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Chan and Liang noticed a new instability phenomenon related with the displa-
cing process in a vertical Hele-Shaw cell. When the inner part of the Hele-Shaw
plates are coated with a thin surfactant layer and a more viscous fluid is dis-
placing a less viscous one, the interface between the fluids becomes unstable if
the surface velocity exceeds a critical value. This is in contradiction with the
Saffman-Taylor criterion observed in the clean case (no surfactant on the pla-
tes). We show that the variation and the magnitude of the surface tension are
the main causes of this phenomenon, by using a simplified form of the boundary
conditions on the interface. This new kind of instability appears also for displa-
cements in horizontal Hele-Shaw cells with a preexisting layer of surfactant on
the inner part. For this, we use a model with slip conditions on the plates.

AMS 2010 Subject Classification: 35Q30, 35B35, 7T6Exx, 76S05.

Key words: Hele-Shaw immiscible displacements, surfactant effect, hydrodyna-
mic stability, Saffman-Taylor instability.

1. INTRODUCTION

One of the simplest models for the flow in a porous medium is the Hele-
Shaw approximation. A Stokes liquid flows between two parallel plates at a
very small distance, compared with the plates length. The flow is produced by
a given velocity far upstream or by a pressure gradient. The average (across the
plates) of the Poiseuillle solution gives us an equation similar with the Darcy’s
law for the flow in a porous medium — see [11]. The viscosity of the filtration
fluid is the real viscosity of the initial liquid.

An important problem related with the Hele-Shaw model is the flow of
two immiscible fluids which are displacing each other. In a real porous medium,
the interface between the immiscible fluids is very difficult to describe and in
fact it is not possible to get an effective equation. The simplest assumption is to
consider that the displacing fluids remain completely separated along a definite
interface. This is the main assumption considered in the Hele-Shaw model: a
“sharp” interface exists between the two immiscible fluids and in every point of
the equivalent porous medium we have only one fluid. An important application
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of the Hele-Shaw model is related with the secondary recovery process: the
oil from a porous medium is displaced by using a second (forerunner) viscous
liquid (usually water) — see [1]. The first results concerning the stability of the
immiscible displacement in Hele-Shaw cells are the papers [4] and [14]. Here,
a liquid of viscosity p; is displacing a liquid of viscosity ps. The gravity is
neglected for the horizontal Hele-Shaw cells. In the two above cited papers, a
basic steady solution with a straight interface is pointed out. The linear stability
analysis of this basic solution is performed. The Saffman-Taylor criterion gives
a stable interface when the displacing fluid p; is more viscous and instability
when g1 < po. In this last case, the fingering phenomenon appears. In the case
of water displacing oil, fingers of water appear in oil and a “trapped” quantity
of oil is lost for recovery.

In [2] was noticed a new type of instability phenomenon, in the case of
a vertical Hele-Shaw cell filled by air, with a very thin surfactant layer on the
plates. The cell is dipped into a pool filled by the same surfactant. Then the
interface air-surfactant becomes unstable if the displacing velocity exceeds a
critical value. This is in contradiction with the Saffman-Taylor criterion (air
is less viscous). An attempt to explain this new phenomenon was given in [2]:
a new state equation of the surface tension on the interface was considered,
in terms of the deformation of the interface and of the diffusion of surfactant
molecules from the bulk on the interface. An important assumption followied
the advection of the surfactant from the wetting-layer on the interface between
displacing fluids is proportional with the interface velocity. This assumption
can be related with the experimental results of Sheng and Smith (1999).

The new instability for the flow in vertical Hele-Shaw cells was partially
confirmed in [7] and [8]. In [7] is pointed out that “the displacing velocity is
not appearing in the stability parameter of the flow” (beginning of Section 4.3).
The variable surfactant concentration on the interface seems to be the principal
mechanism producing the instability. A transition region between the constant-
thickness region and the meniscus of the pool interface is considered. The flow in
the transition region is governed by the 3D Stokes equations. A linear stability
analysis of a basic solution in the transition region is performed, in the range
of low capillary numbers. The new instability phenomenon is revealed as the
“effect on the thickening of the wetting-layer caused by a significant Marangoni
stress, which, in turn, originate in the accumulation of surfactants in the cap
and transition regions” (see the Conclusions, page 121).

In this paper we perform a linear stability analysis of a basic state, for
both vertical and horizontal Hele-Shaw cells with a wetting-layer on the inner
part of the plates.

In the case of a vertical cell, we use a simplified form of the boundary con-
ditions on the interface and get a simpler explanation for the new-instability
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reported in [2]. We prove in a simple way that the principal element produ-
cing the new-instability is the variation of the surfactant concentration along
the wetting-layer surface. The variation of the surfactant concentration gives
(determines) the variation of the surface tension o. However, we show that
the magnitude of ¢ is also an important element producing the wetting-layer
instability — see the last part of Section 2. For this, we perform an analysis of
the boundary conditions verified by the perturbations v’, 7/, E,,E’, 5" of the
basic state on the free surface (see Remark 1). Our original result follows the
instability can appear for an almost constant o, if the magnitude of the surface
tension is large enough. As we use a simplified form of the boundary conditi-
ons on the interface, our dispersion relations (32), (36) for the growth rate of
perturbations are of first order. Moreover, (32) and (36) are related with the
basic displacing velocity. The dispersion relation in |7] is of second order.

In the case of a horizontal Hele-Shaw cell, we consider a less viscous
displacing liquid pq. We use the lubrication approximation for a Stokes flow in
a Hele-Shaw cell, but with a slip condition on the surfactant-layer surface. An
average procedure gives us a Darcy-type equation with a new term — see (46). A
linear stability analysis is performed, similar with the Saffman-Taylor approach.
The dispersion relation (53) also contains a new term. The surfactant layer can
be obtained by the coating process studied in [16]. Therefore the thickness (55)
is given in terms of p (the viscosity of surfactant) and U (the coating velocity).
The viscosities p1, po of the immiscible liquids are considered larger than the
surfactant viscosity pu. Then we can use the boundary conditions given in [12]
and [13]. We use a discretization of the normal derivatives of the velocity and
the thickness (53), in the range of low capillary numbers. In this way, we get the
new term in the dispersion relation (53) as function of the Marangoni stress on
the surfactant layer — see the relation (64). This new term allows us to explain
a new stability phenomenon: the interface between the liquids 1, po is stable
if the interface velocity V' is less than a critical value (67), even if the displacing
liquid is less viscous. However, the surface tensions of the displacing liquids on
the wetting-layer must verify the relationship given in Remark 6.

The outline of the paper is the following. In Section 2, we describe the
mathematic model and perform the stability analysis in the case of vertical
Hele-Shaw cell. The horizontal case is studied in Section 3. We conclude in
Section 4.

2. THE VERTICAL HELE-SHAW CELL

The experiment noticed in [2| can be described as follows. A Hele-Shaw
cell is dipped into a pool with a surfactant. Therefore we can consider that the
surfactant from the pool is displacing the air between the Hele-Shaw plates. The
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interface air-surfactant is stable, according with the Saffman-Taylor criterion
(the surfactant is more viscous). The cell is pulled out from the pool, and a
thin layer of surfactant is adhering on the plates, according with the Landau-
Levich theory — see [12]. When the “contaminated” Hele-Shaw cell is dipped
again in the pool, the interface air-surfactant becomes unstable, even if the
surfactant is more viscous, in contradiction with the Saffman-Taylor criterion.

Fig. 1 — Vertical Hele-Shaw
cell, with surfactant-adherent
layer on inner walls, dipped

in a surfactant pool.

We consider a “half” of the Hele-Shaw cell - more precisely we consider a
plate contained in the plane zOz, where the axis Oz is pointed down, in the
gravity direction; the axis Oy is orthogonal on the plate. The symmetry axis
of the cell is y = 0. The plate is moving down with the velocity V, into the
pool with surfactant. Far up on the plate, there exists a thin layer of the same
surfactant, with a constant thickness. A transition region is matching this thin
layer with the meniscus on the pool surface. The flow in the transition region
is described by the 3D Stokes equations.

We study the case when the wetting-layer (on the plates) was formed by
pulling out the plate from the pool, then a variable quantity of surfactant exists
on the layer surface. Therefore the surfactant concentration on the layer surface
is increasing (recall the Oz axis is down). As a consequence, the surface tension
on the wetting-layer surface is not constant, but decreasing as function on the
surfactant concentration.

The following notations are used: og, I'g, hg are the surface tension, the
surfactant concentration and the layer thickness far up on the plate; d, p, i, g
are the half gap length of the cell, the pool-liquid density and viscosity and the
gravity acceleration.
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The spatial coordinates are non-dimensionalized by d and the velocities
by the dipping speed V. The surface tension and surfactant concentration are
scaled by o9, I'g. The characteristic time is d/V and the pressure is scaled with
ao / d.

The important dimensionless parameters of our analysis are the Capillary,
Reynolds and Bond numbers given by

(1) Ca=pV/og, Re=pVd/p, Bo=d*pg/oo.

As we pointed before, the flow in the transition region (which relates the
constant thin layer with the pool surface) is described by the Stokes equations
(see also [7]):

Uy + vy +w, =0,

ReCa - uy — Bo+ p, = CaAu,
ReCa - vy + py = CaAw,
ReCa - w + p, = CalAw,

(2)

where (u,v,w),p are the velocity components on the axis Oz, Oy, Oz and the
pressure. The indices denote the partial derivatives with respect to the time ¢
and with the spatial coordinates x,y, z. The free surface of the surfactant layer
is y =1 h(x, z,t). The solutions must verify the following boundary conditions
(see [7] — page 109, 110, and [12] — page 384):

(3) y=—-1l=u=1 v=0,

(4) y =" h(z,z,t) = ht + uhy + v + wh, =0,
(5) y =" h(z,2,t) = p— 0(hgy + hz.) = 2Ca vy,
(6) y="h(z,2,t) = 0, =Cauy, o,=Caw,,

where o is the surface tension on the wetting-layer surface and the air pressure
is considered equal to zero. The relations (5), (6) are simplified forms of the
boundary conditions given in [7]: we neglect the second order terms appearing
in [7].

In this paper, we do not consider the equations of the interfacial surfactant
concentration, which are not necessary in our analysis for proving the instability
effect due to the wetting-layer effect.

When the plate was pulled out from the liquid-pool with a vertical ne-
gative velocity Vy, the thickness of the wetting-layer adhering on the plate is
given by the Landau-Levich theory (see [16] and references therein). Therefore
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we have

(7) ho = Ca/*\/oo/pg, Caa= pVa/oo.

Then some adimensionalizations of the previous equations and boundary con-
ditions are necessary. However, instead of dealing with two capillary numbers,
we consider (as in [7]) that the capillary numbers defined by (1) and (7) are
almost the same, therefore we consider

(8) Ca ~ Cay.

This assumption is based on the fact that all considered velocities are small
enough. We follow |7, 12| and introduce the following non-dimensional quanti-
ties, denoted by overline

9 F— t __x+l  _ oz _y+1 E—l_h

(9) T3 T a3 CT cas YT cai = Ca2/l3
_ _ v _ _ _ Y

(10) p_p7 v = C’al/?” U—U, w—w, ’7_ CCL2/3’

where v is the surfactant concentration on the wetting-layer surface. The lo-
cation of the origin [ is determined when we perform the matching procedure
with the meniscus on the pool-surface. In the new dimensional quantities, the
flow is governed by the following equations:

Uz + Uy + Wz = 0,

ReCa - — BoCall® + by = Ca®3 (s + Uzz) + Uy

ReCa®/3 . vy + ﬁy = Ca®/? (@ﬁ + @ﬁ) + CCL2/35W ,

ReCa - W; + py = Ca®/*(Waz + Wsz) + Wyy

(11)

and boundary conditions (3)-(6) on the interface (in the linear approximation)
become

(12) h; + @hz — v + whz = 0,
(13) P+ 0 (haz + hzz) = 2Ca*3 vy
(14) oz = C’az/?’ﬂg7 oz = Ca2/3*

The relation (13) is obtained from the equation (5). The change of the sign in
front of o follows from the transformation (9).

Asin [7], we consider Ca ~ 1073, Bo ~ 102 (for d = 300m), then we can
develop a low-capillary theory in the thin (adhering) film approximation. We
assume also the condition g(heo/vV) << 1, where v is the kinematic viscosity
and ho is the (constant) thickness of adherlng film far-up on the plate. That
means the gravity effects play a negligible role and BoCa'/? can be neglected.
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We consider now the basic solution corresponding to ReCa ~ 0 and w = 0,
that means
=0,

vy

)

I+
I &

g

(15)

T
I

)

subject to the boundary conditions (12)—(14).

>, I, H are denoting the basic surface tension, the basic surfactant con-
centration and the basic free surface. The basic pressure is not depending on
Y, Z.

We consider now the perturbations of the basic pressure, velocity, free
surface, surface tension and surfactant concentration, denoted by

(16) v, @, v, w, ¥, o 7.

In the general case when the basic surfactant concentration I' is not constant,
the basic surface tension . is depending on I' and we suppose

(17) Yz=Xrlz, Xz=2Xrls

where r is denoting the partial derivative in terms of I'. A linear approximation
around the basic state yields

/ j—

(18) 05 =X, 05 =7z

Recall that (11), for ReCa ~ 0 at the leading order in Ca is giving
D= = Wyy, then for the perturbations we get the equation (19), below.

Therefore at the leading order in Ca, the relations (11)—(15) give us the
following system which governs the perturbations:

—/ =/ —
uf—l—vy%—wg—(),

Dy =Ty
]_9 737 vy
(19) Py =0,
=l =/
Pz = Wy -

The boundary conditions (on the wetting-layer surface), linearized around the
basic state, are:

(20) By + by — 7 =0,
(21) 7+ Bl + i) = 2Ca*/3
(22) Sr7e = Ca®*af, Sl = Ca®/Pwy.
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The relations (19)-(22) are quite similar with the system studied in |7].

Remark 1. Here we perform a careful analysis of the relations (19), (21),
(22) and obtain the important relation (26) below. For this, we use the equation
(19), and get
=

Vg = ~Uagy — Wagy-

The derivation with respect to = and Z in (19),, (19), gives us

(23) Aj7fp, = —Um .

From (19) we have ﬁ’y = 0, then P’ is not depending on 7. We use the
approximation

Plg=m =0,

where H is the basic free surface. Then the relation (21) can be used to obtain
the following relation on the free surface.

(24) (EA720)|gern) = 200 7|

The relations (22) hold only on the free surface. We use the free-divergence
relation (19),, we perform the derivatives with respect to 7, Z, then from (22)
it follows

(25) EFA@EWI = —CG2/3 @;—y .

We consider now the last three relations (23)—(25) near the basic free
surface H and obtain

H? H _H*
— o = _ —
Remark 2. Recall the last relation (4.4) (see page 116) of [7]:
3 2
A N = =
(27) hy + hz 3 Az D Y YrAz Y .

The authors specify that the term from the left hand side of (27) is an advection
of the interface perturbation by the basic flow. However, in our paper this term
is zero, due to relationship (26) and because we used the simplified boundary
conditions (32), (36).

Taking into account Remark 2, we get a new stability analysis of the
perturbed interface and show the two elements producing the new-instability:
the wvariation Xp and the magnitude > of the basic surface tension on the
wetting-layer surface. For this we recall the relations (20), (26) and get

H — 1H2

— = 1
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We consider two important cases.

1) In the case of an almost constant surface tension, that means

Epﬁl ~0
we use the relations (28) on the free surface, and obtain
— _— H —
This relation holds in the hypothesis
(30) ISAR| >> |HEpAY,

then we neglect the third term in the right part of (28). Therefore the variation
of ¥ is considered much smaller compared with its magnitude, but the laplacian
of I and 7 are of the same order - see below the relations (31) and (35).

As in [7], we consider the normal disturbance ' of the form

(31) B o exp(ex +ikz + at),

where a is the growth constant. This kind of “expansion” is used also in [17],
related with the stability of the displacement of an Oldroyd-B fluid by air in a
Hele-Shaw cell. If we consider here an “amplitude”, it will simplify, because the
relationship (29) is linear.

Then the relation (29) gives us

(32) a = —Te + »(e? - k?).

H
2Ca?2/3
The basic velocity u is down, then positive. We consider € > 0, because the
perturbations must decay to zero far from the pool surface. The first main
conclusion of this section is obtained from (32):

In the case of a very slow variation of the surface tension, the wetting-layer
surface is unstable if the following condition holds

H
2Ca?/3
The above condition is verified for small enough wavenumbers k and large

enough basic surface tension X. Moreover, we have a < 0 for large wave-
numbers.

(33) Y(e? — k?) > .

2) In the case of a large variation of the surface tension (that means for
relative large variation of the surfactant concentration), we use the relations
(28) with two terms involving 3. It is important to emphasize that the surface
tension is decreasing in terms of the surfactant concentration, therefore ¥ =
—M < 0, where M can be considered as a Marangoni positive number and (28)
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becomes
1 M H?

- 1 7/ =/
Besides the normal mode decomposition (31) for E/, we consider a similar

decomposition for 7’ (used also in [7]):
(35) ¥ o exp(ex +ikz + at),

and from the last two relations we get

H

The last relation gives the second main conclusion of this section:

(36) a = —ue+

If the surface tension and its variation are of the same order on the wetting
layer surface, then the displacing process is unstable if
H
4Ca?/3
Moreover, we have a < 0 for large wavenumbers.

We see that in this case a Fourier decomposition was necessary for both
perturbations of the surface tension and surfactant concentration.

(37) (2 — k) (Z+ M H) > ue.

Remark 3. In both formulas (29)-(34) we can add in the right part the
term —Agzzp. If the perturbation p’ is decomposed in Fourier modes (in a
similar way to E/, '), we see that this third term has a destabilizing effect.
Therefore the stability is governed by the competition between three elements:
the basic velocity uw, the magnitude of ¥, M and the magnitude of momentum
advection due to the perturbations of the second component of the velocity.

Remark 4. From the inequalities (33) and (37) we see that the instability
can appear if the basic velocity u is less than a critical value, which however
depends on the variation and the magnitude of the basic surface tension. This
is not in contradiction with the experimental data reported by Chan and Li-
ang (1997), because the basic velocity and surface tension are related and we
not know the basic solution. However, in our analysis, the basic velocity is
appearing in the stability parameters of the flow.

3. THE HORIZONTAL HELE-SHAW CELL

In this section we study the case of a less viscous displacing fluid, then
p1 < peo, in a horizontal Hele-Shaw cell with a surfactant-wetting layer deposed
on the inner walls — see Figure 2.
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Fig. 2 — Horizontal Hele-Shaw cell with wetting-surfactant adherent layer on inner walls.

We consider here a Hele-Shaw model with a particular slip condition.
The plates of the cell are parallel with the plane xOz and the gap is 2d. The
displacing process is in the Oz direction and the axis Oy is orthogonal on plates,
described by the equations y = 0 and y = 2d. The gravity (pointed down in
the negative Oy direction) is neglected.

We derive first a Darcy-type equation for a single fluid with viscosity 7,
subject to non-slip conditions on the plates.

Let (u,v,w) be the velocities components in the directions Oz, Oy, Oz
and p the pressure. As usual in this model, we neglect the vertical component
v of the velocity. We neglect also ug, Uy, W, Wee and Uy, Uy, Wy, W, in front
of Uy, Uyy, Wy, Wyy. We consider u and w as functions of  and y only. The
Stokes equations become

(38) 77.’lj,yy:p$7 n'wyy:pz7 ():py7

where 7 is the viscosity. It is known that a basic solution exists with a sharp
planar interface.

At the distance § on the both inner walls we consider the following boun-
dary conditions:

(39) u(z,y=90)=u(z,y=2d—9) =€, w(x,y=0)=w(xr,y=2d—9)=0.

The basic steady solution with slip condition (39) is obtained as follows.
We neglect all terms containing 2dé and 62. We solve the above problem (38)-
(39) and get

(40) n-u=pa(y®/2) + Ay + B; n-w=p.(y*/2) + Cy + D;
(41) ne = pg(62/2) + AS + B;  ne = py(2d — 8)*/2 + A(2d — §) + B;

(42) 0=p,(0%)/2+C5+ D; 0=p,(2d—0)*/2+C(2d ) + D.
Subtracting the two relations (41) we get

0= paglo® — (24— 0] + Al — (20— )}
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1
0= po52d(20 — 2d) + A(25 = 2d) = A= —dp,;
ne = pp0?2/2 — 2dp,0/2 + B = B = ne + p,(2d5 — 6%)/2 ~ pe;

1 1
(43) U = —px[yQ — 2dy + (2dd — (52)} +er —px(yQ — 2dy) + €.

2n 21
Subtracting the two relations (42) we get
1 1
44 = —p.[y* — 2dy + (2d5 — 6%)] ~ —p.(y* — 2dy).
(44) W= 5P [y y+( )] 2npz(y y)
We consider below the mean velocities u,v and obtain
1 [0 1 . d*  d-¢
=g u(@, y)dy = —po[—7] +e——,
(45) 5 n 3
1 2d—6 1 d2
—_ 1 quy = Lo Ty
=95 v(x, y)dy an[ 5]
We define the “permeability” K = d?/3, then we get
K d—2o K
46 uU=—— w=——
( ) U n Pz + € d w n Pz
n_, kd=9 n_
4: = —— — € = —— .
(47) o= —dut BAZS = T

The component w of the basic velocity is neglected in front of @, then we have
p. = 0.

Consider now two immiscible liquids. Let wi,us and p1, po be the hori-

zontal velocities, the viscosities and u; = V®;. Then 1 = py for the displacing
liquid, n = pg for the displaced liquid and the pressures in both liquids are
(48) P1 :—/;{1(1)1+/;{16$(dd6); pgz—ﬁ;;q)2+l;?€x(dd6).
The flow direction of the basic solution is in the positive axis Ox. In the moving
frame X = x — V't, the basic interface is X = 0. However, we still use x = 0
for denoting the basic interface, where we have Laplace’s law and consider a
constant surface tension 7. The basic interface is planar, therefore the pressure
is continuous across the interface.

We study now the stability of the above basic solution. Like in [14], the
perturbed interface is described by

(49) z = bexp(inz + at).

From the continuity of normal velocity at the planar interface, it follows that
near z = 0, in the first order approximation, the velocity potentials in the two
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regions satisfy the relations:
(50) (P1)z = (P2)r =V 4+ a bexp(inz + at).

The above potentials must vanish far downstream and upstream. Therefore we
can assume

(51) &) =Va+ (ab/n)exp(inz + at + nx), z <0

(52) ®y =V — (ab/n)exp(inz + at —nzx), x> 0.

We use the approximate form of the Laplace’s law: ps — p1 = T'xy,. Here T' is
the surface tension on interface and wx, is the first order approximation for the
interface curvature. Then, in the first order approximation, from (48)—(52) we
get

) vay  p2 d=0 m vay A0 e
(Vz n)—l—Ke;E 7 ] [ K(Va:+n)+Kea: T = Tnx.

Recall the perturbed interface (49). We simplify with 2 and obtain the formula
of the growth constant a:

(53) ) = 200 [V—e(d;ﬂ Ta?,

The new term e (containing the slip-velocity) appears, compared with the
Saffman-Taylor formula — see [14]. It follows:

(d—9)
d

Therefore, if the displacing liquid is less viscous and the interface velocity V'
is less than the critical value e(d — d)/d, we have a stable flow.

(54) < pz and V —e <0= a<0.

If € = 0, then in the classical Hele-Shaw cell, we obtain always instability,
because V' > 0.

Later on, we obtain the value of € in terms of the variable surface tension
on the surfactant-layer surfaces y = 6 and y = 2d — J, by using appropriate
boundary conditions related with the surfactant-driven Marangoni stress.

We study now the effect of preexisting layer of surfactant on the plates,
when a surfactant layer of fluid of thickness § exists on both plates of the Hele-
Shaw cell, obtained by the coating procedure of Landau-Levich (see [16] and
references therein). In the frame of low capillary numbers Ca, the thickness §
of the surfactant layer is

(55) § ~ Ca*l® = {uU/SY3,

where both plates were pulled out with the velocity U from a reservoir filled
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with a surfactant -fluid of viscosity p and surface tension S with air. We
suppose

(56) p< p1, f2

We derive now the boundary conditions between the Helen-Shaw liquids
and the preexisting surfactant layer. Let I'(z),o(I") be the surfactant concen-
tration on the surface of the surfactant layer and the (variable) surface tension
which acts on the layer surface. Then, as in [12, 13|, the conditions on the layer
surface can be considered of the form

(57) p—pi=—0"-C, ,ui'aui/an:—ai,

where p; is the pressure in the surfactant-layer and p; is the pressures in the
liquid 4. C is the curvature of the layer surface, o* is the surface tension between
the liquid ¢ and the wetting- layer, du/dn is the normal derivative of w.

In our case, the preexisting horizontal layer is of almost constant thickness,
then the curvature C' is zero and from (57); we obtain a continuous pressure.

We use the second condition (57) and obtain the following important
result:

Even if the fluids in the Hele-Shaw cell are at rest (that means V = 0),
we still have a slow flow near the plates given by the condition (57),.

This is known as Marangoni effect: the flow induced by the variation of
the surface tension on the interface between the liquids and the preexisting
layer of surfactant.

For obtaining the above result, a condition is derived from the second
relation (57), by using a discretization formula of the normal derivative of the
liquid velocity w;. It can be seen that the formula (57), must be used in terms
of the interior normal derivative on the plates. Then we obtain the conditions

(58) y=90, y=2d—90 :>,u,--8ui/8n:—afc.

Remark 5. We consider %, < 0. This is related with an increasing surfac-
tant concentration on the wetting-layer.

The surfactant surface is orthogonal on Oz. The derivative of u in terms
of z is approximated as follows (our analysis is only for small §)

(59) uy(y = 0) = u(é);u(o) + 0(6%).
(60) uy(y = 2d — §) =~ w(2d) - g@d —9) + 0(6?).

The preexisting surfactant layer is adherent on the plates, then we have
u(0) = u(2d) = 0. Therefore the interior normal derivatives (directed into the
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plates) are
u(2d — 0)
5

We use the last four relations and obtain the boundary conditions verified
by the displacing liquids on the surface of the preezisting layer:

(62) ,uzul(é) = ,uiu,'(2d — (5) = —(5Ji

T

(61) Un(y =0) ™ —=;  up(y =2d —0) ~

We emphasize here that the above two formulas are giving us a positive
velocity — see Remark 5. This is consistent with our assumption concerning the
positive displacement direction.

Remark 6. For a steady solution, we need a constant velocity of the initial
straight interface between the displacing liquids pq, pe. Therefore we need
u1 = ug and get the necessary condition

1 2
(63) O _ 0%
1o p2

However, the above condition could be removed in the particular case when
w, w1 are very small. In this case, the displacing fluid is not so much affected
by the surfactant-driven Marangoni stress.

We use now the relation (62), to get the small velocity on the surfactant
layer. With € = —do?. /u;, our slip conditions on the Hele-Shaw plates are

(64) y=6 and y=2d—06 = u;=—00"/p;.

The new boundary conditions and the formula (53) give the following
equation which governs the flow stability:

a p2 — doy,(d —9) 2
= — Tn”.
(65) e+ ) = P2y 2 n

The main result of this section is obtained from the formula (65), when
the displacing liquid is less viscous, according with Remark 6.

The Saffman-Taylor analysis gives us an unstable flow, because o = 0,
V > 0 and we get

(66) maxy(a) > 0.
Recall 0% < 0 — see Remark 5. Suppose the condition (63) holds and
Sol(d—0)
67 V<—-——"=—7"
(67) R

Then the right hand side of (65) becomes negative, that means the flow
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is stable and we get a reverse Saffman-Taylor instability. We can see that the
right hand side of the above inequality is positive, then there exists a small
positive V' which satisfies this condition.

Remark 7. As we pointed out in Introduction, the paper [2] is related with
this phenomenon. An instability is reported only for a large enough V', when
the displacing fluid is the same as the preexisting liquid layer on the plates,
which is not our case. Therefore our result is not in contradiction with the
experiment of Chan and Liang [1], and reveals a new effect of surfactants on
the flow in Hele-Shaw cells

4. CONCLUSIONS

We study here a particular flow in the case of a vertical and horizontal
Hele-Shaw cell, when the inner part of the plates are coated by a thin film of
surfactant.

For the vertical cell, the starting point is the experiment of Chan and
Liang, described in [2]. In contradiction with the classical Saffman-Taylor cri-
terion (for the clean plates of the Hele-Shaw cell), in 2] was reported an in-
stability of the surface between immiscible fluids, even if the displacing fluid is
more viscous. This new instability phenomenon, which can be considered as a
“reverse Saffman-Taylor instability” is related with the effects of surfactants on
the flow in a thin gap (see [5, 6, 12, 13, 15, 16| and references therein).

Before the experiment obtained in [1], some theoretical studies concerning
this problem were initiated in [9] and [10], where a non-physical state equation
for the surface tension was used — a linear dependence in term of the surface
curvature.

An attempt to explain the above new instability phenomenon was given
in [3], where a state equation of the surface tension is proposed, in term of the
deformation of the interface.

A basic study related with the considered problem was given in |7] — the
authors used the 3D Stokes equations to describe the flow in the “contaminated”
Hele-Shaw cell and performed a stability analysis of a basic solution. They par-
tially confirmed the experimental result of [1], but pointed out that rather the
variation of the surface tension on the wettin-layer is giving the new-observed
instability, and not the interface velocity, which is not appearing in the stability
parameter of the flow.

In this paper, we perform a stability analysis similar with those of Krechet-
nikov and Homsy given in [7]. We remark a small error in the stability analysis
given in this cited paper — the last equation (4.4) page 116 (see Remark 2).
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We carefully analyse the boundary conditions verified by the perturbations of
the basic solution on the wetting-layer surface (see Remark 1). Starting with
the relations (23)—(26), we reconsider the stability analysis and conclude that
we have two important cases: a very slow and a relative large variation of the
surfactant concentration on the wetting-surfactant layer adhering on the Hele-
Shaw plates. In the last part of Section 2, we pointed out the corresponding
conclusion in the two mentioned cases:

1) In the case of an almost constant surface tension (for a very slow
variation of the surfactant concentration) we get instability if the surface tension
is large enough.

2) In the case of a variable surface tension (for a large variation of the
surfactant concentration) we obtain instability if the corresponding Marangoni
number or the surface tension are large enough.

However, our result is far from being rigorous. It is not so clear what
“small” and “large” variation of the surfactant concentration mean. The main
mathematical arguments here are the boundary conditions for the perturbations
of the basic solution, analyzed in Remark 1 and the equation of the perturbed
interface.

In the case of horizontal cell — Section 3 — we describe a Hele-Shaw flow
with a slip condition on the plates. We obtain the slip condition in terms of the
variable surface tension on the layer surface — see the formula (64). A stability
analysis is performed and we get the formula (53) for the growth constant of the
perturbation, which contains a new term depending on the Marangoni stress on
the wetting-layer surface. We get the dispersion formula (65) and the relation
(67), therefore the stability conditions are obtained in terms of the displacing
velocity V:  The flow is stable if V is less than a critical value, even if the
displacing fluid is less viscous. However, we need the particular condition (63),
because the surface tension on the wetting-layer surface is not the same for
both displacing liquids. This result is not in contradiction with the experiment
reported by Chan and Liang in [2], as we pointed out also in Remark 7.

We emphasize that in both considered cases, the displacing velocity is
appearing in the stability condition of the flow (even if it is related with other
parameters). The variation of the surface tension is not the only factor giving
the instability and some problems are not clarified, concerning a more exact
description of the relations between all parameters of the flow.

Therefore, further studies are necessary to clarify the effects of the wetting-
surfactant layer on the Hele-Shaw cell, especially for the vertical Hele-Shaw
cells.
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