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Let (X,&) be a generalized polarized manifold of dimension n > 3 such that

rank(€) = n — 2 and £ is generated by its global sections. In this short note, we

classify (X, &) with )}, _,(X,€) =1 (resp. bn.n—2(X,&) = 1).
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1. INTRODUCTION

Let X be a projective variety of dimension n defined over the field of
complex numbers, and let L be an ample line bundle on X. Then the pair
(X, L) is called a polarized variety. Moreover if X is smooth, then (X, L) is
called a polarized manifold.

When we study polarized varieties, it is useful to use their invariants. The
sectional genus g(X, L) of (X, L) is one of the well-known invariants of (X, L).
In [4] we defined the notion of the ith sectional geometric genus g;(X,L) of
(X, L) for every integer ¢ with 0 < ¢ < n. Here we explain the meaning
of these invariants if X is smooth, L is base point free and ¢ is an integer
with 1 <4 <n—1. Let Hy,...,H,_; be general members of |L|. We put
Xp_i:=HiN---NH,_;. Then X,,_; is smooth with dim X,,_; = ¢, and we can
show that ¢;(X, L) = h*(Ox,,_,)-

These induce the notion of the ith sectional invariant of (X, L) associated
with an imvariant.

Definition 1. Let (X,L) be a polarized manifold of dimension n. Let
I(Y') (or I) be an invariant of a smooth projective variety Y of dimension 4,
where i is an integer with 0 < ¢ < m. Then an invariant F;(X, L) of (X, L)
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is called the ith sectional invariant of (X, L) associated with the invariant I if
F;(X,L) = I(X,,—;) under the assumption that Bs|L| = 0.

The ith sectional geometric genus is the ith sectional invariant of (X, L)
associated with the geometric genus. By the definition of the ¢th sectional
invariants, the ith sectional invariants are expected to reflect properties of i-
dimensional geometry. So we can expect that we are able to find interesting
properties of (X, L) by using its ith sectional invariants.

In [5], we defined other ith sectional invariants, that is, the ith sectional
Euler number e;(X, L), the ith sectional Betti number b;(X, L), and the ith
sectional Hodge number hj I(X, L) of type (j,i—j) of (X, L) and we studied
some properties of these. If X is smooth, L is base point free and 7 is an
integer with 1 < ¢ < n — 1, then by using the above notation we see that
ei(X,L) = e(Xn_y), bi(X,L) = h¥(X,,_;,C) and h}" 7 (X, L) = hi" (X, ),
where e(X,,—;) denotes the Euler number of X,,_;.

Let X be a smooth projective variety with dim X =n and let £ be an ample
vector bundle on X with rank & = r. We assume that » < n. In [6], we defined
ample vector bundles’ version of the invariants above. Namely we defined the c,.-
sectional geometric genus gn (X, €)', the c.-sectional Euler number ey, (X, E),
the c¢,-sectional Betti number by ,(X,E) and the c,-sectional Hodge number
W (XL E) of type (jn — 1 — j) of (X,E).

It is natural to study a lower bound for these invariants. If £ is ge-
nerated by its global sections and r < n — 1, then g, ,(X,€), by ,(X,€) and
R (X, €) are non-negative (see Proposition 2.1 below). Under this setting,
it is interesting to characterize (X, &) whose invariants are small.

If r = n, then gun(X,E) = bpn(X,&) = hY%(X,E) = cu(€) (see [6,
Remarks 3.2.1 (i) and 3.3.1]), and (X, £) with small ¢, () has been studied by
several authors (for example [11,12,14,16]).

If » = n—1, then 2¢p,-1(X,€) = bpp-1(X,€) and gnn-1(X,E)
= h;% (X, €)= h?ﬁl (X, &) (see Theorem 2.1).

Here we note that gnn—1(X,E) is the curve genus of (X, &), and (X, &)
with small g, ,—1(X, £) has been classified (for example, see [10,13]).

Assume that 7 = n — 2. Then Lanteri [8, (3.4)Corollary| studied the
classification of (X, &) with gnn—o(X,€) =0for € =Ly & --- & L,_2, where
each L; is ample and spanned line bundle on X. But in general, we don’t
know the case of (X,&) such that & is generated by its global sections and
gnn—2(X,E) =0.

In this short note, we will study the case where r = n — 2. In particular,

we will treat the c,-sectional Hodge number hiﬁl 5(X,€) and the ¢,-sectional

'This invariant g,(X, ) is equal to the invariant g,—(X, &) in [3, Definition 2.1].
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Betti number by, ,—2(X,€). In this case, we can prove hnn 5(X,€) > 1 and
bnn—2(X,E) > 1 under the assumption that £ is generated by its global sections
(see 6, Proposition 4.1 (iv)|] and Theorem 3.2). Moreover, it is natural to
consider the classification of (X, &) with h) i o(X, &) =1 and the classification

of (X,&) with by, ,—2(X,€) =1. In Theorem 3.1 (resp. Theorem 3.2) we will
classify (X, €) with h-! (X,E) =1 (resp. b 2(X,&) =1).

n,n—2

2. PRELIMINARIES

Notation:

(1) Let Y be a smooth projective variety of dimension i > 1, let 7y be the
tangent bundle of Y and let Qy be the dual bundle of Ty. For every
integer 7 with 0 < j <4, we put

hif(er (), (V) = x (@) = /Y ch(Q Y TA(Ty).

(Here ch(Q{,) (resp. Td(7y)) denotes the Chern character of Q{, (resp.
the Todd class of Ty). See [7, example 3.2.3 and example 3.2.4].)

(2) Let X be a smooth projective variety of dimension n. For every integers
1 and j with 0 < j <1¢ < n, we put

i—j—1
C\SHS(O)] p o .
Hl(X;i,j) e yoard ( 1) h (QX) lf.] 7é 2,
0 if j =14,
7—1
z tptroi—J e
H(X:i.5) = § M) 20

if 7 =0.
In this paper, we consider the followmg case (x):
(x) Let X be a smooth projective variety of dimension n and let £ be an
ample vector bundle of rank r» on X with r < n.

Definition 2.1. Let (X, &), n and r be as in (x). For every integer p with
0<p<n—rweset

p
Cy' (X, &) = ch )Sp—k(EY).
k=0

Definition 2.2 (|6, Definition 3.1.1]). Let (X, ), n and r be as in (x). The
cr-sectional H-arithmetic genus an( ,€) and the c¢,-sectional Euler number
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enr(X,E) of (X, E) are defined by the following?:

XX, E) = tdn—y (CTT(X,E), -+, CRT (X, E)) 0 (E).
enr(X,E) = C (X, E)er(E).

Definition 2.3 ([6, Definition 3.2.1]). Let (X,&), n and r be as in (x).
The c,-sectional geometric genus gp (X, E) and the c¢,-sectional Betti number

bnr(X,E) of (X,E) are defined by the following:

b (x.6) = | DT (en,r<X,5> — S (-1 )jhj(X,«:)), ifr < n,
" , ‘ en,n(Xa g)a 1f7“ =n.

Definition 2.4 ([6, Definition 3.3.1]). Let (X,€), n and 7 be as in ().
The c,-sectional Hodge number hly 7 (X, E) of type (j,n—r—j) of (X, &) is
defined by the following:

RETTTI(X,E) = (1) J{w (X,€) — Hi(X;n—r,j) — Ho(Xsn—1,5)} .
Here we set

), (X, &) = { g (CF (X, €), o+, CRL(X, E))er(E), i <m,

cn(€), if r=n.
for every integer j with 0 < j <n —r.

These invariants satisfiy the following properties.

PROPOSITION 2.1. Let (X, &), n and r be as in (x). Assume thatr <n—1
and there exists a smooth projective variety Z such that dmZ =n —1r and Z
is the zero locus of an element of H°(E). Then

XnH,r(Xa 5) = X(OZ)v gn,r(ng) = hn_T(OZ)’ en,r(Xag) = B(Z),

bny(X,E) =h"7(Z,C), RTTTHX,E) =hW"TTT(Z).

In particular, gn,r(X,E), by (X,E) and Wi (X, E) are non-negative if € is
generated by its global sections with r <n — 1.

Proof. See [6, Propositions 3.1.1, 3.2.2 and 3.3.1]. O

*Here td,_, means the Todd polynomial of weight n — r (see [3, Definition 1.4 (1)]).
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THEOREM 2.1. Let (X,E), n and r be as in (x). Assume that r <n — 1.
For every integer j with 0 < j < n —r, we get the following.

(i) bnr(X, ) = TR ™" (X, €).

(i) AT(X,E) = hi " (X E).

(iii) A7, (X, €) = W T (X,€) = gur(X,E).

(iv) If n —r is odd, then b, (X, E) is even.

Proof. See [6, Theorem 4.1]. O

3. MAIN RESULT

THEOREM 3.1. Let (X, E) be a generalized polarized manifold of dimension
n > 3 such that rank(é’) =n—2 and & is generated by its global sectzons. In this
setting, we have hl’ o(X, &) > 1 by [6, Proposition 4.1 (iv)]. Ifhlt (X,8) =
1, then (X, &) = (P",Opn( yEn=2),

Proof. We note that by [6, Theorem 6.1] the following equality holds.
(1) 12x5 (X, ) = (Kx + c1(€))*en-2(E) + enn—2(X, E).

(This is an analogue of Noether’s equality [1, p.26 (4)].) Hence by (1), Theo-
rem 2.1 and Definitions 2.2, 2.3 and 2.4 we have

(2)  hyno(X,E) = 10x[, 5(X,€) — (Kx + c1(€))2en—2(E) + 20 (Ox).

Let Z be the zero locus of a general member s of H°(X, ). Then Z is a smooth
projective surface and the following hold.

nn2

(3) Xonoa(X,€) = x(Oz),
(4) (Kx +c1(€))’ecn2(€) = Kz,
(5) h(Ox) = h'(Oz).

(i) Assume that x(Z) > 0. Then x(Oz) > 0 and 9x(Oz) > K% hold.
Hence by (3) and (4) we have Xﬁnfz(X,S) > 0 and 9Xn,n72( €) > (Kx +
c1(£))%e,_2(&). Therefore by (2) we get

(6) B2 (X, E) 2 Xil o (X, €) + 201 (Ox).

nn2

1,1
Since hnn 9

we note that

(X,€) =1, we have 0 < XWLQ(X, £) < 1and h'(Ox) = 0. Here

holds, and gy n—2(X, 5) = hQ(OZ) >0 by ( ) an ( ) Therefore

(7) Xn,n—Q(X7€) >1
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Hence by (6) and (7) we have 9 ,(X,&) = (Kx + c1(€))*cn—2(E),
that is, 9x(Oz) = K%. Thus Z is a ball quotient and hence Z is an Eilenberg-
MacLane space of type (II,1) (see |2, Remark 5.1.7]). On the other hand,
by [15, Corollary 22| we have m1(X, Z) = {0} and m2(X, Z) = {0}. Moreover
we note that the restriction homomorphism H?(X,7Z) — H?(Z,7) is injective
by the Lefschetz-type theorem for ample vector bundles (see |9, Theorem 1.3]).
Hence by the proof of |2, Theorem 5.1.5 and Corollary 5.1.6], this is impossible
because we assume that n = dim X > 3.

(ii) Assume that x(Z) = —oco. If Z % P2, then we have 8x(0Oz) > K2 holds,
that is, we have

8Xmn—2(X,E) 2 (Kx + c1(E))*ena(E).
Hence

bl (X,€) > 2x} (X, €) + 2h' (Ox)
= 2—2h1(OX)+2h1(Ox)

= 2

nn?

and the case is impossible. So we have Z = P2. By |9, Theorem A| we see that
(X,E) = (P", Opn(1)®"2) and we get the assertion. [

THEOREM 3.2. Let (X, E) be a generalized polarized manifold of dimension
n such that rank(€) = n — 2 and & is generated by its global sections. Then
bpn—2(X,E) > 1 holds. Moreover if by n—o(X,E) = 1, then (X,€) = (P,
Opn<1)®n72).

Proof. Here we note that b, ,—2(X,&) = hnn o(X,E) + hnn o(X,E) +
hy? _5(X,€) by Theorem 2.1 (i). Since hi" _,(X,€) = hSLi (X, €)

gnn—2(X,E) > 0 by Theorem 2.1 (iii) and assumption, we have bnm 2 X, E) >
hl (X, E). We also note that hnn o(X, &) > 1 (see [6, Proposition 4.1 (iv ])

n,n—2
Hence by, ,—2(X,€) > 1, and by, ,—2(X,€) = 1 implies that hnn o(X,E) =
and we get the assertion by Theorem 3.1. [
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