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The paper de�nes the entropy of an oval curve as a function of its curvature
and �nds the ovals with maximum entropy. The problem of �nding the entropy
maximizing curves between two points is treated using the Lagrangian forma-
lism and solved in closed form. The paper studies also the smooth isometric
deformations of the type ∂tϕt(s) − 1

2
∂2
sϕt(s) = σ(t)ϕt(s) and proves that they

are both area and entropy increasing, the oval with the maximum entropy being
a circle.
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1. INTRODUCTION

The present paper continues the idea of [1], dealing with a problem rela-
ted to elastica curves � the maximum entropy curves. The employed methods
use tools of di�erential equations applied to di�erential geometry of curves,
following the spirit of previous works [2�4].

The entropy of a curve is de�ned using its curvature. Section 2 shows that
among all oval curves, i.e., plane, closed, simple curves with positive curvature,
the circle has the maximum entropy. The relation with the elastic potential is
mentioned in Section 2. The maximum entropy curves between two given points
and having prescribed directions at the endpoints is explored using Lagrangian
formalism in Sections 4 and 5. The isometric deformations are introduced in
Section 6 and the evolution of curvature, area and entropy along these defor-
mations are explored in Sections 7, 8 and 9, respectively. It turns out that in
all investigated cases the oval curves of maximum entropy are circles. Finally,
Section 10 de�nes a statistical distance-like measure between two oval curves,
called cross-entropy, and advances an open question.

2. SIMPLE CLOSED CURVES

An oval curve is a smooth, plane, closed, convex, and simple curve. Its
curvature is smooth and positive everywhere. In the following, we shall intro-
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92 Ovidiu Calin 2

duce a probability density associated with each oval curve, and then provide a
characterization theorem regarding maximum entropy ovals curves.

Let c : [0, τ ] → R2 be an oval curve parameterized by the arc length s.

Let κ(s) denote the curvature of c(s) and de�ne p(s) =
1

2π
κ(s). Since the

convexity of the oval implies p(s) ≥ 0, and by Fenchel's theorem, see Millman
and Parker [11], we have

∫ τ
0 p(s) ds = 1, it follows that p(s) can be regarded

as a probability density function on [0, τ ]. By the Four Vertex Theorem (see
for instance [11]) the curvature κ is either constant, or has two maxima and
two minima. Consequently, the density p(s) is either bimodal or uniform, see
Fig. 1. We shall regard it as the density function associated with the oval curve

c(s).

The following de�nition is inspired by a similar concept from Thermody-
namics.

De�nition 1. The entropy of an oval curve c(s) of length τ is the functional

(2.1) H(c) = −
∫ τ

0
p(s) ln p(s) ds = ln(2π)− 1

2π

∫ τ

0
κ(s) lnκ(s) ds.

The negative sign in the de�nition is reminiscent from statistical mecha-
nics where the entropy must be positive. However, in our case the entropy
is not necessary positive. It is worth noting that some authors consider the
entropy de�ned just by the more simple relation

∫ τ
0 κ(s) lnκ(s) ds.

The physical interpretation is given in the following. Consider a closed
metal thin wire of an oval shape and consider some charge on it. The charge is
free to move through the wire and be distributed uniformly at an initial instance
of time, see Fig. 1.a. However, after a while, it will prefer to concentrate in the
regions of larger curvature, where the lattice structure of the metal is a�ected
by bending, see Fig. 1.b. The equilibrium density of the charge will follow the
density function associated with the oval curve, p(s). The entropy of c(s) is a
measure of the uncertainty of the localization of the charge in the wire. The
maximum entropy corresponds to the case when the localization of the charge is
maximally uncertain, which corresponds to an uniform distribution. The next
result deals with the proof of this statement.

Theorem 1. Let τ > 0 be given. Among all oval curves of the same length

τ , the curve with the maximum entropy is the circle. The maximum value of

the entropy in this case is ln τ .

Proof. For any convex function F , Jensen's inequality states that

F
(1

τ

∫ τ

0
f(s) ds

)
≤ 1

τ

∫ τ

0
F
(
f(s)

)
ds,
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a b

Fig. 1 � a. Uniform distribution of charges on a circular
wire; b. bimodal distribution of charge on an oval wire.

Choosing F (x) = x lnx and f(s) = κ(s), and using
∫ τ

0 κ(s) ds = 2π, the
inequality becomes

2π

τ
ln

2π

τ
≤ 1

τ

∫ τ

0
κ(s) lnκ(s) ds⇐⇒

ln(2π)− ln τ ≤ 1

2π

∫ τ

0
κ(s) lnκ(s) ds,

which can be written as H(c) ≤ ln τ . The maximum value is reached when
Jensen's inequality becomes identity, i.e., when κ(s) = constant, which corre-

sponds to a circle of radius R =
τ

2π
. �

3. RELATION WITH THE ELASTIC POTENTIAL

When the metal wire is constrained to take an oval shape, some elas-
tic force in the wire will occur. This has the tendency of straightening the
wire. The more bent the wire is, the larger the elastic tendency. Integra-
ting, we obtain the value of the total elastic potential along the curve as
E(c) =

∫ τ
0

1
2κ(s)2 ds.

The physical interpretation follows. Assume there is a �ow of particles
�owing through the wire with constant speed, |ċ(s)| = 1. Due to curvature, the
particles will act on the walls of the wire with a force F (s) = mc̈(s), where m
is the mass of the particle. The elastic potential is the integral of the square of
the magnitude of F along the curve, assuming m = 1/2. The picture becomes
more clear if we replace the wire by a light hose through which we run water at
pressure. The shape of the hose tends to minimize the elastic potential E(c),
taking the shape of an elastic curve.

The problem of elastic curves has been proposed for the �rst time by
Daniel Bernoulli to Leonhard Euler in 1744. They de�ned them as curves which
minimize the bending energy of a thin inextensible rod. The mathematical
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model of this problem is that of minimizing the elastic potential energy, which
is the integral of the squared curvature for curves of a �xed length satisfying
given �rst order boundary data. More precise, an elastic curve in the plane is
a regular curve c : [0, L] → R2 with prescribed endpoints A = c(0), B = c(τ)

and given length τ , which minimizes the elastic potential energy
∫ L

0
1
2κ

2(s) ds,
where κ(s) denotes the curvature of c(s).

Finding plane elastic curves of given length τ , which pass through two
given points A and B, and having prescribed tangent lines at these points was
a problem �rst solved by Euler, who found the complete classi�cation of plane
elastic curves into 9 distinct types, see Love [7]. An explicit calculation of the
equation of elastic curves is done in [1], using elliptic trigonometric functions,
see [8].

The tradeo� between the entropy and the elastic potential of an oval is
captured by the next result.

Proposition 1. We have

(3.1) H(c) +
1

π

∫ τ

0

1

2
κ2(s) ds ≥ 1 + ln(2π).

Hence the entropy and elastic potential cannot be made simultaneously too small

for the same oval curve c. The identity is reached for κ = 1, i.e. in the case of

the unit circle.

Proof. By the inequality lnx ≤ x−1, x > 0, and using Fenchel's theorem,
we have

1

2π

∫ τ

0
κ lnκ ds ≤ 1

2π

∫ τ

0
κ2 ds− 1.

The inequality (3.1) follows easily after using formula (2.1). The identity occurs
for κ = 1. �

Since ovals are closed curves, in this section we did not need to consider
boundary conditions. In the next section, we consider curves that join two
distinct points in the plane. Consequently, for the purpose of the next section,
we shall drop the closeness condition of the curve.

4. VARIATIONALLY CONTROLLED SYSTEM

This section studies the entropy maximizing plane curves using the La-
grangian formalism with constraints. Consider the curves joining points A and
B in the plane and having prescribed tangents α, β ∈ R2 at the endpoints

Ω = {c : [0, τ ]→ R2; c(0) = A, c(τ) = B, c′(0) = α, c′(τ) = β}.
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Denote by Ωu = {c ∈ Ω; ‖c′‖ = 1} the subspace of unit speed curves. We
plan to maximize the entropy H(c) over all curves in the space Ωu. Then, the
solution is given by

c∗ = arg max
c∈Ωu

H(c).

To solve the problem, we employ the Lagrangian formalism.
The following formula for the curvature, due to Euler, will be useful when

setting up the Lagrangian. Consider a plane curve c(s) =
(
x(s), y(s)

)
para-

meterized by the arc length s, with s ∈ [0, τ ], τ being the length of the curve.
Since ẋ2(s)+ ẏ2(s) = 1, we can write ẋ(s) = cos θ(s) and ẏ(s) = sin θ(s), where
the smooth function θ(s) is the angle made by the velocity ċ(s) with the x-axis.
The square of the curvature can be written as

(4.1) κ2(s) = ẍ2(s) + ÿ2(s) = θ̇2(s).

The use of unit speed curves c(s) implies the use of the following con-
straints, see [6]

(4.2) ẋ = cos θ, ẏ = sin θ.

The variational method involving non-holonomic constraints considers the
unit speed curve c(s) =

(
x(s), y(s)

)
, and expresses its curvature by the formula

(4.1) considering the velocity constraints (4.2).
Therefore, we consider the functional with constraints F : Ω→ R, de�ned

by

F (c) =

∫ τ

0

(
− 1

2π
κ(s) lnκ(s)

)
ds+ λ1

∫ τ

0

(
ẋ(s)− cos θ(s)

)
ds

+λ2

∫ τ

0

(
ẏ(s)− sin θ(s)

))
ds,

where θ(s) is the angle made by the tangent vector ċ with the x-axis, and λi
are Lagrange multipliers.

In the following, we assume that the curve c is convex, i.e., θ̇ > 0. Then
the entropy can be written in terms of angle θ as

κ(s) lnκ(s) = θ̇(s) ln θ̇(s),

and the resulting Lagrangian is

(4.3) L(θ, x, y, θ̇, ẋ, ẏ) = − 1

2π
θ̇ ln θ̇ + λ1(ẋ− cos θ) + λ2(ẏ − sin θ),

with λ1, λ2 Lagrange multipliers. Then the previous functional becomes F (c) =∫ τ
0 L ds. The associated Euler-Lagrange equations

d

ds

∂L

∂θ̇
=
∂L

∂θ
,

d

ds

∂L

∂ẋ
=
∂L

∂x
,

d

ds

∂L

∂ẏ
=
∂L

∂y
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can be written as

−θ̈/θ̇ = µ1 sin θ − µ2 cos θ(4.4)

µ̇1 = 0(4.5)

µ̇2 = 0,(4.6)

where µi = 2πλi. It is remarkable that this system can be integrated explicitly
as in the following.

The equation (4.4) can be written after integration as

θ̇ = µ2 sin θ + µ1 cos θ +K

= |µ| sin(θ + ϕ0) +K,

with K integration constant, |µ| =
√
µ2

1 + µ2
2, and tanϕ0 = µ1/µ2. The condi-

tion K > |µ| implies the convexity condition θ̇ > 0.

Set A = |µ|, u = θ + ϕ0. We thus obtain the following ODE in u

u̇ = A sinu+K,

which can be integrated by the method of separation as follows∫
du

A sinu+K
=

∫
ds⇐⇒

2√
K2 −A2

tan−1
(A+K tan u

2√
K2 −A2

)
− C̃ = s.

Solving for u, we obtain

u = 2 tan−1
(√

1−
(A
K

)2
tan

(
C +

s

2

√
K2 −A2

)
− A

K

)
,

with C integration constant. The solution of the Euler-Lagrange system is

(4.7) θ(s) = 2 tan−1
(√

1−
(A
K

)2
tan

(
C +

s

2

√
K2 −A2

)
− A

K

)
− ϕ0.

Integrating in the constraints (4.2) provides the curve components

x(s) = x(0) +

∫ s

0
cos θ(t)dt

y(s) = y(0) +

∫ s

0
sin θ(t)dt.

Even if cos θ(t) and sin θ(t) can be computed using trigonometric formulas and
formula (4.7), an explicit computation of their integrals is hard to obtain.
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5. BOUNDARY CONDITIONS

There are four end point conditions

x(0) = x0, y(0) = y0, x(τ) = x1, y(τ) = y1,

and two given tangent directions at endpoints

θ(0) = θ0, θ(τ) = θ1.

There are some simplifying assumptions that can be made. Performing a rigid
motion, we can always assume, without loss of generality, that the curve starts
from the origin and has the initial velocity tangent to the x-axis

x0 = 0, y0 = 0, θ0 = 0.

These boundary conditions can be written equivalently as

x1 =

∫ τ

0
cos θ(t)dt

y1 =

∫ τ

0
sin θ(t)dt

ϕ0 = 2 arctan
(√

1−
(A
K

)2
tanC − A

K

)
θ1 = 2 arctan

(√
1−

(A
K

)2
tan

(
C +

τ

2

√
K2 −A2

)
− A

K

)
− ϕ0.

The four independent parameters µ1, µ2, C and K are determined by the
aforementioned four equations (A and ϕ0 depend on µ1 and µ2); the solution
is not necessarily unique. A study of an exact number of solutions is missing
at the moment.

6. SMOOTH ISOMETRIC DEFORMATIONS

Any plane, simple, and closed smooth curve of length τ = 2π can be
considered as the image of an isometric immersion ϕ of the unit circle S1 into
the plane R2

ϕ(s) =
(
ϕ1(s), ϕ2(s)

)
,

where s ∈ [0, 2π] is the arc length. Consequently, the following periodicity
conditions hold

ϕ(0) = ϕ(2π), ϕ̇(0) = ϕ̇(2π).

The immersion ϕ is deformed smoothly with respect to time t. This deformation
is denoted by ϕt and is de�ned as follows:

(i) ϕ0 = ϕ.
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(ii) ϕt is an isometric immersion for t ≥ 0, satisfying ϕt(0) = ϕt(2π),
ϕ̇t(0) = ϕ̇t(2π).

(iii) The evolution of the deformation satis�es the heat-type equation

∂tϕt(s)−
1

2
∂2
sϕt(s) = F (t, ϕt(s)),

with the source function F to be speci�ed later. In [1] we proved the following
result:

Theorem 2. Let σ(t) be a smooth function de�ned on [0,∞) such that

σ(t) > 0, σ′(t) < 0, lim
t→∞

σ(t) = σ =
1

2
.

If the immersion ϕt satis�es the initial value problem

∂tϕt(s)−
1

2
∂2
sϕt(s) = σ(t)ϕt(s)(6.1)

ϕ|t=0 = ϕ0,(6.2)

then the elastic potential 1
2

∫
κ2
t is a decreasing function of t. The limit curve,

obtained by taking t→∞, if exists, is a circle.

We shall use this deformation in the later sections and prove a similar
result for the entropy.

7. THE EVOLUTION OF CURVATURE

We shall start with a few basic notions. Recall that s ∈ [0, 2π] denotes
the arc length. The tangent vector �eld to the unit speed curve s → ϕt(s) is

given by Tt(s) =
∂ϕt(s)

∂s
. By Frenet's formula we have

∂Tt(s)

∂s
= κt(s)Nt,

where Nt and κt stand for the unit inner normal vector �eld and the curvature
of the curve s→ ϕt(s), respectively. Therefore, the equation (6.1) becomes

(7.1) ∂tϕt =
1

2
κtNt + σ(t)ϕt.

Next we shall parameterize the problem in terms of the normal angle µ, which
is the angle made by the normal N and the horizontal direction Ox. If θ
is the angle made by the tangent direction T with the horizontal axis Ox,
then µ = θ − π

2 , see Fig. 2. We shall recall a few known facts regarding this
parametrization.

If T and N are respectively the tangent vector and the inner unit normal
vector to the unit speed curve γ : S1 → R2, then T = γ̇ = (cos θ, sin θ) and
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Fig. 2 � The normal angle, µ, is measured counter-clock wise, µ = θ − π
2
.

N = (cosµ, sinµ), see Fig. 2. The normal angle depends on the arc length,
µ = µ(s), and we may assume without loss of generality that µ(0) = 0 and
µ(2π) = 2π, with µ(s) increasing. Then the curve γ can be parametrized by
the normal angle µ. An important role in this approach is played by the support
function of γ, which is de�ned by

(7.2) S(µ) = 〈γ(µ), N(µ)〉 = γ1(µ) cosµ+ γ2(µ) sinµ.

Di�erentiating with respect to µ, and using that γ′(µ) and N(µ) are perpendi-
cular, we have

∂µSµ = −γ1(µ) sinµ+ γ2(µ) cosµ(7.3)

∂2
µS(µ) + S(µ) = −γ1

µ(µ) sinµ+ γ2
µ(µ) cosµ.(7.4)

From (7.2) and (7.3) one can retrieve the curve γ in terms of the support
function S as

γ(µ) =

(
cosµ − sinµ
sinµ cosµ

)(
S
∂µS

)
.

This represents the curve γ(µ) as a rotation applied to a vector depending on
the support function S. The curvature κ of γ can be also represented in terms
of the support function as in the following

1

κ
=

ds

dθ
=

ds

dµ
=

ds

dµ
‖γ̇‖2 = 〈dγ

ds

ds

dµ
, γ̇〉 = 〈γµ, (cos θ, sin θ)〉

= 〈γµ, (− sinµ, cosµ)〉 = −γ1
µ sinµ+ γ2

µ cosµ,

which in the virtue of (7.4) implies

(7.5) κ =
1

∂2
µS + S

.

This formula can be also found in Zhu [10], p. 2.
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Now, we shall assume that the curve is transformed isometrically by the
immersion (6.1). Let ϕt(s) = ϕ(s, t) = ϕ

(
s(µ, t), t

)
= γ(µ, t) and using (7.1)

yields

∂tγ(µ, t) =
∂ϕ

∂s

∂s

∂t
+ ∂tϕt = T

∂s

∂t
+

1

2
κN + σ(t)γ.

Then S = S(µ, t) = 〈γ(µ, t) has the total derivative with respect to t given by

∂tS =
d

dt
〈γ,N〉 = 〈∂tγ,N〉+ 〈γ, ∂tN〉

= 〈T ∂s
∂t

+
1

2
κN + σ(t)γ,N〉+ 〈γ, ∂tN〉

=
1

2
κ+ σ(t)S + 〈γ, ∂tN〉.

Using

µ′(t) =
∂µ

∂t
=
∂µ

∂θ

∂θ

∂s

∂s

∂t
= k

∂s

∂t
= 0,

since the arc s is invariant by isometry reasons, we have

∂tN = ∂t(cosµ(t), sinµ(t)) = (− sinµ, cosµ)µ′(t) = 0,

and hence

(7.6) ∂tS =
1

2
κ+ σ(t)S,

where κ = κ(µ, t) is given by (7.5). Di�erentiating in (7.5) and using (7.6)
yields

∂tκ = − 1

(∂2
µS + ∂tS)2

(
∂t∂

2
µS + ∂tS

)
= −κ2

(1

2
∂2
µκ+

1

2
κ+ σ(∂2

µS + S)
)

= −κ2
(1

2
∂2
µκ+

1

2
κ+ σ

1

κ

)
.

Hence, the curvature satis�es the following evolution equation

(7.7) ∂tκ = −1

2
κ2(∂2

µκ+ κ)− σ(t)κ, µ ∈ S1, t > 0.

From the maximum principle of parabolic operators

min
µ∈S1

κ(µ, t) ≥ min
µ∈S1

κ(µ, 0) > 0, t ≥ 0.

This shows that if the initial curve ϕ0(S1) is a convex curve and the isometric
deformation ϕt satis�es the evolution equation (6.1), then the curve ϕt(S1) is
also convex, for any t > 0.
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8. THE EVOLUTION OF ENCLOSED AREA

In this section, we shall use the previous results to study how the area
enclosed by a simple, plane curve evolves during a heat-type isometric defor-
mation.

Let D be the domain enclosed by the simple curve γ, and denote its area
by A. First, we shall represent the area in terms of support function, S, and
curvature, κ. From Green's formula, we have

A =

∫∫
D
dA =

1

2

∫
γ
xdy − ydx =

1

2

∫ 2π

0
(xy′ − yx′) ds

=
1

2

∫ 2π

0
〈γ,N〉 ds =

1

2

∫ 2π

0

S

κ
dµ,(8.1)

where we used the change of variables

ds =
ds

dθ

dθ

dµ
dµ =

1

κ
dµ.

The area A(t) enclosed by the curve ϕt(S1) is the same as the one enclosed
by the curve γ(·, t). Di�erentiating in (8.1) and using the evolution equations
(7.6) and (7.7) as well as formula (7.5), we have

A′(t) =
1

2

∫ 2π

0

∂

∂t

(S
κ

)
dµ =

1

2

∫ 2π

0

∂tS κ− S ∂tκ
κ2

dµ

=
1

2

∫ 2π

0

(1

2
+ σ

S

κ

)
dµ+

1

2

∫ 2π

0

[1

2
S(∂2

µκ+ κ) + σ
S

κ

]
dµ

=
π

2
+ 2σA(t) +

1

2

∫ 2π

0

[1

2
∂2
µS κ+

1

2
Sκ
]
dµ

=
π

2
+ 2σA(t) +

1

2

∫ 2π

0

[1

2
(∂2
µS + S)κ

]
dµ

=
π

2
+ 2σA(t) +

1

2

∫ 2π

0

1

2
dµ

= π + 2σA(t).

Therefore, A(t) veri�es the following initial value linear di�erential equation

y′ − 2σ(t)y = π

y(0) = A(0).

The solution is unique and is given by

(8.2) A(t) = e2ρ(t)
(
A(0) + π

∫ t

0
e−2ρ(u) du

)
,

with ρ(t) =
∫ t

0 σ > 0.
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Since the curve is isometric with the circle S1, from the isoperimetric
inequality, we have A(t) ≤ π, with identity reached for the circle. We are
interested in �nding a time T ≥ 0 (�nite or in�nite) such that A(T ) = π, case
in which the curve becomes a circle. Using (8.2) the time T should satisfy the
equation

(8.3) e−2ρ(T ) =

∫ T

0
e−2ρ(u) du+

A(0)

π
.

We are interested in the existence of solutions T for the equation (8.3).
The equation can be written equivalently as f(T ) = g(T ), where

f(T ) = e−2ρ(T )

g(T ) =

∫ T

0
e−2ρ(u) du+

A(0)

π
.

Since σ(t) > 1
2 we have 2ρ(T ) > T . Then f(T ) is decreasing with

0 < f(T ) ≤ e−T ,

and with initial value f(0) = 1 and limT→∞ f(T ) = 0. On the other side,

the function g(T ) is increasing, with g(0) = A(0)
π . It follows that as long as

A(0) ≤ π the equation f(T ) = g(T ) has a unique �nite solution T ∗ ≥ 0.

In the particular case when A(0) = π, the solution is T ∗ = 0, case in
which the initial curve is already a circle.

If A(0) < π, then ϕ
T∗ (S1) is a circle, with T ∗ <∞.

There are no solutions in the case A(0) > π, since this inequality contra-
dicts the isoperimetric inequality.

We conclude this section with the following result:

Theorem 3. The deformation (6.1) satisfying the conditions of Theo-

rem 2 increases the area enclosed by the curve to the maximum value π in �nite

time. In this case the curve becomes a circle.

9. THE ENTROPY FLOW

We have seen in Theorem 1 that circles have maximum entropy. Theo-
rem 3 shows that the isometric deformation transforms the curve into one with
maximum entropy in �nite time, increasing its area at all time instances, while
keeping its perimeter constant. The question is whether this is done by incre-
asing also the entropy of the curve at all instances. The present section deals
with this problem.
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Theorem 4. Assume φ0 is a curve of �nite entropy. Then the defor-

mation (6.1), satisfying the conditions of Theorem 2, increases the entropy

to the maximum value ln(2π), provided the entropy stays �nite during the

deformation.

Proof. Using the change of variables dθ = κ(s) ds, the entropy of a curve
c can be written in terms of the angle θ as

H(c) = ln(2π)− 1

2π

∫ 2π

0
lnκ(θ) dθ.

Given the linear relation between the normal angle, µ, and the tangent angle,
θ, we have ∂2

θ = ∂2
µ. Let Ht denote the entropy of the curve ϕt(S1), with

t ∈ [0, T ∗), where T ∗ is the value of t at which the curve ϕ∗
T

(S1) becomes a
circle. Di�erentiating and using (7.7) yields

dHt

dt
= − 1

2π

∫ 2π

0

∂tκt(θ)

κt(θ)
dθ = − 1

2π

∫ 2π

0

[1

2
κt(∂

2
µκt + κt)− σ(t)

]
dθ

= − 1

2π

∫ 2π

0

1

2
κt
(
∂2
θκt + κt

)
dθ + σ(t).

Di�erentiating again, yields

d2Ht

dt2
= σ′(t) +

1

2π

∫ 2π

0

[1

2
∂tκt

(
∂2
θκt + κt

)
+

1

2
κt(∂t∂

2
θκt + ∂tκt)

]
dθ

= σ′(t) +
1

2π

∫ 2π

0

(
∂tκt κt + ∂2

θκt∂tκ
)
dθ

= σ′(t) +
1

2π

∫ 2π

0
∂tκt

(
κt + ∂2

θκt

)
dθ

= σ′(t)− 1

2π

∫ 2π

0
2∂tκt

∂tκt + σ(t)κt
κ2
t

dθ

= σ′(t)− 1

π

∫ 2π

0

(∂tκt
κt

)2
dθ − σ(t)

π

∫ 2π

0

∂tκt
κt

dθ

≤ σ′(t)− 2
(dHt

dt

)2
+ 2σ(t)

dHt

dt
.

We note that in the last inequality we have used Jensen's integral inequality(
1
b−a

∫ b
a f dθ

)2
≤ 1

b−a
∫ b
a f

2 dθ. Then the variation of the entropy, y(t) =
dHt

dt
,

satis�es the inequality

y′ ≤ σ′(t)− 2y2 + 2σ(t)y,

with σ′(t) < 0 and σ(t) > 1
2 . In particular, we have the strict inequality

y′ − 2σ(t)y < −2y2.
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Assume the function y is negative at some time y(t0) = − 1
a2
< 0. If z = y−1,

the previous inequality becomes z′ + 2σz > 2, which leads to

d

dt

(
e2ρ(t)z(t)

)
> 2et

where we used that 2ρ(t) = 2
∫ t

0 σ > t. Integrating between t0 and t yields

(9.1) z(t) > e−2ρ(t)
[
2et − (2et0 + a2e2ρ(t0))

]
.

Since z(t0) = −a2 < 0 and the right side of (9.1) is positive for

t > t1 = t0 + ln
[
1 +

a2

2
e2ρ(t0)−t0

]
> t0,

it follows that there is a t2 ∈ (t0, t1] such that lim
t→t2−

z(t) = 0−. This implies

that lim
t→t2−

y(t) = −∞. Hence, Ht is singular at t = t2, contradiction. It follows

that y(t) must be positive all the time, i.e. the entropy Ht is increasing for
any t ∈ [0, T ). The maximum value is reached at t = T and it is ln(2π), see
Theorem 1. �

Corollary 1. Let H0 denote the entropy of ϕ0. Then for any constant

c, with H0 < c < 2π, there is a unique t > 0 such that Ht = c.

10. CROSS ENTROPY OF OVALS

Divergence functions, called also contrast functions, are distance-like quan-
tities which measure the asymmetric di�erence of two probability density functi-
ons on a statistical manifold, see [5]. The following de�nition is an analog of
the Kullback-Leibler divergence in the case of oval curves. Two ovals can be
distinguished using the Kullback-Leibler divergence of the associated density
functions.

De�nition 2. Let c, γ : [0, τ ] → R2 be two oval curves. The relative
entropy of c with respect to γ is

H(c, γ) =

∫ τ

0
pc(s) ln

pc(s)

pγ(s)
ds =

1

2π

∫ τ

0
κc(s) ln

κc(s)

κγ(s)
ds,

where κc, κγ and pc, pγ are the curvatures and the density functions associated
with the oval curves c(s) and γ(s).

Lemma 1. Let c and γ be two oval curves.

(i) We have H(c, γ) ≥ 0.
(ii) H(c, γ) = 0 if and only if the ovals c and γ are the same curve, up to a

rigid motion.
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Proof. (i) This part follows from the inequality lnx ≤ x− 1 and Fenchel's
theorem as follows:

H(c, γ) = − 1

2π

∫ τ

0
κc ln

κγ
κc
≥ − 1

2π

∫ τ

0
κc
(κγ
κc
− 1
)

= − 1

2π

(∫ τ

0
κγ −

∫ τ

0
κc

)
= 0.

(ii) H(c, γ) = 0 when κc(s) = κγ(s). From the fundamental theorem of di�e-
rential geometry, see [11], the curves c and γ must be the same, up to a rigid
motion. �

Consider a deformation ϕt, t ∈ [0, T ] and consider the division 0 < t1 <
· · · < tn = T , with tk = k∆t, ∆t = T/n. The relative entropy of the curve
ϕti+∆t with respect to the neighboring curve, ϕti , is given by H(ϕti+∆t, ϕti),
and the amount of information changed during the time interval ∆t is

H(ϕti+∆t, ϕti)∆t.

The total amount of information associated with the deformation ϕt and
the division 0 < t1 < · · · < tn = T is the sum of all partial deformations

I(ϕt; t0, t1, · · · , tn) =

n∑
i=1

H(ϕti+1 , ϕti)∆t.

The information associated with the deformation is given by the following
limit

I(ϕt) = lim
n→∞

n∑
i=1

H(ϕti+∆t, ϕti)∆t.

We end this paper with the following open problem with applications to
computer graphics:

For which deformation ϕt is the information I(ϕt) minimum?
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