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The general solutions of the functional equations

f(pq) = g(p)h(q) + qh(p)

and
n∑

i=1

m∑
j=1

f(piqj) =

n∑
i=1

g(pi)

m∑
j=1

h(qj) +

n∑
i=1

h(pi)

in which f , g, h are real-valued mappings each with domain I, the unit closed
interval, and (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being �xed
integers have been obtained. Some of the solutions are related to the Shannon
entropies and the entropies of degree α.
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1. INTRODUCTION

For n = 1, 2, . . .; let Γn =

{
(p1, . . . , pn) : pi ≥ 0, i = 1, . . . , n;

n∑
i=1

pi = 1

}
denote the set of all n-component �nite discrete complete probability distri-
butions with nonnegative elements. Throughout this paper, R will denote the
set of all real numbers and I = {x ∈ R : 0 ≤ x ≤ 1} = [0, 1], the unit closed
interval.

Consider the mappings f : I → R, g : I → R and h : I → R which satisfy
the Pexider functional equation

f(pq) = g(p)h(q)(1.1)

for all p ∈ I, q ∈ I. If we replace p by pi; q by qj , in (1.1) and sum the resulting
equations with respect i = 1 to n and j = 1 to m,n ≥ 2, m ≥ 2 integers; we
obtain the sum form functional equation
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n∑
i=1

m∑
j=1

f(piqj) =
n∑
i=1

g(pi)
m∑
j=1

h(qj)(1.2)

valid for all probability distributions (p1, . . . , pn) ∈ Γn and (q1, . . . , qm) ∈ Γm.
Nath and Singh [11] obtained the general solutions of (1.2) by taking n ≥ 3
and m ≥ 3 �xed integers.

Every solution (f, g, h) of (1.1) satis�es (1.2) for all probability distributi-
ons (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3 and m ≥ 3 being �xed integers.
However, the converse is not true ([11], Theorem 2).

Consider the functional equation

f(pq) = g(p)h(q) + qh(p)(FE1)

in which f : I → R, g : I → R, h : I → R are unknown mappings and p ∈ I,
q ∈ I. The functional equation (1.1) cannot be regarded as a particular case of
(FE1) as we cannot allow the possibility qh(p) = 0, p ∈ I, q ∈ I in it. So, (FE1)
may be regarded as an enlargement of the functional equation (1.1). Now we
replace p by pi; q by qj in (FE1) and sum the resulting equation with respect
i = 1 to n and j = 1 to m;n ≥ 2 and m ≥ 2 integers, we obtain the functional
equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

g(pi)

m∑
j=1

h(qj) +

n∑
i=1

h(pi)(FE2)

valid for all probability distributions (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm.
The authors [13] proposed the functional equation

fr(pq)=qfr(p)+a1fr−1(p)f1(q)+. . .+ ar−1f1(p)fr−1(q)+p fr(q)(1.3)

where p ∈ I, q ∈ I, fi : I → R are unknown mappings; i = 1, . . . , r, r ≥ 3 an
integer; and a1, . . . , ar−1 are given real constants. The general solutions of the
functional (1.3) are not known to us. However, some special cases of it seem to
be important. For instance, consider r = 3. The equation (1.3) reduces to

f3(pq) = qf3(p) + a1f2(p)f1(q).(1.4)

Let us write f3 = f , a1f2 = g and f1 = h. Then (1.4) reduces to

f(pq) = g(p)h(q) + qf(p).(1.5)

The functional equation (FE1) is a Pexider-type generalization of (1.5) contai-
ning three unknown mappings.

If g(x) = x for all x ∈ I, then (FE2) reduces to

n∑
i=1

m∑
j=1

f(piqj) =
n∑
i=1

h(pi) +
m∑
j=1

h(qj).(1.6)
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The general solutions of (1.6), for �xed integers n ≥ 3 andm ≥ 3, were obtained
by the authors [10]. If g(x) = xα for all x ∈ I; α being a �xed positive real
power which satis�es the convention 0α := 0, 1α := 1; and h(x) = f(x) for all
x ∈ I, then (FE2) reduces to the equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

f(pi) +

n∑
i=1

pαi

m∑
j=1

f(qj)(1.7)

whose importance in information theory has already been discussed by Nath [9].
Hence it is desirable to �nd solutions of (FE2) and discuss their importance in
information theory.

The object of this paper is to investigate the general solutions of (FE1)
for all p ∈ I, q ∈ I; and of (FE2) when n ≥ 3 and m ≥ 3 are �xed integers.

2. SOME DEFINITIONS AND RESULTS

In this section, we mention some de�nitions and known results needed for
the development of Sections 3 to 5.

A mapping A : R → R is said to be additive if A(x + y) = A(x) + A(y)
for all x ∈ R, y ∈ R.

A mapping M : I → R is said to be multiplicative if M(pq) = M(p)M(q)
for all p ∈ I, q ∈ I.

A mapping ` : I → R is said to be logarithmic if `(0) = 0 and `(pq) =
`(p) + `(q) for all p ∈ ]0, 1], q ∈ ]0, 1].

Result 2.1 ([8]). Let f : I → R be a mapping which satis�es the equation
n∑
i=1

f(pi) = c for all (p1, . . . , pn) ∈ Γn; c being a given real constant and n ≥ 3

a �xed integer. Then there exists an additive mapping b : R → R such that
f(p) = b(p)− 1

nb(1) + c
n for all p ∈ I.

Result 2.2 ([12]). Let G : I → R, H : I → R be mappings which satisfy
the functional equation

n∑
i=1

m∑
j=1

H(piqj) =

n∑
i=1

G(pi)

m∑
j=1

H(qj) +

n∑
i=1

H(pi) + n(m− 1)H(0)(2.1)

for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being �xed integers.
Then, any general solution (G,H) of (2.1) is of the form (for all p ∈ I):

(i) G(p) = b̄1(p) +G(0); b̄1(1) = −nG(0)

(ii) H(p) = b̄2(p) +H(0); b̄2(1) = −mH(0)− c, c 6= 0

}
(2.2)
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or

(i) G an arbitrary real-valued mapping

(ii) H(p) = b1(p) +H(0); b1(1) = −mH(0)

}
(2.3)

or

(i) G(p) = b2(p) +G(0); b2(1) = 1− nG(0)

(ii) H(p) = −mH(0)p+ a(p) +D(p, p) +H(0)

}
(2.4)

or

G(p) = M(p) + b4(p) +G(0); b4(1) = −nG(0)

H(p) = − [b3(1) +mH(0)]M(p) + b3(p) +H(0); b3(1)+mH(0) 6= 0

}(2.5)

where bi : R → R (i = 1, 2, 3, 4); b̄j : R → R (j = 1, 2) are additive mappings;
M : I → R a multiplicative mapping which is not additive and M(0) = 0,
M(1) = 1; a : R → R is additive; D : R × I is additive in the �rst variable;
there exists a mapping E : R× R→ R additive in both variables such that

a(1) = E(1, 1)(2.6)

and

D(pq, pq) = D(pq, p) +D(pq, q) + E(p, q)(2.7)

for all p ∈ I, q ∈ I.

Note. From (2.6) and (2.7), it is easy to conclude that

a(1) +D(1, 1) = 0.(2.8)

3. ON THE FUNCTIONAL EQUATION (FE2)

In this section, we prove the following:

Theorem 3.1. Let f : I → R, g : I → R, h : I → R be mappings which

satisfy the functional equation (FE2) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈
Γm; n ≥ 3, m ≥ 3 being �xed integers. Then, any general solution (f, g, h) of

(FE2) is one of the form (for all p ∈ I):

(i) f(p) = A2(p) + f(0)

(ii) g(p) = A1(p) + g(0)

(iii) h(p) = A3(p) + h(0)

(S1)
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or

(i) f(p) = A5(p) + f(0)

(ii) g an arbitrary real-valued mapping

(iii) h(p) = A4(p) + h(0)

(S2)

or

(i) f(p) = [g(1) + (n− 1)g(0)]{b1(p) + [h(1) + (m− 1)h(0)]p}
+A6(p) + f(0)

(ii) g an arbitrary real-valued mapping

(iii) h(p) = b1(p) + [h(1) + (m− 1)h(0)]p+ h(0)

(S3)

or

(i) f(p) = [g(1) + (n− 1)g(0)] {[h(1)− h(0)]p+ a(p) +D(p, p)}
+A6(p) + f(0)

(ii) g(p) = [g(1) + (n− 1)g(0)]b2(p) + g(0), g(1)+(n− 1)g(0) 6= 0

(iii) h(p) = [h(1)− h(0)]p+ a(p) +D(p, p) + h(0)



(S4)

or

(i) f(p) = [g(1) + (n− 1)g(0)]{[h(1) + (m− 1)h(0)]p

− [b3(1) +mh(0)]M(p) + b3(p)}+A6(p) + f(0)

(ii) g(p) = [g(1) + (n− 1)g(0)][M(p) + b4(p)] + g(0),

g(1) + (n− 1)g(0) 6= 0

(iii) h(p) = [h(1) + (m− 1)h(0)]p− [b3(1) +mh(0)]M(p)

+ b3(p) + h(0), b3(1) +mh(0) 6= 0.


(S5)

In (S1) to (S5), Ai : R→ R (i = 1, 2, 3, 4, 5, 6), bj : R→ R (j = 1, 2, 3, 4)
are additive mappings; a : R → R, D : R × I are mappings as described in

Result 2.2; M : I → R a multiplicative mapping which is not additive and

M(0) = 0, M(1) = 1. Moreover,

[1− g(1)− (n− 1)g(0)][h(p)− h(0)]

= A7(p)− [h(1) + (m− 1)h(0)][g(p)− g(0)](S6)
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where A7 : R→ R is an additive mapping and

(i) A1(1) = −ng(0)

(ii) A2(1) = −nmf(0) + [h(1) + (n− 1)h(0)]

(iii) A3(1) = h(1)− h(0)

(iv) A4(1) = −mh(0)

(v) A5(1) = −nmf(0) + (n−m)h(0)

(vi) A6(1) = −nmf(0) +m[g(1) + (n− 1)g(0)]h(0)

+ [h(1) + (n− 1)h(0)]

(vii) A7(1) = m[g(1) + (n− 1)g(0)]h(0)

−n[h(1) + (m− 1)h(0)]g(0) + [h(1)− h(0)]

(viii) b1(1) = −mh(0)

(ix) b2(1) = 1− n[g(1) + (n− 1)g(0)]−1g(0)

(x) b4(1) = −n[g(1) + (n− 1)g(0)]−1g(0).



(3.1)

Proof. We divide our discussion into three cases:

Case 1.
n∑
i=1

g(pi) = 0 for all (p1, . . . , pn) ∈ Γn.

In this case, by Result 2.1, there exists an additive mapping A1 : R→ R
such that (S1)(ii) holds with A1(1) given by (3.1)(i). Now, from (FE2), it
follows that

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

h(pi)(3.2)

valid for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm. Now, let us put p1 = 1, p2 =

. . . = pn = 0 in (3.2). We obtain
m∑
j=1

f(qj) = [h(1) + (n − 1)h(0)] − m(n −

1)f(0). By Result 2.1, there exists an additive mapping A2 : R → R such
that (S1)(i) holds with A2(1) given by (3.1)(ii). Now, from (3.2), we obtain

the equation
n∑
i=1

h(pi) = h(1) + (n − 1)h(0). By Result 2.1, there exists an

additive mapping A3 : R → R such that (S1)(iii) holds with A3(1) given by
(3.1)(iii). Equations (S1)(i), (S1)(ii), (S1)(iii), together with (3.1)(i), (3.1)(ii)
and (3.1)(iii), constitute the solution (S1) of (FE2).

Case 2.
m∑
j=1

h(qj) = 0 for all (q1, . . . , qm) ∈ Γm.

In this case, by Result 2.1, there exists an additive mapping A4 : R→ R
such that (S2)(iii) holds with A4(1) given by (3.1)(iv). Also, since

m∑
j=1

h(qj) = 0
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for all (q1, . . . , qm) ∈ Γm, it follows, from (FE2), that g is an arbitrary real-
valued mapping. Thus, S2(ii) holds. From (S2)(iii) and (FE2), it also follows

that
n∑
i=1

m∑
j=1

f(piqj) = (n −m)h(0). Putting p1 = 1, p2 = . . . = pn = 0 in this

equation, we obtain the equation
m∑
j=1

f(qj) = (n−m)h(0)−m(n− 1)f(0). By

Result 2.1, there exists an additive mapping A5 : R→ R such that (S2)(i) fol-
lows with A5(1) given by (3.1)(v). Equations (S2)(i), (S2)(ii), (S2)(iii), together
with (3.1)(iv) and (3.1)(v), constitute the solution (S2) of (FE2).

Case 3. Neither
n∑
i=1

g(pi) vanishes identically on Γn nor
m∑
j=1

h(qj) vanishes

identically on Γm.

In this case, there exist a probability distribution (p∗1, . . . , p
∗
n) ∈ Γn and a

probability distribution (q∗1, . . . , q
∗
m) ∈ Γm such that

(i)
n∑
i=1

g(p∗i ) 6= 0 (ii)
m∑
j=1

h(q∗j ) 6= 0.(3.3)

Now, let us put p1 = 1, p2 = . . . = pn = 0 in (FE2). We obtain

m∑
j=1

{f(qj)− [g(1)+(n− 1)g(0)]h(qj)} = −m(n− 1)f(0)+[h(1)+(n− 1)h(0)]

valid for all (q1, . . . , qm) ∈ Γm. By Result 2.1, there exists an additive mapping
A6 : R→ R such that

f(p) = [g(1) + (n− 1)g(0)][h(p)− h(0)] +A6(p) + f(0)(3.4)

for all p ∈ I with A6(1) given by (3.1)(vi). From (FE2), (3.4), (3.1)(vi) and
the additivity of A6, we obtain the equation

[g(1) + (n− 1)g(0)]

n∑
i=1

m∑
j=1

h(piqj)

=

n∑
i=1

g(pi)

m∑
j=1

h(qj) +

n∑
i=1

h(pi) +m(n− 1)[g(1) + (n− 1)g(0)]h(0)

− [h(1) + (n− 1)h(0)](3.5)

valid for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm. Putting q1 = 1, q2 = · · · =
qm = 0 in (3.5), we obtain

n∑
i=1

h(pi) = − [h(1) + (m− 1)h(0)]
n∑
i=1

g(pi) + [g(1) + (n− 1)g(0)]
n∑
i=1

h(pi)
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+ (m− n)[g(1) + (n− 1)g(0)]h(0) + [h(1) + (n− 1)h(0)].(3.6)

Applying Result 2.1 on equation (3.6), there exists an additive mapping
A7 : R → R such that (S6) holds with A7(1) given by (3.1)(vii). Now, from
(3.5) and (3.6), it follows that

(3.7) [g(1) + (n− 1)g(0)]
n∑
i=1

m∑
j=1

h(piqj)

=
n∑
i=1

g(pi)


m∑
j=1

h(qj)− [h(1)+(m− 1)h(0)]


+ [g(1)+(n− 1)g(0)]

n∑
i=1

h(pi) + n(m− 1)[g(1) + (n− 1)g(0)]h(0).

Case 3.1. g(1) + (n− 1)g(0) = 0.

In this case, (3.7) reduces to the equation

n∑
i=1

g(pi)


m∑
j=1

h(qj)− [h(1) + (m− 1)h(0)]

 = 0(3.8)

valid for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm. If we substitute p1 =

p∗1, . . . , pn = p∗n in (3.8) and use (3.3)(i), we obtain
m∑
j=1

h(qj) = [h(1) + (m −

1)h(0)] valid for all (q1, . . . , qm) ∈ Γm. By Result 2.1, there exists an addi-
tive mapping A3 : R → R such that h(p) = A3(p) + h(0) with A3(1) given
by (3.1)(iii). Since g(1) + (n − 1)g(0) = 0, (3.4) gives f(p) = A6(p) + f(0)
with A6(1) = −nmf(0) + [h(1) + (n − 1)h(0)]. Now, from (3.8), we ob-
serve that g is an arbitrary real-valued mapping with g(1) + (n − 1)g(0) = 0.
Thus, the solution, obtained in this case, is included in (S3) when A3(p) =
b1(p) + [h(1) + (m− 1)h(0)]p and b1(1) given by (3.1)(viii).

Case 3.2. g(1) + (n− 1)g(0) 6= 0.

In this case, (3.7) reduces to

(3.9)

n∑
i=1

m∑
j=1

h(piqj) =
n∑
i=1

[
g(pi)

g(1)+ (n− 1)g(0)

]
m∑
j=1

h(qj)− [h(1)+(m− 1)h(0)]


+

n∑
i=1

h(pi) + n(m− 1)h(0).
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De�ne the mappings G : I → R and H : I → R as

G(p) = [g(1) + (n− 1)g(0)]−1g(p)(3.10)

and

H(p) = h(p)− [h(1) + (m− 1)h(0)]p(3.11)

for all p ∈ I. Now (3.9) reduces to the functional equation (2.1). From (3.10)
and (3.11), it can be easily veri�ed that

G(1) + (n− 1)G(0) = 1,(3.12)

H(0) = h(0),(3.13)

H(1) + (m− 1)H(0) = 0.(3.14)

In Result 2.2, we need to consider only those solutions of (2.1) which
satisfy (3.12) and (3.14). So, we consider only (2.3), (2.4) and (2.5).

Solution (S3) (with (3.1)(viii)) of (FE2), follows from (2.3), (3.10), (3.11),
(3.13), (3.4).

Solution (with (3.1)(ix)) of (FE2), follows from (2.4), (2.6), (2.7), (2.8),
(3.10), (3.11), (3.13), (3.4).

Solution (S5) (with (3.1)(x)) of (FE2), follows from (2.5), (3.10), (3.11),
(3.13), (3.4).

This completes the proof of the theorem.

Note. It is easy to verify that (S1) and (S2), together with (3.1)((i) to (v)),
satisfy (FE2). However, it is worth noticing that (S6) with (3.1)(vii) is needed
to verify the solutions (S3), (S4) and (S5) together with (3.1)((viii),(ix),(x)) of
(FE2).

4. ON THE FUNCTIONAL EQUATION (FE1)

In this section, we prove the following:

Theorem 4.1. Suppose f : I → R, g : I → R and h : I → R are mappings

which satisfy the functional equation (FE1) for all p ∈ I, q ∈ I. Then, any

general solution (f, g, h) of (FE1) is one of the forms (for all p ∈ I):

f(p) = h(1)[p`(p) + 2p], g(p) = p, h(p) = h(1)[p`(p) + p](4.1)

with h(1) 6= 0 or

f(p) = p`(p), g(p) = p, h(p) = p`(p)(4.2)

or

f(p) = 0, g not an identity mapping, h(p) = 0(4.3)
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or

f(p) =
[h(1)+λ]2

λ
M(p)−λp, g(p) =

[h(1)+λ]

λ
M(p), h(p) = [h(1)+λ]M(p)−λp

(4.4)

where λ 6= 0, [h(1) + λ] 6= 0 are arbitrary real constants; ` : I → R is a

logarithmic mapping and M : I → R is a multiplicative mapping.

Proof. The left hand side of (FE1) is symmetric in p and q. So, should
also be its right hand side. This fact gives

[g(p)− p]h(q) = [g(q)− q]h(p)(4.5)

valid for all p ∈ I, q ∈ I. Now we divide our discussion into two cases:

Case 1. q 7→ g(q)− q vanishes identically on I.

In this case, we have g(q) = q for all q ∈ I. Making use of this form of g
in (FE1), we obtain the equation

f(pq) = ph(q) + qh(p)(4.6)

valid for all p ∈ I, q ∈ I. The substitution q = 1 in (4.6) gives

f(p) = h(1)p+ h(p)(4.7)

for all p ∈ I. From (4.6) and (4.7), we obtain the equation

h(pq) = ph(q) + qh(p)− h(1)pq(4.8)

valid for all p ∈ I, q ∈ I. The substitutions p = 0, q = 0, in (4.8) gives h(0) = 0.

If h(1) = 0, then (4.8) reduces to the equation h(pq) = ph(q)+qh(p) valid
for all p ∈ I, q ∈ I. So, h(p) = p`(p) for all p ∈ I; ` : I → R being a logarithmic
mapping. Using this form of h in (4.7) and the fact that h(1) = 0, we obtain
f(p) = p`(p) for all p ∈ I. Thus, solution (4.2), of (FE1), has been obtained.

If h(1) 6= 0, then since h(0) = 0, it is enough to restrict our discussion to
p ∈ ]0, 1] and q ∈ ]0, 1] where ]0, 1] = {x ∈ R : 0 < x ≤ 1}. Since h(1)pq 6= 0,
(4.8) can be written in the form (for p ∈ ]0, 1], q ∈ ]0, 1])

h(pq)

h(1)pq
− 1 =

[
h(p)

h(1)p
− 1

]
+

[
h(q)

h(1)q
− 1

]
.(4.9)

De�ne a mapping ` : I → R as

`(p) =

{
h(p)
h(1)p − 1 if 0 < p ≤ 1

0 if p = 0.
(4.10)

Form (4.9), (4.10) and the fact that `(0) = 0, it follows that ` : I → R is
a logarithmic mapping and h(p) = h(1)[p`(p) + p] for all p ∈ I with h(1) 6= 0.
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Using this form of h in (4.7), it follows that f(p) = h(1)[p`(p)+2p] for all p ∈ I.
Thus, solution (4.1), of (FE1), has been obtained.

Case 2. q 7→ g(q)− q does not vanish identically on I.

In this case, there exists an element q0 ∈ I such that [g(q0) − q0] 6= 0.
Putting q = q0 in (4.5), we obtain

h(p) = λ[g(p)− p](4.11)

for all p ∈ I with λ = [g(q0)− q0]−1h(q0). If λ = 0, then (4.11) gives h(p) = 0
for all p ∈ I. Now, from (FE1), it is easy to conclude that f(p) = 0 for all
p ∈ I. Thus, solution (4.3), of (FE1), has been obtained. Now consider the
case when λ 6= 0. Putting q = 1 in (FE1) and using (4.11), it follows that

f(p) = [h(1) + λ]g(p)− λp(4.12)

for all p ∈ I. From (FE1), (4.11) and (4.12), it follows that

[h(1) + λ]g(pq) = λg(p)g(q)(4.13)

in which p ∈ I, q ∈ I and λ 6= 0.

If h(1) + λ = 0, then (4.13) gives g(p) = 0 for all p ∈ I as λ 6= 0. Now
(4.12) gives f(p) = −λp for all p ∈ I with λ 6= 0. Also, from (FE1), h(p) = f(p)
for all p ∈ I as g(p) = 0 for all p ∈ I. This solution is included in (4.4) when
M(p) ≡ 0 on I.

If h(1) + λ 6= 0, then (4.13) reduces to

g(pq) = [h(1) + λ]−1λg(p)g(q).(4.14)

De�ne a mapping M : I → R as

M(x) = [h(1) + λ]−1λg(x)(4.15)

for all x ∈ I. Now, from (4.14) and (4.15), it follows that M(pq) = M(p)M(q)
for all p ∈ I, q ∈ I. Thus M , de�ned by (4.15), is a multiplicative mapping.
From (4.15), it follows that

g(p) =
[h(1) + λ]

λ
M(p)(4.16)

for all p ∈ I. From (4.12) and (4.16), we have f(p) = [h(1)+λ]2

λ M(p)−λp for all
p ∈ I. Also, from (4.11) and (4.16), it follows that h(p) = [h(1) + λ]M(p)− λp
for all p ∈ I. Thus, solution (4.4), of (FE1), has been obtained.

Note. The solutions (S1), (S2), (S3), (S4) and (S5) of (FE2) do not satisfy
the (FE1). However, the solutions (4.1) and (4.2) are included in (S4); solution
(4.3) is included in (S3) and solution (4.4) is included in (S5).
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5. APPLICATIONS

For any probability distribution (p1, . . . , pn) ∈ Γn, the Shannon [16] en-
tropies Hn : Γn → R, n = 1, 2, . . . are de�ned as

Hn(p1, . . . , pn) = −
n∑
i=1

pi log2 pi(5.1)

where 0 log2 0 := 0. The Shannon entropies are useful in Ecology [14]; Biology
[4, 6]; Psychology [5] and Economics [17] etc. Let ` : I → R be the logarithmic
mapping de�ned as

`(p) =

{
− log2 p if 0 < p ≤ 1

0 if p = 0.
(5.2)

From (4.2), (5.1) and (5.2), it is easy to conclude that
n∑
i=1

f(pi) =
n∑
i=1

h(pi) =

Hn(p1, . . . , pn). On the other hand, from (4.1), (5.1) and (5.2),

n∑
i=1

f(pi) = AHn(p1, . . . , pn) + 2A and
n∑
i=1

h(pi) = AHn(p1, . . . , pn) +A

where A = h(1) is an arbitrary nonzero real constant. Thus, in this case,

the summands
n∑
i=1

f(pi) and
n∑
i=1

h(pi) represent the Shannon entropies upto

additive and multiplicative constants. The solution (4.3), of (FE1), is of no

importance from information-theoretic point of view as the summands
n∑
i=1

f(pi)

and
n∑
i=1

h(pi) are independent of the probabilities p1, . . . , pn. Regarding the

solution (4.4), of (FE1), it seems useful to choose the mapping M : I → R
de�ned as M(p) = pα, p ∈ I, α > 0, α 6= 1, α ∈ R, 0α := 0, 1α := 1. Then
(4.4) gives

n∑
i=1

f(pi) =
[h(1) + λ]2

λ
{1− (1− 21−α)Hα

n (p1, . . . , pn)} − λ,

n∑
i=1

g(pi) =
[h(1) + λ]

λ
{1− (1− 21−α)Hα

n (p1, . . . , pn)},

n∑
i=1

h(pi) = [h(1) + λ]{1− (1− 21−α)Hα
n (p1, . . . , pn)} − λ

where Hα
n : Γn → R, n = 1, 2, . . . are the entropies
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Hα
n (p1, . . . , pn) = (1− 21−α)−1

(
1−

n∑
i=1

pαi

)
, α 6= 1(5.3)

given by Havrda and Charvat [3], also known as the entropies of degree α.
If α = 2, then (5.3) reduces to

H2
n(p1, . . . , pn) = 2(1−

n∑
i=1

p2i ).(5.4)

The Gini-Simpson [15] index of the probability distribution (p1, . . . , pn) ∈
Γn, written as (GS)n(p1, . . . , pn), is de�ned as

(GS)n(p1, . . . , pn) = 1−
n∑
i=1

p2i .(5.5)

Clearly H2
n(p1, . . . , pn) = 2(GS)n(p1, . . . , pn). The Gini-Simpson index

(GS)n
(p1, . . . , pn) has been used in Sociology [1, 7]; and in Linguistics [2]. From
the solution (4.4) (with M(p) = p2) and (5.5), it can be easily derived that

n∑
i=1

f(pi) =
[h(1) + λ]2

λ
{1− (GS)n(p1, . . . , pn)} − λ,

n∑
i=1

g(pi) =
[h(1) + λ]

λ
{1− (GS)n(p1, . . . , pn)},

n∑
i=1

h(pi) = [h(1) + λ]{1− (GS)n(p1, . . . , pn)} − λ.

In this sense, the solution (4.4) is also related to Gini-Simpson index
(GS)n(p1, . . . , pn).

Proceeding as above, we can derive the relations of some of the solutions of
(FE2) with the Shannon entropies; the entropies of degree α and Gini-Simpson
index.
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