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Let (X, E) be a generalized polarized manifold of dimension n ≥ 3 such that
rank(E) = n− 2 and E is generated by its global sections. In this short note, we
classify (X, E) with h1,1

n,n−2(X, E) = 1 (resp. bn,n−2(X, E) = 1).
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1. INTRODUCTION

Let X be a projective variety of dimension n de�ned over the �eld of
complex numbers, and let L be an ample line bundle on X. Then the pair
(X,L) is called a polarized variety. Moreover if X is smooth, then (X,L) is
called a polarized manifold.

When we study polarized varieties, it is useful to use their invariants. The
sectional genus g(X,L) of (X,L) is one of the well-known invariants of (X,L).
In [4] we de�ned the notion of the ith sectional geometric genus gi(X,L) of
(X,L) for every integer i with 0 ≤ i ≤ n. Here we explain the meaning
of these invariants if X is smooth, L is base point free and i is an integer
with 1 ≤ i ≤ n − 1. Let H1, . . . ,Hn−i be general members of |L|. We put
Xn−i := H1 ∩ · · · ∩Hn−i. Then Xn−i is smooth with dimXn−i = i, and we can
show that gi(X,L) = hi(OXn−i).

These induce the notion of the ith sectional invariant of (X,L) associated
with an invariant.

De�nition 1. Let (X,L) be a polarized manifold of dimension n. Let
I(Y ) (or I) be an invariant of a smooth projective variety Y of dimension i,
where i is an integer with 0 ≤ i ≤ n. Then an invariant Fi(X,L) of (X,L)
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is called the ith sectional invariant of (X,L) associated with the invariant I if
Fi(X,L) = I(Xn−i) under the assumption that Bs|L| = ∅.

The ith sectional geometric genus is the ith sectional invariant of (X,L)
associated with the geometric genus. By the de�nition of the ith sectional
invariants, the ith sectional invariants are expected to re�ect properties of i-
dimensional geometry. So we can expect that we are able to �nd interesting
properties of (X,L) by using its ith sectional invariants.

In [5], we de�ned other ith sectional invariants, that is, the ith sectional
Euler number ei(X,L), the ith sectional Betti number bi(X,L), and the ith
sectional Hodge number hj,i−ji (X,L) of type (j, i− j) of (X,L) and we studied
some properties of these. If X is smooth, L is base point free and i is an
integer with 1 ≤ i ≤ n − 1, then by using the above notation we see that
ei(X,L) = e(Xn−i), bi(X,L) = hi(Xn−i,C) and hj,i−ji (X,L) = hj,i−j(Xn−i),
where e(Xn−i) denotes the Euler number of Xn−i.

LetX be a smooth projective variety with dimX=n and let E be an ample
vector bundle on X with rank E = r. We assume that r ≤ n. In [6], we de�ned
ample vector bundles' version of the invariants above. Namely we de�ned the cr-
sectional geometric genus gn,r(X, E)1, the cr-sectional Euler number en,r(X, E),
the cr-sectional Betti number bn,r(X, E) and the cr-sectional Hodge number

hj,n−r−jn,r (X, E) of type (j, n− r − j) of (X, E).
It is natural to study a lower bound for these invariants. If E is ge-

nerated by its global sections and r ≤ n − 1, then gn,r(X, E), bn,r(X, E) and

hj,n−r−jn,r (X, E) are non-negative (see Proposition 2.1 below). Under this setting,
it is interesting to characterize (X, E) whose invariants are small.

If r = n, then gn,n(X, E) = bn,n(X, E) = h0,0n,n(X, E) = cn(E) (see [6,
Remarks 3.2.1 (i) and 3.3.1]), and (X, E) with small cn(E) has been studied by
several authors (for example [11, 12,14,16]).

If r = n − 1, then 2gn,n−1(X, E) = bn,n−1(X, E) and gn,n−1(X, E)

= h1,0n,n−1(X, E) = h0,1n,n−1(X, E) (see Theorem 2.1).
Here we note that gn,n−1(X, E) is the curve genus of (X, E), and (X, E)

with small gn,n−1(X, E) has been classi�ed (for example, see [10,13]).
Assume that r = n − 2. Then Lanteri [8, (3.4)Corollary] studied the

classi�cation of (X, E) with gn,n−2(X, E) = 0 for E = L1 ⊕ · · · ⊕ Ln−2, where
each Li is ample and spanned line bundle on X. But in general, we don't
know the case of (X, E) such that E is generated by its global sections and
gn,n−2(X, E) = 0.

In this short note, we will study the case where r = n− 2. In particular,
we will treat the cr-sectional Hodge number h1,1n,n−2(X, E) and the cr-sectional

1This invariant gn,r(X, E) is equal to the invariant gn−r(X, E) in [3, De�nition 2.1].
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Betti number bn,n−2(X, E). In this case, we can prove h1,1n,n−2(X, E) ≥ 1 and
bn,n−2(X, E) ≥ 1 under the assumption that E is generated by its global sections
(see [6, Proposition 4.1 (iv)] and Theorem 3.2). Moreover, it is natural to
consider the classi�cation of (X, E) with h1,1n,n−2(X, E) = 1 and the classi�cation
of (X, E) with bn,n−2(X, E) = 1. In Theorem 3.1 (resp. Theorem 3.2) we will

classify (X, E) with h1,1n,n−2(X, E) = 1 (resp. bn,n−2(X, E) = 1).

2. PRELIMINARIES

Notation:

(1) Let Y be a smooth projective variety of dimension i ≥ 1, let TY be the
tangent bundle of Y and let ΩY be the dual bundle of TY . For every
integer j with 0 ≤ j ≤ i, we put

hi,j(c1(Y ), · · · , ci(Y )) := χ(Ωj
Y ) =

∫
Y
ch(Ωj

Y )Td(TY ).

(Here ch(Ωj
Y ) (resp. Td(TY )) denotes the Chern character of Ωj

Y (resp.
the Todd class of TY ). See [7, example 3.2.3 and example 3.2.4].)

(2) Let X be a smooth projective variety of dimension n. For every integers
i and j with 0 ≤ j ≤ i ≤ n, we put

H1(X; i, j) :=


i−j−1∑
s=0

(−1)shs(Ωj
X) if j 6= i,

0 if j = i,

H2(X; i, j) :=


j−1∑
t=0

(−1)i−tht(Ωi−j
X ) if j 6= 0,

0 if j = 0.

In this paper, we consider the following case (∗):
(∗) Let X be a smooth projective variety of dimension n and let E be an

ample vector bundle of rank r on X with r ≤ n.

De�nition 2.1. Let (X, E), n and r be as in (∗). For every integer p with
0 ≤ p ≤ n− r we set

Cn,r
p (X, E) :=

p∑
k=0

ck(X)sp−k(E∨).

De�nition 2.2 ([6, De�nition 3.1.1]). Let (X, E), n and r be as in (∗). The
cr-sectional H-arithmetic genus χH

n,r(X, E) and the cr-sectional Euler number
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en,r(X, E) of (X, E) are de�ned by the following2:

χH
n,r(X, E) := tdn−r

(
Cn,r
1 (X, E), · · · , Cn,r

n−r(X, E)
)
cr(E).

en,r(X, E) := Cn,r
n−r(X, E)cr(E).

De�nition 2.3 ([6, De�nition 3.2.1]). Let (X, E), n and r be as in (∗).
The cr-sectional geometric genus gn,r(X, E) and the cr-sectional Betti number
bn,r(X, E) of (X, E) are de�ned by the following:

gn,r(X, E) := (−1)n−rχH
n,r(X, E) + (−1)n−r+1χ(OX) +

r∑
k=0

(−1)r−khn−k(OX).

bn,r(X, E) :=

{
(−1)n−r

(
en,r(X, E)−

∑n−r−1
j=0 2(−1)jhj(X,C)

)
, if r < n,

en,n(X, E), if r = n.

De�nition 2.4 ([6, De�nition 3.3.1]). Let (X, E), n and r be as in (∗).
The cr-sectional Hodge number hj,n−r−jn,r (X, E) of type (j, n− r− j) of (X, E) is
de�ned by the following:

hj,n−r−jn,r (X, E) := (−1)n−r−j
{
wj
n,r(X, E)−H1(X;n− r, j)−H2(X;n− r, j)

}
.

Here we set

wj
n,r(X, E) :=

{
hn−r,j(C

n,r
1 (X, E), · · · , Cn,r

n−r(X, E))cr(E), if r < n,
cn(E), if r = n.

for every integer j with 0 ≤ j ≤ n− r.

These invariants satis�y the following properties.

Proposition 2.1. Let (X, E), n and r be as in (∗). Assume that r ≤ n−1
and there exists a smooth projective variety Z such that dimZ = n − r and Z
is the zero locus of an element of H0(E). Then

χH
n,r(X, E) = χ(OZ), gn,r(X, E) = hn−r(OZ), en,r(X, E) = e(Z),

bn,r(X, E) = hn−r(Z,C), hj,n−r−jn,r (X, E) = hj,n−r−j(Z).

In particular, gn,r(X, E), bn,r(X, E) and hj,n−r−jn,r (X, E) are non-negative if E is
generated by its global sections with r ≤ n− 1.

Proof. See [6, Propositions 3.1.1, 3.2.2 and 3.3.1]. �

2Here tdn−r means the Todd polynomial of weight n− r (see [3, De�nition 1.4 (1)]).
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Theorem 2.1. Let (X, E), n and r be as in (∗). Assume that r ≤ n− 1.
For every integer j with 0 ≤ j ≤ n− r, we get the following.

(i) bn,r(X, E) =
∑n−r

k=0 h
k,n−r−k
n,r (X, E).

(ii) hj,n−r−jn,r (X, E) = hn−r−j,jn,r (X, E).

(iii) hn−r,0n,r (X, E) = h0,n−rn,r (X, E) = gn,r(X, E).

(iv) If n− r is odd, then bn,r(X, E) is even.

Proof. See [6, Theorem 4.1]. �

3. MAIN RESULT

Theorem 3.1. Let (X, E) be a generalized polarized manifold of dimension
n ≥ 3 such that rank(E) = n−2 and E is generated by its global sections. In this
setting, we have h1,1n,n−2(X, E) ≥ 1 by [6, Proposition 4.1 (iv)]. If h1,1n,n−2(X, E) =

1, then (X, E) ∼= (Pn,OPn(1)⊕n−2).

Proof. We note that by [6, Theorem 6.1] the following equality holds.

(1) 12χH
n,n−2(X, E) = (KX + c1(E))2cn−2(E) + en,n−2(X, E).

(This is an analogue of Noether's equality [1, p.26 (4)].) Hence by (1), Theo-
rem 2.1 and De�nitions 2.2, 2.3 and 2.4 we have

(2) h1,1n,n−2(X, E) = 10χH
n,n−2(X, E)− (KX + c1(E))2cn−2(E) + 2h1(OX).

Let Z be the zero locus of a general member s of H0(X, E). Then Z is a smooth
projective surface and the following hold.

χH
n,n−2(X, E) = χ(OZ),(3)

(KX + c1(E))2cn−2(E) = K2
Z ,(4)

h1(OX) = h1(OZ).(5)

(i) Assume that κ(Z) ≥ 0. Then χ(OZ) ≥ 0 and 9χ(OZ) ≥ K2
Z hold.

Hence by (3) and (4) we have χH
n,n−2(X, E) ≥ 0 and 9χH

n,n−2(X, E) ≥ (KX +

c1(E))2cn−2(E). Therefore by (2) we get

(6) h1,1n.n−2(X, E) ≥ χH
n,n−2(X, E) + 2h1(OX).

Since h1,1n,n−2(X, E) = 1, we have 0 ≤ χH
n,n−2(X, E) ≤ 1 and h1(OX) = 0. Here

we note that

χH
n,n−2(X, E) = 1− h1(OX) + gn,n−2(X, E)

holds, and gn,n−2(X, E) = h2(OZ) ≥ 0 by (3) and (5). Therefore

(7) χH
n,n−2(X, E) ≥ 1.
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Hence by (6) and (7) we have 9χH
n,n−2(X, E) = (KX + c1(E))2cn−2(E),

that is, 9χ(OZ) = K2
Z . Thus Z is a ball quotient and hence Z is an Eilenberg-

MacLane space of type (Π, 1) (see [2, Remark 5.1.7]). On the other hand,
by [15, Corollary 22] we have π1(X,Z) = {0} and π2(X,Z) = {0}. Moreover
we note that the restriction homomorphism H2(X,Z) → H2(Z,Z) is injective
by the Lefschetz-type theorem for ample vector bundles (see [9, Theorem 1.3]).
Hence by the proof of [2, Theorem 5.1.5 and Corollary 5.1.6], this is impossible
because we assume that n = dimX ≥ 3.

(ii) Assume that κ(Z) = −∞. If Z 6∼= P2, then we have 8χ(OZ) ≥ K2
Z holds,

that is, we have

8χH
n,n−2(X, E) ≥ (KX + c1(E))2cn−2(E).

Hence

h1,1n,n−2(X, E) ≥ 2χH
n,n−2(X, E) + 2h1(OX)

= 2− 2h1(OX) + 2h1(OX)

= 2

and the case is impossible. So we have Z ∼= P2. By [9, Theorem A] we see that
(X, E) ∼= (Pn,OPn(1)⊕n−2) and we get the assertion. �

Theorem 3.2. Let (X, E) be a generalized polarized manifold of dimension
n such that rank(E) = n − 2 and E is generated by its global sections. Then
bn,n−2(X, E) ≥ 1 holds. Moreover if bn,n−2(X, E) = 1, then (X, E) ∼= (Pn,
OPn(1)⊕n−2).

Proof. Here we note that bn,n−2(X, E) = h2,0n,n−2(X, E) + h1,1n,n−2(X, E) +

h0,2n,n−2(X, E) by Theorem 2.1 (i). Since h2,0n,n−2(X, E) = h0,2n,n−2(X, E) =
gn,n−2(X, E) ≥ 0 by Theorem 2.1 (iii) and assumption, we have bn,n−2(X, E) ≥
h1,1n,n−2(X, E). We also note that h1,1n,n−2(X, E) ≥ 1 (see [6, Proposition 4.1 (iv)]).

Hence bn,n−2(X, E) ≥ 1, and bn,n−2(X, E) = 1 implies that h1,1n,n−2(X, E) = 1
and we get the assertion by Theorem 3.1. �

Acknowledgments. The author would like to thank the referee for giving valuable
suggestions. This research was partially supported by JSPS KAKENHI Grant Number
16K05103.

REFERENCES

[1] W.P. Barth, K. Hulek, C.A.M. Peters and A. Van de Ven, Compact complex surfa-

ces, Second edition. Ergeb. Math. Grenzgeb. (3). A Series of Modern Surveys in
Mathematics 4, Springer-Verlag, Berlin, 2004.



7 Classi�cation of generalized polarized manifolds 535

[2] M.C. Beltrametti and A.J. Sommese, The adjunction theory of complex projective vari-

eties. De Gruyter Exp. Math. 16, Walter de Gruyter, Berlin, NewYork, 1995.

[3] Y. Fukuma, On the cr-sectional geometric genus of generalized polarized manifolds. Jpn.
J. Math. 29 (2003), 335�355.

[4] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, I. Comm.
Algebra 32 (2004), 1069�1100.

[5] Y. Fukuma, On the sectional invariants of polarized manifolds. J. Pure Appl. Algebra
209 (2007), 99�117.

[6] Y. Fukuma, Invariants of ample vector bundles on smooth projective varieties. Riv.
Math. Univ. Parma 2 (2011), 273�297.

[7] W. Fulton, Intersection Theory. Ergeb. Math. Grenzgeb. 2 (1984), Springer-Verlag.

[8] A. Lanteri, Geometric genera for ample vector bundles with reguler sections. Rev. Mat.
Complut. 13 (2000), 33�48.

[9] A. Lanteri and H. Maeda, Ample vector bundles with sections vanishing on projective

spaces or quadrics. Internat. J. Math. 6 (1995), 587�600.

[10] A. Lanteri, H. Maeda and A. J. Sommese, Ample and spanned vector bundles of minimal

curve genus. Arch. Math. 66 (1996), 141�149.

[11] A. Lanteri and F. Russo, A footnote to a paper by Noma. Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl. 4 (1993), 2, 131-132.

[12] A. Lanteri and A.J. Sommese, A vector bundle characterization of Pn. Abh. Math.
Semin. Univ. Hambg. 58 (1988), 89�96.

[13] H. Maeda, Ample vector bundles of small curve genera. Arch. Math. 70 (1998),
239�243.

[14] A. Noma, Classi�cation of rank-2 ample and spanned vector bundles on surfaces whose

zero loci consist of general points. Trans. Amer. Math. Soc. 342 (1994), 867�894.

[15] C. Okonek, Barth-Lefschetz theorems for singular spaces. J. Reine Angew. Math. 374
(1987), 24�38.

[16] J.A. Wi�sniewski, Length of extremal rays and generalized adjunction. Math. Z. 200
(1989), 409�427.

Received 23 February 2017 Kochi University,

Faculty of Science,

Department of Mathematics ,

Akebono-cho, Kochi 780-8520

Japan

fukuma@kochi-u.ac.jp


