A NOTE ON CLASSIFICATION
OF GENERALIZED POLARIZED MANIFOLDS
BY THE c_r-SECTIONAL HODGE NUMBER OF TYPE $(1,1)$
AND THE c_r-SECTIONAL BETTI NUMBER

YOSHIKI HUKUMA

Communicated by Marian Aprodu

Let (X, \mathcal{E}) be a generalized polarized manifold of dimension $n \geq 3$ such that $\text{rank}(\mathcal{E}) = n - 2$ and \mathcal{E} is generated by its global sections. In this short note, we classify (X, \mathcal{E}) with $h^{1,1}_{n,n-2}(X, \mathcal{E}) = 1$ (resp. $b_{n,n-2}(X, \mathcal{E}) = 1$).

AMS 2010 Subject Classification: 14J60, 14C17, 14C20, 14C40, 14J30, 14J35, 14J40.

Key words: generalized polarized manifold, ample vector bundle, c_r-sectional Hodge number, c_r-sectional Betti number, polarized manifold, ample line bundle.

1. INTRODUCTION

Let X be a projective variety of dimension n defined over the field of complex numbers, and let L be an ample line bundle on X. Then the pair (X, L) is called a polarized variety. Moreover if X is smooth, then (X, L) is called a polarized manifold.

When we study polarized varieties, it is useful to use their invariants. The sectional genus $g(X, L)$ of (X, L) is one of the well-known invariants of (X, L). In [4] we defined the notion of the ith sectional geometric genus $g_i(X, L)$ of (X, L) for every integer i with $0 \leq i \leq n$. Here we explain the meaning of these invariants if X is smooth, L is base point free and i is an integer with $1 \leq i \leq n - 1$. Let H_1, \ldots, H_{n-i} be general members of $|L|$. We put $X_{n-i} := H_1 \cap \cdots \cap H_{n-i}$. Then X_{n-i} is smooth with $\dim X_{n-i} = i$, and we can show that $g_i(X, L) = h^i(\mathcal{O}_{X_{n-i}})$.

These induce the notion of the ith sectional invariant of (X, L) associated with an invariant.

Definition 1. Let (X, L) be a polarized manifold of dimension n. Let $I(Y)$ (or I) be an invariant of a smooth projective variety Y of dimension i, where i is an integer with $0 \leq i \leq n$. Then an invariant $F_i(X, L)$ of (X, L)
is called the *ith sectional invariant of* (X, L) associated with the invariant I if $F_i(X, L) = I(X_{n-i})$ under the assumption that $Bs|L| = \emptyset$.

The *ith sectional geometric genus* is the *ith sectional invariant* of (X, L) associated with the geometric genus. By the definition of the *ith sectional invariants*, the *ith sectional invariants* are expected to reflect properties of *i*-dimensional geometry. So we can expect that we are able to find interesting properties of (X, L) by using its *ith sectional invariants*.

In [5], we defined other *ith sectional invariants*, that is, the *ith sectional Euler number* $e_i(X, L)$, the *ith sectional Betti number* $b_i(X, L)$, and the *ith sectional Hodge number* $h^{j,i-j}_i(X, L)$ of type $(j, i-j)$ of (X, L) and we studied some properties of these. If X is smooth, L is base point free and i is an integer with $1 \leq i \leq n-1$, then by using the above notation we see that $e_i(X, L) = e(X_{n-i})$, $b_i(X, L) = h^i(X_{n-i}, \mathbb{C})$ and $h^{j,i-j}_i(X, L) = h^{j,i-j}(X_{n-i})$, where $e(X_{n-i})$ denotes the Euler number of X_{n-i}.

Let X be a smooth projective variety with $\dim X = n$ and let E be an ample vector bundle on X with rank $E = r$. We assume that $r \leq n$. In [6], we defined ample vector bundles’ version of the invariants above. Namely we defined the c_r-sectional geometric genus $g_{n,r}(X, E)^1$, the c_r-sectional Euler number $e_{n,r}(X, E)$, the c_r-sectional Betti number $b_{n,r}(X, E)$ and the c_r-sectional Hodge number $h^{j,n-r-j}_{n,r}(X, E)$ of type $(j, n-r-j)$ of (X, E).

It is natural to study a lower bound for these invariants. If E is generated by its global sections and $r \leq n-1$, then $g_{n,r}(X, E)$, $b_{n,r}(X, E)$ and $h^{j,n-r-j}_{n,r}(X, E)$ are non-negative (see Proposition 2.1 below). Under this setting, it is interesting to characterize (X, E) whose invariants are small.

If $r = n$, then $g_{n,n}(X, E) = b_{n,n}(X, E) = h^{0,0}_{n,n}(X, E) = c_n(E)$ (see [6, Remarks 3.2.1 (i) and 3.3.1]), and (X, E) with small $c_n(E)$ has been studied by several authors (for example [11, 12, 14, 16]).

If $r = n-1$, then $2g_{n,n-1}(X, E) = b_{n,n-1}(X, E)$ and $g_{n,n-1}(X, E) = h^{1,0}_{n,n-1}(X, E) = h^{0,1}_{n,n-1}(X, E)$ (see Theorem 2.1).

Here we note that $g_{n,n-1}(X, E)$ is the curve genus of (X, E), and (X, E) with small $g_{n,n-1}(X, E)$ has been classified (for example, see [10, 13]).

Assume that $r = n-2$. Then Lanteri [8, (3.4)Corollary] studied the classification of (X, E) with $g_{n,n-2}(X, E) = 0$ for $E = L_1 \oplus \cdots \oplus L_{n-2}$, where each L_i is ample and spanned line bundle on X. But in general, we don't know the case of (X, E) such that E is generated by its global sections and $g_{n,n-2}(X, E) = 0$.

In this short note, we will study the case where $r = n-2$. In particular, we will treat the c_r-sectional Hodge number $h^{1,1}_{n,n-2}(X, E)$ and the c_r-sectional.

1This invariant $g_{n,r}(X, E)$ is equal to the invariant $g_{n-r}(X, E)$ in [3, Definition 2.1].
Betti number $b_{n,n-2}(X, \mathcal{E})$. In this case, we can prove $h_{n,n-2}^{1,1}(X, \mathcal{E}) \geq 1$ and $b_{n,n-2}(X, \mathcal{E}) \geq 1$ under the assumption that \mathcal{E} is generated by its global sections (see [6, Proposition 4.1 (iv)] and Theorem 3.2). Moreover, it is natural to consider the classification of (X, \mathcal{E}) with $h_{n,n-2}^{1,1}(X, \mathcal{E}) = 1$ and the classification of (X, \mathcal{E}) with $b_{n,n-2}(X, \mathcal{E}) = 1$. In Theorem 3.1 (resp. Theorem 3.2) we will classify (X, \mathcal{E}) with $h_{n,n-2}^{1,1}(X, \mathcal{E}) = 1$ (resp. $b_{n,n-2}(X, \mathcal{E}) = 1$).

2. PRELIMINARIES

Notation:
(1) Let Y be a smooth projective variety of dimension $i \geq 1$, let T_Y be the tangent bundle of Y and let Ω_Y be the dual bundle of T_Y. For every integer j with $0 \leq j \leq i$, we put

$$h_{i,j}(c_1(Y), \cdots, c_i(Y)) := \chi(\Omega^j_Y) = \int_Y \text{ch}(\Omega^j_Y) \text{Td}(T_Y).$$

(Here $\text{ch}(\Omega^j_Y)$ (resp. $\text{Td}(T_Y)$) denotes the Chern character of Ω^j_Y (resp. the Todd class of T_Y). See [7, example 3.2.3 and example 3.2.4].)

(2) Let X be a smooth projective variety of dimension n. For every integers i and j with $0 \leq j \leq i \leq n$, we put

$$H_1(X; i, j) := \begin{cases} \sum_{s=0}^{i-j-1} (-1)^s h^s(\Omega^j_X) & \text{if } j \neq i, \\ 0 & \text{if } j = i, \end{cases}$$

$$H_2(X; i, j) := \begin{cases} \sum_{t=0}^{j-1} (-1)^{i-t} h^t(\Omega^{i-j}_X) & \text{if } j \neq 0, \\ 0 & \text{if } j = 0. \end{cases}$$

In this paper, we consider the following case (\ast):

(\ast) Let X be a smooth projective variety of dimension n and let \mathcal{E} be an ample vector bundle of rank r on X with $r \leq n$.

Definition 2.1. Let (X, \mathcal{E}), n and r be as in (\ast). For every integer p with $0 \leq p \leq n - r$ we set

$$C_{n,r}^p(X, \mathcal{E}) := \sum_{k=0}^{p} c_k(X) s_{p-k}(\mathcal{E}^\vee).$$

Definition 2.2 ([6, Definition 3.1.1]). Let (X, \mathcal{E}), n and r be as in (\ast). The c_r-sectional H-arithmetic genus $\chi_{n,r}^H(X, \mathcal{E})$ and the c_r-sectional Euler number
$e_{n,r}(X, \mathcal{E})$ of (X, \mathcal{E}) are defined by the following2:
\[
\chi_{n,r}^H(X, \mathcal{E}) := \text{td}_{n-r} \left(C_1^{n,r}(X, \mathcal{E}), \ldots, C_{n-r}^{n,r}(X, \mathcal{E}) \right) c_r(\mathcal{E}).
\]
\[
e_{n,r}(X, \mathcal{E}) := C_{n-r}^{n,r}(X, \mathcal{E}) c_r(\mathcal{E}).
\]

Definition 2.3 ([6, Definition 3.2.1]). Let (X, \mathcal{E}), n and r be as in (\ast). The c_r-sectional geometric genus $g_{n,r}(X, \mathcal{E})$ and the c_r-sectional Betti number $b_{n,r}(X, \mathcal{E})$ of (X, \mathcal{E}) are defined by the following:
\[
g_{n,r}(X, \mathcal{E}) := (-1)^{n-r} \chi_{n,r}^H(X, \mathcal{E}) + (-1)^{n-r+1} \chi(\mathcal{O}_X) + \sum_{k=0}^{r} (-1)^{r-k} h^{n-k}(\mathcal{O}_X).
\]
\[
b_{n,r}(X, \mathcal{E}) := \begin{cases}
(-1)^{n-r} \left(e_{n,r}(X, \mathcal{E}) - \sum_{j=0}^{n-r-1} 2(-1)^j h^j(X, \mathbb{C}) \right), & \text{if } r < n, \\
es_{n,n}(X, \mathcal{E}), & \text{if } r = n.
\end{cases}
\]

Definition 2.4 ([6, Definition 3.3.1]). Let (X, \mathcal{E}), n and r be as in (\ast). The c_r-sectional Hodge number $h_{n,r}^{j,n-r-j}(X, \mathcal{E})$ of type $(j, n-r-j)$ of (X, \mathcal{E}) is defined by the following:
\[
h_{n,r}^{j,n-r-j}(X, \mathcal{E}) := (-1)^{n-r-j} \left\{ w_{n,r}^j(X, \mathcal{E}) - H_1(X; n-r, j) - H_2(X; n-r, j) \right\}.
\]
Here we set
\[
w_{n,r}^j(X, \mathcal{E}) := \begin{cases}
h_{n-r,j} C_1^{n,r}(X, \mathcal{E}), \cdots, C_{n-r}^{n,r}(X, \mathcal{E}) c_r(\mathcal{E}), & \text{if } r < n, \\
C_n(\mathcal{E}), & \text{if } r = n.
\end{cases}
\]
for every integer j with $0 \leq j \leq n - r$.

These invariants satisfy the following properties.

Proposition 2.1. Let (X, \mathcal{E}), n and r be as in (\ast). Assume that $r \leq n-1$ and there exists a smooth projective variety Z such that $\dim Z = n-r$ and Z is the zero locus of an element of $H^0(\mathcal{E})$. Then
\[
\chi_{n,r}^H(X, \mathcal{E}) = \chi(\mathcal{O}_Z), \quad g_{n,r}(X, \mathcal{E}) = h^{n-r}(\mathcal{O}_Z), \quad e_{n,r}(X, \mathcal{E}) = e(Z),
\]
\[
b_{n,r}(X, \mathcal{E}) = h^{n-r}(Z, \mathbb{C}), \quad h_{n,r}^{j,n-r-j}(X, \mathcal{E}) = h_{n,r}^{j,n-r-j}(Z).
\]
In particular, $g_{n,r}(X, \mathcal{E})$, $b_{n,r}(X, \mathcal{E})$ and $h_{n,r}^{j,n-r-j}(X, \mathcal{E})$ are non-negative if \mathcal{E} is generated by its global sections with $r \leq n-1$.

Proof. See [6, Propositions 3.1.1, 3.2.2 and 3.3.1]. □

2Here td_{n-r} means the Todd polynomial of weight $n-r$ (see [3, Definition 1.4 (1)]).
THEOREM 2.1. Let \((X, \mathcal{E})\), \(n\) and \(r\) be as in \((\ast)\). Assume that \(r \leq n - 1\). For every integer \(j\) with \(0 \leq j \leq n - r\), we get the following.

(i) \(b_{n,r}(X, \mathcal{E}) = \sum_{k=0}^{n-r} h_{n,r}^{k,n-r-k}(X, \mathcal{E})\).

(ii) \(h_{n,r}^{j,n-r-j}(X, \mathcal{E}) = h_{n,r}^{n-r-j}(X, \mathcal{E})\).

(iii) \(h_{n,r}^{n-r,0}(X, \mathcal{E}) = g_{n,r}(X, \mathcal{E})\).

(iv) If \(n - r\) is odd, then \(b_{n,r}(X, \mathcal{E})\) is even.

Proof. See [6, Theorem 4.1]. □

3. MAIN RESULT

THEOREM 3.1. Let \((X, \mathcal{E})\) be a generalized polarized manifold of dimension \(n \geq 3\) such that \(\text{rank}(\mathcal{E}) = n - 2\) and \(\mathcal{E}\) is generated by its global sections. In this setting, we have \(h_{n,n-2}^{1,1}(X, \mathcal{E}) \geq 1\) by [6, Proposition 4.1 (iv)]. If \(h_{n,n-2}^{1,1}(X, \mathcal{E}) = 1\), then \((X, \mathcal{E}) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n-2})\).

Proof. We note that by [6, Theorem 6.1] the following equality holds.

\[
(1) 12\chi_{n,n-2}^{H}(X, \mathcal{E}) = (K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E}) + e_{n,n-2}(X, \mathcal{E}).
\]

(This is an analogue of Noether’s equality [1, p.26 (4)].) Hence by (1), Theorem 2.1 and Definitions 2.2, 2.3 and 2.4 we have

\[
(2) h_{n,n-2}^{1,1}(X, \mathcal{E}) = 10\chi_{n,n-2}^{H}(X, \mathcal{E}) - (K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E}) + 2h^1(\mathcal{O}_X).
\]

Let \(Z\) be the zero locus of a general member \(s\) of \(H^0(X, \mathcal{E})\). Then \(Z\) is a smooth projective surface and the following hold.

\[
(3) \chi_{n,n-2}^{H}(X, \mathcal{E}) = \chi(\mathcal{O}_Z);
\]

\[
(4) (K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E}) = K_Z^2;
\]

\[
(5) h^1(\mathcal{O}_X) = h^1(\mathcal{O}_Z).
\]

(i) Assume that \(\kappa(Z) \geq 0\). Then \(\chi(\mathcal{O}_Z) \geq 0\) and \(9\chi(\mathcal{O}_Z) \geq K_Z^2\) hold. Hence by (3) and (4) we have \(\chi_{n,n-2}^{H}(X, \mathcal{E}) \geq 0\) and \(9\chi_{n,n-2}^{H}(X, \mathcal{E}) \geq (K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E})\). Therefore by (2) we get

\[
(6) h_{n,n-2}^{1,1}(X, \mathcal{E}) \geq \chi_{n,n-2}^{H}(X, \mathcal{E}) + 2h^1(\mathcal{O}_X).
\]

Since \(h_{n,n-2}^{1,1}(X, \mathcal{E}) = 1\), we have \(0 \leq \chi_{n,n-2}^{H}(X, \mathcal{E}) \leq 1\) and \(h^1(\mathcal{O}_X) = 0\). Here we note that

\[
\chi_{n,n-2}^{H}(X, \mathcal{E}) = 1 - h^1(\mathcal{O}_X) + g_{n,n-2}(X, \mathcal{E})
\]

holds, and \(g_{n,n-2}(X, \mathcal{E}) = h^2(\mathcal{O}_Z) \geq 0\) by (3) and (5). Therefore

\[
(7) \chi_{n,n-2}^{H}(X, \mathcal{E}) \geq 1.
\]
Hence by (6) and (7) we have $9\chi^{H}_{n,n-2}(X, E) = (K_X + c_1(E))^2c_{n-2}(E)$, that is, $9\chi(O_Z) = K^2_Z$. Thus Z is a ball quotient and hence Z is an Eilenberg-MacLane space of type $(\Pi, 1)$ (see [2, Remark 5.1.7]). On the other hand, by [15, Corollary 22] we have $\pi_1(X, Z) = \{0\}$ and $\pi_2(X, Z) = \{0\}$. Moreover we note that the restriction homomorphism $H^2(X, \mathbb{Z}) \to H^2(Z, \mathbb{Z})$ is injective by the Lefschetz-type theorem for ample vector bundles (see [9, Theorem 1.3]). Hence by the proof of [2, Theorem 5.1.5 and Corollary 5.1.6], this is impossible because we assume that $n = \dim X \geq 3$.

(ii) Assume that $\kappa(Z) = -\infty$. If $Z \not\cong \mathbb{P}^2$, then we have $8\chi(O_Z) \geq K^2_Z$ holds, that is, we have

$$8\chi^{H}_{n,n-2}(X, E) \geq (K_X + c_1(E))^2c_{n-2}(E).$$

Hence

$$h^{1,1}_{n,n-2}(X, E) \geq 2\chi^{H}_{n,n-2}(X, E) + 2h^1(O_X) = 2 - 2h^1(O_X) + 2h^1(O_X) = 2$$

and the case is impossible. So we have $Z \cong \mathbb{P}^2$. By [9, Theorem A] we see that $(X, E) \cong (\mathbb{P}^n, O_{\mathbb{P}^n}(1)\oplus^{n-2})$ and we get the assertion. □

Theorem 3.2. Let (X, E) be a generalized polarized manifold of dimension n such that $\text{rank}(E) = n - 2$ and E is generated by its global sections. Then $b_{n,n-2}(X, E) \geq 1$ holds. Moreover if $b_{n,n-2}(X, E) = 1$, then $(X, E) \cong (\mathbb{P}^n, O_{\mathbb{P}^n}(1)\oplus^{n-2})$.

Proof. Here we note that $b_{n,n-2}(X, E) = h^{2,0}_{n,n-2}(X, E) + h^{1,1}_{n,n-2}(X, E) + h^{0,2}_{n,n-2}(X, E)$ by Theorem 2.1 (i). Since $h^{2,0}_{n,n-2}(X, E) = h^{0,2}_{n,n-2}(X, E) = g_{n,n-2}(X, E) \geq 0$ by Theorem 2.1 (iii) and assumption, we have $b_{n,n-2}(X, E) \geq h^{1,1}_{n,n-2}(X, E)$. We also note that $h^{1,1}_{n,n-2}(X, E) \geq 1$ (see [6, Proposition 4.1 (iv)]). Hence $b_{n,n-2}(X, E) \geq 1$, and $b_{n,n-2}(X, E) = 1$ implies that $h^{1,1}_{n,n-2}(X, E) = 1$ and we get the assertion by Theorem 3.1. □

Acknowledgments. The author would like to thank the referee for giving valuable suggestions. This research was partially supported by JSPS KAKENHI Grant Number 16K05103.

REFERENCES

Received 23 February 2017

Kochi University,
Faculty of Science,
Department of Mathematics,
Akebono-cho, Kochi 780-8520
Japan
fukuma@kochi-u.ac.jp