× V ∗ 3 (β, F ) → (P β)−1F ∈ V

is analytic as well.

Proof. The �rst part is just the classical Lax-Milgram Lemma [16,19,42],
which states that �coercivity implies invertibility� and gives the norm estimate.
The second part follows from Lemma 2.2. Indeed, the map Φ : L(V ;V ∗)c ×
V ∗ → V , Φ(β, F ) := (P β)−1F is the composition of the maps

L(V ;V ∗)c × V ∗ × V ∗ 3 (β, F ) → (P β, F ) ∈ Linv(V, V ∗)× V ∗ ,
Linv(V ;V ∗)× V ∗ 3 (P, F ) → (P−1, F ) ∈ L(V ∗;V )× V ∗ ,

and L(V ∗;V )× V ∗ 3 (P−1, F ) → P−1F ∈ V .

The �rst of these three maps is well de�ned and linear by the classical Lax-
Milgram Lemma. The other two maps are analytic by Lemma 2.2. Since the
composition of analytic functions is analytic, the result follows. �

Examples of strongly coercive operators are obtained using �uniformly
strongly elliptic� operators, whose de�nition we recall next.

De�nition 2.6. Let β ∈ Z. The operator P β is called uniformly strongly

elliptic if there exists γ > 0 such that

(19)
d∑

ij=1

<
(
aij(x)ξiξj

)
≥ γ‖ξ‖2 ,

for all ξ = (ξi) ∈ Rd and all x ∈ Ω. Here ‖ · ‖ denote the standard euclidean
norm on Rd. The largest γ with the property in (19) will be denoted γuse(β)
or γuse(P

β).
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Then, we have the following standard example.

Example 2.7. Let β ∈ Z, as in De�nition 2.6. We shall regard a matrix
X := [xij ], (X)ij = xij , as a linear operator acting on Cd by the formula
Xζ = ξ, where ξi =

∑
j xijζj . We consider the adjoint and positivity with

respect to the usual inner product on Cd. We thus have X ≥ 0 if, and only if
(Xξ, ξ) =

∑
ij xijξjξi ≥ 0 for all ξ ∈ Cd. Also, recall that X∗, the adjoint of the

matrix X, has entries (X∗)ij = xji. Then P β is uniformly strongly elliptic if,
and only if, there exists γ > 0 such that the matrix a(x) := [aij(x)] of highest
order coe�cients of P β satis�es

(20) a(x) + a(x)∗ ≥ 2γId , for all x ∈ Ω ,

where Id denotes the unit matrix on Cd. Assume also that bi = c = 0. Then,

2<(P βu, u) := 2<
(∫

Ω

d∑
i,j=1

aij(x)∂ju(x)∂iu(x) dx
)

= 2<(a∇u,∇u)

= (a∇u,∇u) + (∇u, a∇u) =
(
(a+ a∗)∇u,∇u

)
≥ 2γ‖∇u‖2L2(Ω) ,

for u ∈ H1
D(Ω). (Recall thatH1

D(Ω) was de�ned in Equation (12). In particular,
v = 0 on ∂DΩ if v ∈ H1

D(Ω).)

Remark 2.8. We use the notation of the previous example. If, moreo-
ver, ∂DΩ has positive measure, then there exists c = cΩ,∂DΩ > 0 such that∫

Ω |∇v|
2dx ≥ c‖v‖2H1(Ω) for all v ∈ H1

D(Ω), and hence P β is strongly coercive

on V = H1
D(Ω). If ∂NΩ has not adjacent edges, then P β is also strongly coer-

cive on V = K1
1(Ω)∩H1

D(Ω), with the norm induced from K1
1(Ω), in view of the

Hardy inequality [12,34]. Moreover, we will have ρ(P β) ≥ cγ, with c depending
only on the domain Ω.

We then have the following result that is standard for non-weighted spaces
(see also [44]).

Proposition 2.9. If β = (aij , bi, c) ∈ Z is such that P β is strongly coer-

cive on V , H1
0 (Ω) ⊂ V ⊂ H1(Ω), with the norm induced from H1(Ω) or from

K1
1(Ω), then P β is uniformly strongly elliptic, more precisely, the estimate (19)

is satis�ed for any γ ≤ ρ(β) := ρ(P β). Moreover, P β : V → V ∗ is a conti-

nuous bijection and (P β)−1F depends analytically on the coe�cients β and on

F ∈ V ∗.

Proof. The second part is an immediate consequence of the analytic Lax-
Milgram Lemma. Let us concentrate then on the �rst part. Let us assume
that the norm on V is the one induced from K1

1(Ω), the case of H1(Ω) being
completely similar. Let us assume that P β is strongly coercive and let ξ =
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(ξi) ∈ Rd. Also, let us choose an arbitrary smooth function φ with compact
support D in Ω. We then de�ne the function ψ ∈ C∞c (Ω) ⊂ V by the formula
ψ(x) := eıtξ·xφ(x) ∈ C, where ı :=

√
−1 and ξ ·x =

∑d
k=1 ξkxk. Then ∂jψ(x) =

ıtξje
ıtξ·xφ(x) + eıtξ·x∂jφ(x), and hence ıtξje

ıtξ·xφ(x) is the dominant term in
∂jψ(x) as t → ∞. Taking into account all the indices j and computing the
squares of the L2-norms, we obtain

(21) lim
t→∞

t−2‖ψ‖2K1
1(D) =

d∑
j=1

ξ2
j

∫
D
|φ(x)|2 dx = ‖ξ‖2

∫
D
|φ(x)|2 dx .

Similarly, the coe�cients aij of P
β , are estimated using �oscillatory testing�

(22) lim
t→∞

t−2(P βψ,ψ) =

∫
D

d∑
i,j=1

aij(x, y)ξiξj |φ(x)|2 dx .

We then use De�nition 2.3 for v = ψ and we pass to the limit as t → ∞. By
coercivity and the de�nition of ρ(β) := ρ(P β), we have that ρ(β)‖ψ‖2K1

1(D)
≤

<(P βψ,ψ). Dividing this inequality by t−2 and taking the limit as t→∞, we
obtain from Equations (21) and (22) that

ρ(β)‖ξ‖2
∫
D
|φ(x)|2 dx ≤ <

∫
D

∑
ij

aij(x, y)ξiξj |φ(x)|2 dx .

Since φ is an arbitrary compactly supported smooth function on D, it follows
that, for all x ∈ D,

ρ(β)‖ξ‖2 ≤ <
∑
ij

aij(x)ξiξj .

Since ξ is arbitrary, we obtain Equation (19) with γ = ρ(P ). �

An immediate corollary of Proposition 2.9 is

Corollary 2.10. We have ρ(β) ≤ γuse(β).

In the following sections, this inequality will be used in the form γ−1
use(P

β)
= γ−1

use(β) ≤ ρ(β)−1 := ρ(P β)−1.

3. POLYGONAL DOMAINS, OPERATORS,

AND WEIGHTED SOBOLEV SPACES

In this section, we introduce the domains for our boundary value problems,
the weighted Sobolev spaces, and the di�erential operators that we shall use.
We also provide equivalent de�nitions of the needed weighted Sobolev spaces
and prove some intermediate results.
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3.1. Polygonal domains and de�ning local coordinates

In this section, we let Ω be a curvilinear polygonal domain, although our
method works without signi�cant change for domains with conical points.

Let us describe in detail our domain Ω as a Dauge-type corner domain,
with the purpose of �xing the notation and of introducing some useful local
coordinate systems � called �de�ning coordinates� � that will be used in the
proofs below. Let Bj denote the open unit ball in Rj . Thus B0 := {0} is
reduced to one point, B1 = (−1, 1), and B2 = {(x, y) ⊂ R2, x2 + y2 < 1}.

De�nition 3.1. A curvilinear polygonal domain Ω ⊂ R2 is an open, boun-
ded subset of R2 with the property that, for every point p ∈ Ω, there exists
j ∈ {0, 1, 2}, a neighborhood Up of p in R2, and a smooth map φp : R2 → R2

that de�nes a di�eomorphism φp : Up → Bj ×B2−j ⊂ R2, φp(p) = 0, satisfying
the following conditions:

(i) If j = 2, then Up ⊂ Ω;

(ii) If j = 1, then φp(Up ∩Ω) = B1 × (0, 1) or φp(Up ∩Ω) = B1 × (B1 r {0});
(iii) If j = 0, then

φp(Up ∩ Ω) = { (r cos θ, r sin θ), with r ∈ (0, 1), θ ∈ Ip }

for some �nite union Ip of open intervals in S1.
For p ∈ Ω, we let jp the largest j for which p satis�es one of the above

properties.

These are (essentially) the corner domains in [25]. The de�nition above
was generalized to arbitrary dimensions in [10]. See also [34, 35, 40, 43]. The
second case in (ii) corresponds to cracks in the domain. We continue with some
remarks.

Remark 3.2. We notice that in the two cases (i) and (iii) of De�nition 3.1
(j = 2 and j = 0), the spaces φp(Up) = Bj × B2−j will be the same (up to a
canonical di�eomorphism), but the spaces φp(Up∩Ω) will not be di�eomorphic.

Remark 3.3. Let Ω be a curvilinear polygonal domain and p ∈ Ω. Then
p satis�es the conditions of the de�nition for exactly one value of j, except the
case when p is on a smooth part of the boundary, when a choice of j = 1 or
j = 0 is possible. This is the case exactly when jp = 1. If j = 0 is chosen, then
Ip is half a circle.

Remark 3.4. The set Vg := {p ∈ Ω| jp = 0} is �nite and is contained in
the boundary of Ω. It is the set of geometric vertices.

Let us choose for each point p ∈ Ω a value j = ip that satis�es the
conditions of the de�nition. If jp = 1, we choose ip = jp = 1, except possibly
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for �nitely many points p ∈ Ω. These points will be called arti�cial vertices.
The set of all vertices (geometric and arti�cial) is �nite, which will be denoted
by V, and will be �xed in what follows. We assume that all points where the
boundary conditions change are in V. We also �x the resulting polar coordinates
r ◦ φp and θ ◦ φp on Up, for all p ∈ V.

De�nition 3.5. The coordinate charts φp : Up → Bj × B2−j of De�ni-
tion 3.1 that were chosen such that j = ip are called the de�ning coordinate
charts of the curvilinear polygonal domain Ω. (Recall that j = ip = 0 if, and
only if p ∈ V.)

Remark 3.6. Arti�cial vertices are useful, for instance, in the case when
we have a change in boundary conditions or if there are point singularities in
the coe�cients, see [35,36] and the references therein. The right framework is,
of course, that of a strati�ed space [10], with jp denoting the dimension of the
stratum to which p belongs, but we do not need this in the simple case at hand.

Remark 3.7. It follows from De�nition 3.1 that if Ω is a curvilinear poly-
gonal domain, then the set ∂Ω r V is the union of �nitely many smooth, open
curves ej : (−1, 1)→ ∂Ω. The curves ej have as image the open edges of ∂Ω and
we shall sometimes identify ej with its image. The curves ej are disjoint and
have no self-intersections. The closure of the image of ej , for any j, is called a
closed edge. Thus, the vertices are not contained in the open edges (but they
are, of course, contained in the closed edges). Our assumption that all points
where the boundary conditions change are in V implies that ∂DΩ consists of a
union of closed edges of Ω.

3.2. Equivalent de�nitions of weighted spaces

In this section, we discuss some equivalent de�nitions of weighted Sobolev
spaces. We adapt to our setting the results in [3], to which we refer for more
details.

We shall �x, from now on, a �nite set of de�ning coordinate charts φk =
φpk , for some pk ∈ Ω, 1 ≤ k ≤ N , so that Uk := Upk , 1 ≤ k ≤ N , de�nes a
�nite covering of Ω. Thus, for p = pk such that jp 6= 0, the coordinates are
(x, y) ∈ R2. Otherwise, these coordinates will be denoted by (r, θ) ∈ (0, 1)×S1.
We may relabel these points such that pk is a vertex if, and only if, 1 ≤ k ≤ N0.
We then have the following alternative de�nition of the weighted Sobolev spaces
Kma (Ω). We denote

(23) Xku := ∂xu and Yku := ∂yu , for N0 < k ≤ N ,
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in the coordinate system de�ned by φk = φpk = (x, y) ∈ R2 that corresponds
to one of the chosen points pk (recall that, for N0 < k ≤ N , pk is not a vertex).
If, however, pk is a vertex, then we let

(24) Xku := r∂ru and Yku := ∂θu , for 1 ≤ k ≤ N0 ,

in the (polar) coordinate system de�ned by φk = (r, θ) ∈ (0, 1)× S1. Note the
appearance of r in front of ∂r! Recall that rΩ equals the distance to the vertices
close to the vertices. Thus rΩ = r close to the vertex of a straight angle.

Remark 3.8. Assuming that the coe�cients of pβ are locally Lipschitz,
we can express the di�erential operator r2

Ωpβ in any of the coordinate systems
φk : Uk → R2. That means that, for each 1 ≤ k ≤ N , we can �nd coe�cients
c, c1, c2, c11, c12, c22 such that

(25) pβu = (c11X
2
k + c12XkYk + c22Y

2
k + c1Xk + c2Yk + c)u on Uk ,

with the vector �elds Xk and Yk introduced in Equations (23) and (24).

For each open subset U ⊂ Ω, let us denote

(26) ‖u‖2Kma (U) :=
∑
|α|≤m

‖r|α|−aΩ ∂αu‖2L2(U) .

Thus, if U = Ω, ‖u‖Kma (U) = ‖u‖Kma (Ω) is simply the norm on Kma (Ω). Note
that the weight rΩ is not intrinsic to the set U , but depends on Ω, which is
nevertheless not indicated in the notation ‖u‖2Kma (U), in order not to overburden

it. We de�ne the spaces Wm,∞(U) similarly as in (5) with the same weight rΩ.
Let Uk := Upk .

Proposition 3.9. Let u : Ω → C be a measurable function and U ⊂ Ω
be an open subset. We have that u ∈ Kma (U) if, and only if, r−aΩ Xi

kY
j
k u ∈

L2(U ∩ Uk), for all 1 ≤ k ≤ N and all i + j ≤ m (recall that Uk = Upk).
Moreover, the Kma (U)�norm is equivalent to the norm

|||u|||′U :=

N∑
k=1

∑
i+j≤m

‖r−aΩ Xi
kY

j
k u‖L2(U∩Uk) .

Proof. This follows right away from the de�nition of the Kma (U)-norm.
Indeed, away from the vertices, both the ||| · |||′U -norm and the Kma -norm coi-
ncide with the usual Hm-norm. On the other hand, near a vertex, or more
generally on an angle Ξ := {(r, θ)|α < θ < β}, both norms are given by∑

i+j≤m ‖r−a(r∂r)i∂
j
θu‖L2(Ξ). For the Kma (U)-norm this is seen by writing ∂x

and ∂y in polar coordinates, more precisely, from

(27) r∂x = (cos θ)r∂r − (sin θ)∂θ and r∂y = (sin θ)r∂r + (cos θ)∂θ .
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See [4, 36] for more details. �

We �nally have the following corollary.

Corollary 3.10. The norm ‖u‖Km+1
a (Ω) is equivalent to the norm

|||u||| := ‖u‖Kma (Ω) +
N∑
k=1

(
‖Xku‖Kma (Uk) + ‖Yku‖Kma (Uk)

)
.

Proof. In the de�nition of |||u|||′, Proposition 3.9, with m replaced by
m + 1, we collect all the terms with i + j ≤ m and notice that they give
a norm equivalent to the norm for Kma . The rest of the terms will contain
at least one di�erential Xk or one di�erential Yk and thus are of the form
‖r−aΩ Xi

kY
j
k Yku‖L2(Ω) or ‖r−aΩ Xi

kY
j
kXku‖L2(Ω), i + j ≤ m, since the di�erential

operators Xk and Yk commute on Uk. �

3.3. The di�erential operators

We include in this subsection the de�nition of our di�erential operators
and three needed intermediate results (lemmas).

We introduce now our set of coe�cients. Recall the norm ‖β‖Zm introdu-
ced in Equation (6) and let

(28) Zm := {β = (aij , bi, c), ‖β‖Zm <∞} .

Note that for example, the Schr�odinger operator −∆ + r−2 is an operator
of the form P β for suitable β ∈ Zm.

Below, we shall often use inequalities of the form A ≤ CB, where A and
B are expressions involving u and β and C ∈ R. We shall say that C is an
admissible bound if it does not depend on u and β, and then we shall write
A ≤c B.

Lemma 3.11. Let β = (aij , bi, c) ∈ Zm, m ≥ 1, and let us express pβ as

in Remark 3.8. Then c, c1, c2, c11, c12, c22 ∈ Wm−1,∞(Uk). Moreover,

‖c‖Wm−1,∞(Uk) + ‖c1‖Wm−1,∞(Uk) + . . .+ ‖c22‖Wm−1,∞(Uk) ≤c ‖β‖Zm .

If pβ is moreover uniformly strongly elliptic, then |c−1
22 | ≤c γ−1

use(β) on Uk.

Proof. We �rst notice that since m ≥ 1, we can convert our opera-
tor to a non-divergence form operator. Indeed, one can simply replace a
term of the form ∂ia∂ju with a∂i∂ju + (∂ia)∂ju, where u ∈ Km+1

a+1 (Ω) and
rΩ∂ia ∈ Wm−1,∞(Ω). We deal similarly with the terms of the form ∂i(biu).
This accounts for the loss of one derivative in the regularity of the coe�cients
of c, . . . , c22.
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We need to show that the coe�cients c, . . . , c22 are in Wm−1,∞(Ω)(Uk)
and that they have the indicated bounds. To this end, we consider the two
possible cases: when Uk contains no vertices of Ω (equivalently, if k > N0) and
the case when Uk is centered at a vertex (equivalently, if k ≤ N0).

If k > N0, then the coe�cients c, . . . , c22 can be expressed using the
coordinate chart φk = φpk of De�nition 3.1 and its derivatives linearly in terms
of the coe�cients β on the closure of Uk. Since there is a �nite number of such
neighborhoods and φk and its derivatives are bounded on the closure of Uk, the
bound for the coe�cients c, . . . , c22 in terms of ‖β‖Zm on Uk follows using a
compactness argument. In particular, the bound |c−1

22 | ≤c γ−1
use(β) follows from

the uniform ellipticity of pβ on Uk.

If, on the other hand, k ≤ N0 (that is, Uk is centered at a vertex). Let
us concentrate on the highest order terms, for simplicity. We then have, up to
lower order terms (denoted l.o.t)

r2∂2
x = (cos θ)2(r∂r)

2 − 2(sin θ cos θ)r∂r∂θ + (sin θ)2∂2
θ + l.o.t.

r2∂x∂y = (sin θ cos θ)(r∂r)
2 + (cos2 θ − sin2 θ)r∂r∂θ + (sin θ cos θ)∂2

θ + l.o.t.

r2∂2
y = (sin θ)2(r∂r)

2 + 2(sin θ cos θ)r∂r∂θ + (cos θ)2∂2
θ + l.o.t.

The bound on the coe�cients c, . . . , c22 follows since sin θ and cos θ are in
Wm,∞(Uk) for all m. This gives also that c22 = a11 cos2 θ + 2a12 cos θ sin θ +
a22 sin2 θ ≥ γuse(β) for the coe�cient c22 of Y 2

k = ∂2
θ . (Thus |c

−1
22 | ≤ γ−1

use(β) on
Uk, for k ≤ N0.) �

For instance, for the Laplacian in polar coordinates, we have

r2
Ω∆ = (r∂r)

2 + ∂2
θ = X2

k + Y 2
k

in the neighborhood Uk of the vertex pk of a straight angle.

The following lemma will be used in the proof of Theorem 4.4 and explains
some of the calculations there.

Lemma 3.12. For two functions b and c, we have

(i) ‖bc‖Kma (Ω) ≤c ‖b‖Wm,∞(Ω)‖c‖Kma (Ω).

(ii) ‖bc‖Wm,∞(Ω) ≤c ‖b‖Wm,∞(Ω)‖c‖Wm,∞(Ω), so Wm,∞(Ω) is an algebra.

(iii) If b ∈ Wm,∞(Ω) and b−1 ∈ L∞(Ω), then b−1 ∈ Wm,∞(Ω) and

‖b−1‖Wm,∞(Ω) ≤c C ‖b−1‖m+1
L∞(Ω) ‖b‖

m
Wm,∞(Ω) .

The parameter C in ≤c depends only on m and Ω.

Proof. This is a direct calculation. Indeed, the �rst two relations are
based on the rule ∂α(bc) =

∑
β≤α

(
α
β

)
∂βb ∂α−βc. The last one is obtained

from the relation ∂α(b−1) = b−1−|α|Q, where Q = Q(b, ∂1b, ∂2b, . . . , ∂
αb) is a
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polynomial of degree |α| in all derivatives ∂βb, with 0 ≤ β ≤ α, where each ∂βu
is considered of degree 1. This relation is proved by induction on |α|. �

For further reference, we shall need the following version of �Nirenberg's
trick,� (see, for instance, [2, 28]).

Lemma 3.13. Let T : X → Y be a continuous, bijective operator between

two Banach spaces X and Y . Let SX(t) and SY (t) be two c0 semi-groups of

operators on X, respectively Y , with generators denoted by AX and, respectively,

AY . We assume that for any t > 0, there exists Tt ∈ L(X;Y ) such that

SY (t)T = TtSX(t). Assume that t−1(Tt − T ) converges strongly as t → 0 to a

bounded operator B. Then T maps bijectively the domain of AX to the domain

of AY and we have that AXT
−1ξ = T−1

(
AY ξ−BT−1ξ

)
, for all ξ in the domain

of AY . Consequently,

‖AXT−1ξ‖X ≤ ‖T−1‖
(
‖AY ξ‖Y + ‖B‖‖T−1ξ‖X

)
.

Proof. We have that ξ ∈ X is in D(AX), the domain of the generator
AX of SX if, and only if, the limit AXξ := limt→0 t

−1
(
SX(t)− 1)ξ exists. The

de�nition of Tt gives

t−1
(
SY (t)− 1)Tξ = t−1

(
Tt − T )SX(t)ξ + t−1T

(
SX(t)− 1)ξ .

Since t−1(Tt − T )ζ → Bζ for all vectors ζ ∈ X and B : X → Y is bounded, we
obtain that the limit limt→0 t

−1
(
SY (t) − 1)Tξ exists if, and only if, the limit

limt→0 t
−1
(
SX(t)− 1)ξ exists. This shows that T maps bijectively the domain

of AX to the domain of AY and that AY T = B+TAX as unbounded operators
with domain D(AX). Multiplying by T−1 to the left and to the right gives the
desired result. �

One can use Lemma 3.13 as a regularity estimate.

4. HIGHER REGULARITY IN WEIGHTED SOBOLEV SPACES

In this section, we prove our main result, Theorem 4.4. Theorem 1.1 is
then an immediate consequence of this theorem and of Remark 4.3. Recall that
rΩ : Ω → [0,∞) denotes a continuous function, smooth and > 0 outside the
vertices, such that rΩ is the distance to the vertices, close to the vertices.

4.1. The higher regularity problem

We now come back to the study of our mixed problem, as formulated in
Equation (9). We are interested in solutions with more regularity than the
ones provided by the space V appearing in its weak formulation, Equation (13)
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or Equation (15). While for the weak formulation the classical Sobolev spaces
su�ce, the higher regularity is formulated in the framework of the weighted
Sobolev spaces considered by Kondratiev [33] and others, see also [23, 24].

We assume from now on that V := {u ∈ K1
1(Ω), u = 0 on ∂DΩ} and that

it has the induced norm. We then introduce

Vm(a) := Km+1
a+1 (Ω)∩{u|∂DΩ = 0} for m ∈ Z+ = {0, 1, 2, . . .} and

V −m (a) := Km−1
a−1 (Ω)⊕Km−1/2

a−1/2 (∂NΩ) for m ∈ N = {1, 2, . . .}.

In particular, Vm(a) = Km+1
a+1 (Ω) ∩ raΩV . The spaces K

m−1/2
a−1/2 (∂NΩ), m ≥ 1, are

the spaces of traces of functions in Kma (Ω), in the sense that the restriction at

the boundary de�nes a continuous, surjective map Kma (Ω)→ Km−1/2
a−1/2 (∂NΩ) [4].

The space Kma (∂NΩ) can be de�ned directly form ∈ Z+ in a manner completely
analogous to the usual Kondratiev spaces. For non-integer regularity, they can
be obtained by interpolation, [3, 4].

We recall that for all m ∈ Z+ and a ∈ R, the di�erentiation de�nes conti-
nuous maps ∂j : Kma (Ω)→ Km−1

a−1 (Ω). In the same way, the combination of the

normal derivative at the boundary (∂βν v) :=
∑d

i=1 νi(
∑d

j=1 aij∂jv+ bd+iv
)
and

restriction at the boundary de�ne a continuous, surjective map ∂βν : Kma (Ω)→
Km−3/2
a−3/2 (∂NΩ), m ≥ 2.

Lemma 4.1. We have continuous maps

P β(m, a) := (pβ, ∂
β
ν ) : Vm(a) → V −m (a) , m ≥ 1 ,

P β(m, a)(u) =
( ∑

ij

∂i(aij∂ju) +
∑
i

bi∂iu+ cu,
∑
ij

νiaij∂ju|∂NΩ

)
.

Therefore the operators P β(m, a), m ∈ N, a ∈ R, are given by the same
formula (but have di�erent domains and ranges).

Remark 4.2. Let us assume for this remark that a = 0 and discuss this case
in more detail. If ∂NΩ contains no adjacent edges, then the Hardy inequality
[12,34] shows that the natural inclusion

(29) K1
1(Ω) ∩ {u|∂DΩ = 0} → H1

D(Ω) := H1(Ω) ∩ {u|∂DΩ = 0}

is an isomorphism (that is, it is continuous with continuous inverse). We thus
consider V := V0(0) in general (for all ∂NΩ, that is, even if it contains adjacent
Neumann edges). For symmetry, we also let V −0 (0) := V ∗ and

(30) P β(0, 0) := P β : V0(0) = V → V −0 (0) := V ∗ ,

which is, of course, nothing but the operator studied before.



19 Operators on domains with conical points 401

We then have

Vm+1(0) ⊂ Vm(0) and V −m+1(0) ⊂ V −m (0) for all m ≥ 0 .

This is trivially true for m > 0. For m = 0, in which case we need to construct
the natural inclusion Φ : V −m (0) → V −0 (0), m ≥ 1. The map Φ associates to

(f, h) ∈ V −m (0) := Km−1
−1 (Ω)⊕Km−1/2

−1/2 (∂NΩ) the linear functional F := Φ(f, h)

on V , F ∈ V ∗ de�ned by the formula

(31) F (v) = Φ(f, h)(v) :=

∫
Ω
f v dx+

∫
∂NΩ

h v dS ,

where dx is the volume element on Ω and dS is the surface element on ∂Ω.
With this de�nition of the inclusion Φ : V −m (0)→ V −0 (0) := V ∗, we obtain that
P β(m, 0) is the restriction of P β(0, 0) to Vm(0). In other words, we have the
commutative diagram

(32)

Vm(0)
Pβ(m,0)−−−−−→ V −m (0)y y

V0(0) := V
Pβ(0,0):=Pβ−−−−−−−−→ V −0 (0)

with the operators P β introduced in Lemma 4.1 and in Equation (30).

See also Remark 2.1. We now return to the general case a ∈ R.

Remark 4.3. We then have

Vm(a) = raΩVm(0) for m ≥ 0 and V −m (a) = raΩV
−
m (0) for m > 0 .

We then let
V −0 (a) := raΩV

−
0 (0) = raΩV

∗ .
By symmetry, we obtain

(33) Vm+1(a) ⊂ Vm(a) and V −m+1(a) ⊂ V −m (a) for all m ≥ 0 ,

in general (for all a). In fact, the relation between the spaces above for di�erent
values of a allows us to reduce to the case a = 0 since, if β ∈ Zm, then there
exists β(a) ∈ Zm such that

(34) P β(m, a) = raΩP
β(a)(m, 0)r−aΩ , m ≥ 1 .

This can be seen from ra∂j(r
−au) = ∂ju−r−1(axjr

−1)u and r−1xj ∈ Wm,∞(Ω)
for all m, which then gives

(35) ra∂j∂k(r
−au) = ∂j∂ku+ r−1φ∂ku+ ∂j(r

−1ψu) + r−2φψu

= ∂j∂ku+ r−1φ∂ku+ r−1ψ∂j + r−2(r∂jψ + r−1xjψ + φψ)u ,
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where φ := −ar−1xj and ψ := −ar−1xk. In particular,

(36) β(a) = β + aβ1 + a2β2

with β1, β2 ∈ Zm depending linearly and continuously on β ∈ Zm. (This
explains why it is crucial to consider coe�cients in weighted spaces of the form
Wm,∞(Ω) as well as in terms of the form ∂i(biu) in the de�nition of pβ .) We use
Equation (34) to de�ne P β(0, a) for all a. Of course, P β(0, 0) = P β : V → V ∗.

As mentioned in the introduction, a less common example for Theo-
rems 1.1 and 4.4 is the Schr�odinger operator H := −∆ + cr−2

Ω , c > 0, on Ω
with pure Neumann boundary conditions, hence V := K1

1(Ω) in this example.
See also Theorem 5.4.

Our higher regularity problem is then to establish conditions for P β(m, a)
to be an isomorphism, which is achieved in Theorem 4.4.

4.2. Extension of Theorem 1.1 and its proof

For its proof, it will be convenient to extend the di�erential operators Xk,
Yk from Uk to the whole domain Ω. We choose these extensions so that

(i) If pk is a vertex, then all Xj , Yj , j 6= k, vanish close to pk.

(ii) For all k, Xk (regarded as a vector �eld) is tangent to all edges (if Xk

vanishes at a point on an edge, it is considered to be tangent to the edge
at that point).

Recall that ρ(P ) := infv 6=0 <(Pv, v)/‖v‖V , for any linear map P : V →
V ∗, that ρ(β) := ρ(P β), and that γ−1

use(β) ≤ ρ(β)−1, by Corollary 2.10. Also,
recall that β(a) is given by Equation (34).

Theorem 4.4. Let Ω ⊂ R2 be a bounded, curvilinear polygonal domain

and m ∈ Z+. There exist Cm > 0 and Nm ≥ 0 such that, if β = (aij , bi, c) ∈ Zm
and P β : V → V ∗ is strongly coercive, then P β(m, 0) : Vm(0) → V −m (0) is

invertible and

‖P β(m, 0)−1‖L(V −m ;Vm) ≤ Cmρ(β)−Nm−1 ‖β‖NmZm .

Proof. Since the statement is for a = 0, we shall write Vm(0) = Vm and
V −m (0) = V −m . We shall also denote ‖(P β)−1‖m := ‖(P β)−1‖L(V −m ;Vm).

For m = 0, we can just take C0 = 1 and N0 = 0 and then the result
reduces to the Lax-Milgram Lemma (see Lemma 2.5). In general, we adapt
to our setting the classical method based on �nite di�erences (see for example
[21, 28, 39]), which was used in similar settings in [12, 13, 18, 37, 44] and many
other papers. We thus give a summary of the argument. For simplicity, we
drop Ω from the notation of the norms. In this proof, as throughout the paper,
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C is a parameter that is independent of β or F , and hence it depends only on
Ω, ∂NΩ, m, and the choice of the vector �elds Xk and Yk (and of their initial
domains Uk), but not on F , u, β. We shall usually write A ≤c B instead of
A ≤ CB, if C is such a bound.

Let us notice that ‖P β(m, 0)‖‖P β(m, 0)−1‖ ≥ ‖P β(m, 0)P β(m, 0)−1‖ ≥
1. Since ‖P β(m, 0)‖m ≤c ‖β‖Zm , we have that

‖β‖Zm‖(P β)−1‖m ≥ 1/C > 0 .

When m = 0, we also have ρ(β)−1 ≥ ‖(P β)−1‖ =: ‖(P β)−1‖0, and hence

(37) R(β) := ‖β‖Zmρ(β)−1 ≥ ‖β‖W 0,∞‖(P β)−1‖0 ≥ 1/C > 0 .

To show that the operator P β(m, 0) : Vm(0) → V −m (0) is invertible and
to obtain estimates on ‖(P β)−1‖m := ‖P β(m, 0)‖, we proceed by induction on
m. As we have explained above, for m = 0, this has already been proved. We
thus assume that P β(m − 1, 0) is invertible and that it satis�es the required
estimate, which we write as

(38) ‖(P β)−1‖m−1 := ‖P β(m− 1, 0)−1‖L(V −m ;Vm) ≤ Cm−1
R(β)Nm−1

ρ(β)
.

Let F ∈ V −m be arbitrary but �xed. We know by the induction hypothesis
that u := (P β)−1F = P β(m − 1, 0)−1F ∈ Vm−1, but we need to show that
it is in fact in Vm and to estimate its norm in terms of ‖F‖V −m . Recall that

V := {u ∈ K1
1(Ω), u = 0 on ∂DΩ}. Since Vm := Km+1

1 (Ω) ∩ V , it is enough
to show that u ∈ Km+1

1 (Ω) and to estimate ‖u‖Km+1
1

= ‖(P β)−1F‖Km+1
1

(recall

that we drop Ω from the notation of our norms).

First of all, by Corollary 3.10, it is enough to estimate ‖Xku‖Km1 and
‖Yku‖Km1 . Indeed,

(39) ‖u‖Km+1
1
≤c ‖u‖Km1 +

N∑
k=1

‖Xku‖Km1 (Uk) +

N∑
k=1

‖Yku‖Km1 (Uk) ,

and the �rst term on the right hand side is estimated by induction on m by

(40) ‖u‖Km1 ≤ Cm−1R(β)Nm−1

ρ(β)
‖F‖V −m−1

≤ Cm−1R(β)Nm−1

ρ(β)
‖F‖V −m .

Let us estimate now the remaining terms in the sum appearing on the
right hand side of the inequality (39). Note that these terms are norms that
are computed on smaller subsets Uk ⊂ Ω. First, since Xk is tangent to all edges
of Ω, it integrates to a one parameter family of di�eomorphisms of Ω, and hence
to strongly continuous one-parameter groups of continuous operators on X :=
Vm−1 and Y := V −m−1, due to the particular form of boundary conditions used
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to de�ne these spaces. Let us denote by SX(t) : X → X and SY (t) : Y → Y ,
t ∈ R, the operators de�ning these one-parameter groups of operators. We have
that

B := XkP
β − P βXk = lim

t→0
t−1(SX(t)P βSY (−t)− P β) = P β

′
,

and hence β′ ∈ Zm−1 by 3.11. Therefore B : X := Vm−1 → Y := V −m−1

is bounded by Lemma 4.1. The assumptions of Lemma 3.13 are therefore
satis�ed. Moreover, ‖B‖ ≤c ‖β′‖Zm−1 ≤c ‖β‖Zm , which allows us to conclude
that

‖Xku‖Km1 ≤c ‖(P β)−1‖m−1

(
‖XkF‖V −m−1

+ ‖β‖Zm‖(P β)−1‖m−1‖F‖V −m−1

)
,

which gives

‖Xku‖Km1 ≤c ‖(P
β)−1‖m−1

(
1 + ‖(P β)−1‖m−1‖β‖Zm

)
‖F‖V −m .

Using the de�nition of R(β), the induction estimate of Equation (38), and the
relation ‖β‖Zm‖P β(m− 1, 0)−1‖ ≥ 1/C of Equation (37), we obtain

(41) ‖Xku‖Km1 ≤c
R(β)2Nm−1+1

ρ(β)
‖F‖V −m .

We now turn to the study of the terms ‖Yku‖Km1 , for which we need to

use the strong ellipticity of P β (as in the classical methods [28, 39]) together
with Lemmas 3.11 and 3.12. First of all, Lemma 3.11 provides us with the de-
composition ckY

2
k u = r2

ΩP
βu−Qku, where ck ∈ Wm−1,∞(Uk) and Qk is a sum

of di�erential operators of the form YkXk and X2
k and lower order di�erential

operators generated by Xk and Yk with coe�cients inWm−1,∞(Uk). This gives
using �rst the general form of the ‖ · ‖Km1 (Uk)-norm (recall that Xk and Yk
commute on Uk)

(42) ‖Yku‖Km1 (Uk) ≤c ‖Yku‖Km−1
1

+ ‖XkYku‖Km−1
1 (Uk) + ‖Y 2

k u‖Km−1
1 (Uk)

≤c ‖u‖Km1 + ‖YkXku‖Km−1
1 (Uk) + ‖Y 2

k u‖Km−1
1 (Uk)

≤c ‖u‖Km1 + ‖Xku‖Km1 + ‖c−1
k (r2

Ωpβ −Qk)u‖Km−1
1 (Uk) .

The �rst term in the last line of Equation (42) is estimated by the induction
hypothesis in Equation (40). The second one is estimated in Equation (41). To
estimate the third term, we obtain directly from Lemma 3.11 the following

(1) each ck ∈ Wm−1,∞(Uk) is bounded in terms of ‖β‖Zm ,
(2) the coe�cients of X2

k , XkYk, Xk, and Yk and the free term of Qk (which
is no longer in divergence form) are inWm−1,∞(Uk) and are also bounded
in terms of ‖β‖Zm ,

(3) ‖c−1
k ‖L∞ ≤c γ

−1
use(β) ≤c ρ(β)−1, by the uniform strong ellipticity of pβ .
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Hence

(43) ‖c−1
k ‖Wm−1,∞(Uk) ≤c ‖c−1

k ‖
m
L∞(Uk)‖ck‖

m−1
Wm−1,∞(Uk)

≤c ρ(β)−m‖β‖m−1
Wm,∞ = ρ(β)−1R(β)m−1 ,

where the �rst inequality is by Lemma 3.12(iii).

We have, successively

(44) ‖r2
Ωpβu‖Km−1

1 (Uk) ≤c ‖pβu‖Km−1
−1 (Uk) ≤c ‖pβu‖Km−1

−1
≤c ‖F‖V −m−1

.

Similarly, let nQ be the Wm−1,∞(Uk) norm of the coe�cients of Qk, then
nQ ≤c ‖β‖Wm,∞ and hence

(45) ‖Qku‖Km−1
1 (Uk) ≤c nQ

(
‖X2

ku‖Km−1
1 (Uk) + ‖YkXku‖Km−1

1 (Uk)

+ ‖Xku‖Km−1
1 (Uk) + ‖Yku‖Km−1

1 (Uk) + ‖u‖Km−1
1 (Uk)

)
≤c ‖β‖Zm

(
‖Xku‖Km1 + ‖u‖Km1

)
≤c (R(β)2Nm−1+2 +R(β)Nm−1+1)‖F‖V −m−1

≤c R(β)2Nm−1+2‖F‖V −m−1
,

where we have used also Equations (40) and (41). Consequently,

(46) ‖c−1
k (r2

Ωpβ −Qk)u‖Km−1
1 (Uk) ≤c ‖c

−1
k ‖Wm−1,∞‖r2

Ωpβu−Qku‖Km−1
1 (Uk)

≤c
R(β)m−1

ρ(β)

(
1 +R(β)2Nm−1+2)‖F‖V −m−1

≤c
R(β)2Nm−1+m+1

ρ(β)
‖F‖V −m−1

.

Substituting back into Equation (42) the estimates of Equations (40), (41), and
(46) for the respective terms, and then using Equation (37), we obtain

(47) ‖Yku‖Km1 (Uk) ≤c
R(β)2Nm−1+m+1

ρ(β)
‖F‖V −m .

In a completely analogous manner, substituting back into Equation (39)
the estimates of Equations (40), (41), and (47), we obtain

(48) ‖u‖Km+1
1
≤c

R(β)2Nm−1+m+1

ρ(β)
‖F‖V −m .

In all the statements above, saying ‖v‖Z <∞ for some Banach space Z means,
implicitly, that v ∈ Z. We thus have that u ∈ Km+1

1 and that it satis�es the
required estimate with Nm = 2Nm−1 +m+ 1. The proof is complete. �

We now record the obvious modi�cation needed to deal with the additional
parameter a.
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Corollary 4.5. Let Ω ⊂ R2 be a bounded, curvilinear polygonal domain,

a ∈ R, m ∈ Z+. There exist Cm > 0 and Nm ≥ 0 such that, if β = (aij , bi, c) ∈
Zm and P β(a) : V → V ∗ is strongly coercive, then P β(m, a) : Vm(a) → V −m (a)
is invertible and

‖P β(m, a)−1‖L(V −m ;Vm) ≤ Cmρ(β(a))−Nm−1 ‖β(a)‖NmZm .

Proof. Because β(a) depends analytically on β, in view of Remark 4.3
and of the relation in Equation (34), we can just substitute β(a) for β in
Theorem 4.4. �

Remark 4.6. Remark 4.3 gives that there exists γ1 such that ρ(β(a)) ≥
ρ(β)−γ1|a|‖β‖Z0 , for a in a bounded interval. Moreover, an induction argument
gives that Nm = 2m+2−m− 3 ≥ 0 in two dimensions. We ignore if this is true
in higher dimensions as well.

See also [5, 20, 29,31,32,38] for extensions and related results.

5. EXTENSIONS AND APPLICATIONS

We conclude with a few corollaries and extensions of our previous results.
For simplicity, we formulate them only in the case a = 0, since Remark 4.3
allows us to reduce to the case a = 0. Throughout this section, we continue
to assume that β = (aij , bi, c) ∈ Zm and that Ω is a bounded, curvilinear
polygonal domain with ∂DΩ nonempty.

5.1. Corollaries of Theorem 4.4

Recall that L(V ;V ∗)c denotes the set of strongly coercive operators and
that we regard Z ⊂ L(V ;V ∗) with the induced topology. In particular,
L(V ;V ∗)c ∩ Z denotes the set of coe�cients that yield a strongly coercive
operator.

Corollary 5.1. Let U := L(V ;V ∗)c ∩Zm. Then U is an open subset of

Zm and the map U × V −m 3 (β, F ) → (P β)−1F ∈ Vm is analytic. Moreover,

there exist Cm > 0 and Nm ≥ 0 such that

‖(P β)−1F‖Vm ≤ Cm
‖β‖NmZm
ρ(β)Nm+1

‖F‖V −m , (∀)β ∈ U, F ∈ V −m .

Proof. Recall that L(V ;V ∗)c is open in L(V ;V ∗) and that the map Zm →
L(V ;V ∗)c is continuous. Therefore U := L(V ;V ∗)c ∩ Zm is open in Zm. Next
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we proceed as in Lemma 2.5 using that the map Φ : U ×V −m → Vm, Φ(β, F ) :=
(P β)−1F is the composition of the maps

U × V −m 3 (β, F ) → (P β, F ) ∈ Linv(Vm;V −m )× V −m ,

Linv(Vm;V −m )× V −m 3 (P, F ) → (P−1, F ) ∈ L(V −m ;Vm)× V −m , and

L(V −m ;Vm)× V −m 3 (Q,F ) → QF ∈ Vm .

The �rst of these three maps is well de�ned by Theorem 4.4. Since it is linear,
it is also analytic. The other two maps are analytic by Lemma 2.2. Since the
composition of analytic functions is analytic, the result follows. �

The following result is useful in approximating solutions of parametric
problems when one has uniform measures. (Note however that the estimates
in Theorem 4.4 provide errors that are integrable with respect to lognormal
measures.) We keep the notation in the last corollary.

Corollary 5.2. Let Y be a Banach space and let U ⊂ Y be an open

subset. Let F : U → V −m and β : U → L(V ;V ∗)c ∩ Wm,∞(Ω) be analytic

functions. Then U 3 y → (P β(y))−1F (y) ∈ Vm is analytic and

‖(P β(y))−1F (y)‖Vm ≤ Cm
‖β(y)‖NmZm
ρ(β(y))Nm+1

‖F (y)‖V −m .

In particular, if the functions ‖β(y)‖Wm,∞(Ω) and ‖F (y)‖V −m are bounded and

there exists c > 0 such that ρ(β(y)) > c, then (P β(y))−1F (y) is a bounded

analytic function.

Proof. The composition of two analytic functions is analytic. The �rst
part is therefore an immediate consequence of the �rst part of Corollary 5.1.
The second part follows also from Corollary 5.1. �

The method used to obtain analytic dependence of the solution in terms
of coe�cients can be extended to other settings.

Remark 5.3. Let us assume the following:

(i) We are given continuously embedded Banach spaces Wm+1
D ⊂ V ⊂

H1(Ω), W̆m−1 ⊂ V ∗, and Z ⊂ Zm satisfying the following properties:

(ii) For any β ∈ Z, the operator P β de�nes continuous maps V → V ∗ and
Wm+1
D → W̆m−1.

(iii) ‖P β‖L(Wm+1
D ;W̆m−1) ≤c ‖β‖Z and ‖P β‖L(V ;V ∗) ≤c ‖β‖Z .

(iv) If β ∈ Z and P β : V → V ∗ is strongly coercive, then the map (P β)−1 :
V ∗ → V maps W̆m−1 to Wm+1

D continuously and there exists a continu-
ous, increasing function Nm : R2

+ → R+ such that

‖(P β)−1‖L(W̆m−1;Wm+1
D ) ≤ Nm

(
ρ(β)−1 , ‖β‖Z

)
.
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Then our previous results (in particular, Corollaries 5.1 and 5.2) extend to the
new setting by replacing Wm,∞(Ω) with Z, Vm with Wm+1

D , V −m with W̆m−1,
and by using Nm in the bounds for the norm. We thank Markus Hansen and
Christoph Schwab for their input related to this remark.

5.2. General domains with conical points

The same argument as in the proof of Theorem 4.4 gives a proof of a
similar result on general domains with conical points. In the neighborhood of
a conical point, the domain is of the form Ω = {rx′, 0 < r < 1, x′ ∈ ω}, where
ω ⊂ Sn−1 is a smooth domain on the unit sphere Sn−1. The main di�erence is
that we will need to additionally straighten the boundary of ω.

5.3. Dirichlet and Neumann boundary conditions

We conclude this paper by an application of Theorem 4.4 to estimates for
Schr�odinger operators. We note that the following result applies to arbitrary
mixed boundary conditions (including pure Neumann).

Theorem 5.4. Let P βu = −
∑d

ij=1 ∂i(aij∂ju) + c
r2
Ω
u, c ≥ 0, be a strongly

elliptic operator (so bi = 0). In case p ∈ V ⊂ ∂Ω is a vertex that belongs to

two adjacent Neumann edges, we assume that c(p) > 0. Then P β is strongly

coercive on V := {u ∈ K1
1(Ω), u = 0 on ∂DΩ}. Moreover,

(49) P β : Km+1
a+1 (Ω) ∩ {u|∂DΩ = 0} → Km−1

a−1 (Ω)⊕Km−1/2
a−1/2 (∂NΩ)

is an isomorphism and its inverse has norm

‖(P β)−1‖ ≤ Cm ρ(β)−Nm−1‖β‖Nm , |a| ≤ 1 ,

with Cm and Nm as in Theorem 4.4 (hence independent of β and F ).
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