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We discuss cubic and ternary algebras which are a direct generalization of Gras-
smann and Cli�ord algebras, but with Z3-grading replacing the usual Z2-grading.

Elementary properties and structures of such algebras are discussed, with
special interest in low-dimensional ones, with two or three generators.

Invariant antisymmetric quadratic and cubic forms on such algebras are
introduced, and it is shown how the SL(2, C) group arises naturally in the case
of lowest dimension, with two generators only, as the symmetry group preserving
these forms.

We also show how the calculus of di�erential forms can be extended to
include also second di�erentials d2xi, and how the Z3 grading naturally appears
when we assume that d3 = 0 instead of d2 = 0.

Ternary analogue of the commutator is introduced, and its relation with
usual Lie algebras investigated, as well as its invariance properties.

We shall also discuss certain physical applications In particular, Z3-graded
gauge theory is brie�y presented, as well as ternary generalization of Pauli's
exclusion principle and ternary Dirac equation for quarks.
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1. INTRODUCTION

Of all symmetry groups characterizing physical phenomena and their mat-
hematical models, the discrete groups seem to be the most fundamental. Among
those, the simplest discrete group Z2 is omnipresent and plays a crucial role in
fundamental interactions between elementary particles and �elds. All theoreti-
cal models of elementary interactions are checked by their response to the three
representations of the Z2 group, called �C � (charge conjugation, re�ecting the
symmetry between particles and anti-particles), �P � (parity, consisting in space
re�ection) and �T � (time reversal).

Although in some situations parity or time reversal may be broken, all
known phenomena are invariant under the simultaneous application of all these
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idempotents. This is often referred to as the �CPT �-theorem in elementary
particle physics.

Another important manifestation of Z2 symmetry in physics is the dis-
tinction between bosons and fermions, which in the language of quantum �eld
theory corresponds to commutators (for bosons) or anti-commutators (for fer-
mions) in the constitutive relations between the creation and annihilation ope-
rators:

(1) a†iak − aka
†
i = δik, a†iak + aka

†
i = δik.

for the Bose-Einstein or Fermi-Dirac statistics, respectively.

What we have here is an example of two distinct representations of the Z2

symmetry group, the trivial one in the case of bosons, and the faithful one in
the case of fermions. Let us analyze the structure of all possible representations
of Z2 in the complex plane.

All bilinear mappings of vector spaces into complex numbers can be di-
vided into irreducible symmetry classes according to the representations of the
Z2 group, e.g. symmetric, anti-symmetric, hermitian, or anti-hermitian:

i ) The trivial representation de�nes the symmetric 2-valenced tensors:

Sπ(AB) = SBA = SAB,

ii ) The sign reversal de�nes the anti-symmetric tensors:

Aπ(CD) = ADC = −ACD,

iii ) The complex conjugation de�nes the hermitian tensors:

Hπ(AB) = HBA = H̄AB,

iv ) (−1)× complex conjugation de�nes the anti-hermitian tensors.

Tπ(AB) = TBA = −T̄AB,

Similarly, all tri-linear mappings can be distinguished by their symmetry
properties with respect to the permutations belonging to the Z3 symmetry
group.

There are several di�erent representations of the action of the Z3 cyclic
permutation group on tensors with three indices. Consequently, such tensors
can be divided into irreducible subspaces which are conserved under the action
of the cyclic group Z3. Let us remind that also the action of the full S3 permu-
tation group containing six elements, is possible on any set of three items, but
for the grading, which has to be additive, only its Z3 subgroup is necessary.

There are three possibilities of an action of Z3 being represented in the
complex plane by multiplication by a complex number:
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� the trivial one (multiplication by 1), and the two other representati-
ons,

the multiplication by j = e2πi/3

or by its complex conjugate j2 = j̄ = e4πi/3.

Now we can introduce the following three irreducible subspaces of the
linear space of 3-forms:

(2) T ∈ T : TABC = TBCA = TCAB,

(3) Λ ∈ L : ΛABC = j ΛBCA = j2 ΛCAB,

(4) Λ̄ ∈ L̄ : Λ̄ABC = j2 Λ̄BCA = j Λ̄CAB,

which can be called, respectively, totally symmetric, j-skew-symmetric and j2-
skew-symmetric.

Thus the space of all tri-linear forms is the sum of three irreducible sub-
spaces,

Θ3 = T ⊕ L ⊕ L̄
corresponding dimensions being, respectively, (N3 + 2N)/3 for T , (N3−N)/3
for L and for L̄.

Any three-form Wα
ABC mapping A ⊗ A ⊗ A into a vector space X of

dimension k, α, β = 1, 2, ...k, so that Xα = Wα
ABC θ

AθBθC can be represented
as a linear combination of forms with speci�c symmetry properties,

Wα
ABC = TαABC + ΛαABC + Λ̄αABC ,

with:

(5) TαABC :=
1

3
(Wα

ABC +Wα
BCA +Wα

CAB),

(6) ΛαABC :=
1

3
(Wα

ABC + j Wα
BCA + j2Wα

CAB),

(7) Λ̄αABC :=
1

3
(Wα

ABC + j2Wα
BCA + j Wα

CAB).

As in the Z2 case, the three symmetries above de�ne irreducible 3-forms.
Consequently, two di�erent cubic commutation relations can be imposed

on an associative algebra, say Λ-type and Λ̄-type: for any three elements a, b, c
belonging to the algebra AΛ we shall have

abc = j bca = j2 cab,

and for any three elements ā, b̄, c̄ belonging to algebra ĀΛ̄ we shall have

āb̄c̄ = j2 b̄c̄ā = j c̄āb̄.

The Z2-grading of ordinary (binary) algebras is well known and widely studied
and applied (e.g. in the super-symmetric �eld theories in Physics [1, 2]).
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2. TERNARY ALGEBRAS

The Grassmann and Cli�ord algebras are perhaps the oldest and the best
known examples of a Z2-graded structure. Other gradings are much less popu-
lar. The Z3-grading was introduced and studied in early nineties [3]; the ZN
grading was discussed in papers by M. Dubois-Violette [4].

An approach to ternary Cli�ord algebra based on ternary triples and a
successive process of ternary Galois extensions is proposed in [5]. More general
case of N -algebras, in which only the product of N elements is de�ned, was
studied in L. Vainerman, R. Kerner [6].

The usual de�nition of an algebra involves a linear space A (over real or
complex numbers) endowed with a binary constitutive relations:

(8) A×A → A.

In a �nite dimensional case, dim A = N, in a chosen basis e1, e2, ..., eN , the
constitutive relations (8) can be encoded in structure constants ckij as follows:

(9) eiej = ckij ek.

With the help of these structure constants all essential properties of a
given algebra can be expressed, e.g. they will de�ne a Lie algebra if they are
antisymmetric and satisfy the Jacobi identity:

(10) ckij = −ckji, ckimc
m
jl + ckjmc

m
li + cklmc

m
ij = 0,

whereas an abelian algebra will have its structure constants symmetric,
ckij = ckji.

In what follows, we shall be concerned exclusively with ternary algebras,
de�ned via triple product mapping A×A×A onto A:

(11) X,Y, Z ∈ A → {X,Y, Z} ∈ A.

In a chosen basis of n linearly independent vectors ek ∈ A, k, l = 1, 2, 3, the
3-product is de�ned via ternary structure constants f iklm:

(12) {ei, ej , ek} = fmijk em, i, j, k,m = 1, 2, 3.

Obviously enough, given any classical associative algebra with binary multipli-
cation law X,Y ∈ A → X · Y ∈ A, one can easily introduce ternary multipli-
cation law by simple iteration:

(13) {X,Y, Z} := X(Y · Z) = (X · Y )Z = XY Z.

In such a case, ternary structure constants can be expressed by means of usual
(binary) structure constants of the associative algebra A:

(14) {ei, ek, el} = fmikl em = (eiek)el = cjikejel = cjikc
m
jl em,
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from which we infer that fmikl = cjikc
m
jl .

On the other hand, due to the associativity of algebra A, the same ternary
product can be represented alternatively as

{ei, ek, el} = fmikl em = ei(ekel) = ei(c
j
klej) = cjkl(eiej) = cjklc

m
ij em,

Therefore in the case when ternary multiplication law is naturally induced by
an associative binary product, the resulting ternary structure constants must
satisfy an obvious symmetry constraint:

(15) fmikl = cjikc
m
jl = cjklc

m
ij .

Usually, when we speak of algebras, we mean binary algebras, understanding
that they are de�ned via quadratic constitutive relations (9). On such algebras
the notion of Z2-grading can be naturally introduced. An algebra A is called a
Z2-graded algebra if it is a direct sum of two parts, with symmetric (abelian)
and anti-symmetric product respectively,

(16) A = A0 ⊕A1,

with grade of an element being 0 if it belongs to A0, and 1 if it belongs to A1.
Under the multiplication in a Z2-graded algebra the grades add up repro-

ducing the composition law of the Z2 permutation group: if the grade of an
element A is a, and that of the element B is b, then the grade of their product
will be a+ b modulo 2:

(17) grade(AB) = grade(A) + grade(B).

A Z2-graded algebra is called a Z2-graded commutative if for any two homoge-
neous elements A,B we have

(18) AB = (−1)abBA.

It is worthwhile to note that the above relationship can be written in an
alternative form, with all the expressions on the left side as follows:

(19) AB − (−1)a bBA = 0, or AB + (−1)(a b+1)BA = 0

The equivalence between these two alternative de�nitions of commutation (an-
ticommutation) relations inside a Z2-graded algebra is no more possible if by
analogy we want to impose cubic relations on algebras with Z3-symmetry pro-

perties, in which the cubic root of unity, j = e
2πi
3 plays the role similar to that

of −1 in binary relations displaying a Z2-symmetry [3].
The Z3 cyclic group is an abelian subgroup of the S3 symmetry group of

permutations of three objects. The S3 group contains six elements, including
the group unit e (the identity permutation, leaving all objects in place: (abc)→
(abc)), the two cyclic permutations

(abc)→ (bca) and (abc)→ (cab),
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and three odd permutations,

(abc)→ (cba), (abc)→ (bac) and (abc)→ (acb).

There was a unique de�nition of commutative binary algebras given in two
equivalent forms,

(20) xy + (−1)yx = 0 or xy = yx.

In the case of cubic algebras we have the following four generalizations of the
notion of commutative algebras:

a) Generalizing the �rst form of the commutativity relation (20), which
amounts to replacing the −1 generator of Z2 by j-generator of Z3 and binary
products by products of three elements, we get

(21) S : xµxνxλ + j xνxλxµ + j2 xλxµxν = 0,

where j = e
2πi
3 is the primitive third root of unity.

b) Another primitive third root, j2 = e
4πi
3 can be used in place of the

former one; this will de�ne the conjugate algebra S̄, satisfying the following
cubic constitutive relations:

(22) S̄ : xµxνxλ + j2 xνxλxµ + j xλxµxν = 0.

Both algebras are in�nitely-dimensional and have the same structure. Each
of them is a possible generalization of in�nitely-dimensional algebra of usual
commuting variables with a �nite number of generators. In the usual Z2-graded
case such algebras are just polynomials in variables x1, x2, ... , xN ; the algebras
S and S̄ de�ned above are also spanned by polynomials, but with di�erent
symmetry properties, and as a consequence, with di�erent dimensions corre-
sponding to a given power.

c) Then we can impose the following �weak� commutation, valid only for
cyclic permutations of factors:

(23) S1 : xµxνxλ = xνxλxµ 6= xνxµxλ,

d) Finally, we can impose the following �strong� commutation, valid for
arbitrary (even or odd) permutations of three factors:

(24) S0 : xµxνxλ = xνxλxµ = xνxµxλ

Let us turn now to the Z3 generalization of anti-commuting generators,
which in the usual homogeneous case with Z2-grading de�ne Grassmann alge-
bras. Here, too, we have four di�erent choices:

a) The �strong� cubic anti-commutation,

(25) L0 : Σπ∈S3 θ
π(A)θπ(B)θπ(C) = 0,
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i.e. the sum of all permutations of three factors, even and odd ones, must
vanish.

b) The somewhat weaker �cyclic� anti-commutation relation,

(26) L1 : θAθBθC + θBθCθA + θCθAθB = 0,

i.e. the sum of cyclic permutations of three elements must vanish. The same
independent relation for the odd combination θCθBθA holds separately.

c) The j-skew-symmetric algebra:

(27) L : θAθBθC = j θBθCθA.

and its conjugate algebra L̄, isomorphic with L, which we distinguish by putting
a bar on the generators and using dotted indices:

d) The j2-skew-symmetric algebra:

(28) L̄ : θ̄Ȧθ̄Ḃ θ̄Ċ = j2θ̄Ḃ θ̄Ċ θ̄Ȧ

Both these algebras are �nite dimensional. For j or j2-skew-symmetric al-
gebras with N generators the dimensions of their subspaces of given polynomial
order are given by the following generating function:

(29) H(t) = 1 +Nt+N2t2 +
N(N − 1)(N + 1)

3
t3,

where we include pure numbers (dimension 1), the N generators θA (or θ̄Ḃ),
the N2 independent quadratic combinations θAθB and N(N − 1)(N + 1)/3
products of three generators θAθBθC .

3. Z3-GRADED GRASSMAN

Let us consider N generators spanning a linear space over complex num-
bers, satisfying the following cubic relations [3, 13]:

(30) θAθBθC = j θBθCθA = j2 θCθAθB,

with j = e2iπ/3, the primitive root of 1. We have 1 + j + j2 = 0 and j̄ = j2. It
is worth mentioning that there are no relations between binary products θAθB,
i.e. all these products are linearly independent. Let us denote the algebra
spanned by the θA generators by A.

We shall also introduce a similar set of conjugate generators, θ̄Ȧ, Ȧ, Ḃ, ... =
1, 2, ..., N , satisfying similar condition with j2 replacing j:

(31) θ̄Ȧθ̄Ḃ θ̄Ċ = j2 θ̄Ḃ θ̄Ċ θ̄Ȧ = j θ̄Ċ θ̄Ȧθ̄Ḃ,

Let us denote this algebra by Ā.
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We shall endow the algebra A⊕Ā with a natural Z3 grading, considering
the generators θA as grade 1 elements, their conjugates θ̄Ȧ being of grade 2.
The grades add up modulo 3, so that the products θAθB span a linear subspace
of grade 2, and the cubic products θAθBθC are of grade 0.

Similarly, all quadratic expressions in conjugate generators, θ̄Ȧθ̄Ḃ are of
grade 2 + 2 = 4 (mod 3) = 1, whereas their cubic products are again of grade
0, like the cubic products of θA's [7].

Combined with the associativity, these cubic relations impose �nite di-
mension on the algebra generated by the Z3-graded generators.

As a matter of fact, cubic expressions are the highest order that does not
vanish identically. The proof is immediate:

θAθBθCθD = j θBθCθAθD = j2 θBθAθDθC =

(32) = j3 θAθDθBθC = j4 θAθBθCθD,

and because j4 = j 6= 1, the only solution is θAθBθCθD = 0.
Under associative multiplication the grade of the resulting element is the

sum of the grades of two factors modulo 3. Let us form a vector represented
by a column with entries ordered by their Z3 grades:0

1
2


Consider a 3× 3 matrix acting on such a vector, with all entries of de�ned Z3

grade.
In particular, we can form matrices which conserve the grades in the

column vector, or raise the grade of each component by 1, or by 2. Such
matrices can be called grade raising operators, of grades 0, 1 or 2, respectively.

The three matrices acting as grade raising operators should have their
entries graded as follows:0 2 1

1 0 2
2 1 0

 ,

1 0 2
2 1 0
0 2 1

 ,

2 1 0
0 2 1
1 0 2

 acting on

0
1
2


If we restrain matrices to have elements of grade 0 exclusively, we get the
following three types, which we shall denote symbolically by B, Q and Q†:

B '

a 0 0
0 b 0
0 0 c

 , Q '

0 a 0
0 0 b
c 0 0

 , Q† '

0 0 a
b 0 0
0 c 0

 ,

Natural Z3 grading can be attributed to the three types of matrices above:
the diagonal ones (of B-type) are of Z3-grade 0, the o�-diagonal of Q-type are
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of Z3-grade 1, and the o�-diagonal ones of type Q† are of Z3-grade 2. It is
easy to check that so attributed Z3 grades add up modulo three under matrix
multiplication. As a matter of fact, multiplying by any diagonal matirx of type
B does not change the form of any Q or Q† type matrices, thus keeping their
grade unchanged, 0 + 1 = 1, 0 + 2 = 2. A product of two Q-type matrices
produces a matrix of Q† type, and the grades add up 1 + 1 = 2; a product of
two matrices of Q† type produces a matrix of Q type, according to the grade
addition 2 + 2 = 4, but 4 |mod3= 1. Finally, a product of a Q-matrix with a
Q†-matrix is a diagonal 3 × 3 matrix of B-type, according to 1 + 2 = 3, and
3 |mod3= 0. Now we can proceed further and show how a special subset of the
above 3× 3 matrices spans a ternary generalization of Cli�ord algebras.

4. TERNARY CLIFFORD

Let us introduce the following three 3× 3 matrices:

(33) Q1 =

 0 1 0
0 0 j
j2 0 0

 , Q2 =

0 1 0
0 0 j2

j 0 0

 , Q3 =

0 1 0
0 0 1
1 0 0

 ,

and their hermitian conjugates

(34) Q†1 =

0 0 j
1 0 0
0 j2 0

 , Q†2 =

0 0 j2

1 0 0
0 j 0

 , Q†3 =

0 0 1
1 0 0
0 1 0

 .

These matrices can be endowed with natural Z3-grading,

(35) grade(Qk) = 1, grade(Q†k) = 2,

The above matrices span a very interesting ternary algebra. Out of three in-
dependent Z3-graded ternary combinations, only one leads to a non-vanishing
result. One can check without much e�ort that both j and j2 skew ternary
commutators do vanish:

{Q1, Q2, Q3}j = Q1Q2Q3 + jQ2Q3Q1 + j2Q3Q1Q2 = 0,

{Q1, Q2, Q3}j2 = Q1Q2Q3 + j2Q2Q3Q1 + jQ3Q1Q2 = 0,

and similarly for the odd permutation, Q2Q1Q3.
On the contrary, the totally symmetric combination does not vanish; it is

proportional to the 3× 3 identity matrix 1:

(36) QaQbQc +QbQcQa +QcQaQb = 3 ηabc 1, a, b, ... = 1, 2, 3.

with ηabc given by the following non-zero components:

η111 = η222 = η333 = 1, η123 = η231 = η312 = 1,
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(37) η213 = η321 = η132 = j2.

all other components vanishing.
The above relation may serve as the de�nition of ternary Cli�ord algebra,

as introduced in [5, 17].
Another set of three matrices formed by the hermitian conjugates of Qa,

which we shall endow with dotted indices ȧ, ḃ, ... = 1, 2, 3:

Q†ȧ = Q̄Ta

satis�es the conjugate identities

(38) Q†ȧQ
†
ḃ
Q†ċ +Q†

ḃ
Q†ċQ

†
ȧ +Q†ċQ

†
ȧQ
†
ḃ

= 3 ηȧḃċ 1, ȧ, ḃ, ... = 1, 2, 3.

with ηȧḃċ = η̄cba.
It is obvious that any similarity transformation of the generators Qa will

keep the ternary anti-commutator (36) invariant. As a matter of fact, if we
de�ne Q̃b = P−1QbP , with P a non-singular 3 × 3 matrix, the new set of
generators will satisfy the same ternary relations, because

Q̃aQ̃bQ̃c = P−1QaPP
−1QbPP

−1QcP = P−1(QaQbQc)P,

and on the right-hand side we have the unit matrix which commutes with all
other matrices, so that P−1 1 P = 1.

It is also worthwhile to note that the six matrices displayed in (33), (34)
together with two traceless diagonal matrices

B =

 1 0 0
0 j 0
0 0 j2

 , B† =

 1 0 0
0 j2 0
0 0 j


form the basis for certain representation of the SU(3), which was shown in the
nineties by V. Kac in 1994 [16].

We shall endow the two diagonal matrices B and B† = B2 with the
Z3 grade 0, the three matrices Qa with grade 1, and their three hermitian
conjugates Q̄ḃ with Z3 grade 2. Under matrix multiplication the grades add up
modulo 3.

Let us introduce in the matrix algebra spanned by B, B†, Qa and Q̄ḃ the
following Z3-graded commutator:

(39) [B, C]Z3 = BC − jbc CB, where b = grad(B), c = grad(C).

Let us choose a matrix of grade 1 such that its cube is equal to the unit
matrix, e.g.

η =

0 1 0
0 0 1
1 0 0

 .
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and let us de�ne di�erentiation of our matrix algebra as follows:

(40) dB = [η,B]Z3 = ηB − jb Bη.

One can easily show that d3 = 0 on any element B ∈ A.

(41) dB = ηB − jbBη;

d2B = d(ηB − jbBη) = η(ηB − jbBη)− jb+1(ηB − jbBη)η =

(42) = η2 − jb ηBη − jb+1 ηBη + j2b+1 Bη2;

Finally, (we skip the intermediary calculations)

d3B = η3B − (jb + jb+1 + jb+2) η2B+

(43) (j2b+1 + j2b+2 + j2b+3) ηBη2 −Bη3 = 0,

because η3 = 1 and commutes with B, and because

(jb + jb+1 + jb+2) = jb(1 + j + j2) = 0,
and

(j2b+1 + j2b+2 + j2b+3) = j2b(j + j2 + j3) = 0.

5. Z3-GRADED DIFFERENTIALS

Instead of the usual exterior di�erential operator satisfying d2 = 0, let us
postulate its Z3-graded generalization satisfying

(44) d2 6= 0, d3f = 0

The �rst di�erential of a smooth function f(xi) is as usual df = ∂if dx
i, whe-

reas the second di�erential is formally

(45) d2f = (∂k∂if) dxkdxi + (∂if) d2xi

We shall attribute the grade 1 to the 1-forms dxi, (i, j, k = 1, 2, ...N), and
grade 2 to the forms d2xi, (i, j, k = 1, 2, ...N); under associative multiplication
of these forms the grades add up modulo 3

(46) grade(ω θ) = [grade(ω) + grade(θ)] (modulo 3).

The Z3-graded di�erential operator d has the following property, compatible
with grading we have chosen:

(47) d(ω θ) = (dω) θ + jgradeω ω dθ.

We have:

(48) d2f = (∂i∂kf)dxidxk + (∂if) d2xi,
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d3f = (∂m∂i∂kf)dxmdxidxk + (∂i∂kf)d2xidxk

(49) +j (∂i∂kf)dxid2xk + (∂k∂if)dxkd2xi + (∂if) d3xi.

equivalent with

(50) d3f = (∂m∂i∂kf)dxmdxidxk + (∂i∂kf)[d2xkdxi − j2 dxid2xk] + (∂if).

(because of d3xi = 0).
Consequently, assuming that d3xk = 0 and d3f = 0, to make the remai-

ning terms vanish we must impose the following commutation relations on the
products of forms:

(51) dxidxkdxm = j dxkdxmdxi, dxid2xk = j d2xkdxi,

therefore

(52) d2xkdxi = j2 dxid2xk

As in the case of the abstract Z3-graded Grassmann algebra, the fourth
order expressions must vanish due to the associativity of the product:

(53) dxidxkdxldxm = 0.

Consequently, we shall assume that also

(54) d2xid2xk = 0.

This completes the construction of algebra of Z3-graded exterior forms (see,
e.g. [4, 8, 9]), which were used in the construction of gauge �elds satisfying
higher order equations (see [10]).

Although the �rst di�erentials dxi behave like tensors under coordinate-
dependent transformations:

xi → yk
′
(xi), with det

(
∂yk

′

∂xi

)
6= 0,

produces new di�erentials which are linear combinations of previous ones:

dyk
′

=

(
∂yk

′

∂xi

)
dxi,

The second di�erentials do not follow this rule. In fact, employing the
Leibniz rule, we have

d2yk
′

=

(
∂2yk

′

∂xj∂xi

)
dxjdxi +

(
∂yk

′

∂xi

)
d2xi.

We can ensure the tensorial transformation rule if we restrain the products
dxjdxi to their anti-symmetric part,

dxj ∧ dxi =
1

2
(dxj ⊗ dxi − dxi ⊗ dxj)
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and impose the rule d2 = 0.
Let Φ be a module on which algebra A acts e�ectively and transitively.
A covariant di�erential can be introduced as follows. For ϕ ∈ Φ,

Dφ = dϕ+A ϕ

where A is a 1-form A = Aidx
i with values in A. Then one has

D2ϕ = (d +A)(dϕ+Aϕ) = d2ϕ+Adϕ+ dAϕ+ (−1)1Adϕ+AAϕ

= Adϕ−Adϕ+ (dA+AA)ϕ = (dA+AA)ϕ = F ϕ.

where the 2-form F = dA+AA is called the curvature of the connection 1-form

A. The products are the wedge products of forms.
In local coordinates we have A = Aidx

i,

(55) dA = ∂kAi dx
k ∧ dxi =

1

2
(∂kAi − ∂iAk) dxk ∧ dxi,

because d2xi = 0. Therefore the curvature tensor has the form

(56) F =
1

2
Fik dx

i ∧ dxk =
1

2
[(∂iAk − ∂kAi) + [Ai, Ak]] dx

i ∧ dxk,

so that Fik = (∂iAk − ∂kAi) + [Ai, Ak].
In the case of an abelian gauge group the coe�cients of the connection

form Ai are commutative, therefore only the part Fik = (∂iAk−∂kAi) does not
vanish, which is the case of the usual electromagnetic �eld.

Let us now show how a similar covariant derivative shall behave if we
replace the Z2-graded di�erential calculus by its Z3-graded conterpart, with
d3 = 0, but d2 6== 0.

The Z3-graded Leibniz rule for di�erential forms becomes now:

(57) d(ωθ) = dωθ + j|ω| ωdθ

Therefore the exterior di�erential of the 1-form A = Aidx
i is

(58) dA = d(Aidx
i) = (∂kAi)dx

kdxi +Aid
2xi.

Continuing to apply the exterior di�erential operator we get:

d2A = d
[
(∂kAi)dx

kdxi +Aid
2xi
]

=

(∂m∂kAi)dx
mdxkdxi + ∂kAid

2xkdxi

+j ∂kAidx
kd2xi + ∂kAidx

kd2xi +Aid
3xi.

The last term vanishes by virtue of d3 = 0 in the Z3-graded exterior calculus.
As 1 + j = −j2, and dxkd2xi = j d2xidxk, after swapping mute indices i and
k in last two terms, we get

(59) d2A = (∂m∂kAi)dx
mdxkdxi + (∂kAi − ∂iAk)d2xkdxi.
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Let us consider �rst the abelian case. Both terms are gauge invariant: the
second one is the well known antisymmetric Maxwell tensor. If Ãi = Ai + ∂if ,
then

F̃ik = ∂iÃk − ∂kÃi = ∂iAk − ∂kAi = Fik,

because ∂i∂kf − ∂k∂if = 0.
But also the �rst term is gauge invariant: it vanishes if Ai = ∂if :

(∂i∂k∂mf)dxidxkdxm = 0

because dxidxkdxm = j dxkdxmdxi = j2 dxmdxidxk, and 1 + j + j2 = 0.
It is not di�cult to recognize (still in the abelian case) the following

invariant form of the expression

(60) d2A = (∂m∂kAi)dx
mdxkdxi + (∂kAi − ∂iAk)d2xkdxi.

which can be also written as

−1

6
[∂kFmi + ∂iFmk] +

i
√

3

2
[∂kFmi − ∂iFmk] .

Without explicit proof (a bit lengthy), we extend this formula to the non-abelian
case:

D2A = −1

6
[DkFmi +DiFmk] +

i
√

3

2
[DkFmi −DiFmk] .

Similar construction in the case of linear connection over a metric di�erential
manifold leads to analogous expressions involving the Christo�el coe�cients
and the Riemann tensor.

Let us assume that di�erentials dxi and d2xk form the Z3-graded ternary
Grassmann algebra, with constitutive relations

(61) dxidxkdxm = j dxkdxmdxi, dxid2xk = j d2xkdxi, while d3x3 = 0.

Suppose now that a linear connection is de�ned in a chosen coordinate system,
given by its coe�cients Γikm, so that we can de�ne covariant di�erentials as
follows:

(62) Dxi = dxi, D2xi = d2xi + ΓikmDxkDxm.

Due to the transformation properties of connection coe�cients, under a change
of local coordinates the second di�erentials behave now as tensors: if yi

′
=

yi
′
(xk), then we have

(63) Dyi
′

=
∂yi

′

∂xk
Dxk, and D2yi

′
=
∂yi

′

∂xk
D2xk,

Now it is easy to prove that due to the constitutive relations between the
di�erentials (61) and the de�nition of Dxi and D2xk, we also have
(64)

DxiDxkDxm = j DxkDxmDxi, DxiD2xk = j D2xkDxi, while d3x3 6= 0.
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The third covariant di�erential D3xi does not vanish automatically; it can be
expressed by means of the lower order covariant di�erentials as follows (taking
into account that now d3xi = 0):

(65) D3xi = B̃i
kmDxkD2xm + C̃iklmDxkDxlDxm,

with quite complicated tensorial coe�cients involving torsion tensor Sikm =
Γikm − Γimk in the expression of B̃i

km, and combinations of the Riemann tensor
Riklm in the expression of C̃iklm. For more details, see [9].

6. Z3 ANALOG OF LIE ALGEBRAS

A most straightforward Z3 generalization of Lie algebras is introduced
by means of a Z3-skew ternary product de�ned in any associative (ordinary)
algebra A. For any three elements X,Y, Z ∈ A, let us de�ne

(66) [X,Y, Z]j = XY Z + jY ZX + j2ZXY.

We obviously have

(67) [X,Y, Z]j = j [Y,Z,X]j = j2 [Z,X, Y ]j ,

from which it follows that [X,X,X]j = 0.

We have not found yet a �Ternary Jacobi identity� similar to the usual
one in the Z2-graded case. A, with unit element 1, we have:

[X,1, Y ]j = X1Y + j 1Y X + j2 Y X1 =

(68) = XY + (j + j2) Y X = XY − Y X = [X,Y ],

the usual commutator de�ning a classical Lie algebra.

The simplest realization of ternary Lie algebra with Z3-skew product is
given by Pauli's matrices.

(69) [σi, σk, σl] = σiσkσl + j σkσlσi + j2 σlσiσk,

with the obvious Z3 symmetry:

(70) [σi, σk, σl] = j [σk, σl, σi] = j2 [σl, σi, σk]

From the Z3-skew symmetry property we infer that out of 33 = 27 di�erent
combinations of three indices i, k, l the three ones with three identical values
(111), (222) and (333) identically vanish. Out of the 24 remaining combinations
it is enough to determine one out of three related by cyclic Z3 permutations.
This leaves only eight combinations to be computed e�ectively.
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We �nd quite easily that in the case when all three indices are di�erent,
one has

(71) [σ1, σ2, σ3] = 0 and [σ3, σ2, σ1] = 0.

The remaining six combinations display two identical indices and the third one
di�erent. They can be separated in three couples: {(121), (212), {(232), (323)}
and {(313), (131)} which form three independent subalgebras. Their ternary
commutation relations are all of the same form:

[σ1, σ2, σ1] = −2 σ2, [σ2, σ1, σ2] = −2 σ1,

[σ2, σ3, σ2] = −2 σ3, [σ3, σ2, σ3] = −2 σ2,

(72) [σ3, σ1, σ3] = −2 σ1, [σ1, σ3, σ1] = −2 σ3,

We give here the proof for one particular choice, the rest is computed in the
same manner, using the well known properties of Pauli's matrices:

σ2
k = 1, and σkσl = −σlσk if k 6= l.

We have:
[σ1, σ2, σ1] = σ1σ2σ1 + j σ2σ

2
1 + j2 σ2

2σ1 =

= −σ2σ
2
1 + (j + j2)σ2 = −2 σ2

because j + j2 = −1.
The calculus is exactly the same for all other independent combinations

displayed in (72) above.

By the way, the results will be identical for quaternions, whose commu-
tation relations are the same as for σ-matrices multiplied by imaginary unit i,
to ensure that quaternion's squares be equal to −1.

Now all ternary structure constants are well determined. De�ning

(73) [σi, σk, σl] = fmikl σm,

we �nd easily that

fmiii = 0; fmijk = 0 for i 6= j 6= k; fmiki = −2 δmk .

and of course,
fmkii = −2j δmk , fmiik = −2j2 δmk .

Similar ternary algebra can be de�ned with four generators taken to be
the Dirac 4×4-matrices γµ, µ = 9, 1, 2, 3. Their ternary commutation relations
can be represented in the following fully covariant manner:

(74)
[
γµ, γν , γ

λ
]

= fρµνλ γρ = 2δρν gµλγρ

where gµλ is the Minkowskian metric tensor gµλ = diag(+1,−1,−1,−1).
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It can be shown that the invariant group of these constitutive relations is
the Lorentz group.

What is not very surprising here is the conformity of ternary j-commutator
with respect to the Lorentz transformations.

This ternary Z3 analogue of Lie algebra is not restricted to a realiza-
tion with a Z3-commutator imposed on a classical associative algebra (e.g.
matrices). One can imagine ternary algebras (usually non-associative) reali-
zed in a di�erent way. For example, take the linear space of 3-forms on N -
dimensional linear space. Given in a chosen linear basis, they will read as
FABC , A,B, ... = 1, 2, ...N.

Let us de�ne the following ternary product:

(F ∗G ∗H)ABC = ΣN
J,K,L=1FJAKGKBLHLCJ .

In fact, the summation supposes the possibility of raising and lowering indices,
by means of a symmetric metric gAB or an anti-symmetric 2-form εAB.

Such an algebra becames interesting if we impose a Z3 symmetry on our
3-forms.

For example, let us impose a Z3-symmetry on 3-forms, requiring that

FABC = j2FBCA = jFCAB.

To guarantee that ternary Z3-skew product of three such forms yields a
3-form having the same symmetry properties, we must introduce the following
Z3-skew product:

{F,G,H}ABC = (F ∗G ∗H)ABC + j(F ∗G ∗H)BCA + j2(F ∗G ∗H)CAB,

equivalent with

{F,G,H}ABC = (F ∗G ∗H)ABC + j(G ∗H ∗ F )ABC + j2(H ∗ F ∗G)ABC .

Ternary algebras of this type were considered and investigated in [9, 11,18].

7. INVARIANT THREE-FORMS

Let us consider multilinear forms de�ned on the algebra A⊗ Ā. Because
only cubic relations are imposed on products in A and in Ā, and the binary
relations on the products of ordinary and conjugate elements, we shall �x our
attention on tri-linear and bi-linear forms.

Consider a tri-linear form ραABC . We shall call this form Z3-invariant if
we can write, by virtue of (30).

ραABC θ
AθBθC =

1

3

[
ραABC θ

AθBθC + ραBCA θ
BθCθA + ραCAB θ

CθAθB
]

=
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=
1

3

[
ραABC θ

AθBθC + ραBCA (j2 θAθBθC) + ραCAB j (θAθBθC)

]
.

From this it follows that we should have

(75) ραABC θAθBθC =
1

3

[
ραABC + j2 ραBCA + j ραCAB

]
θAθBθC ,

from which we get the following properties of the ρ-cubic matrices:

(76) ραABC = j2 ραBCA = j ραCAB.

Even in this minimal and discrete case, there are covariant and contravari-
ant indices: the lower and the upper indices display the inverse transformation
property. If a given cyclic permutation is represented by a multiplication by j
for the upper indices, the same permutation performed on the lower indices is
represented by multiplication by the inverse, i.e. j2, so that they compensate
each other.

Similar reasoning leads to the de�nition of the conjugate forms ρ̄α̇
ĊḂȦ

satisfying the relations similar to (76) with j replaced be its conjugate, j2:

(77) ρ̄α̇
ȦḂĊ

= j ρ̄α̇
ḂĊȦ

= j2 ρ̄α̇
ĊȦḂ

In the simplest case of two generators, the j-skew-invariant forms have
only two independent components:

ρ1
121 = j ρ1

211 = j2 ρ1
112,

ρ2
212 = j ρ2

122 = j2 ρ2
221,

and we can set

ρ1
121 = 1, ρ1

211 = j2, ρ1
112 = j,

ρ2
212 = 1, ρ2

122 = j2, ρ2
221 = j.

8. THE INVARIANCE GROUP OF CUBIC MATRICES

The constitutive cubic relations between the generators of the Z3-graded
algebra can be considered as intrinsic if they are conserved after linear transfor-
mations with commuting (pure number) coe�cients, i.e. if they are indepen-
dent of the choice of the basis. Let UA

′
A denote a non-singular N ×N matrix,

transforming the generators θA into another set of generators, θB
′

= UB
′

B θB.

We are looking for the solution of the covariance condition for the ρ-
matrices:

(78) Sα
′

β ρβABC = UA
′

A UB
′

B UC
′

C ρα
′
A′B′C′ .
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Now, ρ1
121 = 1, and we have two equations corresponding to the choice

of values of the index α′ equal to 1 or 2. For α′ = 1′ the ρ-matrix on the
right-hand side is ρ1′

A′B′C′ , which has only three components,

ρ1′
1′2′1′ = 1, ρ1′

2′1′1′ = j2, ρ1′
1′1′2′ = j,

which leads to the following equation:

(79) S1′
1 = U1′

1 U2′
2 U1′

1 +j2 U2′
1 U1′

2 U1′
1 +j U1′

1 U1′
2 U2′

1 = U1′
1 (U2′

2 U1′
1 −U2′

1 U1′
2 ),

because j2 + j = −1.
For the alternative choice α′ = 2′ the ρ-matrix on the right-hand side is

ρ2′
A′B′C′ , whose three non-vanishing components are

ρ2′
2′1′2′ = 1, ρ2′

1′2′2′ = j2, ρ2′
2′2′1′ = j.

The corresponding equation becomes now:

(80) S2′
1 = U2′

1 U1′
2 U2′

1 +j2 U1′
1 U2′

2 U2′
1 +j U2′

1 U2′
2 U1′

1 = U2′
1 (U1′

2 U2′
1 −U1′

1 U2′
2 ),

The remaining two equations are obtained in a similar manner. We choose
now the three lower indices on the left-hand side equal to another independent
combination, (212). Then the ρ-matrix on the left hand side must be ρ2 whose
component ρ2

212 is equal to 1. This leads to the following equation when α′ = 1′:

(81) S1′
2 = U1′

2 U2′
1 U1′

2 +j2 U2′
2 U1′

1 U1′
2 +j U1′

2 U1′
1 U2′

2 = U1′
2 (U1′

2 U2′
1 −U1′

1 U2′
2 ),

and the fourth equation corresponding to α′ = 2′ is:

(82) S2′
2 = U2′

2 U1′
1 U2′

2 +j2 U1′
2 U2′

1 U2′
2 +j U2′

2 U2′
1 U1′

2 = U2′
2 (U1′

1 U2′
2 −U2′

1 U1′
2 ).

The determinant of the 2× 2 complex matrix UA
′

B appears everywhere on
the right-hand side.

(83) S2′
1 = −U2′

1 [det(U)],

The two remaining equations are obtained in a similar manner, resulting
in the following:

(84) S1′
2 = −U1′

2 [det(U)], S2′
2 = U2′

2 [det(U)].

The determinant of the 2 × 2 complex matrix UA
′

B appears everywhere
on the right-hand side. Taking the determinant of the matrix Λα

′
β one gets

immediately

(85) det (S) = [det (U)]3.

However, the U -matrices on the right-hand side are de�ned only up to the
phase, which due to the cubic character of the covariance relations and they
can take on three di�erent values: 1, j or j2, i.e. the matrices j UA

′
B or j2 UA

′
B

satisfy the same relations as the matrices UA
′

B de�ned above.
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The determinant of U can take on the values 1, j or j2 if det(Λ) = 1.
But for the time being, we have no reason yet to impose the unitarity

condition. It can be derived from the conditions imposed on the invariance and
duality.

In the Hilbert space of spinors the SL(2,C) action conserved naturally
two anti-symmetric tensors,

εαβ and εα̇β̇ and their duals εαβ and εα̇β̇.

Spinorial indices thus can be raised or lowered using these fundamental SL(2,C)
tensors:

ψβ = εαβ ψ
α, ψδ̇ = εδ̇β̇ ψβ̇.

In the space of quark states similar invariant form can be introduced, too.
There is only one alternative: either the Kronecker delta, or the anti-symmetric
2-form ε.

Supposing that our cubic combinations of quark states behave like fermi-
ons, there is no choice left: if we want to de�ne the duals of cubic forms ραABC
displaying the same symmetry properties, we must impose the covariance prin-
ciple as follows:

εαβ ρ
α
ABC = εADεBEεCG ρ

DEG
β .

The requirement of the invariance of tensor εAB, A,B = 1, 2 with respect to
the change of basis of quark states leads to the condition detU = 1, i.e. again
to the SL(2,C) group.

9. A Z3 COLOR DYNAMICS

According to present knowledge, the ultimate undivisible and undestructi-
ble constituents of matter, called atoms by ancient Greeks, are in fact the
quarks, carrying fractional electric charges and baryonic numbers, two features
that appear to be undestructible and conserved under any circumstances.

Taking into account that quarks evolve inside nucleons as almost point-
like objects, one may wonder how the notions of space and time still apply
in these conditions? Perhaps in this case, too, the Lorentz invariance can
be derived from some more fundamental discrete symmetries underlying the
interactions between quarks? If this is the case, then the symmetry Z3 must
play a fundamental role.

In Quantum Chromodynamics quarks are considered as fermions, endo-
wed with spin 1

2 . Only three quarks or anti-quarks can coexist inside a fermionic
baryon (respectively, anti-baryon), and a pair quark-antiquark can form a me-
son with integer spin. Besides, they must belong to di�erent colors, also a
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three-valued set. There are two quarks in the �rst generation, u and d (�up�
and �down�), which may be considered as two states of a more general object,
just like proton and neutron in SU(2) symmetry are two isospin components
of a nucleon doublet.

This suggests that a convenient generalization of Pauli's exclusion prin-
ciple would be that no three quarks in the same state can be present in a
nucleon. The cubic commutation relations realizing a representation of the Z3

cyclic group introduced above provide such statistics, and exclude the states
with four or more quarks at once.

Our aim is to �nd a generalization of Dirac's equation which would en-
sure not only the symmetry between particles and anti-particles, realized via
introduction of negative mass term, but would describe adequately also the
mixing of three di�erent �colors�. The overall symmetry of such generalized
system should contain two Z2 groups and one Z3 group. The two Z2 groups
correspond to two fundamental symmetries: the spin 1

2 representation, with
Pauli's Z2 exclusion principle, another Z2 representing the symmetry between
particles and anti-particles (here quarks and anti-quarks), and Z3 representing
the symmetry between the colors.

Let us �rst underline the Z2 symmetry of Maxwell and Dirac equations,
which implies their hyperbolic character, which makes the propagation possible.
Maxwell's equations in vacuo can be written as follows:

(86)
1

c

∂E

∂t
= ∇∧B, −1

c

∂B

∂t
= ∇∧E.

These equations can be decoupled by applying the time derivation twice,
which in vacuum, where divE = 0 and divB = 0 leads to the d'Alembert
equation for both components separately:

1

c2

∂2E

∂t2
−∇2E = 0,

1

c2

∂2B

∂t2
−∇2B = 0.

Nevertheless, neither of the components of the Maxwell tensor, be it E
or B, can propagate separately alone. It is also remarkable that although each
of the �elds E and B satis�es a second-order propagation equation, due to
the coupled system (86) there exists a quadratic combination satisfying the
�rst-order equation, the Poynting four-vector:

Pµ =
[
P 0,P

]
, P 0 =

1

2

(
E2 + B2

)
, P = E ∧B,

(87) ∂µP
µ = 0.

The Dirac equation for the electron displays a similar Z2 symmetry, with
two coupled equations which can be put in the following form:

i~
∂

∂t
ψ+ −mc2ψ+ = i~σ · ∇ψ−,
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(88) −i~
∂

∂t
ψ− −mc2ψ− = −i~σ · ∇ψ+,

where ψ+ and ψ− are the positive and negative energy components of the Dirac
equation; this is visible even better in the momentum representation:[

E −mc2
]
ψ+ = cσ · pψ−,

(89)
[
−E −mc2

]
ψ− = −cσ · pψ+.

The same e�ect (negative energy states) can be obtained by changing the
direction of time, and putting the minus sign in front of the time derivative, as
suggested by Feynman [26].

Each of the components satis�es the Klein-Gordon equation, obtained by
successive application of the two operators and diagonalization:[

1

c2

∂2

∂t2
−∇2 −m2

]
ψ± = 0

As in the electromagnetic case, neither of the components of this complex entity
can propagate by itself; only all the components as a whole can.

Apparently, the two types of quarks, u and d, cannot propagate freely,
but can form a freely propagating particle perceived as a fermion, only under
an extra condition: they must belong to three di�erent species called colors;
short of this they will not form a propagating entity. Also the quark-antiquark
combinations could become colorless and propagate freely, too. These simple
algebraical rules can be illustrated by the following scheme using the product
group Z2 × Z3, which is nothing else but the cyclic group Z6, realized by
powers of −1 and j [12], or else, generated by single primitive sixth root of

unity, q = e
2πi
6 in the complex plane:

The six complex numbers qk can be put into correrspondence

with three colors and three anti-colors.
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The powers of complex generator of the Z6 cyclic group can be put into
correspondence with three colors and three anti-colors, as shown in the �gure:

q6 = 1→ Red , q2 = j → Blue, q4 = j2 → Green;

q = −j2 → Magenta, q3 = −1→ Cyan, q5 = −j → Yellow;

�White� color corresponds to vanishing linear combinations

q6 + q4 + q2 = 0, (Red + Blue + Green);

q5 + q3 + q = 0, (Yellow + Cyan + Magenta);

q + q4 = −j2 + j2 = 0, (Magenta + Green),

q2 + q5 = j + (−j) = 0, (Blue + Yellow),

q3 + q6 = −1 + 1 = 0, (Cyan + Red),

In fact, the totally �colorless� quadratic combinations (gluons) do not
interact strongly with quarks. This means that the combination

RR̄+BB̄ +GḠ = 0.

does vanish, so that only eight linear combinations out of nine are independent.

These are:
1√
2

(RB̄ +BR̄),
1

i
√

2
(RB̄ −BR̄),

1√
2

(RḠ+GR̄),
1

i
√

2
(RḠ−GR̄),

1√
2

(BḠ+GB̄),
1

i
√

2
(BḠ−GB̄),

1√
2

(RR̄−BB̄),
1√
6

(RR̄+BB̄ − 2GḠ),

These combinations form the basis of eight traceless Gell-Mann 3 × 3
matrices, forming the SU(3) Lie algebra. This set of �elds form the basis of
quantum chromodynamics, known under the abridged name as �QCD�. Three
quarks forming a nucleon are treated as Dirac spinors, whose wave functions
account for 3× 4 = 12 components.

What we propose here is to see the same set of wave functions as a col-
lection of three Pauli spinors corresponding to three colors (six degrees of free-
dom), and three Pauli spinors corresponding to three anti-colors (also six de-
grees of freedom), satisfying the system of twelve linear equations of �rst order,
intertwining not only particles with anti-particles, but also the three colors and
three anti-colors, thus displaying the full symmetry group Z2×Z2×Z3, because
we want to maintain both Z2 symmetries present in Dirac's equations in order
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to take into account the half-integer spin of quarks as well as to incorporate
the quark-anti-quark symmetry.

We shall follow the logical scheme that leads from Pauli equation to the
Dirac equation by introducing a negative mass term and doubling the number
of Pauli spinors.

The inclusion of spin variable, subjected to Pauli's exclusion principle,
into a Schroedinger-like equation can be done by replacing the usual complex
wave function by a column vector containing two complex components. The
energy, momentum and mass operators should be represented by 2×2 matrices.
The simplest linear equation considered by Pauli at �rst had the following form:

(90) E l12 ψ = mc2 l12 ψ + c σ · p ψ,

where according to the correspondence principle, E stays for the operator−i~∂t,
p stays for the operator-valued vector −i~∇, and where ψ stays now for the

two-component Pauli spinor

(
ψ1

ψ2

)
, the 3-dimensional momentum vector p is

scalarly multiplied by σ representing the three hermitian traceless Pauli's ma-
trices σ = [σx, σy, σz] , and l12 stays for the 2×2 unit matrix. But this equation
fails to satisfy the Lorentz invariance criterion: it su�ces to take the square
of the energy operator to discover that (90) leads to the following quadratic
relation

(91) E2 = m2c4 + 2mc3σ · p + c2 p2

instead of the desired Lorentz-invariant relation E2 = m2c4 + c2p2. At this
stage the Lorentz invariance could be recovered by introducing another Pauli
spinor entangled with the �rst one via equations similar with (90), but with a
negative mass term for the second Pauli spinor:

E l12 ψ+ = mc2 l12 ψ+ + c σ · p ψ−,

(92) E l12 ψ− = −mc2 l12 ψ− + c σ · p ψ+,

where ψ+ =

(
ψ1

+

ψ2
+

)
, ψ− =

(
ψ1
−
ψ2
−

)
. It is easy to see now that by simple iteration

we get the right relation satis�ed simultaneously by both components:

E2ψ+ − c2p2 ψ+ = m2c4ψ+, E2ψ− − c2p2 ψ− = m2c4ψ−.

The four equations (92) are just one of the representations of the equation of
the electron discovered shortly after by Dirac, but in a totally di�erent manner,
derived as a �square root� of the Klein-Gordon equation; but at the moment
the idea of introducing a negative mass seemed physically unacceptable.
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The two equations (92) can be re-written using a matrix notation:

(93)

(
E 0
0 E

) (
ψ+

ψ−

)
=

(
mc2 0

0 −mc2

) (
ψ+

ψ−

)
+

(
0 cσp
σp 0

) (
ψ+

ψ−

)
,

where the entries in the energy operator and the mass matrix are in fact 2× 2
identity matrices, as well as the σ-matrices appearing in the last matrix, so
that in reality the above equation represents the 4× 4 Dirac equation, only in
a di�erent basis [24].

The system of linear equations (93) displays two important discrete Z2

symmetries: the space re�ection consisting in simultaneous change of the di-
rection of spin and momentum, σ → −σ,p→ −p, and the particle-antiparticle
symmetry realized by the transfromation m → −m, ψ+ → ψ−, ψ− → ψ+.
Our next aim is to extend the Z2 × Z2 symmetry by including the Z3 group
which will mix not only the two spin states and particles with anti-particles,
but also the three colors.

Now we want to describe three di�erent two-component �elds (which can
be incidentally given the names of three colors, the �red� one ϕ+, the �blue�
one χ+, and the �green� one ψ+); more explicitly,

(94) ϕ+ =

(
ϕ1

+

ϕ2
+

)
, χ+ =

(
χ1

+

χ2
+

)
, ψ+ =

(
ψ1

+

ψ2
+

)
,

We follow the minimal scheme taking into account the existence of spin
by using only Pauli spinors on which the 3-momentum operator acts through
the scalar product σ · p. In order to satisfy the required existence of anti-
particles, we should also introduce three �anti-colors�, denoted by a �minus�
underscript, corresponding to the opposite colors: �cyan� for ϕ−, �yellow� for χ−
and �magenta� for ψ−; here, too, we have to do with two-component columns:

(95) ϕ− =

(
ϕ1
−

ϕ2
−

)
, χ− =

(
χ1
−
χ2
−

)
, ψ− =

(
ψ1
−
ψ2
−

)
,

all in all twelve components. A somewhat similar construction, but with three
Dirac spinors, can be found in [28].

This leaves little space for the choice of the system of intertwined equa-
tions; here is the ternary generalization of Dirac's equation, intertwining not
only particles with antiparticles, but also the three �colors�, in such a way that
the entire system becomes invariant under the action of the Z2×Z2×Z3 group.

The set of linear equations for three Pauli spinors endowed with colors,
and another three Pauli spinors corresponding to their anti-particles endowed
with �anti-colors� involves altogether twelve complex functions. The twelve
components could describe three independent Dirac particles, but here they
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will be intertwined in a particular manner, mixing together not only spin states
and particle-antiparticle states, but also the three colors.

We shall follow the logic that led from Pauli's to Dirac's equation exten-
ding it to the colors acted upon by the Z3-group. In the expression for the
energy operator (i.e. the Hamiltonian), mass terms is positive when acting on
particles, and acquires negative sign acting on anti-particles, i.e. it changes sign
while intertwining particle-antiparticle components. We shall also assume that
the mass term acquires the factor j when we switch from the red component ϕ
to the blue component ξ, and j2 for the green component ψ. The momentum
operator will be non-diagonal, as in the Dirac equation, systematically inter-
twining not only particles with antiparticles, but also colors with anti-colors
(see e.g. [34, 35]).

The system that satis�es all these assumptions is as follows:

E ϕ+ = mc2 ϕ+ + c σ · pχ−
E χ− = −j mc2 χ− + c σ · pψ+

E ψ+ = j2 mc2 ψ+ + c σ · pϕ−
E ϕ− = −mc2 ϕ− + c σ · pχ+

E χ+ = j mc2 χ+ + c σ · pψ−
(96) E ψ− = −j2 mc2 ϕ+ + c σ · pϕ+

where the Pauli spinors ϕ±, χ±, ψ± are as in (94) and (95), on which Pauli
sigma-matrices act in a natural way.

On the right-hand side, the mass terms form a diagonal matrix whose

entries follow an ordered row of powers of the sixth root of unity q = e
2πi
6 .

Indeed, we have

m = q6m, −jm = q5m, j2m = q4m,

−m = q3m, jm = q2m, −j2m = qm.

The diagonalisation of our system requires the sixth-order iteration, in
contrast with the Dirac equation, which needs only the second-order iteration:
the square of the Dirac operator results in the Klein-Gordon equation satis�ed
simultaneously by all components.

In the case of our ternary generalization, the �nal result is extremely
simple: all the components satisfy the same sixth-order equation,

E6 ϕ+ = m6c12 ϕ+ + c6 | p |6 ϕ+,

(97) E6 ϕ− = m6c12 ϕ− + c6 | p |6 ϕ−.

and similarly for all other components.
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The energy operator is obviously diagonal, and its action on the spinor-
valued column-vector can be represented as a 6×6 operator valued unit matrix.
The mass operator is diagonal, too, but its elements represent all powers of the
sixth root of unity q, which are q = −j2, q2 = j, q3 = −1, q2 = j2, q5 = −j
and q6 = 1.

Finally, the momentum operator is proportional to a circulant matrix

which mixes up all the components of the column vector. We shall choose the
basis in which the twelve components form the column in which the six Pauli
spinors (three colors and three anti-colors) are organized in the following order
(from top to bottom): ϕ+, χ+, ψ+, ϕ−, χ−, ψ−. With respect to this basis our
matrix operators acquire the following form:

M =



m 0 0 0 0 0
0 jm 0 0 0 0
0 0 j2m 0 0 0
0 0 0 −m 0 0
0 0 0 0 −jm 0
0 0 0 0 0 −j2m

 ,

P =



0 0 0 0 σ · p 0
0 0 0 0 0 σ · p
0 0 0 σ · p 0 0
0 σ · p 0 0 0 0
0 0 σ · p 0 0 0

σ · p 0 0 0 0 0


In fact, the dimension of the two matricesM and P displayed above is 12×

12: all the entries in the �rst one are proportional to the 2× 2 identity matrix,

so that in the de�nition one should read

(
m 0
0 m

)
instead of m,

(
jm 0
0 jm

)
instead of j m, etc.

The entries in the second matrix P contain 2× 2 Pauli's sigma-matrices,
so that P is also a 12 × 12 matrix. The energy operator E is proportional to
the 12 × 12 identity matrix. It is not di�cult to recognize tensor products of
certain Pauli's matrices with certain 3× 3 matrices B and Q introduced in one
of the previous sections dealing with ternary generalization of Cli�ord algebras;
using these matrices we can write down our 12 × 12 matrix operator (96) as
follows:

(98) E l112 Ψ = mc2 σ3 ⊗B ⊗ l12 Ψ + c σ1 ⊗Q3 ⊗ σp Ψ.

By multiplying on the left by the matrix

σ3 ⊗B† ⊗ 12
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we arrive at the following form of ternary generalization of Dirac's equation:

(99)
[
E σ3 ⊗B† ⊗ 12 − i cσ2 ⊗ j2Q2 ⊗ σ · p

]
Ψ = mc2 12 ⊗ 13 ⊗ 12 Ψ

where we used the fact that under matrix multiplication, σ3σ
3 = l12, B

†B = l13

and B†Q3 = j2Q2.
One can check by direct computation that the sixth power of this operator

gives the same result as before,
(100)[

E σ3 ⊗B† ⊗ l12 − iσ2 ⊗ j2Q2 ⊗ cσ · p
]6

=
[
E6 − c6p6

]
l112 = m6c12 l112

The ternary Dirac equation can be written in a concise manner using the Min-
kowskian indices and the usual pseudo-scalar product of two four-vectors as
follows:

(101) Γµpµ = mc2 l112

with 12× 12 matrices Γµ, µ = 0, 1, 2, 3 de�ned as follows:

Γ0 = σ3 ⊗B† ⊗ l12, Γk = −iσ2 ⊗ j2Q2 ⊗ σk.

It is also worthwhile to note that not only taking the sixth power of our
operator yields the simple algebraic relation (100), but the similar relation
exists between the determinants:

(102) det
(
Eσ3 ⊗B† ⊗ l12 − iσ2 ⊗ j2Q2 ⊗ cσ · p

)
=
(
E6 − c6 | p |6

)2
= det

(
mc2l12 ⊗ l13 ⊗ l12

)
= m12c24.

The eigenvalues of the generalized Dirac operator have all the same abso-
lute value equal to R =| (E6 − c6 | p |6)

1
6 |, and are given by:

(103) R, −R, jR, −jR, j2R, −j2R.

They are double degenerate, i.e. although the characteristic equation is of
twelfth order, it has only six distinct eigenvalues. This result will be important
for the subsequent discussion of the generalized Lorentz invariance.

Although the four 12×12 matrices do not satisfy usual anti-commutation
relations similar to those of the 4 × 4 Dirac matrices γµ, i.e. γµγν + γνγµ =
2 gµν 14. Nevertheless, the system of equations satis�ed by the 12-dimensional
wave function Ψ,

(104) −i~ Γµ ∂µ Ψ = mcΨ

is a hyperbolic one, and has the same light cone as the Klein-Gordon equation.
To corroborate this statement, let us �rst consider the massless case,

(105) −i~ Γµ ∂µ Ψ = 0.
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Assuming the general solution of the form ekµx
µ
, we can replace the deri-

vations by the components of the wave 4-vector kµ, and take the sixth power
of the matrix Γµkµ. The resulting dispersion relation was shown to be

k6
0− | k |6=

(
k2

0− | k |2
) (
k2

0 − j | k |2
) (
k2

0 − j2 | k |2
)

=

=
(
k2

0− | k |2
) (

k4
0 + k2

0 | k |2 + | k |4
)

= 0.

The �rst factor de�nes the usual light cone, while the factor of degree four
is strictly positive (besides the origin 0). The system has only one characteristic
surface which is the same for all massless �elds. Each of the three factors
remains invariant under a di�erent representation of the SL(2,C) group.

Let us introduce the following three matrices representing the same four-
vector kµ:

(106) K3 =

(
k0 kx
kx k0

)
, K1 =

(
k0 jkx
jkx k0

)
, K2 =

(
k0 j2kx
j2kx k0

)
,

whose determinants are, respectively,

(107) detK1 = k2
0 − j2k2

x, detK2 = k2
0 − jk2

x, detK3 = k2
0 − k2

x.

Note that only the third matrix K3 is hermitian, and corresponds to a
real space-time vector kµ, while neither of the remaining two matrices K1 and
K2 is hermitian; however, one is the hermitian conjugate of another.

In what follows, we shall replace the absolute value of the wave vector
| k | by a single spatial component, say kx, because for any given 4-vector
kµ = [k0,k] we can choose the coordinate system in such a way that its x-axis
should be aligned along the vector k. Then it is easy to check that one has:(

coshu sinhu
sinhu coshu

)(
k0

kx

)
=

(
k′0
k′x

)
(

coshu j2 sinhu
j sinhu coshu

)(
k0

j kx

)
=

(
k′0
j k′x

)
(108)

(
coshu j sinhu
j2 sinhu coshu

)(
k0

j2kx

)
=

(
k′0
j2k′x

)
The transformed vectors are given by the following expressions:

i) k
′
0 = k0 coshu+ kx sinhu, k

′
x = k0 sinhu+ kx coshu

ii) k
′
0 = k0 coshu+ j2 kx sinhu, k

′
x = j k0 sinhu+ kx coshu

iii) k
′
0 = k0 coshu+ j kx sinhu, k

′
x = j2 k0 sinhu+ kx coshu.

Let us now introduce a 6 × 6 matrix composed out of the above three 2 × 2
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matrices:

(109)

 0 k0 l12 + k · σ 0
0 0 k0 l12 + j k · σ

k0 l12 + j2 k · σ 0 0


or, more explicitly,

(110) K =



0 0 k0 kx 0 0
0 0 kx k0 0 0
0 0 0 0 k0 jkx
0 0 0 0 jkx k0

k0 j2kx 0 0 0 0
j2kx k0 0 0 0 0


It is easy to check that

(111) detK = (detK1) · (detK2) · (detK3)

(112) = (k2
0 − k2

x)(k2
0 − j2k2

x)(k2
0 − jk2

x) = k6
0 − k6

x.

It is also remarkable that the determinant remains the same in the basis
in which the ternary Dirac operator was proposed, namely when we consider
the matrix

(113) K =



k0 0 0 kx 0 0
0 k0 kx 0 0 0
0 0 k0 0 0 jkx
0 0 0 k0 jkx 0
0 j2kx 0 0 k0 0

j2kx 0 0 0 0 k0


Let us show now that the spinorial representation of Lorentz boosts can

be applied to each of the three matricesK1,K2 andK3 separately, keeping their
determinants unchanged. As a matter of fact, besides the well-known formula:

(114)

(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

) (
k0 kx
kx k0

) (
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)
=

(
k′0 k′x
k′x k′0

)
,

with

(115) k′0 = k0 coshu+ kx sinhu, k′x = k0 sinhu+ kx coshu.

which becomes apparent when we remind that

cosh2 u

2
+ sinh2 u

2
= coshu and 2 sinh

u

2
cosh

u

2
= sinhu,

keeping unchanged the Minkowskian scalar product: k′20−k′
2
x = k2

0−k2
x, we have

also two transformations of the same kind which keep invariant the �complex-
i�ed� Minkowskian squares appearing as factors in the sixth-order expression
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k6
0 − k6

x, namely

k2
0 − j k2

x and k2
0 − j2 k2

x.

The above expressions can be identi�ed as the determinants of the follo-
wing 2× 2 matrices:

(116) k2
0 − j k2

x = det

(
k0 j2k2

x

j2 kx k0

)
, k2

0 − j2 k2
x = det

(
k0 jk2

x

j kx k0

)
.

It is easy to check that we have:

(117)

(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)(
k0 jkx
jkx k0

)(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)
=

(
k′0 jk′x
jk′x k′0

)
,

with k′0 = k0 coshu+ j k′x sinhu, so that k′20 − jk′
2
x = k2

0 − jk2
x, as well as

(118)(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)(
k0 j2 kx
j2 kx k0

)(
cosh u

2 sinh u
2

sinh u
2 cosh u

2

)
=

(
k′0 j2k′x
j2k′x k′0

)
,

Therefore, we can draw the following conclusion: the 12 × 12 matrix
formed by the tensor product of σ3 with the 6× 6 matrix K de�ned above, has
the same determinant and the same eigenvalues (102, 103) as the generalized
Dirac operator 99, if we replace k0 by E and k by cp. We have shown that the
determinant of the matrix σ3⊗K (equal to (k6

0−k6
x)2) remains invariant under

the generalized Lorentz transformation composed of three representations, the
usual unitary one and two complex ones. Therefore there exists a similarity
between the two matrices, which preserves the invariance under the generalized
Lorentz group intertwined with Z3. This does not contradict the no-go theorems
by O'Raifeartaigh [36] and Coleman and Mandula [37].

10. INTERACTION WITH GAUGE FIELDS

The matrix representation of the system (99) is by no means unique. In
the form which most closely resembles the classical Dirac equation, we chose
the following representation for our ternary Dirac operator (designed be D for
convenience):

(119) D = E σ3 ⊗B† ⊗ l12 − iσ2 ⊗ jQ2 ⊗ c σ · p .

Obviously, the essential sixth order diagonalized system resulting from
the sixth iteration of this operator, as well as its characteristic equation and
eigenvalues remain unchanged under an arbitrary similarity transformation,
D → P−1DP . Taking into account the particular tensorial structure of ternary
Dirac operator, the matrices P should display similar structure in order to keep
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the three factors separated. This reduces the allowed similarity matrices to the
following family:

P = R⊗ S ⊗ U,

with R being a 2 × 2 matrix, S denoting a 3 × 3 matrix, and U proportional
to the 2× 2 unit matrix in order not to change the scalar product σ · p in the
last tensorial factor in D.

The minimal coupling between the Dirac particles (electrons and posi-
trons) with the electromagnetic �eld is obtained by inserting the four-potential
Aµ into the Dirac equation:

(120) γµ(pµ − e Aµ) ψ = m ψ.

Ternary generalization of Dirac's equation, when expressed with explicit
Minkowskian indices, o�ers a similar possibility of introducing gauge �elds. The
particular structure of 12 × 12 matrices Γµ makes possible the accomodation
of three types of gauge �elds, corresponding to three factors from which the
tensor product results.

The overall gauge �eld can be decomposed into a sum of three contribu-
tions: the SU(3) gauge �eld λaB

a
µ, with λa, a = 1, 2, ...8 denoting the eight

3 × 3 traceless Gell-Mann matrices, the SU(2) gauge �eld σk A
k
µ, k = 1, 2, 3

and the electric �eld potential Aµ. We propose to insert each of these gauge
potentials into a common 12 × 12 matrix as follows: The strong interaction
gauge potential is aligned on the SU(3) matrix basis:

Bµ = l12 ⊗ λaBa
µ ⊗ l12, , a, b = 1, 2, ...8 ,

appearing as the second factor in the tensor product;
The SU(2) weak interaction potential Aiµ aligned along the three σ-

matrices of the �rst tensorial factor

σk A
k
µ ⊗ l13 ⊗ l12, i, k, .. = 1, 2, 3 ,

and the electromagnetic potential Aemµ aligned along the unit 2 × 2 matrix
appearing as the third factor in the tensor product

l12 ⊗ l13 ⊗Aµ l12 ,

so that the overall expression for the gauge potential becomes:

(121) Aµ = l12 ⊗ λaBa
µ ⊗ l12 + σk A

k
µ ⊗ l13 ⊗ l12 + l12 ⊗ l13 ⊗Aemµ l12 .

The proposed ternary generalization of Dirac's equation including color
degrees of freedom contains naturally not only the SU(3)-invariant strong in-
teractions, but leads automatically to another type of gauge �elds to which
quarks are also sensitive: these are the gauge �elds generated by the SU(2)
and U(1) symmetries incorporated in the system.
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There is an extra bonus here: namely, one can look at the same system
(99) in the limit when the color interaction is switched o�. This amounts to
replacing the 3×3 matrices B and Q3 by unit matrices l13. The resulting system
is equivalent with a cartesian product of three identical Dirac equations:

(122) E l12 ⊗ l13 ⊗ l12 − σ1 ⊗ l13 ⊗ σ · p = mc2 σ3 ⊗ l13 ⊗ l12 .

Without any symmetry breaking, this set of equations describes three

identical fermions sensitive exclusively to the SU(2) × U(1) gauge �elds, i.e.

the electroweak interaction, like the elementary particles known as leptons � in

this setting they appear as natural colorless companions of quarks. This sheds

new light on the fact that their number is equal, and even if other families of

quarks had to be introduced (which we did not consider here), described by a

similar ternary Dirac system, they would also give rise to another set of three

leptons. And this is what the experimental data con�rmed since the discovery

of the families with other ��avors�. The gauge �elds are obviously common to

all families.

In principle, we should have started with zero masses for all particles,

quarks and leptons alike, and let the Higgs-Kibble mechanism generate non-

zero masses. The Higgs �eld necessary for this to happen can be introduced like

in the model of matrix algebras in the context of non-commutative geometry,

(see [31�33]; see also [2]).
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