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1. INTRODUCTION

The classical Cayley transform [13] is a way to express an orthogonal
matrix by means of skew-symmetric coordinates. It is given by

c(X) = (I −X)(I +X)−1,

where the matrix I + X is invertible because all the eigenvalues of the skew-
symmetric matrix X have null real part, so they must be di�erent from −1.
This transform was discovered by A. Cayley in 1846 [2] and has some advantages
over the exponential map; in particular, it equals its own inverse, c2 = id. It is a
well known construction with many applications, going from complex analysis,
linear algebra and computer science to nuclear physics or biology.

This talk surveys joint work with M.J. Pereira S�aez (A Coru�na, Spain) and
D. Tanr�e (Lille, France). We shall explain how to construct Cayley transforms
on orthogonal Lie groups, symmetric spaces and Stiefel manifolds. Most results
will be cited without proof. Several applications are discussed, namely:

• Lusternik-Schnirelmann category and topological complexity;

• Morse-Bott theory;

• Optimization.
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2. THE CAYLEY TRANSFORM

2.1. Ortogonal groups

Let K be the algebra of either reals R, complex numbers C or quaternions
H. We denote byM(n,K) the set of all square n×n matrices with coe�cients
in K.

De�nition 1. The matrix A ∈ M(n,K) is orthogonal if AA∗ = I, where
A∗ = Āt is the conjugate transpose. In the real case A∗ = At is just the
transpose.

Let us denote by O(n,K) the Lie group of orthogonal matrices. Depending
on K this group corresponds to the (real) orthogonal group O(n), the (complex)
unitary group U(n) or the (quaternionic) symplectic group Sp(n).

Remark 2. It would be possible to consider more general J-orthogonal
groups G = O(n,K; J) de�ned by the condition AJA∗ = J , for J an invertible
square matrix.

De�nition 3 ([5]). Let A ∈ O(n,K) be an orthogonal matrix. Denote by
Ω(A) ⊂M(n,K) the open set of matrices X such that A+X is invertible. The
generalized Cayley transform centered at A is the map

cA : Ω(A)→ Ω(A∗)

given by
cA(X) = (I −A∗X)(A+X)−1.

The classical Cayley map corresponds to A = I.

The following properties will be useful later.

Proposition 4. Let X ∈ Ω(A). Then

(1) cA(X) = (A+X)−1(I −XA∗);
(2) cA(X) ∈ Ω(A∗);

(3) cA(X) = cI(A
∗X)A∗;

(4) X∗ ∈ Ω(A∗) and
cA∗(X∗) = cA(X)∗;

(5) UXU∗ ∈ Ω(UAU∗) for any matrix U ∈ O(n,K); moreover,

cUAU∗(UXU∗) = UcA(X)U∗;

(6) if the matrix X is invertible then X−1 ∈ Ω(A∗) and

cA∗(X−1) = −AcA(X)A;

Corollary 5. The Cayley transform cA : Ω(A)→ Ω(A∗) is a di�eomor-

phism, with c−1A = cA∗.



3 The Cayley transform 145

2.2. Contractibility of the domain

Our �rst objective is to prove that the domain of the Cayley transform in
an orthogonal group is contractible. This will be important when studying the
Lusternik-Schnirelmann category in Section 5.1.

The Lie algebra of G = O(n,K) is formed by the skew-symmetric (resp.
skew-hermitian) matrices,

g = {X ∈M(n,K) : X +X∗ = 0}.

As a vector space g equals the tangent space TIG at the identity, so the tangent
space at any other point A ∈ G is given as

TAG = A · TIG = {Y ∈M(n,K) : A∗Y + Y ∗A = 0}.

We shall denote by ΩG(A) the open subset Ω(A)∩G ⊂ G of the matrices
B ∈ G such that A+B is invertible.

Theorem 6 ([5]). Let G = O(n,K) be a compact orthogonal group. The

generalized Cayley transform cA maps di�eomorphically ΩG(A) onto TA∗G, with
cA(A) = 0. As a consequence, the open set ΩG(A) is contractible.

Proof. We sketch the proof.

� First, we must prove that an orthogonal matrix is sent into a skew-
symmetric matrix, i.e., cA(ΩG(A)) ⊂ TA∗G, by using the properties of cA stated
in Proposition 4.

� Second, we prove that TA∗G ⊂ Ω(A∗): since the eigenvalues of a skew-
Hermitian matrix must have null real part, it follows that A∗+X is invertible,
for any X ∈ TA∗G.

� Finally, we prove that a skew-symmetric matrix is sent into an ortho-
gonal one, that is, cA∗(TA∗G) ⊂ ΩG(A), by using again the properties of the
Cayley transform. �

Example 7. Let z be a unit complex number, |z| = 1. Let G = U(n) be
the group of unitary complex matrices. Let ΩG(z) be the open set of unitary
matrices A ∈ U(n) such that A− zI is invertible (i.e., z is not an eigenvalue of
A). Then ΩG(z) is contractible.

Remark 8. For the J-orthogonal group G = O(n,K; J) the Lie algebra is
given by

g = {X ∈M(n,K) : XJ + JX∗ = 0},

and the Cyaley transform sends the elements of G ∩ Ω(A) into g ∩ Ω(A∗).
However, a J-skew-symmetric matrix may have real eigenvalues.
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3. SYMMETRIC SPACES

3.1. Cartan model

We extend our results to the most important class of homogeneous spaces,
namely, that of symmetric spaces.

De�nition 9. Let σ : G→ G be an involutive automorphism and let

K = {B ∈ G : σ(B) = B}

be the closed Lie subgroup of �xed points. The homogeneous space G/K is
called a globally symmetric space.

Remark 10. In what follows, we shall assume that the automorphism σ
is the restriction of an involutive automorphism σ : M(n,K) → M(n,K) of
unital algebras. We shall also assume that σ(X∗) = σ(X)∗ for allX ∈M(n,K).
These conditions are not too restrictive; for instance, all the compact irreducible
Riemannian symmetric spaces in Cartan's classi�cation verify them.

The Lie algebra of K is

k = {X ∈ g : σ(X) = X}

and the tangent space ToG/K at the base-point o = [I] is isomorphic to

m = {X ∈ g : σ(X) = −X}.

Since Ad(k)(m) = m for all k ∈ K, there is an invariant Riemannian metric on
G/K which has null torsion and parallel curvature.

De�nition 11. The Cartan embedding of the symmetric space into the Lie
group is the map γ : G/K ↪→ G given by

γ([B]) = Bσ(B)−1.

Proposition 12. Assume that G/K is connected. Then the image M =
γ(G/K) of the embedding γ is the connected component NI of the identity of

the submanifold

N = {B ∈ G : σ(B) = B−1}.

As a consequence, for each point A ∈ M , the tangent space to the sym-
metric space can be identi�ed with the vector space

TAM = {Y ∈M(n,K) : Y A∗ +AY ∗ = 0, σ(Y ) = −Y ∗}.

Example 13. We specialize to quaternionic Grassmannians. Fix some k ≤
n and consider the matrix

J = diag(−Ik, In−k).
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The �xed point set of the automorphism σ : Sp(n)→ Sp(n) de�ned by

σ(B) = JBJ

is the subgroup Sp(k) × Sp(n − k). Then we obtain the Grassmann manifold
of k-planes in Hn,

Gn,k = Sp(n)/(Sp(k)× Sp(n− k)).

The Cartan embedding γ : Gn,k ↪→ Sp(n) is given by

γ([B]) = Bσ(B)∗ = BJB∗,

so the Cartan model M is the connected component of the identity of

N = {B ∈ Sp(n) : JB = B∗J}.

3.2. Cayley map

We shall now see that the properties of the Cayley transform in the Lie
group G are naturally inherited by the Cartan model of the symmetric space.
Let G = O(n,K) and let ΩG(A) be the open set given in Theorem 6.

Lemma 14. If A ∈ G then cσ(A) ◦ σ = σ ◦ cA on ΩG(A).

This allows us to prove that the domain of the Cayley transform in a
symmetric space is contractible.

Theorem 15 ([7]). Let M ⊂ G be the Cartan model of the symmetric

space G/K. Let A ∈ M . Then ΩM (A) := Ω(A) ∩M is a contractible open

subspace of M .

Proof. We know (Theorem 6) that ΩG(A) ∼= TA∗G, so it can be contracted
to A by the contraction

ν(X, t) = cA∗(tcA(X)).

We only need to prove that, when A ∈ M and X ∈ M , the contraction
ν(X, t) remains in M for all t ∈ [0, 1]. But since M = NI (Proposition 12), it
su�ces to prove that ν(X, t) ∈ N for all t, that is,

σ(ν(X, t)) = ν(X, t)−1,

which follows from the properties of the generalized Cayley transform stated in
Proposition 12. �
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4. STIEFEL MANIFOLDS

4.1. Cayley transform

We study now another important class of homogeneous spaces: Stiefel
manifolds. Let Kn be either the real vector space Rn, the complex vector space
Cn or the quaternionic vector space Hn (with the structure of a right H-vector,
space) endowed with the inner product 〈u, v〉 = u∗v. In the real case this is the
standard inner product vtw.

For 0 ≤ k ≤ n, the compact Stiefel manifold On,k(K) of orthonormal k-
frames in Kn is the set of matrices x ∈ Kn×k such that x∗x = Ik. It is standard
to denote On,k(K) by Vn,k in the real case, Wn,k in the complex case and Xn,k

in the quaternionic case.

We shall write the k-frame as x =

(
T
P

)
∈ On,k(K), with T ∈ K(n−k)×k

and P ∈ Kk×k. The linear left action of O(n,K) on On,k(K) is transitive and

the isotropy group of the base point x0 =

(
0
Ik

)
is isomorphic to O(n − k,K).

Then the manifold On,k(K) is di�eomorphic to

O(n,K)/O(n− k,K)

and we have the projection

O(n,K)
ρ−→ On,k(K),

given as ρ(A) = Ax0. The Cayley transform in the Stiefel manifold will be
obtained by projecting that of O(n,K).

Let x ∈ On,k(K). Take some A =

(
α T
β P

)
∈ O(n,K), such that ρ(A) =

x. It is customary to denote such a matrix A as (x⊥ x). The tangent vector
space is

TxOn,k = {v ∈ Kn×k : v∗x+ x∗v = 0}.

Then any tangent vector v ∈ TxOn,k(K) can be written as v = A

(
X
Y

)
, where

X ∈ K(n−k)×k, Y ∈ Kk×k and Y + Y ∗ = 0.

De�nition 16 ([9]). The Cayley transform on the Stiefel manifold,

γA : TxOn,k(K)→ On,k(K),

is de�ned by

γA(v) =

(
β∗

−P ∗
)

+ 2

(
−X
Ik

)
(Ik +X∗X + Y )−1(βX + P )∗.
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The map γA depends on the choice of A.

Example 17. If K = R and k = 1, the Stiefel manifold Vn,1 is the sphere
Sn−1 ⊂ Rn. Take for instance the North pole x = (0, . . . , 0, 1)t and let be
β = (0, . . . , 0) and α = In−1. A vector v tangent to the sphere at x has the
form v = (x1, . . . , xn−1, 0). The Cayley transform is then given by

γ(v) = (
−2x1
1 + Σ

, . . . ,
−2xn−1
1 + Σ

,
1− Σ

1 + Σ
)t

where Σ = x21 + · · ·+ x2n−1.

4.2. Injectivity domain

Theorem 18 ([9]). The Cayley map γA : TxOn,k(K) → On,k(K) veri�es

the following properties:

(1) γA ◦ ρ = ρ ◦ cA.
(2) The map γA is injective on the open subset

Γ(x) =
{
v = A

(
X
Y

)
∈ TxOn,k(K) : βX + P is invertible

}
.

(3) The map γA induces a di�eomorphism between Γ(x) ⊂ TxOn,k(K) and

the open subset

Ω(x) =
{(τ

π

)
∈ On,k(K) : π + P ∗ is invertible

}
.

Remark 19. The subset Γ(x) does not depend on the choice of A. More-
over, if γA is injective on an open subset U ⊂ TxOn,k(K) then U ⊂ Γ(x).

As we said before, for the group G = O(n,K), the Cayley transform cA is
a di�eomorphism TAG ∼= Ω(A∗) ∩ G. Therefore the open subset Ω(A∗) ∩ G is
contractible. This property is no longer true for a Stiefel manifold. However, the
image of the injectivity domain of a Cayley transform in On,k(K) is contractible
in On,k(K).

Theorem 20. For every x ∈ On,k(K) the open subset Ω(x) is contractible
in On,k(K).

We omit the proof, that appears in [9].

5. APPLICATIONS

5.1. Lusternik-Schnirelmann category

Lusternik-Schnirelmann category (in short LS-category) is a homotopical
invariant that has been widely studied.
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De�nition 21. For a topological space X, the LS-category catX is de�ned
as the minimum number (minus one) of open sets contractible in X which are
needed to cover X.

It is important to distinguish subspaces which are contractible into them-
selves from subspaces which are contractible into the ambient space X. The
latter ones are neccessary in the de�nition above in order to obtain a homoto-
pical invariant. See the book [3] for an introduction to the subject.

Example 22. A contractible space has category zero. A sphere Sn, n ≥ 1,
has category one. The torus T 2 has category two (hint: subspaces contractible
in X may not be connected).

Lusternik-Schnirelmann category is important because

• for a connected compact manifold, the LS category (plus one) is a lower
bound for the number of critical levels of any smooth function, be Morse
or not (Lusternik-Schnirelmann theorem [3]).

• for a Lie group, the LS category equals Farber's topological complexity [4],
a well known invariant with applications in motion planning and robotics.

Unfortunately, the LS-category is very di�cult to compute. In what fol-
lows we show several spaces where our results are useful.

Theorem 23 ([15]). For the unitary complex group, cat U(n).

Proof. W. Singhof [15] obtained an explicit covering of U(n) by the open
sets ΩG(z), where z is a unitary complex number, as in Example 7. He used
the exponential map to prove contractibility. With the Cayley transform we
know that these sets are di�eomorphic to the Lie algebra u(n). It is then easy
to �nd an explicit covering of the group by n+ 1 open sets because any matrix
in U(n) has at most n di�erent eigenvalues. �

Remark 24. It is important to note that the existence of a given covering
by n + 1 open subsets which are contractible in the ambient space U(n) only
guarantees that cat U(n) ≤ n. For the equality one needs a lower bound for the
LS-category, which in all the cases we are considering is given by the so-called
cup product length [3].

For the symplectic group, the result cat Sp(2) = 3 (four contractible open
sets) was proven by Schweitzer [14] without giving an explicit covering.

Theorem 25 ( [5]). Let us consider the four points: the identity I =
diag(1, 1) and the matrices P = diag(−1, 1), −P and −I. Then

{ΩG(I),ΩG(P ),ΩG(−I),ΩG(−P )}

is an explicit covering of G = Sp(2) by contractible open subspaces.
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We shall see later that these four points are the critical points of a Morse
function.

Now we consider some symmetric spaces.

Theorem 26. cat U(2n)/Sp(n) and cat U(n)/O(n).

Proof. The original proof is due to Mimura and Sugata [10], and the
argument with the Cayley transform is completely analogous to the preceding
one. �

For the Grasmannians we have the following result.

Theorem 27 ([8]). The Lusternik-Schnirelmann category of the quater-

nionic Grassmannian

Gn,k = Sp(n)/(Sp(k)× Sp(n− k))

is known to be k(n−k). This result can be deduced from Morse theory: the mini-

mum number of critical values of Morse height functions on Gn,k is catGn,k+1.

Finally, for Stiefel manifolds there is only a partial result.

Theorem 28. If n ≥ 2k, the LS-category of the quaternionic Stiefel ma-

nifold veri�es cat Xn,k ≤ k.

Proof. The original proof is due to Nishimoto [12]. Our proof in [9] is as
follows: let 0 < θ < π/2 and take

xθ =

 0
(sin θ)Ik
(cos θ)Ik

 .

We know that Ω(xθ) is contractible in Xn,k, by Theorem 20. Choose k+1
numbers 0 < θ0 < θ2 < · · · < θk < π/2. A matrix π ∈ Hk×k has at most k
distinct real eigenvalues, so some of the matrices π+(cos θi)Ik is invertible, that
is, π ∈ Ω(xθi). So the family {Ω(xθi)} is an open covering of Xn,k by subsets
which are contractible in Xn,k. �

5.2. Morse-Bott functions

Height functions on a Lie group with respect to some hyperplane as well
as distance functions to a given point have been widely studied. In this section,
we integrate explicitly the gradient �ow of those functions and we give local
charts for the critical submanifolds, by means of the Cayley transform.
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Let G = O(n,K) be an orthogonal group embedded in the Euclidean space
E =M(n,K). The Euclidean metric is given by

〈A,B〉 = <Tr(A∗B),

where <Tr means the real part of the trace. Hence, height and distance functi-
ons are given, up to a constant, by the formula

hX(A) = <Tr(XA),

for some matrix X ∈ E.
A direct computation shows that the gradient of hX at the point A ∈ G

is

(gradhX)A = (1/2)(X∗ −AXA).

Moreover, if A ∈ G is a critical point, the Hessian operator is the map

(Hhx)A : TAG→ TAG

given by

(HhX)A(U) = −(1/2)(AXU + UXA), U ∈ TAG.

Example 29. Let G = Sp(n) be the symplectic group of quaternionic n×n
matrices A such that AA∗ = I. For

D = diag(t1, . . . , tn),

a positive real diagonal matrix, with 0 < t1 < · · · < tn, the function hD is a
Morse function, whose critical points are the diagonal matrices

diag(ε1, . . . , εn), εk = ±1.

On the other hand, when X = I the height map hX is a Morse-Bott
function, whose critical manifold is formed by the matrices A such that A2 = I.

We now show how the Cayley transform serves to give a local chart for
the set Σ of critical points.

Theorem 30 ([5]). Let hX(A) = <Tr(XA) be an arbitrary height function

on the Lie group G = O(n,K). If A ∈ Σ is a critical point we denote by S(A)
the real vector space

S(A) = {β0 ∈ TA∗G : XAβ0 + β0AX = 0}.

Then the Cayley map cA∗ : S(A)→ Σ ∩ ΩG(A) is a di�eomorphism.

Example 31. Suppose X = I and K = C. Then the critical points of
hI : U(n) → R are the matrices A ∈ U(n) such that A2 = I. Such a matrix
A = A∗ can be diagonalized to D = diag(ε1, . . . , εn), with εk = ±1.
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On the other hand, β0 ∈ TAG if and only if Aβ0 is skew-symmetric, i.e.,
Aβ0 = −β∗0A, while β0 ∈ S(A) if and only if Aβ0 + β0A = 0. It follows that
β0 = β∗0 (critical direction).

So, for instance, the identity I and its opposite −I are critical points that
are isolated because S(±I) = 0.

On the other hand, let A = diag(Ip,−Iq). Then β0 ∈ TAG must be of the
form

β0 =

(
0 V ∗

V 0

)
,

which implies dimS(A) = 2pq. This is in fact the dimension of the (critical)
orbit of A under the conjugation action, which is di�eomorphic to the Gras-
mannian U(p+ q)/(U(p)×U(q)).

We shall call linearization the process of transforming the gradient �ow
of hX in G to a �ow in the Lie algebra.

Proposition 32. Let hX be an arbitrary height function on G = O(n,K)
and let A be a critical point. The solution of the gradient equation

α′ =
1

2
(X∗ − αXα)

passing through α(0) ∈ ΩG(A) is the image by the generalized Cayley transform

cA∗ of the curve in TA∗G de�ned as

(1) β(t) = exp(−XAt/2) · β0 · exp(−AXt/2),

with β0 = cA(α(0)).

This is a generalization of the same result for the classical Cayley trans-
form cI by Volchenko and Kozachko [16].

Now we consider an analogous result for symmetric spaces. We shall
prove that the generalized Cayley transform allows to give explicit local charts
for the critical submanifolds of height functions de�ned on the Cartan model
of M = G/K (see Section 3).

Let σ be the automorphism de�ning K, and let X̂ := X∗ + σ(X).

Proposition 33. The gradient of the height function hMX : M → R at any

point A ∈M is the projection of gradhX onto TAM , that is,

(gradhMX )A =
1

4

(
X̂ −Aσ(X̂)A

)
.

The Hessian H(hMX )A : TAM → TAM is given by

H(hMX )A(W ) = −1

4

(
Aσ(X̂)W +Wσ(X̂)A

)
.
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Example 34. Consider the complex Grassmannian U(2)/(U(1)×U(1)) de-

�ned by the automorphism σ(A) = I1AI1, where I1 =

(
1 0
0 −1

)
. The Cartan

model is the sphere S2 ⊂ U(2) ∼= S3 × S1 formed by the matrices

(
s −z
z s

)
where (s, z) ∈ R× C veri�es s2 + |z|2 = 1.

We take on M the function hMX with X =

(
0 0
0 1

)
. Then X̂ =

(
0 0
0 2

)
and the critical points are the two poles ±I. Both tangent spaces TεIM , are

formed by the matrices W =

(
0 z
−z 0

)
with z ∈ C. The Hessian is

(HhMX )εI(W ) = (−ε/2)W,

so hMX is a Morse function on M .

On the other hand, the critical set of hGX on the Lie group U(2) is formed

by the two circles U(1)× {±1} of matrices

(
α 0
0 ±1

)
with α ∈ C, |α| = 1.

We now integrate explicitly the gradient �ow.

Theorem 35 ([7]). Let hMX be an arbitrary height function on the sym-

metric space M . Let A be a critical point. Then the solution of the gradient

equation

4α′ = X̂ − ασ(X̂)α,

with initial condition α0 ∈ ΩM (A), is the image by the Cayley transform cA∗ of

the curve

β(t) = exp(
−t
4
A∗X̂)β0 exp(

−t
4
X̂A∗),

where X̂ = X∗ + σ(X) and β0 = cA(α0) ∈ TA∗M.

Giving a local chart for the critical set Σ(hMX ) of a Morse-Bott function
is another application of the generalized Cayley transform.

Theorem 36. Let hMX (A) = <Tr(XA) be a height function on the sym-

metric space M . Given a critical point A ∈ Σ(hMX ), let SM(A) be the vector

space

SM(A) = {β0 ∈ TA∗M : A∗X̂β0 + β0X̂A
∗ = 0}.

Then, the generalized Cayley transform induces a di�eomorphism

cA∗ : SM(A)→ Σ(hMX ) ∩ ΩM (A).

Observe that SM(A) is isomorphic to the kernel of the Hessian H(hMX )A.
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Example 37. Let G = Sp(2) and σ(A) = −iAi. Then the �xed point
subgroup is K = U(2). The symmetric space G/K = Sp(2)/U(2) can be
identi�ed with the manifold of matrices A ∈ Sp(2) such that A2 = −I. Let

A0 =

(
i 0
0 i

)
. Then the Cartan embedding γ : G/K → Sp(2) is given by

γ(A) = −AA0. As a consequence, it can be proven that the Cartan model M
equals the manifold N of matrices such that σ(A) = A∗.

Let us take X =

(
1 + j 0

0 i + j

)
∈ H2×2.

We can compute the critical points of the restriction hMX of the height
function to M ⊂ G and prove that it is a Morse function with four critical
points (for a detailed computation see [7]).

5.3. Optimization

Unlike most Riemannian manifolds, the gradient �ows of height functions
can be integrated explicitly on the classical Lie groups and symmetric spaces.
As we have seen, this can be achieved by means of the generalized Cayley
transform.

On the other hand, the classical Cayley transform has been widely used
to linearize di�erential equations in Lie groups and to solve them numerically.
Let us sketch how this works, adapting the explanation given in [6].

Let f : G→ R be a smooth function on the orthogonal Lie group G, and
consider the gradient gradA ∈ TAG at the point A ∈ G. Then the gradient
�ow α(t) is the solution of the equation α′(t) = gradα(t), with some initial
condition α(0) ∈ G. Since gradα(t) belongs to Tα(t)G, which is the image of the
Lie algebra g = TIG by the right translation α(t), we can write the equation as

α′(t) = X(α(t))α(t),

where X(α(t)) ∈ g for all t.

In fact, any di�erential equation on the Lie group G can be written as
α′ = X(t, α)α. To �x ideas, assume that we have a linear equation.

Proposition 38 ([6]). The di�erential equation

(2) α′(t) = X(t)α(t)

on the Lie group G, where X(t) is a g-valued smooth function, can be reduced

to the equation

Ω′ = −1

2
(I + Ω)X(I − Ω)

on the Lie algebra g, where Ω(t) is a g-valued function.



156 Enrique Mac��as-Virg�os 14

Proof. The curve α(t)α(0)−1 ∈ G passing through the identity can be
written, for small values of t, as the image, by the classical Cayley transform
cI , of some curve Ω(t) on the Lie algebra g, with Ω(0) = 0. That is,

(3) α(t) = cI(Ω(t))α(0).

From the formula
cI(Ω) = (I − Ω)(I + Ω)−1 ∈ G

it follows that the derivative

α′(t)α(0)−1 = (cIΩ)′(t)

equals

− Ω′(I + Ω)−1 − (I − Ω)(I + Ω)−1Ω′(I + Ω)−1

=
(
−I − (I − Ω)(I + Ω)−1

)
Ω′(I + Ω)−1

=− 2(I + Ω)−1Ω′(I + Ω)−1,

which combined with formulas (2) and (3) gives

−2Ω(I + Ω)−1Ω′(I + Ω)−1 = α′α(0)−1 = X(I − Ω)(I + Ω)−1,

so

(4) −2Ω′ = (I + Ω)X(I − Ω),

because Ω and (I + Ω)−1 commute. �

Equation (4) can be written as

−2Ω′ = X + [Ω, X]− ΩXΩ.

Notice that X,Ω ∈ g means that they are skew-symmetric matrices, so they
are [Ω, X] = ΩX −XΩ and ΩXΩ.

Remark 39. The equation can be solved by Runge-Kutta methods on Lie
groups [11].

Now we shall see how the Cayley transform can be used in the reverse
way. As an example, consider the curve given in (1), which is the solution of
the linear equation

(5) β′ = (−1/2) (XAβ + βAX)

in the Lie algebra g of quaternionic skew-symmetric matrices. Recall that the
matrix X ∈M(n,K) de�ned the height function hX , while A ∈ G was a critical
point of that function.

By a computation similar to that, done in the proof of Proposition 38
referring to Equation (2), we have the following result.
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Proposition 40. Let α′ = αXα−AXA be a di�erential equation in the

orthogonal group G, where A ∈ G and X(t) ∈ M(n,K) is a matrix valued

function. Assume that the matrix AX(t) is symmetric for all t. Then the

Cayley map cA transforms the original equation into the linear equation β′ =
XAβ + βAX in the Lie algebra g.

Gradient �ows related to the minimization of a cost function f : G → R
have been widely studied too. One popular method is the following gradient

descent method [1]. Let A = A0 ∈ G be an initial trial point and let − gradA
be the negative gradient of f at A. Then a curve α(t) must be found on the
manifold G such that α(0) = A and α′(0) = − gradA. By �xing a step size
τ small enough, the next iterate is obtained by curvilinear search, that is, by
putting A1 = α(τ). Under certain conditions the sequence A0, A1, . . . will
converge to a local minimun of the function f .

Most existing gradient descent methods require the determination of ge-
odesic curves, which is computationally expensive. Recall that the Rieman-
nian metric induced by the Euclidean one on the compact orthogonal group
G = O(n,K) is bi-invariant, and that the geodesic curve through a point A ∈ G
in the direction X ∈ TAG is given by exp(tX)A, where exp is the usual matrix
exponential.

Even more, many problems have some orthogonality constraints. A typical
example is looking for k orthogonal n-vectors that are optimal with respect
to some function f like cost or likelihood. This kind of problems are widely
known in optimization theory, and they can be seen as optimization problems
on a real Stiefel manifold. However, preserving the orthogonality constraints
is numerically expensive. Usually, re-orthogonalization requires to use matrix
factorizations such as polar decomposition or singular value decomposition to
�nd the nearest orthogonal matrix to the matrix obtained in each step.

For Stiefel manifolds, a di�erent algorithm has been proposed by Z. Wen
and W. Yin [17], where the search curve is not a geodesic but it is constructed
from the Cayley transform on the orthogonal group. Let us examine their idea
more closely.

Remark 41. The method is intended to be used in the real case, but we
shall write it for arbitrary coe�cients K. Also, as noted in [17], it could be
extended to J-orhogonal groups.

Let G = O(n,K) be an orthogonal group and let S = On,k(K) ⊂ Rn×k be
a Stiefel manifold. Let f : Kn×k → R be a real function and let fS : S → R be
its restriction to the Stiefel manifold. We denote by

D = (grad f)x ∈ Kn×k
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the gradient of f at the point x ∈ S.
We recover the notations of Section 4. The Euclidean norm on the space

Kn×k of n× k matrices is

|M |2 = <Tr(M∗M) =
∑
i,j

|mi,j |2,

so the gradient of f is de�ned, for the usual Euclidean inner product, by the
condition

f∗x(M) = 〈D,M〉 = <Tr(D∗M).

Analogously, let
DS = (grad fS)x ∈ TxOn,k

be the gradient of the restricted map fS : S → R. Clearly, DS is the projection
of D onto the tangent space TxS. Let us denote this as

DS = projx(D).

Proposition 42.

DS = (I − 1

2
xx∗)D − 1

2
xD∗x.

Proof. We know that x = Ax0, with A ∈ G and x0 =

(
0
Ik

)
. Then

TxS = A · Tx0S for the transitive action of G = O(n,K) onto S = On,k(K).
This action is isometric, because

〈Av0, Aw0〉 = <Tr((Av0)
∗(Aw0)) = <Tr(v∗0w0) = 〈v0, w0〉.

Then
DS = A · projx0(A∗D),

where A∗D ∈ Tx0S.
Next step is to realize that Kn×k can be decomposed as the orthogonal

sum of two subspaces: one is Tx0S, where v0 ∈ Kn×k belongs to Tx0S if and

only if v∗0x0 + x∗0v0 = 0, that is v0 =

(
X
Y

)
with Y + Y ∗. The other subspace

is the set of matrices

(
0
Z

)
where Z = Z∗ is a symmetric k × k submatrix.

This allows, by using the condition AA∗ = I, to explicitly compute
DS . �

Remark 43. With the notations of [17], the matrix DS in Proposition 42
should be written as

DS = (I − xx∗)D +
1

2
x(x∗D −D∗x).
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Moreover,

D∗S x =
1

2
(x∗D −D∗x),

which proves that DS ∈ TxS because D∗Sx+ x∗DS = 0.

We are ready to �nd the search curve. The n× n matrix

W = (I − 1

2
xx∗)Dx∗ − xD∗(I − 1

2
xx∗)

is skew-symmetric, i.e., W belongs to g, the Lie algebra of G = O(n,K). Take
the curve cI(tW ) ∈ G, t ∈ R on the group, given by the Cayley transform, and
make it act on the Stiefel manifold. We obtain in this way a curve

α(t) = cI(tW )x ∈ S

with the required properties.

Proposition 44 ([17]). The curve α(t) veri�es α(0) = x and α′(0) =
−DS, the negative gradient of the restriction fS at the point x.

Proof. From the formula cI(tW ) = (I − tW )(I + tW )−1 it follows that

α′(t) = −W (I + tW )−1x− (I − tW )(I + tW )−1W (I + tW )−1x,

hence

α′(0) = −2Wx = −(I − 1

2
xx∗)D +

1

2
xD∗x = −DS . �

Wen-Yin method has been used in many recent papers, going from biology
to computer science. We expect that our formulas for the Cayley transform on
the Stiefel manifolds may also be of interest for applications in optimization
and control theory, leading to even more e�cient methods.
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