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Stochastic control problems that consist in minimizing the time spent by one-
dimensional di�usion processes in a given interval are considered for processes
used in �nancial mathematics. Because the exact optimal solutions are di�cult
to obtain, the control variable is instead assumed to be of a certain form. The
best suboptimal solutions are derived and compared with the optimal solutions
computed numerically.
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1. INTRODUCTION

Let {X(t), t ≥ 0} be a time-homogeneous controlled one-dimensional
di�usion process de�ned by the stochastic di�erential equation

(1) dX(t) = m[X(t)]dt+ h[X(t)]u[X(t)]dt+ {v[X(t)]}1/2dB(t),

in which u(·) is the control variable and {B(t), t ≥ 0} is a standard Brownian
motion starting at 0. We de�ne the �rst hitting time

(2) T (x) = inf{t > 0 : X(t) = d1 or d2 | X(0) = x ∈ (d1, d2)}.

Whittle (1982) considered the problem of �nding the control u∗ that minimizes
the expected value of the cost function

(3) J(x) =

∫ T (x)

0

{
1

2
q[X(t)]u2[X(t)] + λ

}
dt,

where q(·) > 0 and λ 6= 0 is a constant. This type of problem is known
as LQG homing. When the parameter λ is positive, the optimizer wants the
controlled process to leave the interval (d1, d2) as soon as possible, while taking
the quadratic control costs into account. The function q(·) can be chosen in
such a way that it is preferable to keep X(t) as small (or as large) as possible,
for instance. In many cases, it is assumed to be a positive constant q0.
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LQG homing problems have been considered by the author in a series of
papers (see Lefebvre and Zitouni (2012) and (2014), for instance), and also by
Makasu (2009) and (2013).

To solve LQG homing problems, we can try to make use of dynamic
programming. We de�ne the value function

(4) F (x) = inf
u[X(t)], 0≤t≤T (x)

E[J(x)].

Proposition 1. The value function satis�es the following Hamilton-

Jacobi-Bellman (HJB) equation:

(5) inf
u(x)

{
1

2
q(x)u2(x) + λ+ [m(x) + h(x)u(x)]F ′(x) +

1

2
v(x)F ′′(x)

}
= 0.

Proof. First, by making use of Bellman's principle of optimality, we can
write (remembering that X(0) = x) that

F (x) = inf
u[X(t)], 0≤t≤∆t

E

[ ∫ ∆t

0

{
1

2
q[X(t)]u2[X(t)] + λ

}
dt

+F
(
x+m(x)∆t+ h(x)u(x)∆t+ v1/2(x)B(∆t)

)
+ o(∆t)

]
= inf

u[X(t)], 0≤t≤∆t

{
1

2
q(x)u2(x)∆t+ λ∆t

+E

[
F
(
x+m(x)∆t+ h(x)u(x)∆t+ v1/2(x)B(∆t)

)
+ o(∆t)

]}
.

Next, since B(0) = 0, we have

E[B(∆t)] = 0 and E[B2(∆t)] = V [B(∆t)] = ∆t.

Hence, assuming that F is twice di�erentiable with respect to x, we deduce
from Taylor's formula that

E

[
F
(
x+m(x)∆t+ h(x)u(x)∆t+ v1/2(x)B(∆t)

)
+ o(∆t)

]
= F (x) + [m(x) + h(x)u(x)]∆tF ′(x) +

1

2
v(x)∆tF ′′(x) + o(∆t).

Then,

0 = inf
u[X(t)], 0≤t≤∆t

{
1

2
q(x)u2(x)∆t+ λ∆t+ [m(x) + h(x)u(x)]∆tF ′(x)

+
1

2
v(x)∆tF ′′(x) + o(∆t)

}
.
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Finally, we divide both sides of the above equation by ∆t, and we let ∆t decre-
ase to zero to obtain the Hamilton-Jacobi-Bellman (or dynamic programming)
equation (5). �

We deduce from Eq. (5) that the optimal control u∗(x) can be expressed
as

(6) u∗(x) = −h(x)

q(x)
F ′(x).

Substituting this expression into the HJB equation, we obtain that the value
function satis�es the second-order non-linear ordinary di�erential equation

(7) λ+m(x)F ′(x)− h2(x)

2q(x)
[F ′(x)]2 +

1

2
v(x)F ′′(x) = 0.

This equation is subject to the boundary conditions

(8) F (d1) = F (d2) = 0.

Remark. Notice that to obtain the optimal control explicitly, we only need
to calculate G(x) := F ′(x). Therefore, we can consider the �rst-order equation

(9) λ+m(x)G(x)− h2(x)

2q(x)
G2(x) +

1

2
v(x)G′(x) = 0.

This equation is a particular Riccati equation. However, we need a condition
on the function G(x) in order to �nd the unique solution to Eq. (9) that we
are looking for. In some problems, using symmetry arguments, we can assert
that G(x0) = 0 for a known value of x0 ∈ (d1, d2). Then, the optimal control
problem is greatly simpli�ed. Unfortunately, in general it is not possible to �nd
such a condition on G(x).

In practice, it is quite di�cult to obtain the exact analytical solution to
the problem (7), (8). Even if we are able to �nd G(x), we must integrate this
function and use the boundary conditions (8) to determine the unique solution
to our optimal control problem. Again, the integral needed is generally di�cult
to evaluate.

In this note, instead of looking for the optimal solution to the control
problem, we will assume that the control variable is of a certain form and we
will �nd the best solution of this form. We will consider two particular problems
for which we are not able to determine u∗(x) analytically, and we will compute
suboptimal solutions instead. We will then compare the expected cost obtained
with these suboptimal solutions with the value function evaluated numerically.
The two di�usion processes in the problems presented in the next sections are
important processes that are used frequently in �nancial mathematics.
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2. SUBOPTIMAL CONTROL OF A BESSEL PROCESS

In the �rst problem that we consider, the di�usion process {X(t), t ≥ 0}
is a particular controlled Bessel process. As mentioned in Jeanblanc et al.

(2009), Bessel processes are intensively used in �nance, in particular to model
the dynamics of asset prices.

Assume that m[X(t)] = 1/X(t), h[X(t)] ≡ 1 and v[X(t)] ≡ 1 in Eq. (1),
so that

(10) dX(t) =
1

X(t)
dt+ u[X(t)]dt+ dB(t).

The uncontrolled process is a Bessel process of dimension 3.

Next, we choose q[X(t)] = X2(t) and λ = 1/8 in the cost function de�ned
in (3), and we take d1 = 1 and d2 = 2 in (2). Hence, our aim is to minimize
the expected value of

(11) J1(x) =

∫ T1(x)

0

{
1

2
X2(t)u2[X(t)] +

1

8

}
dt,

with

(12) T1(x) = inf{t > 0 : X(t) = 1 or 2 | X(0) = x ∈ (1, 2)}.

We can state that the optimal control is given by

(13) u∗(x) = − 1

x2
F ′(x),

where the value function satis�es the following di�erential equation:

(14)
1

8
+

1

x
F ′(x)− 1

2x2
[F ′(x)]2 +

1

2
F ′′(x) = 0.

The mathematical software Maple was able to express F (x) as follows:

(15) F (x) =

∫
x

2

[
3 +
√

10tanh

(√
10

2

(
− ln(x) + c1

))]
dx+ c2,

but it was unable to �nd explicitly the constants c1 and c2 for which the boun-
dary conditions F (1) = F (2) = 0 are satis�ed. However, we can �nd F (x)
for any x ∈ (1, 2) by using numerical methods. To be more precise, the dsolve
command of Maple with the numeric option was used.

Now, suppose that instead of looking for the optimal solution, we assume
that the control variable u[X(t)] is of the form

(16) u[X(t)] =
c

X(t)
,
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where c is a constant. This choice for the control variable is based on the fact
that m[X(t)] = 1/X(t). Then, the di�usion process, which we shall denote by
{Xc(t), t ≥ 0}, satis�es the stochastic di�erential equation

(17) dXc(t) =
c+ 1

Xc(t)
dt+ dB(t).

Thus, {Xc(t), t ≥ 0} is a Bessel process of dimension 2c+ 3.
Next, the cost function whose expected value we want to minimize is

(18) Jc(x) :=

∫ T1(x)

0

{
c2

2
+

1

8

}
dt.

Hence, we are now looking for the constant c that minimizes

(19) E[Jc(x)] =

(
c2

2
+

1

8

)
E[T1(x)].

Let m1(x) := E[T1(x)]. The function m1(x) satis�es (see, for instance,
Lefebvre 2007) the ordinary di�erential equation (ode)

(20)
1

2
m′′1(x) +

c+ 1

x
m′1(x) = −1,

subject to the boundary conditions m1(1) = m1(2) = 0. It is a simple matter
to �nd that

(21) m1(x) =
1− x2 + (4x2 + 6x−2c−1 − 10)4c + (16− 12x−2c−1 − 4x2)42c

(2c+ 3)[1− 2(4c)]2
.

The best possible choice for the control variable of the form given in (16) is
obtained by �nding the constant c∗ that minimizes the function m1(x) above,

multiplied by
(
c2

2 + 1
8

)
.

Remark. The constant c∗ depends on the initial value X(0) = x of the
controlled process. However, once it has been determined for a given x, it will
remain the same until the �nal time T1(x).

Making use of a mathematical software, it is not di�cult to estimate the
constant c as precisely as we want. We found the approximate value of c∗ for
x = 1.1, 1.3, . . . , 1.9. We then computed the expected cost E[Jc∗(x)] obtained
with this best suboptimal control. Moreover, we also computed the expected
cost E[J0(x)] obtained when the optimizer chooses u[X(t)] ≡ 0. The results
are presented in Table 1, as well as the value of F (x) computed with the help
of a mathematical software, by using a numerical method.

Looking at Table 1, we notice at once that, for this particular example,
there is very little di�erence between E[Jc∗(x)] and E[J0(x)]. Furthermore,
the di�erence between the expected cost using the suboptimal controls and
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Table 1

Numerical values of the expected costs E[Jc∗(x)] and E[J0(x)], and the value function
when λ = 1/8, d1 = 1 and d2 = 2 in the case of the controlled Bessel process

x c∗ E[Jc∗(x)] E[J0(x)] F (x)

1.1 −0.023 0.01395 0.01398 0.01381
1.3 −0.007 0.02894 0.02894 0.02875
1.5 0.005 0.03125 0.03125 0.03109
1.7 0.014 0.02417 0.02419 0.02407
1.9 0.023 0.00965 0.00967 0.00962

the value function F (x) is also almost negligible. This can, at least partly, be
explained by the fact that the interval (1, 2) is rather short, and the value of
the parameter λ = 1/8 is not very large. For longer continuation regions and
larger values of λ, the di�erence between the various expected costs will surely
increase. Nevertheless, it is interesting to see that, in certain situations, it is
probably not worth the e�ort of trying to �nd an exact and explicit expression
for the optimal control (from the one for the value function). A suboptimal
control like the one de�ned in (16) is easier to compute, and above all to
implement, and yields very acceptable results. In fact, using no control at all
here is perhaps the best thing to do.

Remark. Notice that the random variable T1(x) de�ned in (12) is a �rst
exit time from a �nite interval. If we replace the interval (1, 2) by (1,∞), then
E[T1(x)] could sometimes be in�nite if u[X(t)] ≡ 0. Therefore, the optimizer
would have to use some control in order to avoid receiving an in�nite penalty
for survival in the continuation region. Moreover, Eq. (20) is only valid if the
function m1(x) exists (and is �nite). Actually, in theory, E[T1(x)] could be
in�nite even in the case of a �nite interval (d1, d2).

In the next section, another optimal control problem will be considered
for an important di�usion process.

3. BEST CONSTANT CONTROL OF A CEV PROCESS

Let the controlled process {X(t), t ≥ 0} be de�ned by the stochastic
di�erential equation

(22) dX(t) = u[X(t)]dt+ [X(t)]1/2dB(t).

Thus, this time we choose m[X(t)] ≡ 0, h[X(t)] ≡ 1 and v[X(t)] = X(t) in
Eq. (1). The uncontrolled process is a CEV (Constant Elasticity of Variance)
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process with zero drift. The CEV process is frequently used to model equities
and commodities; see Cox and Ross (1976).

We set q[X(t)] ≡ 1 and λ = 1/8 in the cost function J(x) de�ned in (3)
and, as in the previous section, we take d1 = 1 and d2 = 2 in (2). It follows
that the optimizer wants to minimize the expected value of

(23) J2(x) =

∫ T2(x)

0

{
1

2
u2[X(t)] +

1

8

}
dt,

in which

(24) T2(x) = inf{t > 0 : X(t) = 1 or 2 | X(0) = x ∈ (1, 2)}.

From (6) and (7), we deduce that the optimal control is simply

(25) u∗(x) = −F ′(x),

where the function F (x) satis�es the non-linear di�erential equation

(26)
1

4
− [F ′(x)]2 + xF ′′(x) = 0,

subject to the same boundary conditions as above, namely F (1) = F (2) = 0.

Here, Maple was able to obtain a simple expression for F (x):

(27) F (x) = −2c1

√
x− x

2
− 2c2

1 ln
(
−
√
x+ c1

)
+ c2.

Unfortunately, it could not �nd explicitly the constants c1 and c2 such that
F (1) = F (2) = 0. As in the previous section, we will compute F (x) using the
dsolve command of Maple with the numeric option, for x = 1.1, 1.3, . . . , 1.9.

We will now try to determine the best constant control of the CEV pro-
cess. This choice is motivated by the fact that if we set u[X(t)] ≡ c, then the
controlled di�usion process {Xc(t), t ≥ 0} satis�es

(28) dXc(t) = cdt+ [Xc(t)]
1/2dB(t).

If we replace [Xc(t)]
1/2 by 2[Xc(t)]

1/2, we obtain that {Xc(t), t ≥ 0} is a squared
Bessel process of dimension c, which is important in �nancial mathematics; see
Revuz and Yor (1999).

We want to minimize with respect to c the expected value of the cost
function

(29) Jc(x) :=

∫ T2(x)

0

{
c2

2
+

1

8

}
dt.

That is, we are looking for the constant c for which
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(30) E[Jc(x)] =

(
c2

2
+

1

8

)
E[T2(x)]

is minimum.
As in the previous section, we de�ne m2(x) = E[T2(x)]; we must solve

the linear second-order ode

(31)
x

2
m′′2(x) + cm′2(x) = −1,

with m2(1) = m2(2) = 0. We easily �nd that

(32) m2(x) =
x−2c+1

c [−1 + 2(4−c)]
− x

c
+

2(4c − 1)

c(4c − 2)
.

Therefore, we want to obtain

(33) E[Jc∗(x)] := min
c

{(
c2

2
+

1

8

) [
x−2c+1

c [−1 + 2(4−c)]
− x

c
+

2(4c − 1)

c(4c − 2)

]}
.

The same calculations as in the previous section were carried out. The
results obtained are shown in Table 2.

Table 2

Numerical values of the expected costs E[Jc∗(x)] and E[J0(x)], and the value function
when λ = 1/8, d1 = 1 and d2 = 2 in the case of the controlled CEV process

x c∗ E[Jc∗(x)] E[J0(x)] F (x)

1.1 −0.0283 0.00842 0.00845 0.00837
1.3 −0.0145 0.01869 0.01870 0.01859
1.5 −0.0025 0.02124 0.02124 0.02113
1.7 0.0082 0.01708 0.01708 0.01699
1.9 0.0181 0.00703 0.00704 0.00699

We see that the conclusions are the same as in the case of the controlled
Bessel process. There is again very little di�erence between E[Jc∗(x)] and
E[J0(x)], and the value function is only about 0.5% smaller than E[Jc∗(x)].

As mentioned above, the di�erence between the optimal and the subopti-
mal solutions should be larger when we choose a larger value of λ and a longer
interval (d1, d2). To check this assertion, we calculated the same quantities as
in Table 2, but with λ = 1 and (d1, d2) = (1, 7); see Table 3. Although there is
indeed a larger di�erence between the optimal and suboptimal expected costs,
we can state that the suboptimal control u[X(t)] ≡ c∗, and even u[X(t)] ≡ 0,
still yield acceptable results. Next, we chose the interval (d1, d2) = (1, 11); see
Table 4. This time, the control u[X(t)] ≡ 0 did rather poorly for small values
of x. Finally, we took λ = 8 and (d1, d2) = (1, 2); see Table 5. Again, we
must conclude that using no control at all is not a good idea, especially near
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the endpoints of the interval. However, the suboptimal constant control still
performs relatively well.

Table 3

Numerical values of the expected costs E[Jc∗(x)] and E[J0(x)], and the value function
when λ = 1, d1 = 1 and d2 = 7 in the case of the controlled CEV process

x c∗ E[Jc∗(x)] E[J0(x)] F (x)

2 −1.022 1.316 1.768 1.196
3 −0.606 2.244 2.489 1.905
4 −0.246 2.486 2.531 2.021
5 0.044 2.066 2.067 1.647
6 0.309 1.173 1.201 0.933

Table 4

Numerical values of the expected costs E[Jc∗(x)] and E[J0(x)], and the value function
when λ = 1, d1 = 1 and d2 = 11 in the case of the controlled CEV process

x c∗ E[Jc∗(x)] E[J0(x)] F (x)

2 −1.288 1.391 2.503 1.338
4 −0.902 3.782 4.736 3.259
6 −0.397 4.674 4.876 3.641
8 0.046 3.655 3.657 2.723
10 0.835 1.348 1.427 1.025

Table 5

Numerical values of the expected costs E[Jc∗(x)] and E[J0(x)], and the value function
when λ = 8, d1 = 1 and d2 = 2 in the case of the controlled CEV process

x c∗ E[Jc∗(x)] E[J0(x)] F (x)

1.1 −3.250 0.385 0.541 0.351
1.3 −2.144 1.062 1.197 0.892
1.5 −0.388 1.354 1.359 1.068
1.7 1.448 1.046 1.093 0.836
1.9 2.748 0.377 0.450 0.320

4. CONCLUDING REMARKS

LQG homing problems are usually di�cult to solve analytically, even in
one dimension. In Sections 2 and 3, we presented two such problems that
Maple was unable to solve explicitly. For this reason, it is interesting to derive
suboptimal solutions that are both satisfactory and easy to implement.
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In Section 2, we saw that assuming that the control variable is of the form
u[X(t)] = c/X(t), in the case of a particular Bessel process, enabled us to �nd
an adequate alternative to the optimal solution. Similarly, in Section 3, a very
simple solution in the form of a constant control was found to be quite good.
Actually, for a short interval and a relatively small value of the parameter λ
in the cost function, even using no control at all yielded an expected cost that
was close to the value function in both problems. However, we found that
u[X(t)] ≡ 0 was not satisfactory for a longer interval and/or a larger value
of λ.

Since the two suboptimal controls yielded acceptable results in all the
examples that were presented, one could wonder whether it is necessary to
make all the e�orts needed to obtain the exact optimal solution.

In deriving the suboptimal solutions, we had to use a mathematical soft-
ware to determine (approximately) the value of the constant c that yielded the
smallest expected cost. This was done quite easily, and with su�cient accuracy
for practical purposes.

To �nd the optimal solution, we had to use a numerical method, with
the help of the same software, to compute the value function. Although it is of
course interesting to obtain the best possible solution, a numerical method does
not provide us with a mathematical expression for this optimal solution. We
could try to �nd such an expression for the value function, and hence for the
optimal control, by making use of curve �tting or regression methods. However,
then the function obtained, although suitable, would not be the exact optimal
solution, at any rate.

In conclusion, we saw, through two examples, that deriving suboptimal
solutions to LQG homing problems can be a worthwhile alternative to trying
to obtain the exact optimal solution. For problems in two or more dimensi-
ons, computing these suboptimal solutions is surely a more realistic goal to
achieve. Indeed, so far the LQG homing problems that were solved explicitly
were almost always in one dimension, unless symmetry could be used to reduce
an n-dimensional to a one-dimensional problem. Finding the best constant
controls, for instance, should be easier.
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