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1. INTRODUCTION

Let X be a normed linear space. Let B(X) = {x ∈ X : ‖x‖ ≤ 1} and
S(X) = {x ∈ X : ‖x‖ = 1} be the unit ball, and the unit sphere of X,
respectively. Let X∗ be the dual space of X. We de�ne ∇x ⊂ S(X∗) to be
the set of norm 1 supporting functionals of S(X) at x, that is, fx ∈ ∇x ⇐⇒
〈x, fx〉 = 1. For x1, x2 ∈ B(X), we use [x1, x2] to denote the line segment
connecting x1 and x2 in X. Let X2 be a 2-dimensional subspace of X, for
x1, x2 ∈ S(X2), we use x̃1, x2 to denote the curve on S(X2) from x1 to x2
clockwise.

In 1948, Brodski�� and Mil'man [1] introduced the following geometric con-
cepts:

De�nition 1.1. A bounded and convex subset K of a Banach space X is
said to have normal structure if every convex subset H of K that contains more
than one point contains a point x0 ∈ H, such that sup{‖x0 − y‖ : y ∈ H} <
d(H), where d(H) = sup{‖x − y‖ : x, y ∈ H} denotes the diameter of H. A
Banach space X is said to have normal structure if every bounded and con-
vex subset of X has normal structure. A Banach space X is said to have weak
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normal structure if for each weakly compact convex set K in X has normal
structure. X is said to have uniform normal structure if there exists 0 < c < 1
such that for any bounded closed convex subsetK ofX that contains more than
one point, there exists x0 ∈ K such that sup{‖x0 − y‖ : y ∈ K} ≤ c · d(K).

For a re�exive Banach space, the normal structure and weak normal struc-
ture coincide.

Let D be a nonempty subset of a Banach space X. A mapping T : D → D
is called to be non-expensive whenever ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ D. A
Banach space has �xed point property if for every bounded closed and convex
subset D of X and for each non-expansive mapping T : D → D, there is a
point x ∈ D such that x = Tx. (See [14]).

In 1965, Kirk [13] proved that if a Banach space X has weak normal
structure then it has weak �xed point property, that is, every non-expansive
mapping from a weakly compact and convex subset of X into itself has a �xed
point.

In [3], Clarkson introduced the following modulus of convexity: δX(ε) =
inf{1 − 1

2‖x + y‖ : x, y ∈ SX , ‖x − y‖ ≥ ε}, where 0 ≤ ε ≤ 2. It was proved
that if there exists ε > 0 such that δX(1 + ε) > ε

2 , then X has uniform normal
structure [9].

In [7], Gao introduced the modulus of U -convexity which is a genera-
lization of δX(ε): UX(ε) = inf{1 − 1

2‖x + y‖ : x, y ∈ SX , 〈x − y, fx〉 ≥
ε for some fx ∈ ∇x}, where 0 ≤ ε ≤ 2. It was also proved that if there
exists δ > 0 such that UX(

1
2 − δ) > 0, then X has uniform normal structure.

Mazcu�n�an-Navarro [14] proved that a Banach space X has �xed point property
if there exists δ > 0 such that UX(1 − δ) > 0. This was strengthened by Sa-
ejung [15]. In fact, it was proved that if a Banach space X is super-re�exive,
then the moduli of U -convexity of the ultra-power XU of X and of X itself
coincide. By using ultra-power method he showed that a Banach space X and
its dual X∗ have uniform normal structure whenever UX(1) > 0.

For x1 ∈ S(X) and y ∈ X, let B(x1, ε) = {y : ‖y−x1‖ ≤ ε, 0 ≤ ε ≤ 2} be
the ball with center at x1 and radius ε, and let slX(x1, ε) = {y : 〈x1− y, fx1〉 ≤
ε, 0 ≤ ε ≤ 2}

⋂
B(X) be the slice of B(X) with vertex x1.

The modulus of uniform convexity, δX(ε) and the modulus of U -convexity,
UX(ε) is the uniform measure of depth of midpoint between S(X)

⋂
B(x1, ε)

and S(X)
⋂
slX(x1, ε) to vertex x1, respectively. The both modulus of uniform

convexity δX(ε) and the modulus of U -convexity UX(ε) are used to study uni-
form non-squareness, uniform normal structure and other geometric properties
of Banach space and each of them plays an important role.

In this paper, a new parameter ζX(ε), the uniform measure of arc length
from points on S(X)

⋂
slX(x1, ε) to vertex x1, is introduced. The properties of
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ζX(ε) are studied. The relationships between the modulus ζX(ε) and some other
known ones are given. Some su�cient conditions for uniform non-squareness
and uniform normal structure of a Banach space are provided. Finally, we
study uniformly normal structure in Section 3. Some results about �xed points
of non-expansive mapping are obtained.

2. PRELIMINARIES AND MAIN RESULTS

A curve in a Banach space X is a continuous mapping x : [a, b]→ X and
in this case it is denoted by C := {x(t) : a ≤ t ≤ b}. A curve is called simple
if it does not have multiple points. A curve is called closed if x(a) = x(b). A
closed curve is called symmetric about the origin if x ∈ C, then also −x ∈ C.

For a normed linear space X, it is clear that S(X2), where X2 is 2-
dimensional subspace of X is a simple closed curve which is symmetric about
the origin and unique up to orientation.

The concept of the length of a curve in Banach spaces resembles the same
concept in Euclidean spaces. For a curve C = {x(t) : t ∈ [a, b]} and a partition
P := {t0, t1, t2, . . . , tn} ⊂ [a, b] where

a = t0 < t1 < t2 < ... < ti < ... < tn = b,

let

l(C,P ) =

n∑
i=1

‖x(ti)− x(ti−1)‖.

The length l(C) of a curve C is de�ned as the least upper bound of l(C,P ) for
all partitions P of [a, b], that is,

l(C) = sup{l(C,P ) : P is a partition of [a, b]}.

If l(C) is �nite, then the curve C is called recti�able. (See [4, 8]).

Let ‖P‖ = max1≤i≤n{|ti − ti−1|} for a partition P of [a, b].

Theorem 2.1 ([2, 17]). If curve C is recti�able, then for all ε > 0, there
exists δ > 0, such that ‖P‖ < δ implies l(C)− l(C,P ) < ε. Furthermore if {Pk}
is a sequence of partitions of [a, b] with ‖Pk‖ → 0, then limk→∞l(C,Pk) = l(C).

Let lta(C) denote the length of curve C = x(t) from a to t. For a recti�able
curve C = x(t), a ≤ t ≤ b, the arc length lta(C) is a continuous function of t.

De�nition 2.2 ([2, 17]). Let y(s) represent the point x(t) on the curve C
for which lta(C) = s, then C = y(s), 0 ≤ s ≤ l(C), is called standard form of
the recti�able curve C.
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Theorem 2.3 ([2, 17]). Let X2 be a two dimensional Banach space and

K1,K2 be closed convex subsets of X2 with non-void interiors. If K1 ⊆ K2, then

l(∂(K1)) ≤ l(∂(K2)), where l(∂(Ki)) denote the lengths of the circumferences

of Ki, i = 1, 2.

Theorem 2.4 ([17]). Let X2 be a two dimensional Banach space. The

following statements are true:

(1) 6 ≤ l(S(X2)) ≤ 8;

(2) l(S(X2)) = 8 if and only if S(X2) is a parallelogram;

(3) l(S(X2)) = 6 if and only if S(X2) is an a�ne regular hexagon.

Lemma 2.5 ([11]). If x1, x2 ∈ B(X) and 0 < ε < 1 are such that ‖x1+x2‖2 >
1− ε, then for all 0 ≤ c ≤ 1 and z = cx1+(1− c)x2 ∈ [x1, x2], the line segment

connecting x1 and x2, it follows that ‖z‖ > 1− 2ε.

Lemma 2.6. If x1, x2 ∈ S(X) and 0 < ε < 1 are such that ‖x1+x2‖2 > 1−ε,
then there exists 0 ≤ c ≤ 1, z = cx1 + (1 − c)x2 ∈ [x1, x2], such that for

y = z
‖z‖ ∈ S(X) we have 1− 2ε < 〈x1, fy〉 = 〈x2, fy〉 ≤ 1, where fy ∈ ∇y.

Proof. We consider the 2-dimensional subspace X2 of X spanned by x1
and x2, and x1 and x2 are clockwise located on x̃1, x2 ⊆ S(X2), then we can
use Hahn-Banach theorem to extend the result to X.

Let y ∈ x̃1, x2 such that 〈x1−x2, fy〉 = 0, therefore 〈x1, fy〉 = 〈x2, fy〉 and
let z ∈ [x1, x2] such that y = z

‖z‖ , then 〈x1, fy〉 = 〈x2, fy〉 = 〈z, fy〉 = ‖z‖ >
1− 2ε, from lemma 2.5. �

Lemma 2.7 ([6]). Let X be a Banach space without weak normal structure,

then for any 0 < ε < 1, there exists a sequence {zn} ⊆ S(X) with zn →w 0,
and

1− ε < ‖zn+1 − z‖ < 1 + ε

for su�ciently large n, and any z ∈ co{zk}nk=1.

Lemma 2.8 ( [11]). Let X be a Banach space without weak normal struc-

ture, then for any 0 < ε < 1, there exist x1, x2, x3 in S(X) satisfying

(i) x2 − x3 = ax1 with |a− 1| < ε;

(ii) |||x1 − x2|| − 1|, |||x3 − (−x1)|| − 1| < ε; and

(iii) ||x1+x22 ||, ||x3+(−x1)
2 || > 1− ε.

The lemma 2.8 can be extended to the following:

Lemma 2.9. Let X be a Banach space without weak normal structure, then

for any 0 < ε < 1, there exist x1, x2, x3 in S(X) satisfying

(i) x2 − x3 = ax1 with |a− 1| < ε;

(ii) |‖x1 − x2‖ − 1|, |‖x3 − (−x1)‖ − 1| < ε;
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(iii) ‖x1+x22 ‖, ‖x3+(−x1)
2 ‖ > 1− ε; and

(iv) 〈x1, fx2〉 ≥ 1− ε.

Proof. Let η = ε
4 and {zn} be chosen as in lemma 2.7 with ε replaced by η.

Let f1 be the supporting functional of z1 ∈ S(X), i.e. ‖f1‖ =< z1, f1 >=

1, and let zn0 satis�es | < zn0 , f1 > | < η, and w =
z1−zn0
||z1−zn0 ||

∈ S(X).

Let x1 = w, x2 = z1, and x3 = zn0 respectively.
Then it is proved in [11] that x1, x2, and x3 satisfy 3 conditions in

lemma 2.8.
We prove (iv):

〈x1, fx2〉 = 〈w, fz1〉 = 〈
z1 − zn0

||z1 − zn0 ||
, fz1〉 =

1

||z1 − zn0 ||
〈z1 − zn0 , fz1〉

=
1

||x2 − x3||
(1− 〈zn0 , fz1〉) ≥

1

1 + η
(1− η) ≥ 1− ε. �

In the following we assume l(x̃1, x2) ≤ 1
2 l(S(X2)) where x1, x2 ∈ S(X).

De�nition 2.10. ζX(ε) = sup{l(x̃1, x2) : x1, x2 ∈ S(X) with 〈x1 − x2, fx1〉
≤ ε for some fx1 ∈ ∇x1}, where 0 ≤ ε ≤ 2.

Proposition 2.11. ζX(ε) is an increasing function in 0 ≤ ε ≤ 2.

Proof. Let ε1 < ε2, then {x1, x2 ∈ S(X) with 〈x1 − x2, fx1〉 ≤ ε1} ⊆
{x1, x2 ∈ S(X) with 〈x1 − x2, fx1〉 ≤ ε2}.

This implies ζX(ε) is increasing. �

Example 2.12. For Hilbert space H, ζH(ε) = 2·tan−1
√

ε
2−ε , for 0 ≤ ε < 2,

and ζH(2) = π.

Proof. Let x1, x2 ∈ S(H) with 〈x2, fx1〉 = 1− ε where 0 ≤ ε ≤ 2.
Consider the two-dim Euclidean subspace H2 spanned by x1 and x2 of H.
From 〈x2−(1−ε)x1, fx1〉 = 0, we have x2−(1−ε)x1 perpendicular to x1,

therefore

‖x2 − (1− ε)x1‖2 = ‖x1 − (1− ε)x1‖ · ‖ − x1 − (1− ε)x1‖ = ε(2− ε),

‖x2 − (1− ε)x1‖ =
√
ε(2− ε).

We have

tan
l(x̃1, x2)

2
=
‖x1 − (1− ε)x1‖
‖x2 − (1− ε)x1‖

=
ε√

ε(2− ε)
=

√
ε

2− ε
.

So,

ζH(ε) = l(x̃1, x2) = 2 · tan−1
√

ε

2− ε
. �
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De�nition 2.13 ([12]). A Banach space X is called uniformly non-square

if there exists δ > 0 such that if x, y ∈ S(X), then either ‖x+y‖2 ≤ 1 − δ or
‖x−y‖

2 ≤ 1− δ.

De�nition 2.14 ( [4, 5]). Let X and Y be Banach spaces. We say that
Y is �nitely representable in X if for any ε > 0 and any �nite dimensional
subspace N ⊆ Y there is an isomorphism T : N → X such that for any y ∈ N ,
(1− ε)‖y‖ ≤ ‖Ty‖ ≤ (1 + ε)‖y‖.

The Banach space X is called super-re�exive if any space Y which is
�nitely representable in X is re�exive.

Remark 2.15. It is well known that if X is uniformly non-square then X
is supper-re�exive and therefore X is re�exive.

Theorem 2.16. For a Banach space X, if ζX(ε) < 1 + ε for 0 ≤ ε ≤ 1,
or ζX(ε) < 2ε for 1 ≤ ε ≤ 2, then X is uniformly non-square.

Proof. Suppose X is not uniformly non-square, then for any δ > 0, let
x, y ∈ S(X) such that both ‖x+y‖2 ≥ 1− δ and ‖x−y‖2 ≥ 1− δ.

Case 1. We �rst prove that if ζX(ε) < 1 + ε for 0 ≤ ε ≤ 2, then X is
uniformly non-square.

Let z ∈ x̃, y such that 〈x, fz〉 = 〈y, fz〉, then from lemma 2.6,
〈x, fz〉 = 〈y, fz〉 > 1− 2δ, where fz ∈ ∇z.

Since l(x̃, y) ≥ ‖x−y‖ ≥ 2−2δ, without loss of generality, we may assume
l(z̃, y) ≥ ‖z − y‖ ≥ 1− δ.

Let u = y−t(x+y)
‖y−t(x+y)‖ , 0 ≤ t ≤ 1. From lemma 2.5, we have

1 ≥ 〈u, fz〉 = 〈
y − t(x+ y)

‖y − t(x+ y)‖
, fz〉

≥ 〈y − t(x+ y), fz〉 − (‖(y − t(x+ y))− y − t(x+ y)

‖y − t(x+ y)‖
‖)

≥ 〈y − t(x+ y), fz〉 − 2δ = 〈−tx+ (1− t)y, fz〉 − 2δ

≥ −t+ (1− t)(1− 2δ)− 2δ ≥ 1− 2t− 4δ.

So,
〈z − u, fz〉 ≤ 2t+ 4δ.

From theorem 2.3 and lemma 2.5,
l(z̃, u) ≥ ‖z− y‖+ ‖y−u‖ ≥ 1− δ+ ‖y− (y− t(x+ y))‖− ‖(y− t(x+ y))−u‖
≥ 1− δ + 2t(1− δ)− 2δ ≥ 1 + 2t− 5δ.

Since δ can be arbitrarily small, we have ζX(2t) ≥ 1 + 2t for 0 ≤ t ≤ 1.
This is equivalent to ζX(ε) ≥ 1 + ε, for any 0 ≤ ε ≤ 2.
Case 2. We then prove that if ζX(1 + ε) < 2 + 2ε for 0 ≤ ε ≤ 2, then X

is uniformly non-square.
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Let z ∈ −̃y, y such that 〈−y, fz〉 = 〈y, fz〉, then we have,
〈−y, fz〉 = 〈y, fz〉 = 0, where fz ∈ ∇z.

Since l(−̃y, y) ≥ 4−4δ, without loss of generality, we may assume l(z̃, y) ≥
‖z − y‖ ≥ ‖x− y‖ ≥ 2− 2δ.

Let u = y−t(x+y)
‖y−t(x+y)‖ , 0 ≤ t ≤ 1. From lemma 2.5, we have

1 ≥ 〈u, fz〉 = 〈
y − t(x+ y)

‖y − t(x+ y)‖
, fz〉

≥ 〈y − t(x+ y), fz〉 − (‖(y − t(x+ y))− y − t(x+ y)

‖y − t(x+ y)‖
‖)

≥ 〈y − t(x+ y), fz〉 − 2δ = 〈−tx+ (1− t)y, fz〉 − 2δ
= −t〈x, fz〉 − 2δ ≥ −t− 2δ.

So,
〈z − u, fz〉 ≤ 1 + t+ 4δ.

From theorem 2.3 and lemma 2.5,

l(z̃, u) ≥ ‖z − y‖+ ‖y − u‖
≥ 2− 2δ + ‖y − (y − t(x+ y))‖ − ‖(y − t(x+ y))− u‖

≥ 2− 2δ + 2t(1− δ)− 2δ ≥ 2 + 2t− 6δ.

Since δ can be arbitrarily small, we have ζX(1+ t) ≥ 2+ 2t for 0 ≤ t ≤ 1.
This is equivalent to ζX(ε) ≥ 2ε, for any 1 ≤ ε ≤ 2.
Combine Case 1 and Case 2, we have

ζX(ε) < 1 + ε for 0 ≤ ε ≤ 1, or ζX(ε) < 2ε for 1 ≤ ε ≤ 2

implies X is uniformly non-square. �

Theorem 2.17. For a Banach space X, if ζX(ε) < 1+ε for any 0 ≤ ε ≤ 1,
then X has normal structure.

Proof. ζX(ε) < 1 + ε for any 0 ≤ ε ≤ 1 implies X is uniformly non-
square, therefore re�exive. So the normal structure and weak normal structure
coincide.

If X fails weak normal structure, and x1, x2, and x3 be chosen to satisfy
4 conditions in lemma 2.9.

Let y = x1−t(x3+x1)
‖x1−t(x3+x1)‖ , 0 ≤ t ≤ 1. From lemma 2.5, we have

〈y, fx2〉 = 〈
x1 − t(x3 + x1)

‖x1 − t(x3 + x1)‖
, fx2〉

≥ 〈x1 − t(x3 + x1), fx2〉 − ‖(x1 − t(x3 + x1))−
x1 − t(x3 + x1)

‖x1 − t(x3 + x1)‖
‖

≥ 〈x1 − t(x3 + x1), fx2〉 − 2ε = 〈x1 − t(x2 − ax1 + x1), fx2〉 − 2ε
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≥ 1− ε− t(1 + |1− a|)− 2ε ≥ 1− ε− t− 3ε = 1− t− 4ε.

So,
〈x2 − y, fx2〉 ≤ t+ 4ε.

From theorem 2.3, lemma 2.5 and lemma 2.9,

l(x̃2, y) ≥ ‖x2 − x1‖+ ‖x1 − y‖
≥ ‖x2 − x1‖+ ‖x1 − (x1 − t(x3 + x1))‖ − ‖(x1 − t(x3 + x1))− y‖

≥ (1− ε) + t− ε− 2ε = 1 + t− 4ε.

Since ε can be arbitrarily small, we have ζX(t) ≥ 1+ t, for any 0 ≤ t ≤ 1.
This is equivalent to ζX(ε) ≥ 1 + ε, for any 0 ≤ ε ≤ 1. �

3. UNIFORM NORMAL STRUCTURE

Let F be a �lter on an index set I, and let {xi}i∈I be a subset in a
Hausdor� topological space X, {xi}i∈I is said to converge to x with respect to
F , denote by limF xi = x, if for each neighborhood V of x, {i ∈ I : xi ∈ V } ∈ F .

A �lter U on I is called an ultra�lter if it is maximal with respect to the
ordering of the set inclusion.

An ultra�lter is called trivial if it is of the form {A : A ⊆ I, i0 ∈ A} for
some i0 ∈ I.

Remark 3.1. We will use the fact that if U is an ultra�lter, then

(i) for any A ⊆ I, either A ⊆ U or I \A ⊆ U ;
(ii) if {xi}i∈I has a cluster point x, then limU xi exists and equals to x.

Let {Xi}i∈I be a family of Banach spaces and let l∞(I,Xi) denote
the subspace of the product space equipped with the norm ‖(xi)‖ = supi∈I ‖xi‖
<∞.

De�nition 3.2 ( [16]). Let U be an ultra�lter on I and let

NU = {(xi) ∈ l∞(I,Xi) : lim
U
||xi|| = 0}.

The ultra-product of {Xi}i∈I is the quotient space l∞(I,Xi)/NU equipped with
the quotient norm.

We will use (xi)U to denote the element of the ultra-product. It follows
from (ii) of above remark 3.1, and the de�nition of quotient norm that

(3.1) ‖(xi)U‖ = lim
U
‖xi‖

In the following we will restrict our index set I to be N, the set of natural
numbers, and let Xi = X, i ∈ N for some Banach space X. For an ultra�lter U
on N, we use XU to denote the ultra-product.
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Lemma 3.3 ([16]). Suppose U is an ultra�lter on N and X is a Banach

space. Then

(i) (X∗)U = (XU )
∗ if and only if X is super-re�exive; and in this case,

(ii) the mapping J de�ned by 〈(xi)U , J((fi)U )〉 = limU 〈xi, fi〉 for all (xi)U ∈
XU , is the canonical isometric isomorphism from (X∗)U onto (XU )

∗.

Theorem 3.4. For any Banach space X with ζX(ε) < 1+ε and 0 ≤ ε ≤ 2,
and for any nontrivial ultra�lter U on N , ζXU

(ε) = ζX(ε).

Proof. X with ζX(ε) < 1 + ε and 0 ≤ ε ≤ 2 implies X is uniformly
non-square, so X is super-re�exive. We can use lemma 3.3.

SinceX can be isometrically embedded ontoXU , we have ζX(ε) ≤ ζXU
(ε).

We prove the reverse inequality. For any η > 0, from de�nition of ζX(ε)
we can choose

(x1i )U ∈ S(XU ), (x
2
i )U ∈ S(XU )

and an

f = (f1i )U ∈ ∇(x1i )U
∈ S((XU )

∗) = S((X∗)U ),

such that

〈(xi)U − (yi)U , (f
1
i )U 〉 ≤ ε, but l( ˜(xi)U , (yi)U ) > ζXU

(ε)− η.

Without loss of generality, we may assume ‖x1i ‖ = ‖x2i ‖ = ‖fx1i ‖ = 1 for
all i ∈ N.

From remark (i) and (ii) of ultra�lter, equation (1) and the paragraphs
above, the sets:

P = {i ∈ N : 〈x1i − x2i , fx1i 〉 ≤ ε},

and

Q = {i ∈ N : l( ˜(xi)U , (yi)U ) > ζXU
(ε)− η}

are all in U .
So the intersection P

⋂
Q is in U too, and is hence not empty.

Let i ∈ P
⋂
Q and (Xi)2 be a two dimensional subspace of X spanned by

x1i and x
2
i , we have

〈x1i − x2i , fx1i 〉 ≤ ε,
and

l( ˜(x1i )U , (x
2
i )U ) > ζXU

(ε)− η.
Hence ζX(ε) ≥ ζXU

(ε)− η.
Since η can be arbitrarily small, we have ζX(ε) ≥ ζXU

(ε). �
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Theorem 3.5. If X is a Banach space with ζX(ε) < 1+ ε and 0 ≤ ε ≤ 2,
then X has uniform normal structure.

Proof. The idea of the proof is same as the proof of theorem 4.4 in [11].
Suppose ζX(ε) < 1 + ε and 0 ≤ ε ≤ 2, and X does not have uniform normal
structure, we �nd a sequence {Cn} of bounded closed convex subset of X such
that for each n,

0 ∈ Cn, d(Cn) = 1,
and

rad(Cn) = inf
x∈Cn

sup
y∈Cn

‖x− y‖ > 1− 1

n
.

Let U be any nontrivial ultra�lter on N, and let

C = {(xn)U : xn ∈ Cn, n ∈ N},

then C is a nonempty bounded closed convex subset of XU .
It follows from the properties of Cn above that d(C) = rad(C) = 1, so

XU does not have normal structure.
On the other hand, from theorem 3.4, ζXU

(ε) < 1 + ε and 0 ≤ ε ≤ 2.
This contradicts theorem 2.17, and X must have uniform normal struc-

ture. �

We provide some relationships between the modulus ζX(ε) and some other
known ones in the following:

In [10], Gao introduced a parameter Q(X) = sup{l(S(X2)) : X2 ⊆ X},
where X2 denotes two dimensional subspace of X, and proved that a Banach
space X with Q(X) < 6 + 2δX(1)

1−δX(1) has uniform normal structure. For any

Banach space X, 0 ≤ δX(1) ≤ 1
2 , so 6 ≤ 6 + 2δX(1)

1−δX(1) ≤ 8.

From Q(X) = 2ζX(2), we have

Theorem 3.6. A Banach space X with ζX(2) < 3 + δX(1)
1−δX(1) has uniform

normal structure.

We use Hilbert space as an example.

For the Hilbert space H, ζH(2) = π and δH(ε) = 1−
√
4−ε2
2 for 0 ≤ ε ≤ 2.

We have δH(1) = 1−
√
3
2 and

3 +
δH(1)

1− δH(1)
= 3 +

1−
√
3
2

1− (1−
√
3
2 )

= 3 +
2−
√
3√

3
= 3.1547 · · · · · .

This shows ζH(2) < 3 + δH(1)
1−δH(1) for the Hilbert space.
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