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In this paper, we study the global and decay solution for large size data of
nonlinear hyperbolic-parabolic equation of Kirchho� type

utt + µut − M̃
(∫

Ωt

|∇u|2dx
)

∆u = 0 in Ωt

Where Ωt = {x ∈ Rn : x = yσ(t), y ∈ Ω} with Ω being a bounded open
domain in Rn, µ is a positive constant and σ(t) is a given suitable increasing
positive function unbounded from above. The real function M̃ is such that
M̃(λ) > 0 and M̃ ′(λ) > 0 for every λ ∈ [0,∞[ .
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1. INTRODUCTION

Let Ω be an open bounded domain of Rn which, without loss of gene-
rality, can be assumed to contain the origin, with boundary Γ of class C2

and σ : [0,∞[−→ R a positive continuously di�erentiable increasing function,
unbounded from above. Let us consider the family of bounded increasing sub-
domains {Ωt}06t<∞ of Rn given by

Ωt = ht(Ω), Ω0 = h0(Ω), ht : y ∈ Ω 7−→ x = σ(t)y

whose boundaries are denoted by Γt, and Q̂ the non-cylindrical domain of Rn+1

Q̂ =
⋃

06t<∞
Ωt × {t} ,

with lateral boundary

Γ̂ =
⋃

06t<∞
Γt × {t} .

REV. ROUMAINE MATH. PURES APPL. 63 (2018), 1, 1�26



2 F. Lasfer, R.Benabidallah and F. Ebobisse 2

We consider the following mixed problem related to a nonlinear equation
of Kirchho� type

utt + µut − M̃
(∫

Ωt

|∇u|2dx
)

∆u = 0 in Q̂ ,(1.1)

u|Γ̂ = 0 ,(1.2)

u|t=0 = u0, ut|t=0 = u1,(1.3)

where the given function M̃ satis�es the following conditions

(1.4) M̃ ∈ C2([0,∞[), M̃(λ) > m0 > 0, M̃ ′(λ) > 0 ∀λ ∈ [0,∞[.

Here we want to solve the problem (1.1)�(1.3) globally in time regardless
of size of the initial data (u0, u1) ∈ H2(Ω0) ×H1(Ω0) provided the expansion
of moving domains Ωt is fairly slow.

In the literature, the equation (1.1) is called of hyperbolic-parabolic type.
This class of equations has been studied by several authors, for instance Lar'Kin
[26] and Bensoussan et al. [6]. Bisognin proved in [9] the existence of local
solution of (1.1) in both bounded and unbounded domains of Rn.

Whenever µ = 0, there is a large number of papers involving the Kirchho�-
Carrier operator

Lu = utt −
(

1 + M̃
(∫

Ω
|∇u|2dx

))
∆u.

We recall that in the case n = 1 with M(λ) = aλ + b and a, b > 0, the
equation Lu = 0 was proposed by Kirchho� [25] in his book of Mathematical
Physics in 1883, to describe the oscillations of an elastic stretched string. This
equation was studied by some other authors like, Carrier [13], Bernstein [7],
Dickey [17, 18], Menzala [31]. The result of local existence for Lu = 0 was
obtained by some of the authors quoted above with initial data taken in usual
Sobolev spaces and for both Dirichlet and periodic boundary conditions. The
�rst result on global solvability for the Kirchho� equation was established by
Bernstein [7] in dimension n = 1 for analytic initial data. This result was
extended later by Pohozaev [36], Arosio-Spagnolo [1], Kajatani-Yamaguti [24] in
dimension n > 2 . Throughout the years, these results on the global solvability
for analytical initial data were extended and re�ned later by several authors
(see for instance, Nishihara [34], Ghisi-Gobbino [21]),

The global solvability for large non-analytic initial data has been till now
a deep open problem. Several results on the global solvability for small non-
analytical (mainly of class C∞ with compact support, Gevrey class, or Sobolev
spaces) initial data are well established in the literature (see for instance, [10,
15, 16, 22, 30, 38�40]). We also mention that, for non analytical initial data,
Pohozaev [37] and Menzala-Pereira [32] for instance, have obtained some global
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existence results, using non physical functions M(r) behaving like (αr + β)−2,
α and β being positive constants.

In order to obtain a global solution for Lu = f several authors (see for
instance Nishihara [35]), have introduced damping terms like −∆ut or ∆2u
which allow to get strong estimates in order to control the nonlinear term
proving in this way the global existence result. Another class of dissipative
mechanisms was considered by Ikehata and Okazawa in [23], where the authors
studied the following equation of a stretched string with "frictional" damping

utt − (1 + M̃(

∫
Ω
|∇u(x, t)|2dx))∆u+ µut = 0

and showed the existence of global strong solutions, provided µ (a parameter
depending on the initial datum) is large enough. Other authors have considered
a model with a nonlinear damping term g(ut) replacing the term of µut.

The problem (1.1)�(1.3) was studied in [2,3] globally in time in dimension
two provided the initial data are small and with non homogeneous Dirichlet
boundary condition. In the literature, several works have been devoted to
evolution problems in non-cylindrical domains (see [4, 5, 8, 11, 14, 20, 28]). For
instance, the heat equation, the Navier-Stokes equation and the wave equation
have been studied in non-cylindrical domains. The proof of the existence of both
local and global solutions in most of those articles is based on suitable change
of variables which allows to transform the problem in another problem in a
cylindrical domain. Other methods have developed to solve evolution problems
in non cylindrical domains. For instance, Cannarsa et al. developed in [11]
a method which consists in transforming the problem into a non autonomous
initial boundary problem in the Lebesgue space L2(Ω), involving a family of
unbounded operators with variable coe�cients.

As it is well known, the result about local existence of solutions was
proved in cylindrical and non-cylindrical domains by many authors cited in
the reference. Our principal attention in this paper is devoted to the global
existence of solutions and their asymptotic behaviour. We follow here the
change of variable method described above. As announced above, this problem
has already been studied in [2, 3] in the the two-dimensional space case.

Our goal in this paper is to extend the results in the articles [2,3] in higher
dimensional space and for opportunely large initial data. We succeeded to do
so under the further assumption that the expansion of the domains Ωt is slow
and that the size of the initial domain Ω0 is small.

To this aim, we will �rst study our problem in the cylinder Q = Ω×]0,∞[.
The domains Q and Q̂ are related by the di�eomorphism τ : Q̂ −→ Q de�ned by

(1.5) τ(x, t) := (y, t) = (
x

σ(t)
, t) for (x, t) ∈ Q̂.
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Whose inverse τ−1 : Q −→ Q̂ is given by

(1.6) τ−1(y, t) := (x, t) = (yσ(t), t).

If we set

(1.7) v(y, t) := u ◦ τ−1(y, t) = u(yσ(t), t),

then the initial boundary value problem (1.1)�(1.3) becomes

vtt + µvt −
1

σ2
M̃
(∫

Ω
|σ

n−2
2 ∇v|2dy

)
∆v = F̃ (t, v) ,(1.8)

v|∂Ω = 0, v|t=0 = v0, vt|t=0 = v1,(1.9)

where

F̃ (t, v) := −
(σ′
σ

)2 n∑
i,j=1

∂yi(yiyj∂yjv) + a1(t, y) · ∇vt + a2(t) · ∇v,(1.10)

a1(t, y) := 2
σ′

σ
y, a2(t, y) := σ−2y(σσ′′ + µσσ′ + (n− 1)σ′2).(1.11)

Remark 1.1. Note that the initial data (v0, v1) is determined by the given
couple (1.3) (u0, u1) and depends of course on the initial position σ(0) and the
initial velocity σ′(0), thus (see (1.25)) on σ0 and σ1. But considering subsequent
assumption (see (2.2)) on σ0 and σ1, the only dependency of (v0, v1) in terms
of σ0 is meaningful. To emphasize this dependency, when required it will be
noted (v0

σ0
, v1
σ0

) instead of (v0, v1).

Indeed, given (u0, u1), the couple of initial data (v0, v1) is determined
using equations

(1.12) x ∈ Ω0 = σ(0)Ω, u0(x) = u(σ(0)y, 0) = v0(y), y ∈ Ω

and (see (1.7) and (1.25))

(1.13) u1(x) = v1(y)− ασ1

σ0
y · ∇v0(y), v1(y) = vt(y, t)|t=0.

We set

M(s) := M̃(s)− m0

2
,(1.14)

aij(t, y) :=
m0

2σ2
δij −

(σ′
σ

)2
yiyj (i, j = 1, n

)
.(1.15)

According to (1.14) and (1.4), it follows that

(1.16) M(λ) >
m0

2
, M ∈ C2([0,∞[), M ′(λ) > 0, ∀λ ∈ [0,∞[ .

Given (1.14)�(1.15), the problem (1.8) and (1.9) is rewritten as

vtt + µvt −
1

σ2
M
( ∫

Ω
|σ

n−2
2 ∇v|2dy

)
∆v = F (t, v) ,(1.17)
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v|∂Ω = 0 ,(1.18)

v|t=0 = v0, vt|t=0 = v1,(1.19)

with

(1.20) F (t, v) = A(t)v + a1(t, y) · ∇vt + a2(t, y) · ∇v,

where

A(t) =
n∑

i,j=1

∂yi(aij(t, y)∂yjv).

We set

a(t, u, v) =
n∑

i,j=1

∫
Ω
aij(t, y)(∂yiu)(∂yjv)dy(1.21)

a′(t, u, v) =

n∑
i,j=1

∫
Ω
a′ij(t, y)(∂yiu)(∂yjv)dy.(1.22)

To study (1.17)�(1.19) we need some hypotheses on the function σ. Let
us �rst recall that the function σ is positive, increasing and unbounded from
above. Moreover, we assume that

(1.23) σ ∈ C3([0,∞[), σ(0) > 0, 0 6 σ′(t) 6
1

d

√
m0

2
∀t > 0,

where d = diam(Ω). The second condition (1.23) implies that

(1.24)
n∑

i,j=1

aijξiξj > 0 ∀ξ ∈ Rn\{0}.

In order to avoid tedious abstract computations, we work throughout the
paper with a typical family of functions σ which satisfy (1.23), that is

(1.25) σ(t) = (σ0 + σ1t)
α, 0 < α <

1

2
.

where σ0 and σ1 are positive constants chosen so that (1.23) is satis�ed. Note
that this assumption means that Q̂ is increasing in the sense that, if t > t′ then
Ωt contains Ωt′ .

This paper is organised as follows. In Section 2, we present the result on
the local existence for the problem (1.17)�(1.19) (and hence, for the problem
(1.1)�(1.3)). The main di�culty in this paper as well as in [2,3] lies in the deri-
vation of the a priori estimates in Section 3, needed in order to extend the local
solution and get the results of global existence for (1.17)�(1.19) and (1.1)�(1.3).
The estimates in the Lemmas 3.1�3.6 are obtained by carefully choosing test
functions for the equation (1.17), which are products of the unknown function
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v (or some of its time derivatives) with suitable powers of the function σ des-
cribing the expansion of the domain (see (3), (3), (3), (3) and (3)). Section 4
is devoted to the existence of the global solution and its asymptotic behaviour
with initial data opportunely large enough.

2. LOCAL SOLUTION

As mentioned in the introduction, the results about local existence of solu-
tions were proved in cylindrical and non-cylindrical domains by many authors
cited in the reference (see for exemple [4]). Through a process of approxi-
mation and compactness arguments, we can show that, for any initial data
(v0, v1) ∈ H2(Ω) × H1(Ω), there exists t̄ > 0 such that the problem (1.17)�
(1.19) has a unique local solution v such that

v ∈ L∞(0, t̄;H1
0 (Ω)∩H2(Ω)), vt ∈ L∞(0, t̄;H1(Ω)) and vtt ∈ L∞(0, t̄;L2(Ω)).

So, it follows that u = v ◦ τ (see (1.5) for the de�nition of τ) is the unique local
solution of the problem (1.1)�(1.3) with

u ∈ L∞(0, t̄;H1
0 (Ωt) ∩H2(Ωt)) ,(2.1)

ut ∈ L∞(0, t̄;H1(Ωt)), utt ∈ L∞(0, t̄;L2(Ωt)).

The global existence and asymptotic behavior of the problem (1.1)�(1.3)
with small initial data have been studied in [2] in dimensional n = 2. Here, we
want to improve the result in [2] in the sense that n > 3 and size of initial data
may be large enough. The global solution will be obtained by combining the
result of local existence and suitable a priori estimates. These estimates which
will be obtained in the following lemmas require a more elaborate treatment
unlike the case σ bounded, because the assumption σ(t) → ∞ for t → ∞
makes the equation (1.17) degenerate at in�nity. However, these estimates will
be established under the assumptions (see (1.25))

(2.2) 0 < ε1 6 σ0 6 ε0 < 1, 0 6 σ1 6 Kε
1+α
1 ,

where ε0, ε1, K are positive constants. It should be noted (see (1.25)) that for
all j > 2

|σ(j)(t)| 6 Kj−1|(α− 1)(α− 2) · · · (α− (j − 1))|εα(j−1)
0 σ′(t) for all t > 0,

(2.3)

0 < σ′(t) 6 αKε2α
0 ,

σ′

σ
6 αKεα0 for all t > 0,

which follows immediately from (2.2), (1.25) and the inequality

|σ(j)(t)| 6 Kεα0 |α− j + 1||σ(j−1)(t)| for all t > 0.
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3. A PRIORI ESTIMATES

Let us bear in mind that, given the initial expansion Ω0 = σ0Ω which
will be assumed (see (2.2)) small enough and initial data (u0, u1) ∈ H2(Ω0)×
H1(Ω0), our goal here is to show that the problem (1.1)�(1.3) admits a global
solution u if the size

(3.1) R(Ω0) = ‖u0‖2H2(Ω0) + ‖u1‖2H1(Ω0)

of initial data is large enough. Since u = voτ (see (1.6)), it su�ces to show
that the problem (1.17) and (1.19) has a global solution v if the size of initial
data (v0

σ0
, v1
σ0

) ∈ H2(Ω)×H1(Ω) is large enough. For that purpose, we set

(3.2) R(σ0) = ‖v0
σ0
‖2H2(Ω) + ‖v1

σ0
‖2H1(Ω), λ(σ0) = σ

α(n−3+r)
0 R(σ0),

n > 3, 0 < r < 1.

and we suppose

(3.3) lim
σ0→0

λ(σ0) = 0.

The assumption (3.3) speci�es in what sense the size of our initial data
(v0
σ0
, v1
σ0

) can be considered rather large if σ0 is small enough. Moreover, if
(3.3) is satis�ed, then the size R(Ω0) can be considered large enough. More
precisely, we have

(3.4) R(Ω0) 6
CΩ

|Ω0|
1+r
n

.

In fact, recalling (1.12), (1.13) and (3.2), by easy computations, we can
verify that

(3.5) ‖u0‖2H2(Ω0) + ‖u1‖2H1(Ω0) 6 CΩσ
α(n−4)
0 (‖v0

σ0
‖2H2(Ω) + ‖v1

σ0
‖2H1(Ω))

6 CΩσ
−α(1+r)
0 λ(σ0)

and considering (3.3), necessarily we have

(3.6) σ
α(1+r)
0 ‖u0‖2H2(Ω0) + ‖u1‖2H1(Ω0) 6 CΩλ(σ0) 6 CΩ

whence (3.6) because |Ω0| = σαn0 |Ω|.
In statements following lemmas, we denote by Ci (i = 0, . . . , 4) the con-

stants which depend on Ω, n , µ, m0 and (see (3.8)) M0 but (see (2.2)) neither
on σ0 nor σ1. In addition, in the proof of each lemma, we will denote by C̃i
(i = 1, · · · 8) the constants that depend only on Ω, n, µ and possibly on m0

and M0. As for the constants that depend only on Ω and n, they will be de-
signated by CΩ. Moreover, we denote ‖·‖L2 and ‖·‖Hm for the usual norms in
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the spaces L2 = L2(Ω) and Hm = Hm(Ω) respectively. In the sequel, �xed σ0

small enough we consider the family of initial data (v0
σ0
, v1
σ0

) ∈ H2(Ω)∩H1(Ω)
verifying (3.3) and we will derive estimates of the local solution of problem
(1.17)�(1.19) that will allow us to extend this to a global solution. We begin
by showing a crucial estimate which will be used essentially in the proof of
Lemmas 3.5�3.7.

Lemma 3.1. Let σ0 small enough and (v0
σ0
, v1
σ0

) ∈ H2(Ω)×H1(Ω). Given
(3.3), (2.2) and (1.25), we have

(3.7) ‖σ
n−2

2 ∇v‖2L2 6 C0σ
α(n−2)
0 (‖v1

σ0
‖2L2 + ‖v0

σ0
‖2H1), n > 3

(3.8)
∣∣M (i)

(
‖σ

n−2
2 ∇v‖2L2

)∣∣ 6M0, i = 0, 1, 2

where M (i) is the ith derivative of M and M0 a positive constant independent

of on σ0 and σ1.

Proof. To prove (3.7), we �rst multiply equation (1.17) with

σ2σ
n−2

2 (σ
n−2

2 v)t.

By integrating over Ω, we obtain

(3.9)
1

2

d

dt
E(t) + µσ2‖(σ

n−2
2 v)t‖2L2 =

5∑
k=1

Ik,

where

(3.10) E(t) := σ2‖(σ
n−2

2 v)t‖2L2 + σ2a(t, σ
n−2

2 v, σ
n−2

2 v) + M̂(‖σ
n−2

2 ∇v‖2L2) ,

(3.11) M̂(λ) :=

∫ λ

0
M(s)ds .

and

I1 := (n− 1)
σ′

σ
σ2‖(σ

n−2
2 v)t‖2L2 −

1

2
σ2

∫
Ω

(∇ · a1)|(σ
n−2

2 v)t|2dy ,

I2 := −n− 2

2

σ′

σ
σ2

∫
Ω

(a1.∇(σ
n−2

2 v)(σ
n−2

2 v)tdy ,

I3 := σ2

∫
Ω

(a2.∇(σ
n−2

2 v)(σ
n−2

2 v)tdy ,

I4 :=
n− 2

2

[σ′′
σ
− n

2

∣∣∣σ′
σ

∣∣∣2 + µ
σ′

σ

]
σ2

∫
Ω

(σ
n−2

2 v)(σ
n−2

2 v)tdy ,

I5 :=
1

2
σ2a′(t, σ

n−2
2 v, σ

n−2
2 v) +

σ′

σ
σ2a(t, σ

n−2
2 v, σ

n−2
2 v) .



9 On global and decay solution for a nonlinear Kirchho� model 9

Recalling the expressions (1.11) of a1 and a2, it is easy to see that

I1 = −σ
′

σ
σ2‖(σ

n−2
2 v)t‖2L2 6 0,(3.12)

|I2 + I3 + I4| 6
µ

4
σ2‖(σ

n−2
2 v)t‖2L2(3.13)

+ CΩ

(
|σ′|2 + |σ′′|2 + |σ′|2

∣∣σ′
σ

∣∣2)‖σ n−2
2 ∇v‖2L2 .

Furthermore, by recalling (1.21), (1.22) and (1.15)) we get

I5 =−σ′′σ′
n∑

i,j=1

∫
Ω
yiyj(σ

n−2
2 ∂yiv)(σ

n−2
2 ∂yjv)dy 6 CΩ(|σ′′|2+|σ′|2)‖σ

n−2
2 ∇v‖2L2 .

Therefore, on account of (3.13) and (3.12)

(3.14)
5∑

k=1

Ik 6
µ

2
σ2‖(σ

n−2
2 v)t‖2L2 +CΩ

(
|σ′|2 + |σ′′|2 + |σ′|2

∣∣σ′
σ

∣∣2)‖σ n−2
2 ∇v‖2L2

and by adding (3.14) to (3.9) it follows

(3.15)
d

dt
E(t) 6 CΩ

(
|σ′|2 + |σ′′|2 + |σ′|2

∣∣σ′
σ

∣∣2)‖σ n−2
2 ∇v‖2L2 .

Since (see (3.10), (3.11) and (1.16))

(3.16) E(t) > M̂(‖σ
n−2

2 ∇v‖2L2)) >
m0

2
‖σ

n−2
2 ∇v‖2L2 ,

and (see (2.3)) if ε0 is small enough

|σ′′|2 + |σ′|2 +
∣∣∣σ′
σ

∣∣∣2|σ′|2 6 2
(
|σ′|2 +

∣∣∣σ′
σ

∣∣∣2),
from (3.15) it follows

(3.17)
d

dt
E(t) 6

CΩ

m0
ϕ(t)E(t), ϕ(t) = |σ′|2 +

∣∣∣σ′
σ

∣∣∣2.
Note that, given (2.2) and (1.25) it is easy to see that ϕ is, relative to σ0

and σ1, uniformly bounded in L1(0,∞). By applying the Gronwall lemma, we
get

(3.18) E(t) 6 E(0) exp(
CΩ

m0
‖ϕ‖L1)

and thanks to (3.16), we have

(3.19) ‖σ
n−2

2 ∇v‖2L2 6
2

m0
E(0) exp(

CΩ

m0
‖ϕ‖L1).

From (3.10) (see also (1.25) and (1.21)), we have

E(0) := σαn0

∥∥v1
σ0

+ α
n− 2

2
v0
σ0

∥∥2

L2
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+ σ
α(n−2)
0

n∑
i,j=1

∫
Ω

(m0

2
δij − α2σ2α

0

σ2
1

σ2
0

yiyj
)
(∂yiv

0
σ0

)(∂yjv
0
σ0

)dy

+ M̂(‖σα(n−2)
0 ∇v0

σ0
‖2L2).

According to (2.2), we have

E(0) 6 C̃0σ
α(n−2)
0 (‖v1

σ0
‖2L2 + ‖v0

σ0
‖2H1) + M̂(σ

α(n−2)
0 ‖∇v0

σ0
‖2L2).

Furthermore, since (see (3.3) and (3.2)) σ
α(n−2)
0 ‖∇v0

σ0
‖2L2 6 λ(σ0) 6 1,

thanks to (1.16), we have

(3.20) M
(
σ
α(n−2)
0 ‖∇v0

σ0
‖2L2

)
6M(λ(σ0)) 6 sup

06λ61
M(λ)

given (3.11), we can see that

(3.21) M̂(‖σα(n−2)
0 ∇v0

σ0
‖2L2) 6 σα(n−2)

0 ‖∇v0
σ0
‖2L2 sup

06λ61
M(λ)

and so

(3.22) E(0) 6 C̃0σ
α(n−2)
0 (‖v1

σ0
‖2L2 + ‖v0

σ0
‖2H1)

which, together with (3.19) gives us (3.7).
As to (3.8), since (see (1.16)) M ∈ C2([0,∞[), we set

(3.23) sup
06λ61

|M (i)(λ)| = Ni, M0 = max(N0, N1, N2).

Given (3.7) and (3.3), we have ‖σ
n−2

2 ∇v‖2L2 6 C0λ(σ0) 6 1 for σ0 small
enough and so ∣∣M (i)

(
‖σ

n−2
2 ∇v‖2L2

)∣∣ 6 sup
06λ61

|M (i)(λ)| 6M0

from which follows (3.8). �

Lemma 3.2. Let 0 < r < 1. Under the same assumptions as the lemma

3.1, we have

(3.24)
[ 1

σ
1−r

2

‖σ
n−2

2 ∇v‖2L2

]2
6 C0σ

α(1−r)
0 λ2

0 6 1,

1

σ
1−r

2

‖σ
n−2

2 ∇v‖L2 6 C0λ
1
2
0 6 1

(3.25) ‖σ
n−2

2 ∇v‖4L2 6 C0σ
2α(1−r)
0 λ2

0 6 1,[ 1

σ
1−r

3

‖σ
n−2

2 ∇v‖2L2

] 3
2 6 C0σ

α(1−r)
0 λ

3
2
0 6 1

if (see (2.2)) σ0 is small enough.
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Proof. The proof follows immediately from (3.7) and (3.3) (see also (3.2)
and (1.25)). �

Lemma 3.3. Let 0 < r < 1 and

(3.26) L1(t) := σ3−r‖(σ
n−2

2 v)t‖2L2 + σ3−ra(t, σ
n−2

2 v, σ
n−2

2 v)

+ σ1−rM̂(‖σ
n−2

2 ∇v‖2L2).

Given (2.2) and (1.25), we have the following inequality

(3.27)
d

dt
L1(t) + µσ3−r‖(σ

n−2
2 v)t‖2L2 6 C1ε

α
0σ

1−r‖σ
n−2

2 ∇v‖2L2

+ C1ϕ(t)σ1−r‖σ
n−2

2 ∇v‖2L2 ,

where ϕ is given by (3.17).

Proof. An easy computation of the scalar product in L2(Ω) of the equation
(1.17) with

σ3−rσ
n−2

2 (σ
n−2

2 v)t
gives

(3.28)
1

2

d

dt
L1(t) + µσ3−r‖(σ

n−2
2 v)t‖2L2 =

5∑
k=1

Ik

with

I1 :=
(
n− 2 +

3− r
2

)
σ′

σ
σ3−r‖(σ

n−2
2 v)t‖2L2 −

1

2
σ3−r

∫
Ω
(∇ · a1)|(σ

n−2
2 v)t|2dy,

I2 := −n− 2

2

σ′

σ
σ3−r

∫
Ω

(a1.∇(σ
n−2

2 v)(σ
n−2

2 v)tdy ,

I3 := σ3−r
∫

Ω
(a2 · ∇(σ

n−2
2 v)(σ

n−2
2 v)tdy

I4 :=
n− 2

2

[σ′′
σ
− n

2

∣∣∣σ′
σ

∣∣∣2 + µ
σ′

σ

]
σ3−r

∫
Ω

(σ
n−2

2 v)(σ
n−2

2 v)tdy ,

I5 :=
1

2
σ3−ra′(t, σ

n−2
2 v, σ

n−2
2 v) +

3− r
2

σ′

σ
σ3−ra(t, σ

n−2
2 v, σ

n−2
2 v)

+
1− r

2

σ′

σ
σ1−rM̂(‖σ

n−2
2 ∇v‖2L2) .

Recalling the expression (1.11) of a1 and of a2, it is easy to see that

I1 = −1

2
(1 + r)

σ′

σ
σ3−r‖(σ

n−2
2 v)t‖2L2 6 0 ,

I2 6
µ

4
σ3−r‖(σ

n−2
2 v)t‖2L2 + CΩ

∣∣∣σ′
σ

∣∣∣2|σ′|2σ1−r‖σ
n−2

2 ∇v‖2L2 ,
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I3+I4 6
µ

4
σ3−r‖(σ

n−2
2 v)t‖2L2 + CΩ

(
|σ′′|2 + |σ′|2 +

∣∣∣σ′
σ

∣∣∣2|σ′|2)σ1−r‖σ
n−2

2 ∇v‖2L2 .

Furthermore, on account of (1.21), (1.22) and (1.15)) we get

I5 =
1− r

2

σ′

σ
σ1−r[m0

2
‖σ

n−2
2 ∇v‖2L2 + M̂(‖σ

n−2
2 ∇v‖2L2)

]
−
(
σ′′σ′ − σ′

σ
|σ′|2

)
σ1−r

n∑
i,j=1

∫
Ω
yiyj(σ

n−2
2 ∂yiv)(σ

n−2
2 ∂yiv)dy.

Therefore, considering (1.25), (2.2) and (3.8), we have

I5 6
1− r

2
αKεα0

(m0

2
+M0

)
σ1−r‖σ

n−2
2 ∇v‖2L2

+ CΩ(|σ′′|2 + |σ′|2 +
σ′

σ
|σ′|2

)
σ1−r‖σ

n−2
2 ∇v‖2L2

and so

I5 6 C̃1ε
α
0σ

1−r‖σ
n−2

2 ∇v‖2L2 + CΩ(|σ′′|2 + |σ′|2 +
∣∣σ′
σ

∣∣2|σ′|2)σ1−r‖σ
n−2

2 ∇v‖2L2 .

Given estimates of terms Ii (i = 1, . . . , 5), we obtain

5∑
k=1

Ik 6
µ

2
σ3−r‖(σ

n−2
2 v)t‖2L2 + C̃1ε

α
0σ

1−r‖σ
n−2

2 ∇v‖2L2(3.29)

+ C̃1

(
|σ′′|2 + |σ′|2 +

∣∣∣σ′
σ

∣∣∣2|σ′|2 +
∣∣∣σ′
σ

∣∣∣2)σ1−r‖σ
n−2

2 ∇v‖2L2 .

Recalling the expression (3.17) of ϕ and taking account of (2.3), we have
if ε0 is small enough

(3.30) |σ′′|2 + |σ′|2 +
∣∣∣σ′
σ

∣∣∣2|σ′|2 +
∣∣∣σ′
σ

∣∣∣2 6 2ϕ(t),

and given (3.29) and (3.28) we have (3.27) and therefore Lemma 3.3. �

Lemma 3.4. Let 0 < r < 1 and

(3.31) L2(t) := µσ3−r‖σ
n−2

2 v‖2L2 + 2σ3−r
∫

Ω
(σ

n−2
2 v)(σ

n−2
2 v)tdy .

Given (2.2) and (1.25), the following inequality holds

d

dt
L2(t) +

m0

2
σ1−r‖σ

n−2
2 ∇v‖2L2 6 σ3−r‖(σ

n−2
2 v)t‖2L2(3.32)

C2ϕ(t)(σ3−r‖σ
n−2

2 v‖2L2 + σ3−r‖(σ
n−2

2 v)t‖2L2).

Proof. Taking the scalar product in L2(Ω) of equation (1.17) with

σ3−rσ
n−2

2 (σ
n−2

2 v),
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we obtain

(3.33)
1

2

d

dt
L2(t) + σ1−rM(‖σ

n−2
2 ∇v‖2L2)‖σ

n−2
2 ∇v‖2L2

+ σ3−ra(t, σ
n−2

2 v, σ
n−2

2 v) =

4∑
k=1

Ik,

where

I1 :=
1

2

[
µ(n+ 1− r)σ

′

σ
+ (n− 2)

σ′′

σ
+

1

2
n(n− 2)

∣∣∣σ′
σ

∣∣∣2]σ3−r‖σ
n−2

2 v‖2L2 ,

I2 := σ3−r‖(σ
n−2

2 v)t‖2L2 + (n+ 1− r)σ
′

σ
σ3−r

∫
Ω

(σ
n−2

2 v)(σ
n−2

2 v)tdy,

I3 := −1

2
σ3−r

∫
Ω

(∇ · a2)|σ
n−2

2 v|2dy,

I4 := −σ3−r
∫

Ω
(∇ · a1)(σ

n−2
2 v)(σ

n−2
2 vt)dy−σ3−r

∫
Ω
(a1 · σ

n−2
2 ∇v)(σ

n−2
2 vt)dy.

We have

I1 6
m0

16
σ1−r‖σ

n−2
2 ∇v‖2L2 + C̃2

[
|σ′′|2 + |σ′|2 +

∣∣σ′
σ

∣∣2|σ′|2]σ3−r‖σ
n−2

2 v‖2L2 ,

I2 6
m0

16
σ1−r‖σ

n−2
2 ∇v‖2L2 + (1 + C̃2|σ′|2)σ3−r‖(σ

n−2
2 v)t‖2L2 .

Moreover, given the expressions (1.11) of a1 and a2, we can estimate the
last terms so that

I3 + I4 6
m0

8
σ1−r‖σ

n−2
2 ∇v‖2L2

+ C̃2(|σ′′|2 + |σ′|2)(σ3−r‖σ
n−2

2 v‖2L2 + σ3−r‖(σ
n−2

2 v)t‖2L2).

By adding these estimates to (3.33) and taking into account (3.30), we
obtain (3.32) and so the lemma 3.4. �

Lemma 3.5. Let 0 < r < 1 and

(3.34) L3(t) := σ3−r‖(σ
n−2

2 vt)t‖2L2 + σ3−ra(t, σ
n−2

2 vt, σ
n−2

2 vt)

+ σ1−rM(‖σ
n−2

2 ∇v‖2L2)‖σ
n−2

2 ∇vt‖2L2

+
1

2
σ1−rM ′(‖σ

n−2
2 ∇v‖2L2)[

d

dt
‖σ

n−2
2 ∇v‖2L2 ]2

+ 2σ3−ra′(t, σ
n−2

2 v, σ
n−2

2 vt)

− 4
σ′

σ
σ1−rM(‖σ

n−2
2 ∇v‖2L2)

∫
Ω
(σ

n−2
2 ∇vt)(σ

n−2
2 ∇v)dy.

Given (3.3), (2.2) and (1.25), the following inequality holds
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(3.35)
d

dt
L3(t) + µσ3−r‖(σ

n−2
2 vt)t‖2L2 6 C3ε

α
0 (σ1−r‖σ

n−2
2 ∇v‖2L2

+ σ1−r‖σ
n−2

2 ∇vt‖2L2)

+ C3ϕ(t)(σ1−r‖σ
n−2

2 ∇vt‖2L2 + σ1−r‖σ
n−2

2 ∇v‖2L2)

+ C3

[
σ1−r‖σ

n−2
2 ∇vt‖2L2

] 3
2 + C3σ

1−r‖σ
n−2

2 ∇v‖2L2

(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 1
2 .

Proof. If we di�erentiate (1.17) with respect to t and we take the scalar
product in L2(Ω) with

σ3−rσ
n−2

2 (σ
n−2

2 vt)t,
we obtain

(3.36)
1

2

d

dt
L3(t)+µσ3−r‖(σ

n−2
2 vt)t‖2L2+

3 + r

2

σ′

σ
σ1−rM(‖σ

n−2
2 ∇v‖2L2)‖σ

n−2
2 ∇vt‖2L2 ,

=
7∑

k=1

Ik +
6∑

k=1

Jk,

where

I1 := (n− 2 +
3− r

2
)
σ′

σ
σ3−r‖(σ

n−2
2 vt)t‖2L2 −

1

2
σ3−r

∫
Ω
|(σ

n−2
2 vt)t|2∇ · a1dy,

I2 := −n− 2

2

σ′

σ
σ3−r

∫
Ω

(a1.∇(σ
n−2

2 vt)(σ
n−2

2 vt)tdy ,

I3 :=
n− 2

2

[σ′′
σ
− (n− 1)

(σ′
σ

)2
+ µ

σ′

σ

]
σ3−r

∫
Ω

(σ
n−2

2 vt)(σ
n−2

2 vt)tdy ,

I4 := σ3−r
∫

Ω
a2 · ∇(σ

n−2
2 vt)(σ

n−2
2 vt)tdy ,

I5 := σ3−r
∫

Ω
a′2.∇(σ

n−2
2 v))(σ

n−2
2 vt)tdy

I6 := σ3−r
∫

Ω
a′1 · ∇(σ

n−2
2 vt)(σ

n−2
2 vt)tdy ,

I7 :=
n− 2

2

σ′

σ
σ3−ra′(t, σ

n−2
2 vt, σ

n−2
2 v) + σ3−ra′′(t, σ

n−2
2 vt, σ

n−2
2 v)

+
3

2
σ3−ra′(t, σ

n−2
2 vt, σ

n−2
2 vt) +

3− r
2

σ′

σ
σ3−ra(t, σ

n−2
2 vt, σ

n−2
2 vt) ,

and the nonlinear terms Jk they are given by

J1 := −
[
2
σ′′

σ
+ (n+ 2− 2r)

(σ′
σ

)2]
σ1−rM(‖σ

n−2
2 ∇v‖2L2

)∫
Ω

(σ
n−2

2 ∇vt)(σ
n−2

2 ∇v)dy ,
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J2 :=
n− 6

2

σ′

σ
σ1−rM ′(‖σ

n−2
2 ∇v‖2L2)

d

dt
(‖σ

n−2
2 ∇v‖2L2)∫

Ω
(σ

n−2
2 ∇vt)(σ

n−2
2 ∇v)dy,

J3 :=
(
(
n− 2

2
+

1− r
4

)σ′
σ
σ1−rM ′(‖σ

n−2
2 ∇v‖2L2)

[ d
dt

(‖σ
n−2

2 ∇v‖2L2)
]2
,

J4 :=
n− 2

2

(σ′
σ

)′
σ1−rM ′(‖σ

n−2
2 ∇v‖2L2)

d

dt
(‖σ

n−2
2 ∇v‖2L2)‖σ

n−2
2 ∇v‖2L2 ,

J5 :=
1

4
σ1−rM ′′(‖σ

n−2
2 ∇v‖2L2)

[ d
dt

(‖σ
n−2

2 ∇v‖2L2)
]3
,

J6 :=
3

2
σ1−rM ′(‖σ

n−2
2 ∇v‖2L2)

d

dt
(‖σ

n−2
2 ∇v‖2L2)‖σ

n−2
2 ∇vt‖2.

The terms Ik are similar to those in the identity (3.28) and therefore, can
be (in particular the �rst and last term) estimated in the same way. We then
obtain taking into account (2.3), (2.2) and (1.25)

(3.37)
7∑

k=1

Ik 6
µ

2
σ3−r‖(σ

n−2
2 vt)t‖2L2 + CΩϕ(t)(σ1−r‖σ

n−2
2 ∇v‖2L2

+ σ1−r‖σ
n−2

2 ∇vt‖2L2 ,

where, let us recall the here

(3.38) ϕ(t) := |σ′|2 +
∣∣σ′
σ

∣∣2.
As for the non-linear terms, given (3.8), (3.7), (3.3), (2.3), (2.2) and (1.25),

one has

(3.39)
4∑

k=1

Jk 6 C̃3ε
α
0 (σ1−r‖σ

n−2
2 ∇vt‖2L2 + σ1−r‖σ

n−2
2 ∇v‖2L2).

Regarding the last terms J5 and J6, given (3.8), we get

J5 6 C̃3

∣∣σ′
σ

∣∣3(σ1−r‖σ
n−2

2 ∇v‖2L2)‖σ
n−2

2 ∇v‖4L2

+ C̃3

(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 3
2
( 1

σ
1−r

3

‖σ
n−2

2 ∇v‖2L2

) 3
2 ,

and in view of (3.25)

J5 6 C̃3

∣∣σ′
σ

∣∣3(σ1−r‖σ
n−2

2 ∇v‖2L2) + C̃3

(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 3
2 .
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As for the last term J6, we have (see (3.8))

J6 6 C̃3

[ 1

σ
1−r

2

‖σ
n−2

2 ∇v‖L2

][
σ1−r‖σ

n−2
2 ∇vt‖2L2

] 3
2

+ C̃3
σ′

σ
σ1−r‖σ

n−2
2 ∇v‖2L2‖σ

n−2
2 ∇vt‖2L2 .

Since

σ′

σ
σ1−r‖σ

n−2
2 ∇v‖2L2‖σ

n−2
2 ∇vt‖2L2

=
σ′

σ

(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 3
4
(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 1
4 ‖σ

n−2
2 ∇v‖2L2

6
|σ′|2

2σ2

( 1

σ1−r ‖σ
n−2

2 ∇v‖2L2

)
(σ1−r‖σ

n−2
2 ∇v‖2L2)

(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 1
2

+
1

2

(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 3
2 ,

then thanks to (3.24) (see also (2.3))

J6 6 C̃3

[
σ1−r‖σ

n−2
2 ∇vt‖2L2

] 3
2 + C̃3σ

1−r‖σ
n−2

2 ∇v‖2L2

(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 1
2

and consequently, we have

(3.40)

J5+J66 C̃3

∣∣σ′
σ

∣∣3σ1−r‖σ
n−2

2 ∇v‖2L2+C̃3σ
1−r‖σ

n−2
2 ∇v‖2L2

(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 1
2

+ C̃3

(
σ1−r‖σ

n−2
2 ∇vt‖2L2

) 3
2 .

Finally, putting together (3.40), (3.39) and (3.37), from (3.36) it follows
the inequality (3.35) and thus this achieves the proof of lemma 3.5. �

Lemma 3.6. Let 0 < r < 1 and

(3.41) L4(t) := 2σ3−r
∫

Ω
(σ

n−2
2 v)t(σ

n−2
2 vt)tdy.

Given (3.3), (2.2) and (1.25), the following inequality holds

(3.42)
d

dt
L4(t) +

m0

2
σ1−r‖(σ

n−2
2 ∇vt)‖2L26C4(σ

3−r‖(σ
n−2

2 v)t‖2L2

+ σ3−r‖(σ
n−2

2 vt)t‖2L2) + C4ϕ(t)(σ1−r‖σ
n−2

2 ∇v‖2L2

+ σ3−r‖(σ
n−2

2 v)t‖2L2 + σ3−r‖(σ
n−2

2 vt)t‖2L2).

Proof. As in the proof of lemma 3.5, if we di�erentiate (1.17) with respect
to t and we take the scalar product in L2(Ω) of the new equation with

σ3−rσ
n−2

2 (σ
n−2

2 v)t ,
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we obtain

(3.43)
1

2

d

dt
L4(t) + σ1−rM(‖σ

n−2
2 ∇v‖2L2)‖σ

n−2
2 ∇vt‖2L2 + σ3−ra(t, σ

n−2
2 vt, σ

n−2
2 vt)

+ σ1−rM ′(σ
n−2

2 ‖∇v‖2L2)
[ d
dt

(‖σ
n−2

2 ∇v‖2L2)
]2

=

8∑
i=1

Ii

where

I1 :=
3n− 2r

2

σ′

σ
σ3−r

∫
Ω

(σ
n−2

2 v)t(σ
n−2

2 vt)tdy + σ3−r‖(σ
n−2

2 vt)t‖2L2 ,

I2 :=
[n− 2

2

(σ′′
σ

+
n

2

∣∣σ′
σ

∣∣2)+ µ
(3− r

2
+ n− 2

)σ′
σ

]
σ3−r‖(σ

n−2
2 v)t‖2L2 ,

I3 :=
n− 2

2

(σ′′
σ
− n

2
|σ
′

σ
|2
)
[
n− 2

2

σ′

σ
+ µ

]
σ3−r

∫
Ω

(σ
n−2

2 v)(σ
n−2

2 v)tdy ,

I4 := σ3−r
∫

Ω
[(a2 + a′1) · (σ

n−2
2 ∇vt + a′2 · (σ

n−2
2 ∇v)](σ

n−2
2 v)tdy ,

I5 := −σ3−ra′(t, σ
n−2

2 v, (σ
n−2

2 v)t) ,

I6 := σ3−r
∫

Ω
(a1 · (σ

n−2
2 ∇vtt))(σ

n−2
2 v)tdy ,

I7 := −n− 2

2

σ′

σ
σ1−rM(‖σ

n−2
2 ∇v‖2L2)

∫
Ω

(σ
n−2

2 ∇vt)(σ
n−2

2 ∇v)dy ,

I8 := (n− 2)
∣∣σ′
σ

∣∣2σ1−rM(‖σ
n−2

2 ∇v‖2L2)‖σ
n−2

2 ∇v‖2L2 .

Recalling the expression (1.11) of a1 and a2 (see also (1.22), (1.21) and
(1.15)) and taking account of (2.3) and (2.2), we can estimate the �rst six terms
so that

5∑
i=1

Ik 6
m0

12
σ1−r‖σ

n−2
2 ∇vt‖2L2

+ CΩ(σ3−r‖(σ
n−2

2 v)t‖2L2 + σ3−r‖(σ
n−2

2 vt)t‖2L2)

+ C̃4ϕ(t)(σ1−r‖σ
n−2

2 ∇v‖2L2 + σ3−r‖(σ
n−2

2 vt)t‖2L2 + σ3−r‖(σ
n−2

2 v)t‖2L2).

Furthermore, by integrating by parts, the term I6 can be estimated ensure
that

I6 6
m0

12
σ1−r‖σ

n−2
2 ∇vt‖2L2

+ C̃4ϕ(t)(σ1−r‖σ
n−2

2 ∇v‖2L2 + σ3−r‖(σ
n−2

2 v)t‖2L2 + σ3−r‖(σ
n−2

2 vt)t‖2L2).
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As for the latter terms, considering (3.8), (3.7), (2.3) and

I7 + I8 6
m0

12
σ1−r‖σ

n−2
2 ∇vt‖2L2 + C̃4ϕ(t)σ1−r‖σ

n−2
2 ∇v‖2L2 .

The proof of the lemma is completed by adding the above estimates of
the terms Ii to (3.43). �

Lemma 3.7. Let 0 < r < 1. We set

(3.44)

D(t) :=σ3−r[‖(σ n−2
2 v)t‖2L2+‖(σ

n−2
2 vt)t‖2L2

]
+σ1−r[‖σ n−2

2 ∇v‖2L2+‖σ
n−2

2 ∇vt‖2L2

]
,

(3.45) L(t) = σ3−r‖σ
n−2

2 v‖2L2 +D(t),

(3.46) L(t) := k1L1(t) + k2L2(t) + k3L3(t) + L4(t),

where Li(t) (i = 1, . . . 4) are given by (3.26), (3.31), (3.34) and (3.41) as for

k1, k2 and k3 are positive constants. Then the following inequalities hold

L(t) > b0L(t) ,(3.47)

d

dt
L(t) +

b1
4
D(t) 6 b2D(t)L(t) ,(3.48)

with positive constants b0, . . . , b2 independent of σ0.

Proof. Given (3.26), (3.31), (3.34) and (3.41), it is easy to see that

L1(t) > σ3−r‖(σ
n−2

2 v)t‖2L2 +
m0

2
σ1−r‖σ

n−2
2 ∇v‖2L2 ,

L2(t) >
µ

2
σ3−r‖σ

n−2
2 v‖2L2 −

2

µ
σ3−r‖(σ

n−2
2 v)t‖2L2

L3(t) > σ3−r‖(σ
n−2

2 vt)t‖2L2 +
m0

4
σ1−r‖σ

n−2
2 ∇vt‖2L2 − CΩσ

1−r‖σ
n−2

2 ∇v‖2L2 ,

L4(t) > −σ3−r‖(σ
n−2

2 vt)t‖2L2 − σ3−r‖(σ
n−2

2 v)t‖2L2 .

From which (see also (3.45)) we get

(3.49) L(t)>λ1σ
3−r‖(σ

n−2
2 v)t‖2L2 +λ2σ

1+r‖σ
n−2

2 ∇v‖2L2 +
k2µ

2
σ3−r‖σ

n−2
2 v‖2L2

+ λ3σ
3−r‖(σ

n−2
2 vt)t‖2L2 +

m0

4
k3σ

1−r‖σ
n−2

2 ∇vt‖2L2 ,

where

(3.50) λ1 := k1 −
2k2

µ
− 1, λ2 :=

k1m0

2
− CΩk3, λ3 := k3 − 1 .

On the order hand, if we multiply inequality (3.27), (3.32), (3.35) and
(3.42) by k1, k2, k3 and k4 = 1 respectively and summing, we obtain

d

dt
L(t) + λ4σ

3−r‖(σ
n−2

2 v)t‖2L2 + λ5σ
1−r‖σ

n−2
2 ∇v‖2L2(3.51)
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+λ6σ
3−r‖(σ

n−2
2 vt)t‖2L2 + λ7σ

1−r‖σ
n−2

2 ∇vt‖2L2

6(C1k1+C2k2+C3k3+C4)ϕ(t)
[
σ3−r(‖σ

n−2
2 v‖2L2 +‖(σ

n−2
2 v)t‖2L2 +‖(σ

n−2
2 vt)t‖2L2)

+ σ1−r(‖σ
n−2

2 ∇v‖2L2 + ‖σ
n−2

2 ∇vt‖2L2)
]

+ k3C3

[
σ1−r‖σ

n−2
2 ∇vt‖2L2

] 3
2

+ k3C3σ
1−r‖σ

n−2
2 ∇v‖2L2

[
σ1−r‖σ

n−2
2 ∇vt‖2L2

] 1
2 .

where

λ4 := k1µ− k2 − C4, λ5 :=
k2m0

2
− k1C1ε

α
0 − k3C3ε

α
0 ,(3.52)

λ6 := k3µ− C4, λ7 :=
m0

2
− k3C3ε

α
0 .

If ε0 is small enough, it is easy to see that we can choose k1, k2 and k3

such as (see (3.50) and (3.52))

(3.53) λi > 0 i = 1, . . . , 7.

Indeed, we �rst choose
(3.54)

k3 = 2 max
(
1,
C4

µ
,
2C4m0

3CΩµ
,

2m0

3CΩµ

)
, k1 =

3CΩk3

m0
, 0 < εα0 < min

(
1,

m0

4C3k3

)
so that

(3.55) λ2 =
1

2
CΩk3, λ3 > 1, λ6 > C4, λ7 >

m0

4
.

On the other hand, by choosing (see (3.54))
(3.56)

k2 =
3CΩk3

m0
µ−max(2C4, µ) > 0, 0 < εα0 6 min

(
1,

k2m0

4(k1C1 + C3k3)
,
m0

4C3k3

)
we have

λ4 = k1µ− k2 − C4 > C4, λ1 := k1 −
2k2

µ
− 1 > 1,(3.57)

λ5 =
k2m0

2
− k1C1ε

α
0 − C3ε

α
0k3 >

k2m0

4
.

So, considering (3.56)�(3.57), from (3.45) it follows

(3.58) L(t) > b0L(t), b0 = min
(
1,
k3CΩ

2
,
k2µ

2
,
k3m0

4

)
i.e. (3.47). Furthermore from (3.51) (see also (3.44) it follows

d

dt
L(t) + b1D(t)(3.59)

6 C̃5ϕ(t)
[
σ3−r(‖σ

n−2
2 v‖2L2 + ‖(σ

n−2
2 v)t‖2L2 + ‖(σ

n−2
2 vt)t‖2L2)
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+ σ1−r(‖σ
n−2

2 ∇v‖2L2 + ‖σ
n−2

2 ∇vt‖2L2)
]

+ k3C3

[
σ1−r‖σ

n−2
2 ∇vt‖2L2

] 3
2

+ + k3C3σ
1−r‖σ

n−2
2 ∇v‖2L2

[
σ1−r‖σ

n−2
2 ∇vt‖2L2

] 1
2 ,

where (see (3.56)�(3.57)).
(3.60)

b1 =min(λj , j = 4, · · · 7) > min(C4,
m0

4
,
m0k2

4
), C̃5 = C1k1+C2k2+C3k3+C4.

Given (3.44), by recalling the expression (3.38) of ϕ (see also (2.3) and
(2.2)), we have

C̃5ϕ(t)
[
σ3−r(‖σ

n−2
2 v‖2L2 + ‖(σ

n−2
2 v)t‖2L2 + ‖(σ

n−2
2 vt)t‖2L2)(3.61)

+ σ1−r(‖σ
n−2

2 ∇v‖2L2 + ‖σ
n−2

2 ∇vt‖2L2)
]

= C̃5ϕ(t)(σ3−r‖σ
n−2

2 v‖2L2 +D(t))

6 C̃5CΩϕ(t)σ2σ1−r‖σ
n−2

2 ∇v‖2L2 + C̃5ϕ(t)D(t)) 6 C̃6ε
α
0D(t)

and (see (3.58), (3.44) and (3.45))

(3.62)

k3C3

[
σ1−r‖σ

n−2
2 ∇vt‖2L2

] 3
2 + k3C3σ

1−r‖σ
n−2

2 ∇v‖2L2

[
σ1−r‖σ

n−2
2 ∇vt‖2L2

] 1
2

6
k3C3√
b0
L

1
2 (t)(t)D(t) 6

b1
2
D(t) + b2D(t)L(t)

where

(3.63) b2 =
k2

3C
2
3

2b1b0
.

By adding (3.62) and (3.61) to (3.51) and choosing (see (3.56)) ε0 so that

εα0 6
b1

4C̃6

we obtain (3.48). �

Lemma 3.8. Let be (v0
σ0
, v1
σ0

) ∈ H2(Ω) ∩H1(Ω). We set

(3.64) R̃(σ0) = σ−2αr
0 ‖v0

σ0
‖2H2 + ‖v1

σ0
‖2H1 , λ̃(σ0) = σ

α(n−3+r)
0 R̃(σ0),

and we suppose

(3.65) lim
σ0→0

λ̃(σ0) = 0.

Then, if (see (2.2)) σ0 is small enough, we have

(3.66) 0 6 L(0) <
b1
8b2

(see (3.63), (3.60) and (3.58)) for b1 and b2.
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Proof. Let us �rst note that (3.65) implies the hypothesis (3.3) under
which Lemmas 3.2�3.6 and therefore lemma 3.7 are established. That said, by
recalling the expressions (see (3.34), (3.41) and (3.46)) of L3(t) and L4(t), we
can see that L(0) contains the L2-norm of the term vtt|t=0. This term is de�ned
(see (1.11), (1.15) and (1.17)) by

vtt|t=0 = −µv1
σ0

+
1

σ2α
0

Ãv0
σ0

+ a1(0, y).∇v1
σ0

+ a2(0, y).∇v0
σ0
,

where

Ãv0
σ0

=
n∑
i,j

∂yi
((
M̃(σ

α(n−2)
0 ‖∇v0

σ0
‖2L2)δij − α2

∣∣σ1

σ0
|2σ2α

0 yiyj
)
∂yjv

0
σ0

).

Therefore, considering (3.23), (1.14) and (2.2), we get

(3.67) ‖vtt|t=0‖L2 6 CΩ(‖v1
σ0
‖H1 + ‖v0

σ0
‖H1) + CΩσ

−2α
0 ‖v0

σ0
‖H2 .

Recalling (3.41), (3.34) and (3.67), given (2.2) and (3.23) the easy com-
putations give us

(3.68) L3(0) + L4(0) 6 C̃7σ
α(n−3+r)
0 (σ−2αr

0 ‖v0
σ0
‖2H2 + ‖v1

σ0
‖2H1).

Moreover, one can easily see that

(3.69) L1(0) + L2(0) 6 C̃7σ
α(n−3+r)
0 (‖v0

σ0
‖2H1 + ‖v1

σ0
‖2L2).

So, from (3.69), (3.68) and (3.46) (see also (3.64)) it follows L(0) 6
C̃8λ̃(σ0) and from (3.65) it follows (3.66). �

4. GLOBAL SOLUTION AND ITS ASYMPTOTIC BEHAVIOUR

Lemmas 3.7�3.8 being established, now we are in position to prove our
main result on the existence and asymptotic behaviour of global solution of
the initial boundary value problem (1.1)�(1.3). More precisely, �xed the initial
expansion Ω0, we give initial data (u0, u1) ∈ H2(Ω0)×H1(Ω0) verifying (3.4),
we suppose Ω0 small enough and we ask the question of the existence of global
solution u of the initial boundary value problem (1.1)�(1.3). Here, we insist on
the fact the initial data (u0, u1) can be large enough. In fact, recalling (3.4)
(see also (3.1)) and �xed R0 large enough, it can be seen that if

0 < |Ω0| 6
CΩ

R
n

1+r

0

n > 3, 0 < r < 1

then

R(Ω0) = ‖u0‖2H2(Ω0) + ‖u1‖2H1(Ω0) 6 R0.
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Our main result enunciated above is a non trivial generalization in higher
dimension of our previous papers [3] and [4], where the results are obtained in
dimension one and two with an unbounded expansion of the domain and with
initial data su�ciently small.

Theorem 4.1. Let σ0 small enough, Ω0 = σα0 Ω and (u0, u1) ∈ H2(Ω0)×
H1(Ω0) such that (3.4) is satis�ed then the initial boundary value problem (1.1)�

(1.3) has a unique global solution

u ∈ L∞(0,∞;H1
0 (Ωt) ∩H2(Ωt))(4.1)

ut ∈ L∞(0,∞;H1(Ωt)), utt ∈ L∞(0,∞;L2(Ωt)).

Moreover,

(4.2) ‖utt‖2L2(Ωt)
+ ‖ut‖2L2(Ωt)

+ ‖u‖2H1(Ωt)
6

CΩ

|Ωt|
1−r
n

, 0 < r < 1 .

Remark 4.1. Theorem 4.1 results from the existence of a global solution
v of problem (1.17) and (1.19) under the assumption (3.65) on the initial data
(v0
σ0
, v1
σ0

).

Indeed, if under hypothesis (3.65) (see also (3.64)) such a solution v exists,
one can easily verify that u = voτ (see (1.6)) is a global solution of the initial
boundary value problem (1.1)�(1.3) with the initial data (u0, u1) large enough.
Thus the proof of theorem 4.1 is reduced to that of the existence of a global
solution v of problem (1.17) and (1.19) under the assumption (3.65) on the
initial data (v0

σ0
, v1
σ0

). The latter follows from combination of its local solution
and some of these a priori estimates allowing to get the uniform boundedness
with respect to t ∈ [0,∞) of the weighted norm L(t) (see (3.45)). In fact, if
this norm is bounded for all t by the same constant, as will be seen, we can
then step by step extend the local solution v to the whole interval [0,∞).

4.1. The Proof of Theorem 4.1.

From (3.48) it follows that

(4.3)
d

dt
L(t) +

b1
8
D(t) + b2D(t)

[ b1
8b2
− L(t)

]
6 0 ,

We set

E(t) =
b1
8b2
− L(t).

Considering (3.66), we have E(0) > 0 and by continuity there exists τ0

small enough such that E(t) > E(0)− 1
2E(0) > 0 for all t ∈]0, τ0[. By integrating

(4.3) on [0, τ0[, we obtain

(4.4) L(t) 6 L(0), for any t ∈ [0, τ0]
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particularly
L(τ0) 6 L(0)

so E(τ0) > E(0) > 0 and by continuity we have

E(t) > E(τ0)− 1

2
E(0) > E(0)− 1

2
E(0) > 0 for all t ∈ [τ0, 2τ0].

By integrating (4.3) on [τ0, 2τ0[, we obtain

(4.5) L(t) 6 L(τ0) 6 L(0), for any t ∈ [τ0, 2τ0]

from (4.5) and (4.4) it follows L(t) 6 L(0) for all t ∈ [0, 2τ0[ and repetition of
this process, give us L(t) 6 L(0) for all t ∈ [0,∞[. This last inequality gives
us (see (3.47)) L ∈ L∞(0,∞) and from (4.3) is follows that D ∈ L1(0,∞). By
reminding (see (3.44) and (3.45)) expressions of L and D, we obtain

(4.6) σ
3−r

2 (σ
n−2

2 v) ∈ L∞(0,∞;L2), σ
1−r

2 (σ
n−2

2 v) ∈ L∞ ∩ L2(0,∞;H1),

σ
3−r

2 (σ
n−2

2 vt) ∈ L∞ ∩ L2(0,∞;L2), σ
1−r

2 (σ
n−2

2 vt) ∈ L∞ ∩ L2(0,∞;H1),

σ
3−r

2 (σ
n−2

2 vtt) ∈ L∞ ∩ L2(0,∞;L2).

Now, we rewrite the equation (1.17) in the following form

−
n∑

i,j=1

∂yi(ãij∂yjv) = F̃ ,

where

ãij = M̃(σ
n−2

2 ‖∇v‖2L2)δij − |σ′|2yiyj , F̃ = σ2(−vtt − µvt + a1.∇vt + a2.∇v).

From (2.3), (1.4) and (1.14) it is easy to see that
n∑

i,j=1

ãijξjξi >
m0

2
|ξ|2.

So, by standard regularity arguments of elliptic equations we have

‖σ
n−2

2 v‖H2 6 CΩ‖σ
n−2

2 F̃‖L2 6(4.7)

CΩ
σ4

σ3−r
[
σ3−r(‖(σ

n−2
2 vt)t‖2L2 +‖σ

n−2
2 vt‖2L2)+σ1−r(‖σ

n−2
2 ∇v‖2L2 +‖σ

n−2
2 ∇vt‖2L2)

]
.

The last inequality follows from the above expression of F̃ (see also (2.3),
(1.25) and (1.11)). From (4.7) and (4.6) it follows that

(4.8) σ
1+r

2 (σ
n−2

2 v) ∈ L∞ ∩ L2(0,∞, H2), 0 < r < 1 .

Now, if we use u = v ◦ τ (see (1.6) for de�nition of τ), given (4.8) and
(4.6), by easy computations we can see that

u ∈ L∞(0,∞;H1
0 (Ωt)∩H2(Ωt)), ut ∈ L∞(0,∞;H1(Ωt)), utt ∈ L2(0,∞;L2(Ωt)).
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In order to complete the proof of Theorem 4.1, it remains to prove the
asymptotic behaviour of global solution. Indeed, given (2.2) and (1.25), easy
computations gives us

‖u‖2H1(Ωt)
+ ‖ut‖2H1(Ωt)

+ ‖utt‖2L2(Ωt)
6

CΩ

σ1−r
[
σ3−r(‖(σ

n−2
2 vt)t‖2L2 +‖(σ

n−2
2 v)t‖2L2)+σ1−r(‖σ

n−2
2 ∇v‖2L2 +‖σ

n−2
2 ∇vt‖2L2)

]
and from (4.6) follows easily

‖u‖2H1(Ωt)
+ ‖ut‖2H1(Ωt)

+ ‖utt‖2L2(Ωt)
6

CΩ

σ1−r(t)
,

that is to say (4.2) because |Ωt| = σn(t)|Ω|. This concludes the proof of Theo-
rem 4.1. �
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