A NOTE ON CLASSIFICATION OF GENERALIZED POLARIZED MANIFOLDS BY THE c_r -SECTIONAL HODGE NUMBER OF TYPE (1, 1) AND THE c_r -SECTIONAL BETTI NUMBER

YOSHIAKI FUKUMA

Communicated by Marian Aprodu

Let (X, \mathcal{E}) be a generalized polarized manifold of dimension $n \geq 3$ such that $\operatorname{rank}(\mathcal{E}) = n-2$ and \mathcal{E} is generated by its global sections. In this short note, we classify (X, \mathcal{E}) with $h_{n,n-2}^{1,1}(X, \mathcal{E}) = 1$ (resp. $b_{n,n-2}(X, \mathcal{E}) = 1$).

AMS 2010 Subject Classification: 14J60, 14C17, 14C20, 14C40, 14J30, 14J35, 14J40.

Key words: generalized polarized manifold, ample vector bundle, c_r -sectional Hodge number, c_r -sectional Betti number, polarized manifold, ample line bundle.

1. INTRODUCTION

Let X be a projective variety of dimension n defined over the field of complex numbers, and let L be an ample line bundle on X. Then the pair (X, L) is called a *polarized variety*. Moreover if X is smooth, then (X, L) is called a polarized manifold.

When we study polarized varieties, it is useful to use their invariants. The sectional genus g(X, L) of (X, L) is one of the well-known invariants of (X, L). In [4] we defined the notion of the *i*th sectional geometric genus $g_i(X, L)$ of (X, L) for every integer *i* with $0 \le i \le n$. Here we explain the meaning of these invariants if X is smooth, L is base point free and *i* is an integer with $1 \le i \le n - 1$. Let H_1, \ldots, H_{n-i} be general members of |L|. We put $X_{n-i} := H_1 \cap \cdots \cap H_{n-i}$. Then X_{n-i} is smooth with dim $X_{n-i} = i$, and we can show that $g_i(X, L) = h^i(\mathcal{O}_{X_{n-i}})$.

These induce the notion of the *i*th sectional invariant of (X, L) associated with an invariant.

Definition 1. Let (X, L) be a polarized manifold of dimension n. Let I(Y) (or I) be an invariant of a smooth projective variety Y of dimension i, where i is an integer with $0 \le i \le n$. Then an invariant $F_i(X, L)$ of (X, L)

is called the *i*th sectional invariant of (X, L) associated with the invariant I if $F_i(X, L) = I(X_{n-i})$ under the assumption that $B_S|L| = \emptyset$.

The *i*th sectional geometric genus is the *i*th sectional invariant of (X, L) associated with the geometric genus. By the definition of the *i*th sectional invariants, the *i*th sectional invariants are expected to reflect properties of *i*-dimensional geometry. So we can expect that we are able to find interesting properties of (X, L) by using its *i*th sectional invariants.

In [5], we defined other *i*th sectional invariants, that is, the *i*th sectional Euler number $e_i(X, L)$, the *i*th sectional Betti number $b_i(X, L)$, and the *i*th sectional Hodge number $h_i^{j,i-j}(X,L)$ of type (j,i-j) of (X,L) and we studied some properties of these. If X is smooth, L is base point free and *i* is an integer with $1 \leq i \leq n-1$, then by using the above notation we see that $e_i(X,L) = e(X_{n-i}), b_i(X,L) = h^i(X_{n-i},\mathbb{C})$ and $h_i^{j,i-j}(X,L) = h^{j,i-j}(X_{n-i})$, where $e(X_{n-i})$ denotes the Euler number of X_{n-i} .

Let X be a smooth projective variety with dim X = n and let \mathcal{E} be an ample vector bundle on X with rank $\mathcal{E} = r$. We assume that $r \leq n$. In [6], we defined ample vector bundles' version of the invariants above. Namely we defined the c_r sectional geometric genus $g_{n,r}(X, \mathcal{E})^1$, the c_r -sectional Euler number $e_{n,r}(X, \mathcal{E})$, the c_r -sectional Betti number $b_{n,r}(X, \mathcal{E})$ and the c_r -sectional Hodge number $h_{n,r}^{j,n-r-j}(X, \mathcal{E})$ of type (j, n-r-j) of (X, \mathcal{E}) .

It is natural to study a lower bound for these invariants. If \mathcal{E} is generated by its global sections and $r \leq n-1$, then $g_{n,r}(X,\mathcal{E})$, $b_{n,r}(X,\mathcal{E})$ and $h_{n,r}^{j,n-r-j}(X,\mathcal{E})$ are non-negative (see Proposition 2.1 below). Under this setting, it is interesting to characterize (X,\mathcal{E}) whose invariants are small.

If r = n, then $g_{n,n}(X, \mathcal{E}) = b_{n,n}(X, \mathcal{E}) = h_{n,n}^{0,0}(X, \mathcal{E}) = c_n(\mathcal{E})$ (see [6, Remarks 3.2.1 (i) and 3.3.1]), and (X, \mathcal{E}) with small $c_n(\mathcal{E})$ has been studied by several authors (for example [11, 12, 14, 16]).

If r = n - 1, then $2g_{n,n-1}(X, \mathcal{E}) = b_{n,n-1}(X, \mathcal{E})$ and $g_{n,n-1}(X, \mathcal{E}) = h_{n,n-1}^{1,0}(X, \mathcal{E}) = h_{n,n-1}^{0,1}(X, \mathcal{E})$ (see Theorem 2.1).

Here we note that $g_{n,n-1}(X, \mathcal{E})$ is the curve genus of (X, \mathcal{E}) , and (X, \mathcal{E}) with small $g_{n,n-1}(X, \mathcal{E})$ has been classified (for example, see [10, 13]).

Assume that r = n - 2. Then Lanteri [8, (3.4)Corollary] studied the classification of (X, \mathcal{E}) with $g_{n,n-2}(X, \mathcal{E}) = 0$ for $\mathcal{E} = L_1 \oplus \cdots \oplus L_{n-2}$, where each L_i is ample and spanned line bundle on X. But in general, we don't know the case of (X, \mathcal{E}) such that \mathcal{E} is generated by its global sections and $g_{n,n-2}(X, \mathcal{E}) = 0$.

In this short note, we will study the case where r = n - 2. In particular, we will treat the c_r -sectional Hodge number $h_{n,n-2}^{1,1}(X,\mathcal{E})$ and the c_r -sectional

¹This invariant $g_{n,r}(X,\mathcal{E})$ is equal to the invariant $g_{n-r}(X,\mathcal{E})$ in [3, Definition 2.1].

Betti number $b_{n,n-2}(X,\mathcal{E})$. In this case, we can prove $h_{n,n-2}^{1,1}(X,\mathcal{E}) \geq 1$ and $b_{n,n-2}(X,\mathcal{E}) \geq 1$ under the assumption that \mathcal{E} is generated by its global sections (see [6, Proposition 4.1 (iv)] and Theorem 3.2). Moreover, it is natural to consider the classification of (X,\mathcal{E}) with $h_{n,n-2}^{1,1}(X,\mathcal{E}) = 1$ and the classification of (X,\mathcal{E}) with $b_{n,n-2}(X,\mathcal{E}) = 1$. In Theorem 3.1 (resp. Theorem 3.2) we will classify (X,\mathcal{E}) with $h_{n,n-2}^{1,1}(X,\mathcal{E}) = 1$ (resp. $b_{n,n-2}(X,\mathcal{E}) = 1$).

2. PRELIMINARIES

Notation:

(1) Let Y be a smooth projective variety of dimension $i \geq 1$, let \mathcal{T}_Y be the tangent bundle of Y and let Ω_Y be the dual bundle of \mathcal{T}_Y . For every integer j with $0 \leq j \leq i$, we put

$$h_{i,j}(c_1(Y),\cdots,c_i(Y)) := \chi(\Omega_Y^j) = \int_Y \operatorname{ch}(\Omega_Y^j) \operatorname{Td}(\mathcal{T}_Y)$$

(Here $ch(\Omega_Y^j)$ (resp. $Td(\mathcal{T}_Y)$) denotes the Chern character of Ω_Y^j (resp. the Todd class of \mathcal{T}_Y). See [7, example 3.2.3 and example 3.2.4].)

(2) Let X be a smooth projective variety of dimension n. For every integers i and j with $0 \le j \le i \le n$, we put

$$H_1(X; i, j) := \begin{cases} \sum_{s=0}^{i-j-1} (-1)^s h^s(\Omega_X^j) & \text{if } j \neq i, \\ 0 & \text{if } j = i, \end{cases}$$
$$H_2(X; i, j) := \begin{cases} \sum_{t=0}^{j-1} (-1)^{i-t} h^t(\Omega_X^{i-j}) & \text{if } j \neq 0, \\ 0 & \text{if } j = 0. \end{cases}$$

In this paper, we consider the following case (*):

(*) Let X be a smooth projective variety of dimension n and let \mathcal{E} be an ample vector bundle of rank r on X with $r \leq n$.

Definition 2.1. Let (X, \mathcal{E}) , n and r be as in (*). For every integer p with $0 \le p \le n - r$ we set

$$C_p^{n,r}(X,\mathcal{E}) := \sum_{k=0}^p c_k(X) s_{p-k}(\mathcal{E}^{\vee}).$$

Definition 2.2 ([6, Definition 3.1.1]). Let (X, \mathcal{E}) , n and r be as in (*). The c_r -sectional H-arithmetic genus $\chi^H_{n,r}(X, \mathcal{E})$ and the c_r -sectional Euler number

 $e_{n,r}(X,\mathcal{E})$ of (X,\mathcal{E}) are defined by the following²:

$$\chi_{n,r}^{H}(X,\mathcal{E}) := \operatorname{td}_{n-r} \left(C_{1}^{n,r}(X,\mathcal{E}), \cdots, C_{n-r}^{n,r}(X,\mathcal{E}) \right) c_{r}(\mathcal{E}).$$

$$e_{n,r}(X,\mathcal{E}) := C_{n-r}^{n,r}(X,\mathcal{E})c_{r}(\mathcal{E}).$$

Definition 2.3 ([6, Definition 3.2.1]). Let (X, \mathcal{E}) , n and r be as in (*). The c_r -sectional geometric genus $g_{n,r}(X, \mathcal{E})$ and the c_r -sectional Betti number $b_{n,r}(X, \mathcal{E})$ of (X, \mathcal{E}) are defined by the following:

$$g_{n,r}(X,\mathcal{E}) := (-1)^{n-r} \chi_{n,r}^{H}(X,\mathcal{E}) + (-1)^{n-r+1} \chi(\mathcal{O}_X) + \sum_{k=0}^{r} (-1)^{r-k} h^{n-k}(\mathcal{O}_X).$$
$$b_{n,r}(X,\mathcal{E}) := \begin{cases} (-1)^{n-r} \left(e_{n,r}(X,\mathcal{E}) - \sum_{j=0}^{n-r-1} 2(-1)^j h^j(X,\mathbb{C}) \right), & \text{if } r < n, \\ e_{n,n}(X,\mathcal{E}), & \text{if } r = n. \end{cases}$$

Definition 2.4 ([6, Definition 3.3.1]). Let (X, \mathcal{E}) , n and r be as in (*). The c_r-sectional Hodge number $h_{n,r}^{j,n-r-j}(X, \mathcal{E})$ of type (j, n-r-j) of (X, \mathcal{E}) is defined by the following:

$$h_{n,r}^{j,n-r-j}(X,\mathcal{E}) := (-1)^{n-r-j} \left\{ w_{n,r}^j(X,\mathcal{E}) - H_1(X;n-r,j) - H_2(X;n-r,j) \right\}.$$

Here we set

$$w_{n,r}^j(X,\mathcal{E}) := \begin{cases} h_{n-r,j}(C_1^{n,r}(X,\mathcal{E}),\cdots,C_{n-r}^{n,r}(X,\mathcal{E}))c_r(\mathcal{E}), & \text{if } r < n, \\ c_n(\mathcal{E}), & \text{if } r = n. \end{cases}$$

for every integer j with $0 \le j \le n - r$.

These invariants satisfy the following properties.

PROPOSITION 2.1. Let (X, \mathcal{E}) , n and r be as in (*). Assume that $r \leq n-1$ and there exists a smooth projective variety Z such that dim Z = n - r and Z is the zero locus of an element of $H^0(\mathcal{E})$. Then

$$\chi_{n,r}^H(X,\mathcal{E}) = \chi(\mathcal{O}_Z), \quad g_{n,r}(X,\mathcal{E}) = h^{n-r}(\mathcal{O}_Z), \quad e_{n,r}(X,\mathcal{E}) = e(Z),$$

$$b_{n,r}(X,\mathcal{E}) = h^{n-r}(Z,\mathbb{C}), \qquad h_{n,r}^{j,n-r-j}(X,\mathcal{E}) = h^{j,n-r-j}(Z).$$

In particular, $g_{n,r}(X, \mathcal{E})$, $b_{n,r}(X, \mathcal{E})$ and $h_{n,r}^{j,n-r-j}(X, \mathcal{E})$ are non-negative if \mathcal{E} is generated by its global sections with $r \leq n-1$.

Proof. See [6, Propositions 3.1.1, 3.2.2 and 3.3.1].

²Here td_{n-r} means the Todd polynomial of weight n-r (see [3, Definition 1.4 (1)]).

THEOREM 2.1. Let (X, \mathcal{E}) , n and r be as in (*). Assume that $r \leq n-1$. For every integer j with $0 \leq j \leq n-r$, we get the following. (i) $b_{n,r}(X, \mathcal{E}) = \sum_{k=0}^{n-r} h_{n,r}^{k,n-r-k}(X, \mathcal{E})$. (ii) $h_{n,r}^{j,n-r-j}(X, \mathcal{E}) = h_{n,r}^{n-r-j,j}(X, \mathcal{E})$. (iii) $h_{n,r}^{n-r,0}(X, \mathcal{E}) = h_{n,r}^{0,n-r}(X, \mathcal{E}) = g_{n,r}(X, \mathcal{E})$. (iv) If n-r is odd, then $b_{n,r}(X, \mathcal{E})$ is even.

Proof. See [6, Theorem 4.1].

3. MAIN RESULT

THEOREM 3.1. Let (X, \mathcal{E}) be a generalized polarized manifold of dimension $n \geq 3$ such that rank $(\mathcal{E}) = n-2$ and \mathcal{E} is generated by its global sections. In this setting, we have $h_{n,n-2}^{1,1}(X, \mathcal{E}) \geq 1$ by [6, Proposition 4.1 (iv)]. If $h_{n,n-2}^{1,1}(X, \mathcal{E}) = 1$, then $(X, \mathcal{E}) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n-2})$.

Proof. We note that by [6, Theorem 6.1] the following equality holds.

(1)
$$12\chi_{n,n-2}^{H}(X,\mathcal{E}) = (K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E}) + e_{n,n-2}(X,\mathcal{E})$$

(This is an analogue of Noether's equality [1, p.26 (4)].) Hence by (1), Theorem 2.1 and Definitions 2.2, 2.3 and 2.4 we have

(2)
$$h_{n,n-2}^{1,1}(X,\mathcal{E}) = 10\chi_{n,n-2}^H(X,\mathcal{E}) - (K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E}) + 2h^1(\mathcal{O}_X).$$

Let Z be the zero locus of a general member s of $H^0(X, \mathcal{E})$. Then Z is a smooth projective surface and the following hold.

(3)
$$\chi^H_{n,n-2}(X,\mathcal{E}) = \chi(\mathcal{O}_Z),$$

(4)
$$(K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E}) = K_Z^2,$$

(5)
$$h^1(\mathcal{O}_X) = h^1(\mathcal{O}_Z).$$

(i) Assume that $\kappa(Z) \geq 0$. Then $\chi(\mathcal{O}_Z) \geq 0$ and $9\chi(\mathcal{O}_Z) \geq K_Z^2$ hold. Hence by (3) and (4) we have $\chi_{n,n-2}^H(X,\mathcal{E}) \geq 0$ and $9\chi_{n,n-2}^H(X,\mathcal{E}) \geq (K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E})$. Therefore by (2) we get

(6)
$$h_{n,n-2}^{1,1}(X,\mathcal{E}) \ge \chi_{n,n-2}^H(X,\mathcal{E}) + 2h^1(\mathcal{O}_X)$$

Since $h_{n,n-2}^{1,1}(X,\mathcal{E}) = 1$, we have $0 \le \chi_{n,n-2}^H(X,\mathcal{E}) \le 1$ and $h^1(\mathcal{O}_X) = 0$. Here we note that

$$\chi_{n,n-2}^{H}(X,\mathcal{E}) = 1 - h^{1}(\mathcal{O}_{X}) + g_{n,n-2}(X,\mathcal{E})$$

holds, and $g_{n,n-2}(X, \mathcal{E}) = h^2(\mathcal{O}_Z) \ge 0$ by (3) and (5). Therefore

(7)
$$\chi^H_{n,n-2}(X,\mathcal{E}) \ge 1.$$

Hence by (6) and (7) we have $9\chi_{n,n-2}^{H}(X,\mathcal{E}) = (K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E})$, that is, $9\chi(\mathcal{O}_Z) = K_Z^2$. Thus Z is a ball quotient and hence Z is an Eilenberg-MacLane space of type (Π , 1) (see [2, Remark 5.1.7]). On the other hand, by [15, Corollary 22] we have $\pi_1(X,Z) = \{0\}$ and $\pi_2(X,Z) = \{0\}$. Moreover we note that the restriction homomorphism $H^2(X,\mathbb{Z}) \to H^2(Z,\mathbb{Z})$ is injective by the Lefschetz-type theorem for ample vector bundles (see [9, Theorem 1.3]). Hence by the proof of [2, Theorem 5.1.5 and Corollary 5.1.6], this is impossible because we assume that $n = \dim X \geq 3$.

(ii) Assume that $\kappa(Z) = -\infty$. If $Z \not\cong \mathbb{P}^2$, then we have $8\chi(\mathcal{O}_Z) \ge K_Z^2$ holds, that is, we have

$$8\chi_{n,n-2}^H(X,\mathcal{E}) \ge (K_X + c_1(\mathcal{E}))^2 c_{n-2}(\mathcal{E}).$$

Hence

$$h_{n,n-2}^{1,1}(X,\mathcal{E}) \geq 2\chi_{n,n-2}^{H}(X,\mathcal{E}) + 2h^{1}(\mathcal{O}_{X})$$

= 2 - 2h^{1}(\mathcal{O}_{X}) + 2h^{1}(\mathcal{O}_{X})
= 2

and the case is impossible. So we have $Z \cong \mathbb{P}^2$. By [9, Theorem A] we see that $(X, \mathcal{E}) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n-2})$ and we get the assertion. \Box

THEOREM 3.2. Let (X, \mathcal{E}) be a generalized polarized manifold of dimension n such that rank $(\mathcal{E}) = n - 2$ and \mathcal{E} is generated by its global sections. Then $b_{n,n-2}(X,\mathcal{E}) \geq 1$ holds. Moreover if $b_{n,n-2}(X,\mathcal{E}) = 1$, then $(X,\mathcal{E}) \cong (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n-2})$.

Proof. Here we note that $b_{n,n-2}(X,\mathcal{E}) = h_{n,n-2}^{2,0}(X,\mathcal{E}) + h_{n,n-2}^{1,1}(X,\mathcal{E}) + h_{n,n-2}^{0,2}(X,\mathcal{E})$ by Theorem 2.1 (i). Since $h_{n,n-2}^{2,0}(X,\mathcal{E}) = h_{n,n-2}^{0,2}(X,\mathcal{E}) = g_{n,n-2}(X,\mathcal{E}) \geq 0$ by Theorem 2.1 (ii) and assumption, we have $b_{n,n-2}(X,\mathcal{E}) \geq h_{n,n-2}^{1,1}(X,\mathcal{E})$. We also note that $h_{n,n-2}^{1,1}(X,\mathcal{E}) \geq 1$ (see [6, Proposition 4.1 (iv)]). Hence $b_{n,n-2}(X,\mathcal{E}) \geq 1$, and $b_{n,n-2}(X,\mathcal{E}) = 1$ implies that $h_{n,n-2}^{1,1}(X,\mathcal{E}) = 1$ and we get the assertion by Theorem 3.1. \Box

Acknowledgments. The author would like to thank the referee for giving valuable suggestions. This research was partially supported by JSPS KAKENHI Grant Number 16K05103.

REFERENCES

 W.P. Barth, K. Hulek, C.A.M. Peters and A. Van de Ven, Compact complex surfaces, Second edition. Ergeb. Math. Grenzgeb. (3). A Series of Modern Surveys in Mathematics 4, Springer-Verlag, Berlin, 2004.

- [2] M.C. Beltrametti and A.J. Sommese, The adjunction theory of complex projective varieties. De Gruyter Exp. Math. 16, Walter de Gruyter, Berlin, NewYork, 1995.
- [3] Y. Fukuma, On the c_r-sectional geometric genus of generalized polarized manifolds. Jpn. J. Math. 29 (2003), 335–355.
- [4] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, I. Comm. Algebra 32 (2004), 1069–1100.
- [5] Y. Fukuma, On the sectional invariants of polarized manifolds. J. Pure Appl. Algebra 209 (2007), 99–117.
- Y. Fukuma, Invariants of ample vector bundles on smooth projective varieties. Riv. Math. Univ. Parma 2 (2011), 273-297.
- [7] W. Fulton, Intersection Theory. Ergeb. Math. Grenzgeb. 2 (1984), Springer-Verlag.
- [8] A. Lanteri, Geometric genera for ample vector bundles with reguler sections. Rev. Mat. Complut. 13 (2000), 33-48.
- [9] A. Lanteri and H. Maeda, Ample vector bundles with sections vanishing on projective spaces or quadrics. Internat. J. Math. 6 (1995), 587-600.
- [10] A. Lanteri, H. Maeda and A. J. Sommese, Ample and spanned vector bundles of minimal curve genus. Arch. Math. 66 (1996), 141-149.
- [11] A. Lanteri and F. Russo, A footnote to a paper by Noma. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 4 (1993), 2, 131-132.
- [12] A. Lanteri and A.J. Sommese, A vector bundle characterization of \mathbb{P}^n . Abh. Math. Semin. Univ. Hambg. 58 (1988), 89–96.
- [13] H. Maeda, Ample vector bundles of small curve genera. Arch. Math. 70 (1998), 239-243.
- [14] A. Noma, Classification of rank-2 ample and spanned vector bundles on surfaces whose zero loci consist of general points. Trans. Amer. Math. Soc. 342 (1994), 867–894.
- [15] C. Okonek, Barth-Lefschetz theorems for singular spaces. J. Reine Angew. Math. 374 (1987), 24–38.
- [16] J.A. Wiśniewski, Length of extremal rays and generalized adjunction. Math. Z. 200 (1989), 409-427.

Received 23 February 2017

Kochi University, Faculty of Science, Department of Mathematics , Akebono-cho, Kochi 780-8520 Japan fukuma@kochi-u.ac.jp