THE INTRODUCTION OF NEW MODULUS $\zeta_X(\varepsilon)$, UNIFORM NON-SQUARENESS AND UNIFORM NORMAL STRUCTURE IN BANACH SPACES

JI GAO

Communicated by Hari Bercovici

Let X be a Banach space, and B(X) and S(X) be the unit ball and unit sphere of X. In this paper, a new modulus $\zeta_X(\varepsilon)$ which related to the Modulus of U-Convexity, Arc Length is introduced. The properties of $\zeta_X(\varepsilon)$ are studied. The relationships between the modulus $\zeta_X(\varepsilon)$ and some other known ones are given. Some sufficient conditions for uniform non-squareness and uniform normal structure of a Banach space are provided. Some results about fixed points of non-expansive mapping are obtained.

AMS 2010 Subject Classification: 46B20, 46C05, 52A07.

Key words: fixed points, modulus of U-convexity, normal structure, ultra-product, uniformly non-square.

1. INTRODUCTION

Let X be a normed linear space. Let $B(X) = \{x \in X : ||x|| \le 1\}$ and $S(X) = \{x \in X : ||x|| = 1\}$ be the unit ball, and the unit sphere of X, respectively. Let X^* be the dual space of X. We define $\nabla_x \subset S(X^*)$ to be the set of norm 1 supporting functionals of S(X) at x, that is, $f_x \in \nabla_x \iff$ $\langle x, f_x \rangle = 1$. For $x_1, x_2 \in B(X)$, we use $[x_1, x_2]$ to denote the line segment connecting x_1 and x_2 in X. Let X_2 be a 2-dimensional subspace of X, for $x_1, x_2 \in S(X_2)$, we use $\widehat{x_1, x_2}$ to denote the curve on $S(X_2)$ from x_1 to x_2 clockwise.

In 1948, Brodskiĭ and Mil'man [1] introduced the following geometric concepts:

Definition 1.1. A bounded and convex subset K of a Banach space X is said to have normal structure if every convex subset H of K that contains more than one point contains a point $x_0 \in H$, such that $\sup\{||x_0 - y|| : y \in H\} < d(H)$, where $d(H) = \sup\{||x - y|| : x, y \in H\}$ denotes the diameter of H. A Banach space X is said to have normal structure if every bounded and convex subset of X has normal structure. A Banach space X is said to have weak normal structure if for each weakly compact convex set K in X has normal structure. X is said to have uniform normal structure if there exists 0 < c < 1 such that for any bounded closed convex subset K of X that contains more than one point, there exists $x_0 \in K$ such that $\sup\{||x_0 - y|| : y \in K\} \leq c \cdot d(K)$.

For a reflexive Banach space, the normal structure and weak normal structure coincide.

Let D be a nonempty subset of a Banach space X. A mapping $T: D \to D$ is called to be non-expensive whenever $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in D$. A Banach space has fixed point property if for every bounded closed and convex subset D of X and for each non-expansive mapping $T: D \to D$, there is a point $x \in D$ such that x = Tx. (See [14]).

In 1965, Kirk [13] proved that if a Banach space X has weak normal structure then it has weak fixed point property, that is, every non-expansive mapping from a weakly compact and convex subset of X into itself has a fixed point.

In [3], Clarkson introduced the following modulus of convexity: $\delta_X(\varepsilon) = \inf\{1 - \frac{1}{2} ||x + y|| : x, y \in S_X, ||x - y|| \ge \varepsilon\}$, where $0 \le \varepsilon \le 2$. It was proved that if there exists $\varepsilon > 0$ such that $\delta_X(1 + \varepsilon) > \frac{\varepsilon}{2}$, then X has uniform normal structure [9].

In [7], Gao introduced the modulus of U-convexity which is a generalization of $\delta_X(\varepsilon)$: $U_X(\varepsilon) = \inf\{1 - \frac{1}{2} || x + y || : x, y \in S_X, \langle x - y, f_x \rangle \geq \varepsilon$ for some $f_x \in \nabla_x\}$, where $0 \leq \varepsilon \leq 2$. It was also proved that if there exists $\delta > 0$ such that $U_X(\frac{1}{2} - \delta) > 0$, then X has uniform normal structure. Mazcuñán-Navarro [14] proved that a Banach space X has fixed point property if there exists $\delta > 0$ such that $U_X(1 - \delta) > 0$. This was strengthened by Saejung [15]. In fact, it was proved that if a Banach space X is super-reflexive, then the moduli of U-convexity of the ultra-power $X_{\mathcal{U}}$ of X and of X itself coincide. By using ultra-power method he showed that a Banach space X and its dual X* have uniform normal structure whenever $U_X(1) > 0$.

For $x_1 \in S(X)$ and $y \in X$, let $B(x_1, \varepsilon) = \{y : ||y - x_1|| \le \varepsilon, 0 \le \varepsilon \le 2\}$ be the ball with center at x_1 and radius ε , and let $sl_X(x_1, \varepsilon) = \{y : \langle x_1 - y, f_{x_1} \rangle \le \varepsilon, 0 \le \varepsilon \le 2\} \bigcap B(X)$ be the slice of B(X) with vertex x_1 .

The modulus of uniform convexity, $\delta_X(\varepsilon)$ and the modulus of U-convexity, $U_X(\varepsilon)$ is the uniform measure of depth of midpoint between $S(X) \bigcap B(x_1, \varepsilon)$ and $S(X) \bigcap sl_X(x_1, \varepsilon)$ to vertex x_1 , respectively. The both modulus of uniform convexity $\delta_X(\varepsilon)$ and the modulus of U-convexity $U_X(\varepsilon)$ are used to study uniform non-squareness, uniform normal structure and other geometric properties of Banach space and each of them plays an important role.

In this paper, a new parameter $\zeta_X(\varepsilon)$, the uniform measure of arc length from points on $S(X) \bigcap sl_X(x_1, \varepsilon)$ to vertex x_1 , is introduced. The properties of $\zeta_X(\varepsilon)$ are studied. The relationships between the modulus $\zeta_X(\varepsilon)$ and some other known ones are given. Some sufficient conditions for uniform non-squareness and uniform normal structure of a Banach space are provided. Finally, we study uniformly normal structure in Section 3. Some results about fixed points of non-expansive mapping are obtained.

2. PRELIMINARIES AND MAIN RESULTS

A curve in a Banach space X is a continuous mapping $x : [a, b] \to X$ and in this case it is denoted by $C := \{x(t) : a \le t \le b\}$. A curve is called simple if it does not have multiple points. A curve is called closed if x(a) = x(b). A closed curve is called symmetric about the origin if $x \in C$, then also $-x \in C$.

For a normed linear space X, it is clear that $S(X_2)$, where X_2 is 2dimensional subspace of X is a simple closed curve which is symmetric about the origin and unique up to orientation.

The concept of the length of a curve in Banach spaces resembles the same concept in Euclidean spaces. For a curve $C = \{x(t) : t \in [a, b]\}$ and a partition $P := \{t_0, t_1, t_2, \ldots, t_n\} \subset [a, b]$ where

$$a = t_0 < t_1 < t_2 < \dots < t_i < \dots < t_n = b,$$

let

$$l(C, P) = \sum_{i=1}^{n} \|x(t_i) - x(t_{i-1})\|.$$

The length l(C) of a curve C is defined as the least upper bound of l(C, P) for all partitions P of [a, b], that is,

 $l(C) = \sup\{l(C, P) : P \text{ is a partition of } [a, b]\}.$

If l(C) is finite, then the curve C is called rectifiable. (See [4,8]).

Let $||P|| = \max_{1 \le i \le n} \{|t_i - t_{i-1}|\}$ for a partition P of [a, b].

THEOREM 2.1 ([2,17]). If curve C is rectifiable, then for all $\epsilon > 0$, there exists $\delta > 0$, such that $||P|| < \delta$ implies $l(C) - l(C, P) < \epsilon$. Furthermore if $\{P_k\}$ is a sequence of partitions of [a, b] with $||P_k|| \to 0$, then $\lim_{k\to\infty} l(C, P_k) = l(C)$.

Let $l_a^t(C)$ denote the length of curve C = x(t) from a to t. For a rectifiable curve $C = x(t), a \le t \le b$, the arc length $l_a^t(C)$ is a continuous function of t.

Definition 2.2 ([2,17]). Let y(s) represent the point x(t) on the curve C for which $l_a^t(C) = s$, then $C = y(s), 0 \le s \le l(C)$, is called standard form of the rectifiable curve C.

THEOREM 2.3 ([2,17]). Let X_2 be a two dimensional Banach space and K_1, K_2 be closed convex subsets of X_2 with non-void interiors. If $K_1 \subseteq K_2$, then $l(\partial(K_1)) \leq l(\partial(K_2))$, where $l(\partial(K_i))$ denote the lengths of the circumferences of $K_i, i = 1, 2$.

THEOREM 2.4 ([17]). Let X_2 be a two dimensional Banach space. The following statements are true:

- (1) $6 \le l(S(X_2)) \le 8;$
- (2) $l(S(X_2)) = 8$ if and only if $S(X_2)$ is a parallelogram;
- (3) $l(S(X_2)) = 6$ if and only if $S(X_2)$ is an affine regular hexagon.

LEMMA 2.5 ([11]). If $x_1, x_2 \in B(X)$ and $0 < \epsilon < 1$ are such that $\frac{\|x_1+x_2\|}{2} > 1-\epsilon$, then for all $0 \le c \le 1$ and $z = cx_1 + (1-c)x_2 \in [x_1, x_2]$, the line segment connecting x_1 and x_2 , it follows that $\|z\| > 1 - 2\epsilon$.

LEMMA 2.6. If $x_1, x_2 \in S(X)$ and $0 < \epsilon < 1$ are such that $\frac{\|x_1+x_2\|}{2} > 1-\epsilon$, then there exists $0 \le c \le 1$, $z = cx_1 + (1-c)x_2 \in [x_1, x_2]$, such that for $y = \frac{z}{\|z\|} \in S(X)$ we have $1 - 2\varepsilon < \langle x_1, f_y \rangle = \langle x_2, f_y \rangle \le 1$, where $f_y \in \nabla_y$.

Proof. We consider the 2-dimensional subspace X_2 of X spanned by x_1 and x_2 , and x_1 and x_2 are clockwise located on $\widetilde{x_1, x_2} \subseteq S(X_2)$, then we can use Hahn-Banach theorem to extend the result to X.

Let $y \in \widetilde{x_1, x_2}$ such that $\langle x_1 - x_2, f_y \rangle = 0$, therefore $\langle x_1, f_y \rangle = \langle x_2, f_y \rangle$ and let $z \in [x_1, x_2]$ such that $y = \frac{z}{\|z\|}$, then $\langle x_1, f_y \rangle = \langle x_2, f_y \rangle = \|z\| > 1 - 2\epsilon$, from lemma 2.5. \Box

LEMMA 2.7 ([6]). Let X be a Banach space without weak normal structure, then for any $0 < \epsilon < 1$, there exists a sequence $\{z_n\} \subseteq S(X)$ with $z_n \to w 0$, and

 $1 - \epsilon < ||z_{n+1} - z|| < 1 + \epsilon$

for sufficiently large n, and any $z \in co\{z_k\}_{k=1}^n$.

LEMMA 2.8 ([11]). Let X be a Banach space without weak normal structure, then for any $0 < \epsilon < 1$, there exist x_1, x_2, x_3 in S(X) satisfying

(i)
$$x_2 - x_3 = ax_1$$
 with $|a - 1| < \epsilon$;

(ii)
$$|||x_1 - x_2|| - 1|, |||x_3 - (-x_1)|| - 1| < \epsilon$$
; and

(iii) $||\frac{x_1+x_2}{2}||, ||\frac{x_3+(-x_1)}{2}|| > 1-\epsilon.$

The lemma 2.8 can be extended to the following:

LEMMA 2.9. Let X be a Banach space without weak normal structure, then for any $0 < \varepsilon < 1$, there exist x_1, x_2, x_3 in S(X) satisfying

- (i) $x_2 x_3 = ax_1$ with $|a 1| < \varepsilon$;
- (ii) $|||x_1 x_2|| 1|$, $|||x_3 (-x_1)|| 1| < \varepsilon$;

- (iii) $\left\|\frac{x_1+x_2}{2}\right\|, \left\|\frac{x_3+(-x_1)}{2}\right\| > 1-\varepsilon$; and
- (iv) $\langle x_1, f_{x_2} \rangle \ge 1 \varepsilon$.

Proof. Let $\eta = \frac{\varepsilon}{4}$ and $\{z_n\}$ be chosen as in lemma 2.7 with ϵ replaced by η . Let f_1 be the supporting functional of $z_1 \in S(X)$, *i.e.* $||f_1|| = \langle z_1, f_1 \rangle = 1$, and let z_{n_0} satisfies $|\langle z_{n_0}, f_1 \rangle | \langle \eta$, and $w = \frac{z_1 - z_{n_0}}{||z_1 - z_{n_0}||} \in S(X)$.

Let $x_1 = w, x_2 = z_1$, and $x_3 = z_{n_0}$ respectively.

Then it is proved in [11] that x_1, x_2 , and x_3 satisfy 3 conditions in lemma 2.8.

We prove (iv):

$$\langle x_1, f_{x_2} \rangle = \langle w, f_{z_1} \rangle = \langle \frac{z_1 - z_{n_0}}{||z_1 - z_{n_0}||}, f_{z_1} \rangle = \frac{1}{||z_1 - z_{n_0}||} \langle z_1 - z_{n_0}, f_{z_1} \rangle$$
$$= \frac{1}{||x_2 - x_3||} (1 - \langle z_{n_0}, f_{z_1} \rangle) \ge \frac{1}{1 + \eta} (1 - \eta) \ge 1 - \varepsilon. \quad \Box$$

In the following we assume $l(\widetilde{x_1, x_2}) \leq \frac{1}{2}l(S(X_2))$ where $x_1, x_2 \in S(X)$.

Definition 2.10. $\zeta_X(\varepsilon) = \sup\{l(\widetilde{x_1, x_2}) : x_1, x_2 \in S(X) \text{ with } \langle x_1 - x_2, f_{x_1} \rangle \le \varepsilon \text{ for some } f_{x_1} \in \nabla_{x_1}\}, \text{ where } 0 \le \varepsilon \le 2.$

PROPOSITION 2.11. $\zeta_X(\varepsilon)$ is an increasing function in $0 \le \varepsilon \le 2$.

Proof. Let $\varepsilon_1 < \varepsilon_2$, then $\{x_1, x_2 \in S(X) \text{ with } \langle x_1 - x_2, f_{x_1} \rangle \leq \varepsilon_1\} \subseteq \{x_1, x_2 \in S(X) \text{ with } \langle x_1 - x_2, f_{x_1} \rangle \leq \varepsilon_2\}.$

This implies $\zeta_X(\varepsilon)$ is increasing. \Box

Example 2.12. For Hilbert space H, $\zeta_H(\varepsilon) = 2 \cdot tan^{-1} \sqrt{\frac{\varepsilon}{2-\varepsilon}}$, for $0 \le \varepsilon < 2$, and $\zeta_H(2) = \pi$.

Proof. Let $x_1, x_2 \in S(H)$ with $\langle x_2, f_{x_1} \rangle = 1 - \varepsilon$ where $0 \le \varepsilon \le 2$.

Consider the two-dim Euclidean subspace H_2 spanned by x_1 and x_2 of H. From $\langle x_2 - (1-\varepsilon)x_1, f_{x_1} \rangle = 0$, we have $x_2 - (1-\varepsilon)x_1$ perpendicular to x_1 , therefore

$$\|x_2 - (1 - \varepsilon)x_1\|^2 = \|x_1 - (1 - \varepsilon)x_1\| \cdot \| - x_1 - (1 - \varepsilon)x_1\| = \varepsilon(2 - \varepsilon),$$

$$\|x_2 - (1 - \varepsilon)x_1\| = \sqrt{\varepsilon(2 - \varepsilon)}.$$

We have

$$\tan\frac{l(\widetilde{x_1, x_2})}{2} = \frac{\|x_1 - (1 - \varepsilon)x_1\|}{\|x_2 - (1 - \varepsilon)x_1\|} = \frac{\varepsilon}{\sqrt{\varepsilon(2 - \varepsilon)}} = \sqrt{\frac{\varepsilon}{2 - \varepsilon}}.$$

So,

$$\zeta_H(\varepsilon) = l(\widetilde{x_1, x_2}) = 2 \cdot tan^{-1} \sqrt{\frac{\varepsilon}{2 - \varepsilon}}.$$

Definition 2.13 ([12]). A Banach space X is called uniformly non-square if there exists $\delta > 0$ such that if $x, y \in S(X)$, then either $\frac{||x+y||}{2} \leq 1 - \delta$ or $\frac{||x-y||}{2} \leq 1 - \delta$.

Definition 2.14 ([4,5]). Let X and Y be Banach spaces. We say that Y is finitely representable in X if for any $\varepsilon > 0$ and any finite dimensional subspace $N \subseteq Y$ there is an isomorphism $T: N \to X$ such that for any $y \in N$, $(1-\varepsilon)||y|| \le ||Ty|| \le (1+\varepsilon)||y||$.

The Banach space X is called *super-reflexive* if any space Y which is finitely representable in X is reflexive.

Remark 2.15. It is well known that if X is uniformly non-square then X is supper-reflexive and therefore X is reflexive.

THEOREM 2.16. For a Banach space X, if $\zeta_X(\varepsilon) < 1 + \varepsilon$ for $0 \le \varepsilon \le 1$, or $\zeta_X(\varepsilon) < 2\varepsilon$ for $1 \le \varepsilon \le 2$, then X is uniformly non-square.

Proof. Suppose X is not uniformly non-square, then for any $\delta > 0$, let $x, y \in S(X)$ such that both $\frac{\|x+y\|}{2} \ge 1 - \delta$ and $\frac{\|x-y\|}{2} \ge 1 - \delta$.

Case 1. We first prove that if $\zeta_X(\varepsilon) < 1 + \varepsilon$ for $0 \le \varepsilon \le 2$, then X is uniformly non-square.

Let $z \in \widetilde{x, y}$ such that $\langle x, f_z \rangle = \langle y, f_z \rangle$, then from lemma 2.6, $\langle x, f_z \rangle = \langle y, f_z \rangle > 1 - 2\delta$, where $f_z \in \nabla_z$.

Since $l(\widetilde{x, y}) \ge ||x - y|| \ge 2 - 2\delta$, without loss of generality, we may assume $l(\widetilde{z, y}) \ge ||z - y|| \ge 1 - \delta$.

Let $u = \frac{y-t(x+y)}{\|y-t(x+y)\|}, 0 \le t \le 1$. From lemma 2.5, we have

$$1 \ge \langle u, f_z \rangle = \langle \frac{y - t(x + y)}{\|y - t(x + y)\|}, f_z \rangle$$

$$\ge \langle y - t(x + y), f_z \rangle - (\|(y - t(x + y)) - \frac{y - t(x + y)}{\|y - t(x + y)\|}\|)$$

$$\ge \langle y - t(x + y), f_z \rangle - 2\delta = \langle -tx + (1 - t)y, f_z \rangle - 2\delta$$

$$\ge -t + (1 - t)(1 - 2\delta) - 2\delta \ge 1 - 2t - 4\delta.$$

So,

$$\langle z - u, f_z \rangle \le 2t + 4\delta.$$

From theorem 2.3 and lemma 2.5, $l(\widetilde{z,u}) \ge ||z-y|| + ||y-u|| \ge 1 - \delta + ||y-(y-t(x+y))|| - ||(y-t(x+y)) - u||$ $\ge 1 - \delta + 2t(1-\delta) - 2\delta \ge 1 + 2t - 5\delta.$

Since δ can be arbitrarily small, we have $\zeta_X(2t) \ge 1 + 2t$ for $0 \le t \le 1$. This is equivalent to $\zeta_X(\varepsilon) \ge 1 + \varepsilon$, for any $0 \le \varepsilon \le 2$.

Case 2. We then prove that if $\zeta_X(1+\varepsilon) < 2+2\varepsilon$ for $0 \le \varepsilon \le 2$, then X is uniformly non-square.

$$1 \ge \langle u, f_z \rangle = \langle \frac{y - t(x + y)}{\|y - t(x + y)\|}, f_z \rangle$$

$$\ge \langle y - t(x + y), f_z \rangle - (\|(y - t(x + y)) - \frac{y - t(x + y)}{\|y - t(x + y)\|}\|)$$

$$\ge \langle y - t(x + y), f_z \rangle - 2\delta = \langle -tx + (1 - t)y, f_z \rangle - 2\delta$$

$$= -t \langle x, f_z \rangle - 2\delta \ge -t - 2\delta.$$

So,

$$\langle z - u, f_z \rangle \le 1 + t + 4\delta.$$

From theorem 2.3 and lemma 2.5,

$$l(\widetilde{z,u}) \ge ||z - y|| + ||y - u||$$

$$\ge 2 - 2\delta + ||y - (y - t(x + y))|| - ||(y - t(x + y)) - u||$$

$$\ge 2 - 2\delta + 2t(1 - \delta) - 2\delta \ge 2 + 2t - 6\delta.$$

Since δ can be arbitrarily small, we have $\zeta_X(1+t) \ge 2+2t$ for $0 \le t \le 1$. This is equivalent to $\zeta_X(\varepsilon) \ge 2\varepsilon$, for any $1 \le \varepsilon \le 2$. Combine Case 1 and Case 2, we have

onionie Case I and Case 2, we have

$$\zeta_X(\varepsilon) < 1 + \varepsilon \text{ for } 0 \le \varepsilon \le 1, \text{ or } \zeta_X(\varepsilon) < 2\varepsilon \text{ for } 1 \le \varepsilon \le 2$$

implies X is uniformly non-square. \Box

THEOREM 2.17. For a Banach space X, if $\zeta_X(\varepsilon) < 1+\varepsilon$ for any $0 \le \varepsilon \le 1$, then X has normal structure.

Proof. $\zeta_X(\varepsilon) < 1 + \varepsilon$ for any $0 \le \varepsilon \le 1$ implies X is uniformly non-square, therefore reflexive. So the normal structure and weak normal structure coincide.

If X fails weak normal structure, and x_1, x_2 , and x_3 be chosen to satisfy 4 conditions in lemma 2.9.

4 conditions in lemma 2.9. Let $y = \frac{x_1 - t(x_3 + x_1)}{\|x_1 - t(x_3 + x_1)\|}, 0 \le t \le 1$. From lemma 2.5, we have

$$\langle y, f_{x_2} \rangle = \langle \frac{x_1 - t(x_3 + x_1)}{\|x_1 - t(x_3 + x_1)\|}, f_{x_2} \rangle$$

$$\geq \langle x_1 - t(x_3 + x_1), f_{x_2} \rangle - \|(x_1 - t(x_3 + x_1)) - \frac{x_1 - t(x_3 + x_1)}{\|x_1 - t(x_3 + x_1)\|} |$$

$$\geq \langle x_1 - t(x_3 + x_1), f_{x_2} \rangle - 2\varepsilon = \langle x_1 - t(x_2 - ax_1 + x_1), f_{x_2} \rangle - 2\varepsilon$$

$$\geq 1 - \varepsilon - t(1 + |1 - a|) - 2\varepsilon \geq 1 - \varepsilon - t - 3\varepsilon = 1 - t - 4\varepsilon$$

So,

$$\langle x_2 - y, f_{x_2} \rangle \le t + 4\varepsilon$$

From theorem 2.3, lemma 2.5 and lemma 2.9,

$$l(\widetilde{x_{2}, y}) \geq ||x_{2} - x_{1}|| + ||x_{1} - y||$$

$$\geq ||x_{2} - x_{1}|| + ||x_{1} - (x_{1} - t(x_{3} + x_{1}))|| - ||(x_{1} - t(x_{3} + x_{1})) - y|$$

$$\geq (1 - \varepsilon) + t - \varepsilon - 2\varepsilon = 1 + t - 4\varepsilon.$$

Since ε can be arbitrarily small, we have $\zeta_X(t) \ge 1 + t$, for any $0 \le t \le 1$. This is equivalent to $\zeta_X(\varepsilon) \ge 1 + \varepsilon$, for any $0 \le \varepsilon \le 1$. \Box

3. UNIFORM NORMAL STRUCTURE

Let F be a filter on an index set I, and let $\{x_i\}_{i \in I}$ be a subset in a Hausdorff topological space X, $\{x_i\}_{i \in I}$ is said to converge to x with respect to F, denote by $\lim_F x_i = x$, if for each neighborhood V of x, $\{i \in I : x_i \in V\} \in F$.

A filter U on I is called an ultrafilter if it is maximal with respect to the ordering of the set inclusion.

An ultrafilter is called trivial if it is of the form $\{A : A \subseteq I, i_0 \in A\}$ for some $i_0 \in I$.

Remark 3.1. We will use the fact that if U is an ultrafilter, then

- (i) for any $A \subseteq I$, either $A \subseteq U$ or $I \setminus A \subseteq U$;
- (ii) if $\{x_i\}_{i \in I}$ has a cluster point x, then $\lim_U x_i$ exists and equals to x.

Let $\{X_i\}_{i \in I}$ be a family of Banach spaces and let $l_{\infty}(I, X_i)$ denote the subspace of the product space equipped with the norm $||(x_i)|| = \sup_{i \in I} ||x_i||$ $< \infty$.

Definition 3.2 ([16]). Let U be an ultrafilter on I and let

$$N_U = \{(x_i) \in l_{\infty}(I, X_i) : \lim_{U} ||x_i|| = 0\}.$$

The ultra-product of $\{X_i\}_{i \in I}$ is the quotient space $l_{\infty}(I, X_i)/N_U$ equipped with the quotient norm.

We will use $(x_i)_U$ to denote the element of the ultra-product. It follows from (ii) of above remark 3.1, and the definition of quotient norm that

(3.1)
$$||(x_i)_U|| = \lim_U ||x_i||$$

In the following we will restrict our index set I to be \mathbf{N} , the set of natural numbers, and let $X_i = X, i \in \mathbf{N}$ for some Banach space X. For an ultrafilter U on \mathbf{N} , we use X_U to denote the ultra-product.

LEMMA 3.3 ([16]). Suppose U is an ultrafilter on N and X is a Banach space. Then

- (i) $(X^*)_U = (X_U)^*$ if and only if X is super-reflexive; and in this case,
- (ii) the mapping J defined by $\langle (x_i)_U, J((f_i)_U) \rangle = \lim_U \langle x_i, f_i \rangle$ for all $(x_i)_U \in X_U$, is the canonical isometric isomorphism from $(X^*)_U$ onto $(X_U)^*$.

THEOREM 3.4. For any Banach space X with $\zeta_X(\varepsilon) < 1+\varepsilon$ and $0 \le \varepsilon \le 2$, and for any nontrivial ultrafilter U on N, $\zeta_{X_U}(\varepsilon) = \zeta_X(\varepsilon)$.

Proof. X with $\zeta_X(\varepsilon) < 1 + \varepsilon$ and $0 \le \varepsilon \le 2$ implies X is uniformly non-square, so X is super-reflexive. We can use lemma 3.3.

Since X can be isometrically embedded onto X_U , we have $\zeta_X(\varepsilon) \leq \zeta_{X_U}(\varepsilon)$.

We prove the reverse inequality. For any $\eta > 0$, from definition of $\zeta_X(\varepsilon)$ we can choose

$$(x_i^1)_U \in S(X_U), \, (x_i^2)_U \in S(X_U)$$

and an

$$f = (f_i^1)_U \in \nabla_{(x_i^1)_U} \in S((X_U)^*) = S((X^*)_U),$$

such that

$$\langle (x_i)_U - (y_i)_U, (f_i^1)_U \rangle \leq \varepsilon$$
, but $l((x_i)_U, (y_i)_U) > \zeta_{X_U}(\varepsilon) - \eta$

Without loss of generality, we may assume $||x_i^1|| = ||x_i^2|| = ||f_{x_i^1}|| = 1$ for all $i \in \mathbb{N}$.

From remark (i) and (ii) of ultrafilter, equation (1) and the paragraphs above, the sets:

$$P = \{i \in \mathbf{N} : \langle x_i^1 - x_i^2, f_{x_i^1} \rangle \le \varepsilon\},\$$

and

$$Q = \{i \in \mathbf{N} : l((x_i)_U, (y_i)_U) > \zeta_{X_U}(\varepsilon) - \eta\}$$

are all in U.

So the intersection $P \cap Q$ is in U too, and is hence not empty.

Let $i \in P \bigcap Q$ and $(X_i)_2$ be a two dimensional subspace of X spanned by x_i^1 and x_i^2 , we have

$$\langle x_i^1 - x_i^2, f_{x_i^1} \rangle \le \varepsilon,$$

and

$$l((x_i^1)_U, (x_i^2)_U) > \zeta_{X_U}(\varepsilon) - \eta.$$

Hence $\zeta_X(\varepsilon) \ge \zeta_{X_U}(\varepsilon) - \eta.$

Since η can be arbitrarily small, we have $\zeta_X(\varepsilon) \geq \zeta_{X_U}(\varepsilon)$. \Box

Ji Gao

THEOREM 3.5. If X is a Banach space with $\zeta_X(\varepsilon) < 1 + \varepsilon$ and $0 \le \varepsilon \le 2$, then X has uniform normal structure.

Proof. The idea of the proof is same as the proof of theorem 4.4 in [11]. Suppose $\zeta_X(\varepsilon) < 1 + \varepsilon$ and $0 \le \varepsilon \le 2$, and X does not have uniform normal structure, we find a sequence $\{C_n\}$ of bounded closed convex subset of X such that for each n,

$$0 \in C_n, \quad d(C_n) = 1,$$

and

$$rad(C_n) = \inf_{x \in C_n} \sup_{y \in C_n} ||x - y|| > 1 - \frac{1}{n}.$$

Let
$$U$$
 be any nontrivial ultrafilter on \mathbf{N} , and let

$$C = \{(x_n)_U : x_n \in C_n, n \in \mathbf{N}\},\$$

then C is a nonempty bounded closed convex subset of X_U .

It follows from the properties of C_n above that d(C) = rad(C) = 1, so X_U does not have normal structure.

On the other hand, from theorem 3.4, $\zeta_{X_U}(\varepsilon) < 1 + \varepsilon$ and $0 \le \varepsilon \le 2$.

This contradicts theorem 2.17, and X must have uniform normal structure. $\hfill\square$

We provide some relationships between the modulus $\zeta_X(\varepsilon)$ and some other known ones in the following:

In [10], Gao introduced a parameter $Q(X) = \sup\{l(S(X_2)) : X_2 \subseteq X\}$, where X_2 denotes two dimensional subspace of X, and proved that a Banach space X with $Q(X) < 6 + \frac{2\delta_X(1)}{1-\delta_X(1)}$ has uniform normal structure. For any Banach space X, $0 \le \delta_X(1) \le \frac{1}{2}$, so $6 \le 6 + \frac{2\delta_X(1)}{1-\delta_X(1)} \le 8$.

From $Q(X) = 2\zeta_X(2)$, we have

THEOREM 3.6. A Banach space X with $\zeta_X(2) < 3 + \frac{\delta_X(1)}{1 - \delta_X(1)}$ has uniform normal structure.

We use Hilbert space as an example.

For the Hilbert space H, $\zeta_H(2) = \pi$ and $\delta_H(\varepsilon) = 1 - \frac{\sqrt{4-\varepsilon^2}}{2}$ for $0 \le \varepsilon \le 2$. We have $\delta_H(1) = 1 - \frac{\sqrt{3}}{2}$ and

$$3 + \frac{\delta_H(1)}{1 - \delta_H(1)} = 3 + \frac{1 - \frac{\sqrt{3}}{2}}{1 - (1 - \frac{\sqrt{3}}{2})} = 3 + \frac{2 - \sqrt{3}}{\sqrt{3}} = 3.1547 \cdots$$

This shows $\zeta_H(2) < 3 + \frac{\delta_H(1)}{1 - \delta_H(1)}$ for the Hilbert space.

Acknowledgments. The authors would like to deeply thank the referee for the many valuable recommendations and suggestions.

REFERENCES

- M.S. Brodskiĭ and D.P. Mil'man, On the center of a convex set (Russian). Dokl. Akad. Nauk SSSR 59 (1948), 837–840.
- [2] H. Buseman, The Geometry of Geodesics. Academic Press, New York, 1955.
- [3] J.A. Clarkson, Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936), 3, 396-414.
- [4] M.M. Day, Normed Linear Spaces. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. Springer-Verlag, New York-Heidelberg, 1973.
- [5] J. Diestel, Geometry of Banach Spaces. Selected Topics. Lecture Notes in Math. 485, Berlin-Heidelberg-New York, Springer-Verlag, XI, 1975.
- [6] D. van Dulst, Some more Banach spaces with normal structure. J. Math. Anal. Appl. 104 (1984), 1, 285-292.
- [7] J. Gao, Normal structure and modulus of U-convexity in Banach spaces. In: J. Rákosník (Ed.), Function spaces, differential operators and nonlinear analysis. Proceedings of the conference held in Paseky nad Jizerou, Czech Republic, September 3-9, 1995. Prague, Prometheus Publishing House, 1996, 195-199.
- [8] J. Gao, Normal structure and the arc lenth in Banach spaces. Taiwanese J. Math. 5 (2001), 2, 353-366.
- [9] J. Gao, Modulus of convexity in Banach spaces. Appl. Math. Lett. 16 (2003), 3, 273-278.
- [10] J. Gao, Normal struction and some parameters in Banach spaces. Nonlinear Funct. Anal. Appl. 10 (2005), 2, 299-310.
- [11] J. Gao and K.S. Lau, On two classes of Banach spaces with uniform normal structure. Studia Math. 99 (1991), 1, 41-56.
- [12] R.C. James, Uniformly non-square Banach spaces. Ann. of Math. (2) 80 (1964), 542– 550.
- W.A. Kirk, A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 1004–1006.
- [14] E.V. Mazcuñán-Navarro, On the modulus of u-convexity of Ji Gao. Abstr. Appl. Anal. 2003 (2003), 1, 49-54.
- [15] S. Saejung, On the modulus of U-convexity. Abstr. Appl. Anal. 2005 (2005), 1, 59-66.
- [16] B. Sims, "Ultra"-techniques in Banach space theory. Queen's Papers in Pure and Applied Mathematics, No. 60. Kingston, Ontario, Canada: Queen's University. V, 1982.
- [17] J.J. Schäffer, Geometry of Spheres in Normed Spaces. Lecture Notes in Pure and Applied Mathematics, Vol. 20. New York-Basel, Marcel Dekker, Inc. VI, 1976.

Received 11 March 2017

Community College of Philadelphia Department of Mathematics Philadelphia, PA 19130-3991, USA jgao@ccp.edu