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Let X be a Banach space, and B(X) and S(X) be the unit ball and unit sphere
of X. In this paper, a new modulus (x(g) which related to the Modulus of
U-Convexity, Arc Length is introduced. The properties of (x(¢) are studied.
The relationships between the modulus (x(g) and some other known ones are
given. Some sufficient conditions for uniform non-squareness and uniform normal
structure of a Banach space are provided. Some results about fixed points of
non-expansive mapping are obtained.
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1. INTRODUCTION

Let X be a normed linear space. Let B(X) = {z € X : [jz|| < 1} and
S(X) = {x € X : ||z|| = 1} be the unit ball, and the unit sphere of X,
respectively. Let X* be the dual space of X. We define V, C S(X™*) to be
the set of norm 1 supporting functionals of S(X) at x, that is, f, € V, <
(x, fz) = 1. For z1,29 € B(X), we use [z1,x2] to denote the line segment
connecting x; and z9 in X. Let Xo be a 2-dimensional subspace of X, for
x1,x2 € S(X2), we use I1,22 to denote the curve on S(X2) from 1 to mo
clockwise.

In 1948, Brodskii and Mil’man [1] introduced the following geometric con-
cepts:

Definition 1.1. A bounded and convex subset K of a Banach space X is
said to have normal structure if every convex subset H of K that contains more
than one point contains a point xg € H, such that sup{||zo —y|| 1y € H} <
d(H), where d(H) = sup{||lx — y|| : ,y € H} denotes the diameter of H. A
Banach space X is said to have normal structure if every bounded and con-
vex subset of X has normal structure. A Banach space X is said to have weak
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normal structure if for each weakly compact convex set K in X has normal
structure. X is said to have uniform normal structure if there exists 0 < ¢ < 1
such that for any bounded closed convex subset K of X that contains more than
one point, there exists z9 € K such that sup{||zo —y|| : y € K} < c¢-d(K).

For a reflexive Banach space, the normal structure and weak normal struc-
ture coincide.

Let D be a nonempty subset of a Banach space X. A mappingT : D — D
is called to be non-expensive whenever | Tz —Ty|| < ||z —y| for all z,y € D. A
Banach space has fixed point property if for every bounded closed and convex
subset D of X and for each non-expansive mapping 7' : D — D, there is a
point x € D such that z = T'z. (See [14]).

In 1965, Kirk [13] proved that if a Banach space X has weak normal
structure then it has weak fixed point property, that is, every non-expansive
mapping from a weakly compact and convex subset of X into itself has a fixed
point.

In [3], Clarkson introduced the following modulus of convexity: dx(e) =
inf{l — 3|lz + y|| : 2,y € Sx, ||z — y|| > €}, where 0 < & < 2. It was proved
that if there exists € > 0 such that dx (1 +¢) > §, then X has uniform normal
structure [9].

In [7], Gao introduced the modulus of U-convexity which is a genera-
lization of 6x(e): Ux(e) = inf{l — J||lz + y|| : =,y € Sx,{x —y, fo) >
e for some f, € V,}, where 0 < ¢ < 2. It was also proved that if there
exists § > 0 such that Uy (3 — ) > 0, then X has uniform normal structure.
Mazcundn-Navarro [14] proved that a Banach space X has fixed point property
if there exists 6 > 0 such that Ux(1 — ) > 0. This was strengthened by Sa-
ejung [15]. In fact, it was proved that if a Banach space X is super-reflexive,
then the moduli of U-convexity of the ultra-power X;; of X and of X itself
coincide. By using ultra-power method he showed that a Banach space X and
its dual X* have uniform normal structure whenever Ux (1) > 0.

For 21 € S(X) and y € X, let B(z1,¢) ={y: ||ly—x1]] <e,0 <e <2} be
the ball with center at x; and radius ¢, and let slx(z1,¢) = {y : (z1 —vy, fz,) <
£,0 <e <2} B(X) be the slice of B(X) with vertex ;.

The modulus of uniform convexity, dx (¢) and the modulus of U-convexity,
Ux (g) is the uniform measure of depth of midpoint between S(X)() B(x1,¢)
and S(X) () slx(z1,¢) to vertex xy, respectively. The both modulus of uniform
convexity dx(¢) and the modulus of U-convexity Ux(e) are used to study uni-
form non-squareness, uniform normal structure and other geometric properties
of Banach space and each of them plays an important role.

In this paper, a new parameter (x(g), the uniform measure of arc length
from points on S(X) () slx(z1,¢€) to vertex z1, is introduced. The properties of
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(x (g) are studied. The relationships between the modulus (x (¢) and some other
known ones are given. Some sufficient conditions for uniform non-squareness
and uniform normal structure of a Banach space are provided. Finally, we
study uniformly normal structure in Section 3. Some results about fixed points
of non-expansive mapping are obtained.

2. PRELIMINARIES AND MAIN RESULTS

A curve in a Banach space X is a continuous mapping x : [a,b] — X and
in this case it is denoted by C := {z(t) : a <t < b}. A curve is called simple
if it does not have multiple points. A curve is called closed if z(a) = x(b). A
closed curve is called symmetric about the origin if x € C| then also —x € C.

For a normed linear space X, it is clear that S(X2), where Xo is 2-
dimensional subspace of X is a simple closed curve which is symmetric about
the origin and unique up to orientation.

The concept of the length of a curve in Banach spaces resembles the same
concept in Euclidean spaces. For a curve C' = {x(t) : t € [a,b]} and a partition
P = {tg,t1,ta,...,t,} C [a,b] where

a=ty<ti1 <ty <..<t;<..<tp,=0b,
let

I(C,P) = Z |(ti) — 2 (ti-1)|l.
i=1

The length [(C) of a curve C' is defined as the least upper bound of [(C, P) for
all partitions P of [a, b], that is,

[(C) =sup{l(C, P) : P is a partition of [a, b]}.
If I(C) is finite, then the curve C is called rectifiable. (See [4,8]).
Let ||P|| = mazi1<i<n{|t; — ti—1|} for a partition P of [a,b].

THEOREM 2.1 ([2,17]). If curve C is rectifiable, then for all € > 0, there
exists 0 > 0, such that | P|| < 0 implies [(C)—1(C, P) < e. Furthermore if { P}
is a sequence of partitions of [a, b] with || Py|| — 0, then limg_,o.l(C, Py) = 1(C).

Let I (C) denote the length of curve C' = z(t) from a to t. For a rectifiable
curve C = z(t),a < t < b, the arc length [%,(C) is a continuous function of ¢.

Definition 2.2 (|2,17]). Let y(s) represent the point x(t) on the curve C
for which I} (C) = s, then C = y(s),0 < s < (C), is called standard form of
the rectifiable curve C.
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THEOREM 2.3 ([2,17]). Let X5 be a two dimensional Banach space and
K1, Ky be closed convex subsets of Xo with non-void interiors. If K1 C Ko, then
[(0(K1)) < I(0(K2)), where l(O(K;)) denote the lengths of the circumferences
of K;yi=1,2.

THEOREM 2.4 ([17]). Let X2 be a two dimensional Banach space. The
following statements are true:
(1) 6 <IU(S(Xz)) <8;
(2) 1(S(X2)) =8 if and only if S(X2) is a parallelogram;
(3) 1(S(X2)) =6 if and only if S(X2) is an affine reqular hexagon.

LeEMMA 2.5 ([11]). Ifx1,22 € B(X) and 0 < € < 1 are such that M >
1—¢, then for all0 < ¢ <1 and z = cx1+ (1 — ¢)xg € [x1, 2], the line segment
connecting 1 and x2, it follows that ||z]| > 1 — 2e.

LEMMA 2.6. If x1,22 € S(X) and 0 < € < 1 are such thal M > 1—c¢,
then there exists 0 < ¢ < 1, z = cx1 + (1 — ¢)zo € [z1,22], such that for
Yy = H%H € S(X) we have 1 — 2e < (z1, fy) = (x2, fy) < 1, where f, € V.

Proof. We consider the 2-dimensional subspace Xo of X spanned by xz;
and z9, and 21 and zs are clockwise located on z1,zs C S(X3), then we can
use Hahn-Banach theorem to extend the result to X.

Let y € 71, 73 such that (z1 — 2, f,) = 0, therefore (x1, f,) = (2, f,) and
let z € [x1,x2] such that y = T then (1, fy) = (@2, fy) = (2, fy) = ||2]| >
1 — 2¢, from lemma 2.5.

LEMMA 2.7 ([6]). Let X be a Banach space without weak normal structure,
then for any 0 < € < 1, there exists a sequence {z,} C S(X) with z, —* 0,
and
l—e<|zns1— 2| <1+4e€
for sufficiently large n, and any z € co{zi}}_;.

LEMMA 2.8 ([11]). Let X be a Banach space without weak normal struc-
ture, then for any 0 < € < 1, there exist x1, x2, x3 in S(X) satisfying
(1) xo —x3 = axy with |a — 1] <¢;
(i) [fzr = @2l| = 1], |[}zs = (=21)[] = 1] <€ and
cae + —
(i) (|22, |2 > 1 -

The lemma 2.8 can be extended to the following:

LEMMA 2.9. Let X be a Banach space without weak normal structure, then
for any 0 < e < 1, there exist x1, x2, x3 in S(X) satisfying
(1) xo — 23 =azy with |a— 1] <¢g;
(i) [llzy — zo|l = 1], [[les — (=z0) || = 1] <&;
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(i) |22, |22 > 1~ &5 and
1 > 1 —

2/ —
(iv) (21, far) =1 —c.

Proof. Let n = § and {z,} be chosen as in lemma 2.7 with € replaced by .

Let fi be the supporting functional of z; € S(X), i.e. ||f1]| =< 21, fi >=
1, and let 2y, satisfies | < zp,, fi > | <7, and w = HZ ?OH € S(X).

Let 1 = w,x9 = 21, and x3 = 2y, respectively.

Then it is proved in [11] that z1,z9, and z3 satisfy 3 conditions in
lemma 2.8.

We prove (iv):

- A o L
<£L'17f:r2> - <w7f21> - <H21 — ZnoHaf21> - Hzl _ZnOH<Z1 zn07le>
1
:M(1_<2n07fz1>) = — (1-p)>1l-c O

In the following we assume (71, z2) < $1(S(X2)) where 71,72 € S(X).

Definition 2.10. Cx(g) = sup{l(z1,z2) : x1, 22 € S(X) with (z1 — 9, fz,)
< ¢ for some fz, € Vg, }, where 0 <& < 2.

PROPOSITION 2.11. (x () is an increasing function in 0 < e < 2.

Proof. Let g1 < &9, then {1,292 € S(X) with (z; — z9, fz,) < &1} C
{xl,{L‘g S S(X) with <.’L‘1 — .%'Q,fm) < 62}.
This implies (x () is increasing. O

Ezample 2.12. For Hilbert space H, (g (e) = 2-tan™!, [55=,for0 < e <2,
and (g(2) =7

Proof. Let x1,z9 € S(H) with (z9, fz,) =1 — & where 0 < e < 2.

Consider the two-dim FEuclidean subspace Hy spanned by 1 and xo of H.

From (zg—(1—¢)x1, fz,) = 0, we have o — (1 —¢)x; perpendicular to z,
therefore

g — (1 =)z |* = loy — A=)z - | — 21 — (L =€)z ]| = (2 — ),
|lxe — (1 —e)zq|| = Ve(2 —e).
We have
UET) e - (- om :

2 m-Q0-9ul  e@-¢) 2-¢

So,
Cul(e) = l(z:fl,\_m/g) =2 . tan~ "

€
2—¢’
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Definition 2.13 (|12]). A Banach space X is called uniformly non-square
if there exists 6 > 0 such that if z,y € S(X), then either w <1-4or

Definition 2.14 ([4,5]). Let X and Y be Banach spaces. We say that
Y is finitely representable in X if for any € > 0 and any finite dimensional
subspace N C Y there is an isomorphism T : N — X such that for any y € N,
A=)yl < 1Tyl < (X +2)llyll-

The Banach space X is called super-reflexive if any space Y which is
finitely representable in X is reflexive.

Remark 2.15. Tt is well known that if X is uniformly non-square then X
is supper-reflexive and therefore X is reflexive.

THEOREM 2.16. For a Banach space X, if (x(¢) < 1+¢ for 0 <e <1,
or Cx(e) < 2e for 1 <e <2, then X is uniformly non-square.

Proof. Suppose X is not uniformly non-square, then for any § > 0, let
x,y € S(X) such that both w >1—0and @ >1-0.

Case 1. We first prove that if (x(¢) < 1+ ¢ for 0 < e < 2, then X is
uniformly non-square.

Let z € z,y such that (z, f,) = (y, f.), then from lemma 2.6,
(x, f2) = (y, f») > 1 — 20, where f, € V.

Since I(z,y) > |lz—y|| > 2—26, without loss of generality, we may assume
1(zy) > 2=yl =1 -4

Let u = y—t(z+y) 0 <t <1. From lemma 2.5, we have

Ty—t(z+y)[’
_, y—tz+y)
y—urry
> (y—tx+y) f2)— ([(y—tlz+y) - m”)

>(y—tz+y), fm) 20 =(-tx+(1-1)y, f) — 20
> —t+ (1—¢)(1—28)— 26 >1— 2t — 46.
So,
(z —u, fr) < 2t+496.

From theorem 2.3 and lemma 2.5,
1Em) > 2 —gll+ ly—ull > 18+ ly— (g —tz + )| — Iy — t(z+ ) — vl
>1—6+2t(1—8)—26 > 1+ 2t —56.

Since § can be arbitrarily small, we have (x(2t) > 142t for 0 <t < 1.

This is equivalent to (x(¢) > 1+¢, for any 0 < e < 2.

Case 2. We then prove that if (x(1+¢) <2+ 2¢ for 0 < e < 2, then X
is uniformly non-square.
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Let z € —y, y such that (—y, f-) = (y, f»), then we have,
<_y7 fZ> = <y) fz> = 0, where fz € V..

—

Since I(—y,y) > 4—46, without loss of generality, we may assume [(z,y) >
Iz =yl = lz =yl >2—20.

Let u = 2=4&4) 0 < ¢ < 1. From lemma 2.5, we have
ly—t(z+y)l

1> (u, f,) = (L@ T)

il
> <y—t(w+y),fz>—(\\(y—t(wry))—”z_#
= —t(x, f.) — 20 > —t — 26.
So,
(z—wu, fo) <1+t+40.

From theorem 2.3 and lemma 2.5,
W(zu) = |z =yl + lly — ull
>2-20+|ly—(y—tlx+y)l = Iy —tlz+y)) —ul
>2—20+2t(1—6)—20 > 242t — 60.

Since § can be arbitrarily small, we have (x(1+1¢) > 2+2tfor 0 <t < 1.
This is equivalent to (x(g) > 2e, for any 1 < e < 2.
Combine Case 1 and Case 2, we have

(x(e)<1l4e for0<e<1, or(x(e) <2 for1<e<2
implies X is uniformly non-square. [

THEOREM 2.17. For a Banach space X, if (x(g) < 14€ for any 0 < e <1,
then X has normal structure.

Proof. (x(e) < 1+ ¢ for any 0 < ¢ < 1 implies X is uniformly non-
square, therefore reflexive. So the normal structure and weak normal structure
coincide.

If X fails weak normal structure, and x1, xs, and x3 be chosen to satisfy
4 conditions in lemma 2.9.

Let y = wﬁ <t < 1. From lemma 2.5, we have
lz1—t(zs+z1)l|

r1 — t(l‘g + l’l)
21 — (w3 + 1)

<y7fac2>:< 7fl’2>

x1 — t(zs + 1)
|21 — (23 + 1)
> (w1 — t(x3 + 11), fo,) — 26 = (21 — t(x2 — ax1 + 21), fop) — 26

> (z1 —t(ws3 + 1), fun) — (@1 —t(23 + 21)) —
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>l—ec—t(l+|1—a|])—2e>1—e—t—3e=1—1t—4e.
So,
<x2_yafx2> <t+4e.

From theorem 2.3, lemma 2.5 and lemma 2.9,
Wz2,y) > llz2 — 21| + [J21 — |
> ||lz2 — 21| + (|21 — (21 — (@3 + 1)) || = [[(z1 — (3 +21)) — 9]
>(1—e)+t—ec—2e=1+1t—4e.
Since € can be arbitrarily small, we have (x(t) > 1+t¢, for any 0 <t < 1.
This is equivalent to (x(¢) > 1+¢,forany 0 <e<1. O

3. UNIFORM NORMAL STRUCTURE

Let F' be a filter on an index set I, and let {x;};c; be a subset in a
Hausdorff topological space X, {z;}ier is said to converge to x with respect to
F', denote by limp z; = x, if for each neighborhood Vofx, {i € I : z; € V} € F.

A filter U on [ is called an ultrafilter if it is maximal with respect to the
ordering of the set inclusion.

An ultrafilter is called trivial if it is of the form {A: A C I,iy € A} for
some 19 € I.

Remark 3.1. We will use the fact that if U is an ultrafilter, then
(1) for any A C I, either ACU or I\ ACU,
(ii) if {x;}ier has a cluster point z, then limy z; exists and equals to x.
Let {X;}icr be a family of Banach spaces and let lo(I,X;) denote

the subspace of the product space equipped with the norm ||(z;)|| = sup;c; |||
< oQ.

Definition 3.2 (|16]). Let U be an ultrafilter on I and let
Ny = {(2;) € loo(I, Xi) : hlgnHa:,H = 0}.
The ultra-product of {X; };er is the quotient space lo (I, X;) /Ny equipped with
the quotient norm.

We will use (z;)y to denote the element of the ultra-product. It follows
from (ii) of above remark 3.1, and the definition of quotient norm that

(3.1) I(za)ull = Tim ;]
In the following we will restrict our index set I to be N, the set of natural

numbers, and let X; = X, € N for some Banach space X. For an ultrafilter U
on N, we use Xy to denote the ultra-product.
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LEMMA 3.3 ([16]). Suppose U is an ultrafilter on N and X is a Banach
space. Then
(1) (X" = (Xu)* if and only if X is super-reflexive; and in this case,
(i) the mapping J defined by ((z;)v, J((fi)v)) = limy (x;, fi)  for all (z;)v €

Xy, is the canonical isometric isomorphism from (X*)y onto (Xy)*.

THEOREM 3.4. For any Banach space X with (x(e) < 14+e and 0 <& < 2,
and for any nontrivial ultrafilter U on N, (x,(¢) = (x(€).

Proof. X with (x(e) < 14+ ¢ and 0 < ¢ < 2 implies X is uniformly
non-square, so X is super-reflexive. We can use lemma 3.3.

Since X can be isometrically embedded onto Xy, we have (x(¢) < (x,, (¢).

We prove the reverse inequality. For any 1 > 0, from definition of (x (&)
we can choose

(z})v € S(Xv), (27)v € S(Xv)

and an
f=(v € Vi, € S(Xuv)*) = S(X")v),
such that
((@i)v — v, (fHu) < e but (@:)u, (yi)v) > Cxy(€) — -
Without loss of generality, we may assume ||z}|| = ||zZ|| = ||f,1]| = 1 for
all 7 € N.

From remark (i) and (ii) of ultrafilter, equation (1) and the paragraphs
above, the sets:

P:{Z€N<$3_$'L2>frl> §€}7

and

Q= {i e N:U((xi)v, (yi)v) > Cxy(€) —n}

are all in U.
So the intersection P Q is in U too, and is hence not empty.
Let i € P Q and (X;)2 be a two dimensional subspace of X spanned by
z} and z?, we have
<le - $12,fx3> <e,
and

W(zf)u, (27)v) > Cxy(€) = 1.
Hence (x(e) > Cx, (e) — 1.
Since 1 can be arbitrarily small, we have (x(¢) > (x, (). O
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THEOREM 3.5. If X is a Banach space with (x(e) < 1+ec and 0 <e <2,
then X has uniform normal structure.

Proof. The idea of the proof is same as the proof of theorem 4.4 in [11].
Suppose (x(e) < 14+ e and 0 < e < 2, and X does not have uniform normal
structure, we find a sequence {C),} of bounded closed convex subset of X such
that for each n,

0eCp, dCy) =1,
and 1
rad(Cy) = xlencfn yseu(i |z —y| >1 ~

Let U be any nontrivial ultrafilter on N, and let
C={(xn)y: xn € Cpyn € N},

then C'is a nonempty bounded closed convex subset of Xp.

It follows from the properties of C,, above that d(C) = rad(C) = 1, so
Xy does not have normal structure.

On the other hand, from theorem 3.4, (x,(¢) <1+¢eand 0 <e <2.

This contradicts theorem 2.17, and X must have uniform normal struc-
ture. O

We provide some relationships between the modulus (x (¢) and some other
known ones in the following:

In [10], Gao introduced a parameter Q(X) = sup{l(S(X2)) : X2 C X},
where X5 denotes two dimensional subspace of X, and proved that a Banach

space X with Q(X) < 6 + 12—%()((8) has uniform normal structure. For any

Banach space X, 0 < dx(1) < %, 50 6 <6+ 12_5?)((8) < 8.
From Q(X) = 2¢x(2), we have

THEOREM 3.6. A Banach space X with (x(2) < 3+ 1&?;1()1) has uniform
normal structure.

We use Hilbert space as an example.
For the Hilbert space H, (g (2) = 7 and dg(e) =1 — 7“12_52 for 0 <e <2
We have dy(1) =1 — § and

(1) 13 23
34 ) gy~ T2 34 2T V0 357
1—46m(1) 1—(1-%3) V3
This shows (g (2) < 3+ lflg&)l) for the Hilbert space.
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