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A �nite dimensional �liform K-Lie algebra is a nilpotent Lie algebra g whose nil
index is maximal, that is equal to dim g−1. We describe necessary and su�cient
conditions for a �liform algebra over an algebraically closed �eld of characteristic
0 to admit a contact linear form (in odd dimension) or a symplectic structure (in
even dimension). If we �x a Vergne's basis, the set of �liform n-dimensional Lie
algebras is a closed Zariski subset of an a�ne space generated by the structure
constants associated with this �xed basis. Then this subset is an algebraic variety
and we describe in small dimensions the algebraic components.
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Conventions: All Lie algebras considered in this paper will be de�ned over an
algebraically closed �xed �eld K of characteristic 0.

INTRODUCTION

The problem of classi�cation up to isomorphism is a substantial problem
in the study of �nite dimensional Lie algebras, even over an algebraically closed
�eld K of characteristic 0. This problem has a solution if we consider simple
or semisimple algebras, that is, non abelian with no non-trivial ideals or with
no non-zero abelian ideals. Indeed, in 1884, Elie Cartan gave the classi�ca-
tion of the complex and real simple �nite dimensional Lie algebras. His work
is based on the works of Killing. He shows that this classi�cation is reduced
to 4 classes and 5 exceptional Lie algebras. The Levi decomposition, which
was a conjecture of Killing and Cartan and was proved by Eugenio Elia Levi
(1905), states that any �nite-dimensional real or complex Lie algebra is the
semidirect product of a solvable ideal and a semisimple subalgebra. From this
result, the problem of classi�cation is reduced to the classi�cation of solvable
Lie algebras and to the problem of representation of semisimple Lie algebras.
Thus we are led to classify the solvable Lie algebras. But there are only few
results on this topic. We know this classi�cation up to the dimensions 5 or 6.
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Without e�ective solutions to these problems, since the structure of a solvable

Lie algebra is determined by its nilradical, that is the maximal nilpotent ideal,

we are interested by the classi�cation of nilpotent Lie algebras. This is one

of the major aims of the present paper. Nowadays, only the classi�cations of

complex or real nilpotent Lie algebras of dimension lower or equal to 7 was

established. Even this partial result was presented after numerous attempts

by various authors and in often di�erent approaches. It is surely unrealistic to

hope for classi�cations in higher dimension. Indeed, in dimension 7, we �nd

non isomorphic families of one parameter of nilpotent Lie algebras but also a

very large number (more than 100) of non parametrized and non isomorphic Lie

algebras. In higher dimension, this number of Lie algebras will become very

big and will become very di�cult to verify (it is enough to see the di�erent

attempts of classi�cations in dimension 7 and the story of the dimension 7 to

realize it). Moreover, when we have a given Lie algebra, it is often di�cult to

�nd this algebra in the o�cial list of the classi�cation because there are not

the same invariants which are used, and �nding the change of basis is a little

bit tedious. Thus to pursue the work of classi�cation up to isomorphism in

higher dimension seems utopian. Some works showed that particular families

of nilpotent Lie algebras were parametrized by tensor spaces. This means that

it is equivalent to classify Lie algebras and arbitrary bilinear maps. Therefore,

it does not seem wise to study particular properties of Lie algebras by starting

on existing classi�cations. For example, the properties that we consider in

this paper are the existence of contact forms or of symplectic forms, and also

topological and algebraic properties based on the deformation theory and on

the rigidity property. Thus the approach is more original. It was introduced

in a previous paper concerning the study of k-step nilpotent Lie algebras. We

globally study some reduced families which are invariant by isomorphism and

which are closed, that is de�ned by a �nite polynomial system. For these

families, we can de�ne an adapted cohomology and then introduce a notion

of local rigidity, that is, we consider only deformations of elements of a given

family which stay in this family. In [13], we have for the �rst time studied some

geometrical properties of k-step nilpotent Lie algebras by considering families

adapted to the characteristic sequence of a nilpotent Lie algebra (see e.g. [19]

for a presentation of this invariant).

We consider in this work �liform Lie algebras, that is nilpotent Lie al-

gebras whose nilindex is maximal, that is n − 1 if n is the dimension of the

Lie algebra under consideration. Of course, for this family we know the clas-

si�cation up to the dimension 7. In [10], classi�cations are also given for the

dimensions 8 and 9 for this particular family of nilpotent Lie algebras. But
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there was no general consensus on these classi�cations. Thus we begin our

work with these dimensions. We are interested in topological properties, as the

rigidity, which we study by developing this notion of restricted cohomology. In

particular we come back on a result of [3] concerning the local rigidity. We

describe also in dimension 8 the family (which is neither open nor closed) of

symplectic Lie algebras, that is Lie algebras provided with a bilinear symplectic

form. In dimension 9, we show that there are no rigid �liform Lie algebras and

we determine all the contact Lie algebras. We show also that any symplectic

8-�liform Lie algebra is obtained as a quotient of a contact �liform Lie alge-

bra by its center and we �nd again the �rst given description of symplectic Lie

algebra. We do the same thing for the dimensions 10 and 11, giving the descrip-

tion of the contact 11-dimensional �liform Lie algebras and consequently the

description of the symplectic 10-dimensional �liform Lie algebras. We remark

also, that in these dimensions, none of the Lie algebras are rigid. For a general

dimension, we determine the family of contact (2p + 1)-dimensional �liform

Lie algebras. We expose also a model for this geometrical property, that is a

family of contact Lie algebras such that any �liform contact Lie algebra is a

deformation of an algebra of this model. Let us recall also that the reduction

of the polynomial Jacobi system, that is the system of polynomial equations

given by the Jacobi conditions, is the fundamental problem. We don't have

many tools to �nd the generators of the ideal generated by these equations in

the ring K[Cki,j , 1 ≤ i < j ≤ n, 1 ≤ k ≤ n]. In general this ideal I is not equal

to
√
I and the associated a�ne scheme is not reduced. We described for the

family model (parametrized by (p− 1) parameters) a process of reduction and

we give the associated reduced system. To end this study, we determine from

the family of (2p + 1)-dimensional contact �liform Lie algebras the family of

symplectic (2p)-dimensional �liform Lie algebras and we propose a notion of

deformation of symplectic Lie algebra based on deformations of the contact Lie

algebra which is a one-dimensional central extension. Let us note also, that

in [5], we have studied �liform Lie algebras admitting a G-grading, where G is

an abelian group.

1. GENERALITIES ON FILIFORM LIE ALGEBRAS

1.1. A Vergne's basis

Let g be a n-dimensional Lie algebra over the �eld K. The ascending

central series {Cig} of g is de�ned by

C0g = {0}, Cig = {X ∈ g / [X, g] ⊂ Ci−1g}, i > 0,
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and the descending central series {Cig} of g is de�ned by

C0g = g, Cig = [g, Ci−1g], i > 0.

De�nition 1. The n-dimensional Lie algebra g is called �liform if we have
dim Cig = i for 0 ≤ i ≤ n− 2.

A �liform Lie algebra is nilpotent and we have

Cig = Cn−i−1g, 0 ≤ i ≤ n− 1.

Proposition 2. Let g be a (n+1)-dimensional �liform Lie algebra. There

exists a basis {X0, X1, · · · , Xn} called a Vergne basis of g such that
[X0, Xi] = Xi+1, 1 ≤ i ≤ n− 1, [X1, Xn−1] = 0,

[Xi, Xj ] =
∑
k≥i+j

Cki,jXk.

Another characterization of a �liform Lie algebra is given by its characte-
ristic sequence. In fact ifX is a vector of the nilpotent Lie algebra g, the charac-
teristic sequence c(X) of the adjoint operator adX is the decreasing sequence of
the dimensions of the Jordan blocks of the nilpotent operator adX. The charac-
teristic sequence c(g) of g is the following sequence max{c(X), X ∈ g−C1(g)},
the maximum corresponding to the lexicographic order. Any vector X whose
characteristic sequence c(X) of adX is equal to c(g) is called characteristic vec-
tor of the nilpotent Lie algebra g (so according to the lexicographic ordering,
we have c(Y ) ≤ c(X) for any Y ∈ g if X is a characteristic vector). The n-
dimensional nilpotent Lie algebra g is �liform if and only if c(g) = n − 1. If
{X0, X1, · · · , Xn} is a Vergne basis of a �liform Lie algebra g, the characteristic
sequence c(X0) of the adjoint operator adX0 is equal to (n, 1). An interesting
example of (n+1)-dimensional �liform Lie algebra is the Lie algebra Ln+1 often
called the model �liform Lie algebra ( [11]) whose Lie bracket µ0 is

(1)

{
µ0(X0, Xi) = Xi+1, 1 ≤ i ≤ n− 1,
µ0(Xi, Xj) = 0, 1 ≤ i < j ≤ n.

1.2. Geometric structure on �liform Lie algebras

1.2.1. CONTACT AND SYMPLECTIC STRUCTURES

Let g be a (2p)-dimensional K-Lie algebra. A symplectic form on g is a
closed 2-form θ, that is satisfying

θ([X,Y ], Z) + θ([Y,Z], X) + θ([Z,X], Y ) = 0
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for any X,Y, Z ∈ g and which is also nondegenerate that is

θp = θ ∧ · · · ∧ θ 6= 0.

A Lie algebra provided with a symplectic form θ is called a symplectic
Lie algebra and denoted by the pair (g, θ). There exist �liform Lie algebras
without symplectic structures. For example, in [6], one �nds the list of all
�liform Lie algebras up to dimension 6. When the symplectic form is exact,
that is if there exists ω in g∗ the dual space of g such that θ = dω where
dω is the bilinear form de�ned by dω(X,Y ) = −ω([X,Y ]) for any X,Y ∈ g,
the symplectic Lie algebra is called frobeniusian. But, from [14], there are no
frobeniusian nilpotent Lie algebras since one can easily check that the center
of any frobeniusian Lie algebra is trivial.

Let g be a n = 2p+ 1-dimensional K-Lie algebra. A contact form on g is
a non zero linear form ω on g satisfying

ω ∧ (dω)p 6= 0

where dω is the bilinear form de�ned by dω(X,Y ) = −ω([X,Y ]) for any X,Y ∈
g and (dω)p = dω ∧ · · · ∧ dω p-times. In case of nilpotent Lie algebras, there is
an obstruction to the existence of contact form ( [14]), the center of g can be of
dimension 1. But the center of any �liform Lie algebra is always of dimension
1, then this necessary condition is always satis�ed. Let us note that this does
not imply that any odd-dimensional �liform Lie algebras admit a contact form.

Proposition 3. Let (g, θ) be a 2p-dimensional �liform symplectic Lie

algebra. Then the one dimensional central extension gθ = g⊕KZ whose bracket

is given by {
[X,Y ]gθ = [X,Y ] + θ(X,Y )Z, ∀X,Y ∈ g ,
[X,Z]gθ = 0, ∀X ∈ g ,

is a (2p+ 1)-dimensional �liform contact Lie algebra.

Proof. Let {X0, X1, · · · , X2p−1} be a Vergne basis of g and let {ω0, · · · ,
ω2p−1} be its dual basis. If θ is a symplectic form on g then

dθ(X0, Xi, X2p−1) = 0 = θ(Xi+1, X2p−1), i = 1, · · · , 2p− 1.

This implies that θ = ω2p−1 ∧ (a0ω0 + a1ω1) + θ1. �

Conversely, if g is a (2p + 1)-dimensional contact nilpotent Lie algebra,
then its center Z(g) is one-dimensional [14] and the factor algebra g/Z(g) is a
symplectic 2p-dimensional nilpotent Lie algebra. If g is �liform, then g/Z(g) is
also �liform. In [16], one proves that g admits a contact form if and only if the
linear form ω2p is a contact form where {ω0, · · · , ω2p} is the dual basis of the
Vergne basis of g. We deduce
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Proposition 4. A (2p)-dimensional Lie algebra (g, θ) is symplectic if and

only if in the central extension gθ, the linear form ω2p is a contact form, where

{ω0, · · · , ω2p} is the dual basis of the Vergne basis of gθ.

1.2.2. COMPLEX STRUCTURES

De�nition 5. A complex structure on a (2p)-dimensional R-Lie algebra g
is a linear endomorphism J of g such that:
(1) J2 = −Id;
(2) [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ] = 0, ∀X,Y ∈ g.

Let gC = g⊗R C denote the complexi�cation of g, and

σ : gC → gC

the corresponding conjugation. The above condition (2) is equivalent to the
splitting

gC = g1,0 ⊕ g0,1

where g1,0 and g0,1 are complex Lie subalgebras of gC and g0,1 = σ(g1,0).

Proposition 6 ([15]). There are no �liform Lie algebra admitting a com-
plex structure.

1.2.3. AFFINE STRUCTURES

De�nition 7. An a�ne structure on a Lie algebra g is a K-bilinear multi-
plication, denoted X · Y which is left-symmetric, that is

X · (Y · Z)− (X · Y ) · Z = Y · (X · Z)− (Y ·X) · Z
for all X,Y, Z ∈ g and satis�es

[X,Y ] = X · Y − Y ·X
where [X,Y ] denotes the Lie bracket of g.

The problem, which concerns also the linear representations of Lie algebras
[7], is not completely solved even for �liform Lie algebras. We know that, as
soon as the dimension is greater or equal to 10, there exist �liform Lie algebras
without a�ne structure. However, let us recall this classical result:

Proposition 8. Any symplectic Lie algebra is a�ne.

Proof. Let (g, θ) be a symplectic Lie algebra. We consider the product
XY given by XY = f(X)Y where f : g → End(g) is de�ned implicitly by
θ(f(X)(Y ), Z) = −θ(Y, [X,Z]) for any X,Y, Z ∈ g. Since θ is symplectic, this
product XY is well de�ned and provides g with an a�ne structure. �

In the case of contact Lie algebras, see for example [18].
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2. FILIFORM LIE ALGEBRAS OF DIMENSION 8

2.1. Topological description

The classi�cation of �liform Lie algebras over K of dimension less than or
equal to 7 is well known [11]. The aim of this section is to come back to the
classi�cation proposed in [3] and to correct some inaccuracies of this last paper.

Let g be a 8-dimensional �liform Lie algebra. If we denote by µ its Lie
bracket and {X0, · · · , X7} a Vergne basis, then the Jacobi identity implies

µ(X0, µ(Xi, Xj)) = µ(Xi, Xj+1) + µ(Xi+1, Xj).

These identities imply that the structure constants Cki,j for k < 7 are

linear combinations of C7
ij . We deduce

Proposition 9 ([3]). Any 8-dimensional �liform Lie algebra over K is
given in a Vergne basis by

(2)



µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 6,
µ(X2, X5) = a1X7, µ(X1, X5) = a1X6 + a2X7,
µ(X3, X4) = −a1X7, µ(X2, X4) = a4X7,
µ(X1, X4) = a1X5 + (a2 + a4)X6 + a5X7,
µ(X2, X3) = a4X6 + a6X7,
µ(X1, X3) = a1X4 + (a2 + 2a4)X5 + (a5 + a6)X6 + a7X7,
µ(X1, X2) = a1X3 + (a2 + 2a4)X4 + (a5 + a6)X5 + a7X6 + a8X7,

with a1(5a4 + 2a2) = 0.

Consequence. Let Lie8 be the algebraic variety over K of 83-uple (Cki,j)
with 0 ≤ i, j ≤ 7 and 0 ≤ k ≤ 7 satisfying

Cki,j = −Ckj,i ,
7∑
l=0

C li,jC
s
l,k + C lj,kC

s
l,i + C lk,iC

s
l,j = 0, ∀s = 0, · · · , 7.

A 8-dimensional Lie algebra with Lie bracket µ is identi�ed with a point of
Lie8 considering the structural constants of µ in a given basis. An action of
the algebraic group GL(8,K) on Lie8 corresponds to the changes of basis and
the orbit of a Lie algebra is its isomorphism class. Let N il8 be the algebraic
subvariety of Lie8 whose elements correpond to the 8-dimensional nilpotent
Lie algebra and Fil8 be the set of 8-dimensional �liform Lie algebras. This
is a Zariski open subset of N il8 and from Proposition 9 it is the orbit of the
subvariety Fil8 of N il8 whose elements are the Lie algebras de�ned in (2). We
deduce that the study of the open set Fil8 can be deduced directly from the
study of Fil8.

The set Fil8 is an algebraic variety embedded in K8 and parametrized by
the structural constants a1, a2, a4, a5, a6, a7, a8. It is the union of two irreducible
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connected algebraic components

(1) Fil8(1) de�ned by a1 = 0 which is a 6-dimensional plane,

(2) Fil8(2) de�ned by 5a4 + 2a2 = 0 which is also a 6-dimensional plane.

We deduce that Fil8 is the union of two irreducible algebraic components,
Fil8(1) and Fil8(2) which are respectively the orbits of Fil8(1) and Fil8(2).

2.2. Deformations

In the following, we identify the Lie bracket of a 8-dimensional nilpotent
(resp. �liform) Lie algebra with the point (Ckij) of N il8 (resp. Fil8) where the
Cki,j are its structural constants related to the given Vergne basis {X0, · · · , X7}.

De�nition 10. Let µ0 be a Lie bracket belonging to Fil8. A deformation
µ in Fil8 of µ0 is a formal deformation in the Gerstenhaber sense such that
µ ∈ Fil8 ⊗K[[t]].

From [9], any deformation in Fil8 is isomorphic to a linear deformation
µ0 + tψ where ψ is a bilinear skew-symmetric application which is a 2-cocycle
for the Chevalley-Eilenberg cohomology of µ0 and satisfying also the Jacobi
identity. Moreover since µ0 + tψ is �liform, ψ is a nilpotent Lie bracket.

The description of deformations in Fil8 of µ0 ∈ Fil8 reduces to the study
of bilinear skew-symmetric applications ψ such that µ0 + tψ is in Fil8.

Lemma 11. Let µ0 be in Fil8. Then µ0 + tψ is a linear deformation in

Fil8 of µ0 if and only if ψ is given by

(3)



ψ(X2, X5) = u1X7, ψ(X1, X5) = u1X6 + u2X7,
ψ(X3, X4) = −u1X7, ψ(X2, X4) = u4X7,
ψ(X1, X4) = u1X5 + (u2 + u4)X6 + u5X7,
ψ(X2, X3) = u4X6 + u6X7,
ψ(X1, X3) = u1X4 + (u2 + 2u4)X5 + (u5 + u6)X6 + u7X7,
ψ(X1, X2) = u1X3 + (u2 + 2u4)X4 + (u5 + u6)X5 + u7X6 + u8X7,

with u1(5a4+2a2)+a1(5u4+2u2)+tu1(5u4+2u2) = 0 where (a1, a2, a4, a5, a6, a7,
a8) are the parameters of µ0.

2.3. Study of the component Fil8(1)

Any Lie algebra in Fil8(1) is isomorphic to a Lie algebra of Fil8(1) whose
Lie bracket is de�ned by

(4)



µ0(X0, Xi) = Xi+1, 1 ≤ i ≤ 6,
µ0(X1, X5) = a2X7, µ0(X2, X4) = a4X7,
µ0(X1, X4) = (a2 + a4)X6 + a5X7,
µ0(X2, X3) = a4X6 + a6X7,
µ0(X1, X3) = (a2 + 2a4)X5 + (a5 + a6)X6 + a7X7,
µ0(X1, X2) = (a2 + 2a4)X4 + (a5 + a6)X5 + a7X6 + a8X7.
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We have seen that Fil8(1) is an algebraic subvariety of N il8. In [13],
we de�ned for each set k-N iln of k-step nilpotent n-dimensional Lie algebras
a cochain complex whose associated cohomology parametrizes the �internal�
deformations, that is deformations of k-step nilpotent Lie algebras which are
also k-step nilpotent. When k is maximal, that is for the �liform case, this
cohomology is the Vergne cohomology because any nilpotent deformation of a
�liform Lie algebra is always �liform. We consider here the same approach,
considering the cohomology adapted to the internal deformations in Fil8(1)
that is deformations of elements of Fil8(1) which remain in this variety. Since
we are only concerned by the second space of this cohomology, we shall describe
it. Let µ be in Fil8(1). We denote by Z2

CR(µ, µ) the space of 2-cochains, that is
bilinear skew-symmetric maps ψ on K8 with values on K8 which are de�ned by

(5)


ψ(X1, X5) = u2X7, ψ(X2, X4) = u4X7,
ψ(X1, X4) = (u2 + u4)X6 + u5X7,
ψ(X2, X3) = u4X6 + u6X7,
ψ(X1, X3) = (u2 + 2u4)X5 + (u5 + u6)X6 + u7X7,
ψ(X1, X2) = (u2 + 2u4)X4 + (u5 + u6)X5 + u7X6 + u8X7.

The subscript 'CR' comes from the �restricted Chevalley complex�, whose
cohomology spaces will also be used later. If ∂µ is the coboundary operator
of the Chevalley-Eilenberg complex of µ, then ∂µ(ψ) = 0 and any cochain is
closed. Let B2

CR(µ, µ) the space of ∂µ(f) for f ∈ End(K8) such that f(X0) =∑7
i=0 αiXi and f(X1) =

∑7
i=1 βiXi. We have

(6)


δf(X1, X5) = v2X7, δf(X2, X4) = v4X7,
δf(X1, X4) = (v2 + v4)X6 + v5X7,
δf(X2, X3) = v4X6 + v6X7,
δf(X1, X3) = (v2 + 2v4)X5 + (v5 + v6)X6 + v7X7,
δf(X1, X2) = (v2 + 2v4)X4 + (v5 + v6)X5 + v7X6 + v8X7,

with

(7)



v2 = a2(β1 − 2α0), v4 = a4(β1 − 2α0),
v5 = a5(β1 − 3α0) + α1(−2a22 − 5a2a4 − 5a24),
v6 = a6(β1 − 3α0) + α1(−3a2a4 − 3a24),
v7 = a7(β1 − 4α0)− 2a4β3 − α1(a5 + a6)(5a2 + 9a4),
v8 = a8(β1 − 5α0)− 3a7α1(2a2 + 3a4)− 2a6β3 − 3a4β4

+3α3a4(a2 + 2a4)− α1(a5 + a6)(3a5 + 2a6).

Then B2
CR(µ, µ) is a linear subspace of Z2

CR(µ, µ) and the quotient space

H2
CR(µ, µ) = Z2

CR(µ, µ)/B
2
CR(µ, µ)

parametrizes the deformations in Fil8(1). We deduce, using the classical the-
ory of Nijenhuis-Richardson, that a Lie algebra g with bracket µ such that
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H2
CR(µ, µ) = 0 is rigid in Fil8(1), that is, its orbit in Fil8 is open. But,

since Fil8(1) is isomorphic to a linear 6-dimensional space, its associated a�ne
scheme is naturally reduced and the converse is also true: if g is rigid, then
dimH2

CR(µ, µ) = 0. But any cocycle ψ with u2u4 6= 0 cannot be cohomologous
with a cocycle where u2 = u4 = 0. We deduce that dimH2

CR(µ, µ) ≥ 1. We
deduce

Proposition 12. No Lie algebra belonging to Fil8(1) is rigid in Fil8 and
also in N il8 and in Lie8 where N il8 (respectively Lie8) is the algebraic variety
of 8-dimensional nilpotent Lie algebras (respectively the algebraic variety of 8-
dimensional Lie algebras).

Let us determine the Lie algebras of this component which satisfy
dimH2

CR(µ, µ) = 1. Let g be such a Lie algebra. From the previous re-
mark, any cocycle ψ ∈ Z2

CR(µ, µ) must be cohomologous to a cocycle with
u5 = u6 = u7 = u8 = 0 and a2 or a4 non zero. Suppose a4 6= 0. The coe�cients
β3 and β4 can always be chosen such that u7 − v7 = 0 and u8 − v8 = 0.

(1) If a2 + a4 6= 0 and a5 6= 0 we can choose α1, β1 − 3α0 and β1 − 2α0 such
that u6 − v6 = u5 − v5 = u2 − v2 = 0. The corresponding Lie algebra
satis�es dimH2

CR(µ, µ) = 1.

(2) If a2 + a4 6= 0, a5 = 0, a6 6= 0 and 2a22 + 5a2a4 + 5a24 6= 0 that is

a2
a4
6= −5± i

√
15

4
(here K = C) we can choose α1, β1 − 3α0 and β1 − 2α0

such that u6− v6 = u5− v5 = u2− v2 = 0. The corresponding Lie algebra
satis�es dimH2

CR(µ, µ) = 1.

(3) a2+a4 = 0 and a6 6= 0 we can choose α1, β1−3α0 and β1−2α0 such that
u6 − v6 = u5 − v5 = u2 − v2 = 0. The corresponding Lie algebra satis�es
dimH2

CR(µ, µ) = 1.

In all other cases dimH2
CR(µ, µ) > 1.

To simplify denote by µ(a2, a4, a5, a6, a7, a8) a Lie bracket of a Lie algebra
belonging to Fil8(1). The previous computations shows that the Lie algebras
µ(α, 1, 0, 1, 0, 0) with α such that 2α2+5α+5 6= 0 and µ(α, 1, 1, 0, 0, 0) with α 6=
−1 satisfy dimH2

CR(µ, µ) = 1. From [3], these two Lie algebras are isomorphic.
So consider the one-parameter family T 1

α constituted of µ(α, 1, 1, 0, 0, 0) with
α 6= −1. Any deformation in Fil8(1) of an algebra of this family belongs to this
family. Since Fil8(1) is a 6-dimensional plane, a reduced algebraic variety, we
deduce that the closure of T 1

α is Fil8(1).

Proposition 13. The family T 1
α

(8)

µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 6, µ(X1, X5) = αX7, µ(X2, X4) = X7,
µ(X1, X4) = (α+ 1)X6 +X7, µ(X2, X3) = X6,
µ(X1, X3) = (α+ 2)X5 +X6, µ(X1, X2) = (α+ 2)X4 +X5.

is rigid in Fil8(1) and Fil8(1) = O(T 1
α ).
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Remarks.

(1) This generalized notion of rigidity which concerns a one-parameter family
of Lie algebras has already been de�ned in [9].

(2) To compare these results with [3], we give the complex classi�cation, up
to isomorphism, of elements of Fil8. Recall that such results would be
utopic to establish for greater dimensions.

Proposition 14. Let us write (a2, a4, a5, a6, a7, a8) a Lie algebra of Fil8(1).
Then any Lie algebra of Fil8(1) is isomorphic to one of the following:

(λ, 1,−1, 1, 0, 0) (λ, 1, 0, 0, 0, 0) (−2, 1, 1, 0, 0, 0) (1, 0,−1, 1, λ, 0)
(0, 0, λ, 1, 1, 0) (0, 0, λ, 1, 0, 0) (λ, 0, 0, 0, 1, 1) (1, 0, 0, 0, 1, 0)
(1, 0, 0, 0, 0, 1) (1, 0, 0, 0, 0, 0) (0, 0, 1, 0, 1, 0) (0, 0, 1, 0, 0, 0)
(0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0).

2.4. Study of the component Fil8(2)

We consider the Lie algebras of (2) with a4 = −2
5a2. Any Lie algebra of

Fil8(2) is isomorphic to a Lie algebra of Fil8(2) with Lie bracket de�ned by:

(9)



µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 6,
µ(X2, X5) = a1X7, µ(X1, X5) = a1X6 + a2X7,

µ(X3, X4) = −a1X7, µ(X2, X4) = −
2

5
a2X7,

µ(X1, X4) = a1X5 +
3

5
a2X6 + a5X7, µ(X2, X3) = −

2

5
a2X6 + a6X7,

µ(X1, X3) = a1X4 +
1

5
a2X5 + (a5 + a6)X6 + a7X7,

µ(X1, X2) = a1X3 +
1

5
a2X4 + (a5 + a6)X5 + a7X6 + a8X7,

Then Fil8(2) is a 6-dimensional plane parametrized by (a1,a2,a5,a6,a7,a8).
We consider similarly to the previous section the linear deformations in Fil8(2)
of the Lie brackets belonging to Fil8(2). We denote always by H2

CR(µ, µ)
the space which parametrizes these deformations. The space of 2-cocycles
Z2
CR(µ, µ) is constituted of the skew-symmetric bilinear applications ψ given by

(10)



ψ(X2, X5) = u1X7, ψ(X1, X5) = u1X6 + u2X7,

ψ(X3, X4) = −u1X7, ψ(X2, X4) = −
2

5
u2X7,

ψ(X1, X4) = u1X5 +
3

5
u2X6 + u5X7, ψ(X2, X3) = −

2

5
u2X6 + u6X7,

ψ(X1, X3) = u1X4 +
1

5
u2X5 + (u5 + u6)X6 + u7X7,

ψ(X1, X2) = u1X3 +
1

5
u2X4 + (u5 + u6)X5 + u7X6 + u8X7.
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Let f be a linear endomorphism of g such that δf ∈ Z2
CR(µ, µ). If f(X0) =∑7

i=0 αiXi and f(X1) =
∑7

i=1 βiXi then

(11)



δf(X2, X5) = v1X7, δf(X1, X5) = v1X6 + v2X7,

δf(X3, X4) = −v1X7, δf(X2, X4) = −
2

5
v2X7,

δf(X1, X4) = v1X5 +
3

5
v2X6 + v5X7,

δf(X2, X3) = −
2

5
v2X6 + v6X7,

δf(X1, X3) = v1X4 +
1

5
v2X5 + (v5 + v6)X6 + v7X7,

δf(X1, X2) = v1X3 +
1

5
v2X4 + (v5 + v6)X5 + v7X6 + v8X7,

with
(12)

v1 = a1(β1 − α0 − α1a1),
v2 = a2(β1 − 2α0 − 3α1a1),
v5 = a5(β1 − 3α0 − 5a1α1)− α1(2a1a6 +

4
5a

2
2) + 2α3a

2
1 − 2β3a1,

v6 = a6(β1 − 3α0 − 2a1α1) + α1(a1a5 +
18
25a

2
2)− 2α3a

2
1 + 2β3a1,

v7 = a7(β1 − 4α0 − 5a1α1)− 7
5α1a2(a5 + a6)− 4

5α3a1a2 +
4
5β3a2,

v8 = a8(β1 − 5α0 − 5a1α1)− α1(
12
5 a2a7 + (a5 + a6)(3a5 + 2a6))+

α3(2a1(a5 + 2a6)− 6
25a

2
2)− 4

5α4a1a2 + 2α5a
2
1 − 2β3a6 +

6
5β4a2 − 2β5a1,

(1) If a1 = a2 = 0 then dimH2
CR(µ, µ) ≥ 3.

(2) If a1 = 0 and a2 6= 0, then dimH2
CR(µ, µ) ≥ 2.

(3) If a2 = 0, a1 6= 0 then dimH2
CR(µ, µ) ≥ 1.

(4) Assume now a2 6= 0, a1 6= 0, We will develop this case because it is the
part of [3] which presents an inaccuaracy. Let us compute the kernel of
the linear system {vi = 0}. Since a1a2 6= 0 then v1 = v2 = 0 is equivalent
to

β1 = −α1a1, α0 = −2α1a1.
We can also choose β5 to obtain v8 = 0. Then the system is reduced to

v5 = −α1(2a6a1 +
4
5a

2
2) + 2α3a

2
1 − 2β3a1,

v6 = (3a6a1 + a5a1 +
18
25a

2
2)α1 − 2α3a

2
1 + 2β3a1,

v7 = (2a7a1 − 7
5a2(a5 + a6))α1 − 4

5α3a1a2 +
4
5β3a2,

The matrix of this system is

M =

 −2a6a1 − 4
5a

2
2 2a21 −2a1

3a6a1 + a5a1 +
18
25a

2
2 −2a21 2a1

2a7a1 − 7
5a2(a5 + a6) −4

5a1a2
4
5a2


Since this matrix is singular, then dimKerM ≥ 1 and dimH2

CR(µ, µ) ≥ 1.
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Since the a�ne scheme associated with this component is reduced, the Lie
algebras with a1a2 6= 0 are not rigid. We can now study the conditions
to have dimH2

CR(µ, µ) = 1, this is equivalent to rank(M) = 2 that is

a1(a5 + a6)−
2

25
a22 6= 0

or

a1a2

(
18

5
a5 +

26

5
a6

)
+

72

125
a32 − 4a21a7 6= 0.

In particular, we can take a1 = a2 = 1, a5 = −a6 = t. For each value of t,
the dimension of H2,r(g, g) of the corresponding Lie algebra is equal to 1.
We deduce

Proposition 15. None of the Lie algebras of Fil8(2) are rigid in Fil8.
This component is the closure of the one-dimensional rigid family T 2

t (8) of Lie
algebras isomorphic to

(13)



µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 6,

µ(X2, X5) = X7, µ(X1, X5) = X6 +X7,

µ(X3, X4) = −X7, µ(X2, X4) = −
2

5
X7,

µ(X1, X4) = X5 +
3

5
X6 + tX7, µ(X2, X3) = −

2

5
X6 − tX7,

µ(X1, X3) = X4 +
1

5
X5, µ(X1, X2) = X3 +

1

5
X4.

Remark. The problem of classi�cation of 8-dimensional �liform Lie alge-
bras has been already solved. We can �nd this classi�cation in [9]. A lot of the
results previously obtained of course are direct consequences of this classi�ca-
tion. But to obtain a general result of the classi�cation problem is certainly
utopian. This implies to develop another way. We began a new approach
in [13] by considering subfamilies of k-step nilpotent Lie algebras and de�ning
an adapted cohomology of deformations. The previous calculus is performed
in this way. Nevertheless, since this classi�cation is known and since we have
given this classi�cation for the algebras of the �rst component, it would be
surprising not to give it for the second component.

Proposition 16. Let g be a �liform Lie algebra belonging to Fil8(2).
Then any Lie algebra of Fil8(2) is isomorphic to one of the following corre-

sponding to

(a1, a2, a5, a6, a7, a8)

∈ {(1, 0, 0, 0, 0, 0), (1, 0, 0, 0, 1, 0), (1, 0, 1, 0, λ, 0), (1, 1, λ,−2, 0, 0)}.
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2.5. Symplectic structures

We determine all �liform 8-dimensional symplectic Lie algebras. A direct
approach consists to write the conditions related to the existence of a sym-
plectic form for Lie algebras belonging to each component. Let g ∈ Fil8 and θ
be a closed 2-form on g. Let {X0, · · · , X7} be a Vergne basis (2). Computing
dθ(X0, Xi, X7) = 0, we obtain that θ(Xi, X7) = 0 for i = 2, · · · , 6. As a conse-
quence, θ(Xi, Xj) = 0 as soon as i + j ≥ 9 and dθ(Xi, Xj , Xk) = 0 is always
satis�ed for i+j+k ≥ 9. We call the weight of the equation dθ(Xi, Xj , Xk) = 0
the integer p = i+ j + k and we solve this equation for p = 8, 7, · · · , 3.
(1) p = 8.{

0 = (3a1 + 2a3)θ(X3, X5)− a1θ(X1, X7) + a1θ(X2, X6),
0 = (2a1 + a3)θ(X3, X5)− a3θ(X1, X7).

(2) p = 7.
0 = θ(X2, X6) + θ(X1, X7),
0 = θ(X3, X5)− a1θ(X0, X7) + θ(X2, X6),
0 = a3θ(X0, X7)− θ(X3, X5),
0 = (3a1 + 2a3)θ(X3, X4)− (a1 + a3)θ(X1, X6)− a4θ(X1, X7)

+(2a1 + a3)θ(X2, X5) + (a2 + a4)θ(X2, X6).

Then, we have to consider the matrix

M =


0 −a1 a1 3a1 + 2a3
0 −a3 0 2a1 + a3
0 1 1 0
−a1 0 1 1
a3 0 0 −1

 =


0 −a1 a1 a1
0 a1 0 a1
0 1 1 0
−a1 0 1 1
−a1 0 0 −1


If θ is symplectic, one of the scalar θ(X0, X7) or θ(X1, X7) is non zero which
is equivalent to say that the rank of M is less than 4. But rankM = 4 if and
only if a1 6= 0 so any 8-dimensional �liform symplectic Lie algebra g belongs to
Fil8(1). Moreover, the symplectic form satis�es θ(Xi, Xj) = 0 for i+ j ≥ 8. If
we compute the relations of weight 6 we obtain

0 = θ(X2, X5) + θ(X1, X6)− a2θ(X0, X7),
0 = θ(X3, X4) + θ(X2, X5)− a4θ(X0, X7),
0 = (a2 + 2a4)θ(X3, X4)− (a2 + 2a4)θ(X2, X5) + a4θ(X1, X6).

But θ is non degenerate if and only if θ(0, 7)θ(1, 6)θ(2, 5)θ(3, 4) 6= 0. This
implies

(1) 2a2+5a4 6= 0, that is g ∈ Fil8(1) and g /∈ Fil8(2) and a4(a2+2a4)(2a2−
a4) 6= 0
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(2) or a2 = a4 = 0.

Proposition 17. An 8-dimensional �liform Lie algebra is symplectic if

and only if it is isomorphic to a Lie algebra g ∈ Fil8(1)− Fil8(2) and a4(a2 +
a4)(2a2 − a4)(a2 + 2a4) 6= 0 or g ∈ Fil8(1) ∩ Fil8(2) and a2 = a4 = 0.

Remark that the symplectic Lie algebras in Fil8(1) − Fil8(2) form a Zariski
dense subset of Fil8(1)−Fil8(2). We can also note that any Lie algebra of the
rigid family T 1

α is symplectic, except for three values of α which are −2, 12 ,−
5
2 .

2.6. Determination of symplectic 8-dimensional �liform Lie algebras

using contact 9-dimensional �liform Lie algebras.

If (g, θ) is a 2p-dimensional symplectic Lie algebra, then the Lie algebra
gθ the one-dimensional central extension

gθ = g⊕θ KZ.

Recall that the Lie bracket µ1of gθ is given by{
µ1(X,Y ) = θ(X,Y )Z + µ(X,Y ),
µ1(X,Z) = 0

for any X,Y ∈ g, gθ is a contact (2p + 1)-dimensional Lie algebra and Z
generates the center. From Proposition 4, g is a factor algebra g1/Z(g1) of a
�liform contact algebra g1 and the linear form ω2p is a contact form. Then we
can determine all the symplectic �liform algebras in dimension 8 starting from
the contact �liform 9-dimensional Lie algebras. This study is the aim of the
last section, but we can already use these results, all the proofs are given in the
following section.

Proposition 18. Any 9-dimensional �liform Lie algebra provided with a

contact form is isomorphic to a Lie algebra of the following family:

µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 7,
µ(X1, X6) = a2X8, µ(X2, X5) = a4X8,
µ(X1, X5) = (a2 + a4)X7 + a5X8, µ(X3, X4) = a6X8

µ(X2, X4) = (a4 + a6)X7 + a7X8,
µ(X1, X4) = (a2 + 2a4 + a6)X6 + (a5 + a7)X7 + a8X8,
µ(X2, X3) = (a4 + a6)X6 + a7X7 + a9X8,
µ(X1, X3) = (a2 + 3a4 + 2a6)X5 + (a5 + 2a7)X6 + (a8 + a9)X7 + a10X8,
µ(X1, X2) = (a2 + 3a4 + 2a6)X4 + (a5 + 2a7)X5 + (a8 + a9)X6

+a10X7 + a11X8,

with −3a24 + 2a26 + 2a2a6 + a4a6 = 0 and a2a4a6 6= 0.
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Since the center is generated by X8, we deduce

Proposition 19. Any symplectic 8-dimensional �liform Lie algebra is

isomorphic to a Lie algebra of the following family

µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 6,
µ(X1, X5) = (a2 + a4)X7,
µ(X2, X4) = (a4 + a6)X7,
µ(X1, X4) = (a2 + 2a4 + a6)X6 + (a5 + a7)X7,
µ(X2, X3) = (a4 + a6)X6 + a7X7,
µ(X1, X3) = (a2 + 3a4 + 2a6)X5 + (a5 + 2a7)X6 + (a8 + a9)X7,
µ(X1, X2) = (a2 + 3a4 + 2a6)X4 + (a5 + 2a7)X5 + (a8 + a9)X6 + a10X7

with −3a24 + 2a26 + 2a2a6 + a4a6 = 0 and a2a4a6 6= 0. This is equivalent to say

We come back to the notations (2) and we put

b2 = a2 + a4, b4 = a4 + a6, b5 = a5 + a7, b6 = a7, b7 = a8 + a9, b8 = a10.

Then the conditions −3a24+2a26+2a2a6+ a4a6 = 0 and a2a4a6 6= 0 imply that

b2 = b4 = 0, or b4(b2 + b4)(2b2 − b4)(b2 + 2b4) 6= 0.

Any symplectic 8-dimensional �liform Lie algebra is isomorphic to a Lie
algebra of the following family

µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 6,
µ(X1, X5) = b2X7,
µ(X2, X4) = b4X7,
µ(X1, X4) = (b2 + b4)X6 + b5X7,
µ(X2, X3) = b4X6 + b6X7,
µ(X1, X3) = (b2 + 2b4)X5 + (b5 + b6)X6 + b7X7,
µ(X1, X2) = (b2 + 2b4)X4 + (b5 + b6)X5 + b7X6 + b8X7,

with b2 = b4 = 0 or b4(b2 + b4)(b2 − b4)(b2 + 2b4) 6= 0. We �nd again all the
conditions of Proposition 17.

This last way to determine the symplectic structures permits also the
introduce of a notion of symplectic deformation. Recall that a deformation of
a symplectic Lie algebra can be non symplectic. The simplest example is given
by the even dimensional abelian Lie algebra. This algebra is symplectic and
any Lie algebra is isomorphic to a deformation of this abelian algebra and it is
clear that non symplectic Lie algebras exist as soon as the dimension is strictly
greater than 2. Likewise if a symplectic Lie algebra g1 is a deformation of a
Lie algebra g0, this last is not necessarily symplectic. Then the classical notion
of deformation is not well adapted to the notion of symplectic structures. But
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it is not the case for the contact structures. Any deformation of a contact
Lie algebra is still a contact Lie algebra (see also [14]). This remark leads
to introduce a restricted notion of deformation that we shall call symplectic
deformation:

De�nition 20. Let g0 and g1 be two symplectic 8-dimensional �liform Lie
algebras and let g90 and g91 be 9-dimensional contact �liform Lie algebras such
that gi = π(g9i ), i = 1, 2 where π is the canonical projection π : g → g/Z(g).
We say that g1 is a symplectic deformation of g0 if g

9
1 is a (classical) deformation

of g90.

2.7. A�ne structures

From [7], we know that any 8-�liform Lie algebra admits an a�ne struc-
ture. To prove this, we construct a�ne structures of adjoint type, that is, if
Li denote the linear map Li(X) = XiX then L0 = adX0. Since Li for i ≥ 2
is given by Li = [L0, Li−1], such a�ne structure is completely determinate by
L1. For exemple if we consider the rigid family T 2

t (8) in Fil8(2), we consider
for L1 the linear map whose matrix in a Vergne's basis is

0 α1 0 α2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1

5 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 2(70α6−25t−42)
375 0 0 0 0 0 0

0 2α3
70α6−25t−42

375 − 2
25(5α6 − 3) 1

5 0 0 0
0 α4 α3 α5

t
2 −

3
25(5α6 − 3) α6 −1

2 0


or

0 α1 0 α2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3

5 0 0 0 0 0 0
0 0 2

5 0 0 0 0 0

0 2(−210α6+125t−42)
375 0 −2

5 0 0 0 0

0 2(−210α6+125t−42)
375

−210α6+125t−42
375 −14

25(5α6 + 1) −3
5 0 0 0

0 α4 α3 α5
t
2 −

21
25(5α6 + 1) α6 −1

2 0


Note that all these a�ne structures are complete, that is the linear map

RY : X → X · Y is nilpotent for any Y , or equivalently the trace of RY is zero.
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Note also that the linear representation of g:

ρ : g→ End(g)

given by ρ(X) = LX is not faithful because in all the previous cases LX7 = 0.

Remark. Let us consider the polarization of the product ∇(X,Y ) = X ·Y .
We put

µ(X,Y ) = ∇(X,Y )−∇(Y,X), s(X,Y ) = ∇(X,Y ) +∇(Y,X).

Since K is of characteristic not 2, then

∇(X,Y ) =
s(X,Y ) + µ(X,Y )

2

and µ is a Lie bracket. The applications µ and s are related by the a�ne
condition

A(X,Y, Z) = µ(µ(X,Y ), Z)+µ(s(Y,Z), X)−µ(s(Z,X), Y )+2s(µ(X,Y ), Z)

− s(µ(Y, Z), X) + s(µ(X,Z), Y )− s(s(Y,Z), X) + s(s(X,Z), Y ) = 0.

We have also

A(X,Y, Z) +A(Y, Z,X) +A(Z,X, Y )

= 2(µ(s(X,Y ), Z) + µ(s(Y, Z), X) + µ(s(Z,X), Y )).

3. FILIFORM LIE ALGEBRAS OF DIMENSION 9

3.1. The variety Fil9

Using a similar approach as in dimension 8, we obtain

Proposition 21. Any 9-dimensional �liform Lie algebra over K is given

in a Vergne basis by

(14)

µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 7,
µ(X1, X6) = a2X8, µ(X2, X5) = a4X8,
µ(X1, X5) = (a2 + a4)X7 + a5X8, µ(X3, X4) = a6X8,
µ(X2, X4) = (a4 + a6)X7 + a7X8,
µ(X1, X4) = (a2 + 2a4 + a6)X6 + (a5 + a7)X7 + a8X8,
µ(X2, X3) = (a4 + a6)X6 + a7X7 + a9X8,
µ(X1, X3) = (a2 + 3a4 + 2a6)X5 + (a5 + 2a7)X6 + (a8 + a9)X7 + a10X8,
µ(X1, X2) = (a2 + 3a4 + 2a6)X4 + (a5 + 2a7)X5

+(a8 + a9)X6 + a10X7 + a11X8,

with −3a24 + 2a26 + 2a2a6 + a4a6 = 0.
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We denote by Fil9 the set of Lie algebras described above. It is clear
that Fil9, the open set of 9-dimensional �liform Lie algebras, is the orbit of
Fil9 in N ilp9 associated with the action of the linear group GL(9,K). This
reduces the study of Fil9 to Fil9. Let V 9 be the 9-dimensional K-vector space
characterized by the structure constants {ai}2≤i≤11, i 6= 3.

Proposition 22. Fil9 is a 8-dimensional irreducible algebraic subvariety

of V 9.

This algebraic variety Fil9 has only one singular point corresponding to
ai = 0 for all i. In all the other points, the tangent space Tµ(Fil9) to Fil9 is
identi�ed to the vector space of 2-cocycles:
(15)

ϕ(X0, Xi) = 0, 1 ≤ i ≤ 7,
ϕ(X1, X6) = u2X8, ϕ(X2, X5) = u4X8,
ϕ(X1, X5) = (u2 + u4)X7 + u5X8, ϕ(X3, X4) = u6X8,
ϕ(X2, X4) = (u4 + u6)X7 + u7X8,
ϕ(X1, X4) = (u2 + 2u4 + u6)X6 + (u5 + u7)X7 + u8X8,
ϕ(X2, X3) = (u4 + u6)X6 + u7X7 + u9X8,
ϕ(X1, X3) = (u2 + 3u4 + 2u6)X5 + (u5 + 2u7)X6 + (u8 + u9)X7 + u10X8,
ϕ(X1, X2) = (u2 + 3u4 + 2u6)X4 + (u5 + 2u7)X5 + (u8 + u9)X6

+u10X7 + u11X8,

with u2a6 + u4(
1
2a6 − 3a4) + u6(2a6 + a2 + 1

2a4) = 0. Let f ∈ gl(9,K) be

an endomorphism. We put f(X0) =
∑8

i=0 αiXi and f(X1) =
∑8

i=1 βiXi.
Assume that δf(X0, Xi) = 0. Then f(Xi+1) = µ(f(X0), Xi)+µ(X0, f(Xi)) for
i = 1, · · · , 7. The other components of δf are

v2 = a2(β1 − 2α0), v4 = a4(β1 − 2α0), v6 = a6(β1 − 2α0),
v5 = a5(β1 − 3α0)− α1(2a

2
2 + 9a24 + 6a2a4 + 5a4a6),

v7 = a7(β1 − 3α0)− α1(7a
2
6 + 3a2a4 + 7a2a6 + 11a4a6),

v8 = a8(β1−4α0)−α1((5a2+11a4+5a6)a5 + (6a2 + 19a4 + 10a6)a7)−2β3a4,
v9 = a9(β1 − 4α0)− α1((3a4 + 4a6)a5 + (4a2 + 9a4 + 8a6)a7)− 2β3a6,
v10 = a10(β1 − 5α0)− α1(P

1
1 (a8, a9)P

1
2 (a2, a4, a6) + P 2

3 (a5, a7))
+α3P

2
4 (a2, a4, a6)− 3β4(a4 + a6)− 2β3a7,

v11 = a11(β1 − 6α0)− α1P
2
5 (a2, a4, a5, a6, a7, a8, a9, a10)

+α3P
2
6 (a2, a4, a5, a6, a7)+α4P

2
7 (a2, a4, a6)−2β3a9−3β4a7−2β5(2a4+a6),

where P ki is an homogeneous polynomial of degree k. If we denote by H∗
CR

the restricted Chevalley cohomology of Lie algebras belonging to Fil9, we have
dimH2

CR(µ, µ) ≥ 1 for any µ ∈ Fil9. We deduce

Proposition 23. None of the 9-dimensional �liform K-Lie algebras is

rigid in Fil9 and also in N ilp9, and also in Lie9.
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Proof. In fact for any µ ∈ Fil9, dimH2
CR(µ, µ) 6= 0. Since the a�ne

scheme associated with Fil9 is reduced, any rigid Lie algebra in this variety
has a trivial cohomology. Then no µ ∈ Fil9 is rigid. �

Now we determine the Lie algebras µ such that dimH2
CR(µ, µ) is the

smallest one. Assume that a6(a4+a6)(2a4+a6) 6= 0. Then we can �nd δf such
that

u2 + v2 = u5 + v5 = u9 + v9 = u10 + v10 = u11 + v11 = 0.

In this case, the parameters α0, α1, β3, β4, β5 are �xed and the other re-
lations ui + vi cannot be reduced to 0. Then there exists a representative
ϕ in the cohomological class with u2 = u5 = u9 = u10 = u11 = 0. Since
u2a6 + u4(

1
2a6 − 3a4) + u6(2a6 + a2 +

1
2a4) = 0, for such a Lie algebra we have

dimH2
CR(µ, µ) = 2 and it is the lower bound. We deduce

Theorem 24. The variety Fil9 is the closure of the orbit of a rigid 2-
parameters family.

Let us consider the family T 9
t of Lie algebras µ de�ned by (a2 =

3t2−t−2
2 ,

a4 = t, a5 = 1, a6 = 1, a8 = u, a9 = 0, a10 = 0, a11 = 0) with t 6= 0,−1,−1
2 .

This family answers to this theorem.

3.2. Contact 9-dimensional �liform Lie algebras

Let g be a 9-dimensional �liform Lie algebra. Let {ω0, · · · , ω8} be the
dual basis of {X0, · · · , X8}. From Proposition 4, g is a contact Lie algebra if
and only if ω8 is a contact form. This is equivalent to

a2a4a6 6= 0

where ai are the constant structures of g described in (14). We deduce:

Proposition 25. A 9-dimensional �liform Lie algebra admits a contact

form if and only it is isomorphic to a Lie algebra of Fil9 whose structure con-

stants given in (14) satisfy a2a4a6 6= 0.

3.3. Come back on 8-dimensional symplectic �liform Lie algebras

The previous theorem is the result announced in Proposition 18. As we
have said, the determination of contact 9-dimensional �liform Lie algebras per-
mits a quick determination of the class of symplectic �liform 8-dimensional Lie
algebras.

From Proposition 25, we can highlight a model of 9-dimensional �liform
contact Lie algebra, that is a Lie algebra such as any 9-dimensional �liform
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contact Lie algebra is isomorphic to a deformation of this model. We consider
the Lie algebras ga2,a4,a6 given by

a5 = a7 = a8 = a9 = a10 = a11 = 0

and
−3a24 + 2a26 + 2a2a6 + a4a6 = 0, a2a4a6 6= 0.

Since a6 6= 0, a2 =
(a4 − a6)(3a4 + 2a6)

2a6
and the condition a2a4a6 6= 0 is

equivalent to a4a6(a4 − a6)(3a4 + 2a6) 6= 0.

Proposition 26. Any 9-dimensional �liform contact Lie algebra is iso-

morphic to a linear deformation of a Lie algebra ga2,a4,a6.

Corollary 27. Any 8-dimensional symplectic �liform Lie algebra is iso-

morphic to a linear symplectic deformation of a Lie algebra of the following

family 
µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 6,
µ(X1, X5) = b2X7, µ(X2, X4) = b4X7,
µ(X1, X4) = (b2 + b4)X6, µ(X2, X3) = b4X6,
µ(X1, X3) = (b2 + 2b4)X5, µ(X1, X2) = (b2 + 2b4)X4,

with b2 = b4 = 0 or b4(b2 + b4)(2b2 − b4)(b2 + 2b4) 6= 0.

3.4. The varieties Fil10 and Fil11

Proposition 28. Any 10-dimensional �liform Lie algebra over K is given

in a Vergne basis by
(16)

µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 8,
µ(X2, X7) = a1X9, µ(X1, X7) = a1X8 + a2X9, µ(X3, X6) = −a1X9,
µ(X2, X6) = a4X9, µ(X1, X6) = a1X7 + (a2 + a4)X8 + a5X9,
µ(X4, X5) = a1X9, µ(X3, X5) = a7X9, µ(X2, X5) = (a4 + a7)X8+a8X9,
µ(X1, X5) = a1X6 + (a2 + 2a4 + a7)X7 + (a5 + a8)X8 + a9X9,
µ(X3, X4) = a7X8 + a10X9

µ(X2, X4) = (a4 + 2a7)X7 + (a8 + a10)X8 + a11X9,
µ(X1, X4) = a1X5 + (a2 + 3a4 + 3a7)X6 + (a5 + 2a8 + a10)X7

+(a9 + a11)X8 + a12X9,
µ(X2, X3) = (a4 + 2a7)X6 + (a8 + a10)X7 + a11X8 + a13X9,
µ(X1, X3) = a1X4 + (a2 + 4a4 + 5a7)X5 + (a5 + 3a8 + 2a10)X6

+(a9 + 2a11)X7 + (a12 + a13)X8 + a14X9,
µ(X1, X2) = a1X3 + (a2 + 4a4 + 5a7)X4 + (a5 + 3a8 + 2a10)X5

+(a9 + 2a11)X6 + (a12 + a13)X7 + a14X8 + a15X9,



200 Elisabeth Remm 22

with the conditions
a1(2a2 + 7a4 + 7a7) = 0,
3a24 + 3a4a7 − 2a2a7 = 0,
a1(2a9 + 5a11)− 2a2a10 + a4(7a8 − 2a10) + a7(−3a5 + 2a8 − 7a10) = 0.

We denote the set of this multiplications by Fil10. If 2a2+7a4+7a7 = 0,
then

3a24 + 3a4a7 − 2a2a7 = 3a24 + 10a4a7 + 7a27 = (a4 + a7)(3a4 + 7a7).

We deduce

Proposition 29. The set Fil10 of 10-dimensional �liform Lie algebras is

the union of the algebraic components

(1) Fil10(1) = O(Fil10(1)) where Fil10(1) is the set of multiplication µ ∈
Fil10 satisfying

a1 = 0, 3a24 + 3a4a7 − 2a2a7 = 0, −2a2a10 + a4(7a8 − 2a10)

+ a7(−3a5 + 2a8 − 7a10) = 0.

(2) Fil10(2) = O(Fil10(2)) where Fil10(2) is the set of multiplication µ ∈
Fil10 satisfying

a1, a2 = 0, a4 = −a7, a1(2a9 + 5a11) + a4(3a5 + 5a8 + 5a10) = 0,

(3) Fil10(3) = O(Fil10(3)) where Fil10(3) is the set of multiplication µ ∈
Fil10 satisfying

a2 = −2a4, 3a4 = −7a7, a1(2a9 + 5a11) + a4

(
9

7
a5 +

43

7
a8 + 5a10

)
= 0.

Proposition 30. Any 11-dimensional �liform Lie algebra over K is given

in a Vergne basis by

(17)

µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 9,
µ(X1, X8) = a2X10, µ(X2, X7) = a4X10,
µ(X1, X7) = (a2 + a4)X9 + a5X10,
µ(X3, X6) = a7X10,
µ(X2, X6) = (a4 + a7)X9 + a8X10,
µ(X1, X6) = (a2 + 2a4 + a7)X8 + (a5 + a8)X9 + a9X10,
µ(X4, X5) = a10X10,
µ(X3, X5) = (a7 + a10)X9 + a11X10,
µ(X2, X5) = (a4 + 2a7 + a10)X8 + (a8 + a11)X9 + a12X10,
µ(X1, X5) = (a2 + 3a4 + 3a7 + a10)X7 + (a5 + 2a8 + a11)X8 + (a9 + a12)X9

+a13X10,
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µ(X3, X4) = (a7 + a10)X8 + a11X9 + a14X10,
µ(X2, X4) = (a4+3a7 + 2a10)X7 + (a8 + 2a11)X8 + (a12 + a14)X9 + a15X10,
µ(X1, X4) = (a2 + 4a4 + 6a7 + 3a10)X6 + (a5 + 3a8 + 3a11)X7 + (a9 + 2a12

+a14)X8 + (a13 + a15)X9 + a16X10,
µ(X2, X3) = (a4 + 3a7 + 2a10)X6 + (a8 + 2a11)X7 + (a12 + a14)X8 + a15X9

+a17X10,
µ(X1, X3) = (a2 + 5a4 + 9a7 + 5a10)X5 + (a5 + 4a8 + 5a11)X6 + (a9 + 3a12

+2a14)X7 + (a13 + 2a15)X8 + (a16 + a17)X9 + a18X10,
µ(X1, X2) = (a2 + 5a4 + 9a7 + 5a10)X4 + (a5 + 4a8 + 5a11)X5 + (a9 + 3a12

+2a14)X6+(a13 + 2a15)X7 + (a16 + a17)X8 + a18X9 + a19X10,

with the conditions
(J1) : 3z

2
2 + 3z2z3 − 2z1z3 = 0,

(J2) : z7(2z1 + 2z2 + z3) + z3(3z5 + z6)− 7z2z6 = 0,
(J3) : z4(2z1 + 7(z2 + z3))− 2z3(2z2 + z3) = 0,
(J4) : z4(2z8 + 5z9)− z10(2z1 + 9z2 + 12z3)− z7(3z5 + 7z6 − z7) + 4z26

−2z3(2z8 + 7z9) + 8z9(z2 + 2z3) = 0.

where z1 = a2 + a4, z2 = a4 + a7, z3 = a7 + a10, z4 = a10, z5 = a5 + a11, z6 =
a8 + a11, z7 = a11, z8 = a9 + a12, z9 = a12 + a14, z10 = a14.

We shall determine the open set of �liform contact Lie algebras.

3.5. Contact and symplectic structures

Let g be a 11-dimensional �liform Lie algebra belonging to Fil11. Let
{ω1, · · · , ω10} be the dual basis of a Vergne basis of g. Assume that g is a
contact Lie algebra. Then, from [16], the form ω10 is also a contact form. Then
g is a contact algebra if and only if ω10 is a contact form in g1. We deduce

Proposition 31. An 11-dimensional �liform Lie algebra is a contact

Lie algebra if and only if it is isomorphic to a Lie algebra of Fil11 with

a2a4a7a10 6= 0.

We deduce that a model of contact 11-dimensional �liform Lie algebra is
given by the family ga2,a4,a7,a10 of Lie algebras of Fil11 corresponding to

a5 = a8 = a9 = a11 = a12 = a13 = a14 = a15 = a16 = a17 = a18 = a19 = 0

with the conditions,
3z22 + 3z2z3 − 2z1z3 = 0,
z4(2z1 + 7z2 + 7z3)− 2z3(2z2 + z3) = 0,
a2a4a7a10 = z4(z3 − z4)(z2 − z3 + z4)(z1 − z2 + z3 − z4) 6= 0
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and z1 = a2 + a4, z2 = a4 + a7, z3 = a4 + a10, z4 = a10. Let us note that the
algebraic variety determined by the two �rst equations is not reduced to 0, for
example the point (a2, a4, a7, a10) = (1,−1, 1,−1) belongs to this algebraic set.
Let us note also that the linear form ω10 where {ωi} is the dual basis of {Xi}
satis�es

dω10 = −ω0 ∧ ω9 − a2ω1 ∧ ω8 − a4ω2 ∧ ω7 − a7ω3 ∧ ω6 − a10ω4 ∧ ω5

and is a contact form.

Let A be the open set of 11-dimensional �liform contact Lie algebras.
Then this open set is the orbit of the family of Lie algebras ga2,a4,a7,a10 and
satisfying a2a4a7a10 6= 0. Moreover, A is not connected, is the union of two
algebraic irreducible sets and

Fil11 = A.

so Fil11 is the union of two algebraic irreducible components.

Proposition 32. None of the 11-dimensional �liform Lie algebras is

rigid.

Proof. The proof is similar to the 9-dimensional case. Since the a�ne
scheme is reduced, it is su�cient to prove that the dimension of the second
space of cohomology H2

CR(µ, µ) of any Lie algebra of (17) is not zero. It is clear
that, if µ is a Lie algebra of (17), the dimension of the 2-cocycles ψ such that
µ + tψ belongs to (17) is of dimension 16 parametrized by the ai. If f is an
endomorphism of K11, then putting f(e0) =

∑10
0 αiXi and f(e1) =

∑10
1 βiXi,

δf(X1, X8) = v2X10, δf(X2, X7) = v4X10, δf(X3, X6) = v7X10, δf(X4, X5) =
v10X10, we have 

v2 = a2(β1 − 2α0),
v4 = a4(β1 − 2α0),
v7 = a7(β1 − 2α0),
v10 = a10(β1 − 2α0).

We deduce that the dimension of the space of deformations is greater or
equal to 3. �

Consequence. Determination of the symplectic 10-dimensional �liform Lie
algebras. From the Proposition 4 we deduce:

Proposition 33. Any 10-dimensional symplectic �liform Lie algebra is

isomorphic to
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

µ(X0, Xi) = Xi+1, 1 ≤ i ≤ 8,
µ(X1, X7) = (a2 + a4)X9, µ(X2, X6) = (a4 + a7)X9,
µ(X1, X6) = (a2 + 2a4 + a7)X8 + (a5 + a8)X9,
µ(X3, X5) = (a7 + a10)X9, µ(X2, X5)=(a4 + 2a7 + a10)X8 + (a8 + a11)X9,
µ(X1, X5) = (a2 + 3a4 + 3a7 + a10)X7+(a5 + 2a8 + a11)X8 + (a9 + a12)X9,
µ(X3, X4) = (a7 + a10)X8 + a11X9,
µ(X2, X4) = (a4 + 3a7 + 2a10)X7 + (a8 + a11)X8 + (a12 + a14)X9,
µ(X1, X4) = (a2 + 4a4 + 6a7 + 3a10)X6 + (a5 + 3a8 + a11)X7

+(a9 + a12 + a14)X8 + (a13 + a15)X9,
µ(X2, X3) = (a4 + 3a7 + 2a10)X6 + (a8 + 2a11)X7 + (a12 + a14)X8 + a15X9,
µ(X1, X3) = (a2 + 5a4 + 9a7 + 5a10)X5 + (a5 + 4a8 + 5a11)X6

+(a9 + 3a12 + 2a14)X7 + (a13 + 2a15)X8 + (a16 + a17)X9,
µ(X1, X2) = (a2 + 5a4 + 9a7 + 5a10)X4 + (a5 + 4a8 + 5a11)X5 + (a9 + 3a12

+2a14)X6 + (a13 + 2a15)X7 + (a16 + a17)X8 + a18X9

with a2a4a7a10 6= 0 and if z1 = a2 + a4, z2 = a4 + a7, z3 = a7 + a10, z4 =
a10, z5 = a5 + a11, z6 = a8 + a11, z7 = a11,{

3z22 + 3z2z3 − 2z1z3 = 0,
z7(2z1 + 2z2 + z3) + z3(3z5 + z6)− 7z2z6 = 0.

We deduce, from the de�nition of a symplectic model:

Corollary 34. The symplectic models of 10-dimensional �liform sym-

plectic Lie algebras are the Lie algebras corresponding to

a5 = a8 = a11 = a9 = a12 = a13 = a14 = a15 = a16 = a17 = a18 = 0.

4. CONTACT AND SYMPLECTIC FILIFORM LIE ALGEBRAS

4.1. (2p+ 1)-dimensional contact �liform Lie algebras

Let {X0, · · · , X2n} be a Vergne basis of a (2p + 1)-dimensional �liform
Lie algebra g and let us denote by Cki,j the structure constants related to this
basis. We have seen in dimension 11 or smaller, but this remains trivially
true for greater dimension, that the structure constants of g related to this
basis are linear combinations of the (p− 1)2 structure constants ai,j = C2p

i,j for
1 ≤ i < j ≤ 2p− 1− i. Using the same notations as in the previous section, we
deduce that Fil2p+1 is an algebraic variety embedded in K(p−1)2 . In fact, all
the other structure constants are de�ned by the linear equation

[X0, [Xi, Xj ]] = [Xi+1, Xj ] + [Xi, Xj+1]
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as soon as j + 1 ≤ 2p. More precisely, we have

C2p−k
2p−1−j−k,j =

∑
j αja2p−1−j,j , 2j > 2p− 1− k, k = 1, · · · , 2p− 4

C2p−k
2p−2−j−k,j =

∑
j βja2p−2−j,j , 2j > 2p− 2− k, k = 1, · · · , 2p− 5

· · ·
C2p−k
2p−(2p−3)−j−k,j = C2p−k

3−j−k,j = a1,2,

The coe�cients αj , βj are described in [9]. Let {ω0, ω1, · · · , ω2p} be the

dual basis. All the Jacobi conditions are given by d(dω2p) = 0. This gives

(18) (p− 3)2 + (p− 4)(p− 5) + (p− 6)2 + · · ·+ ε

equations where ε = 2 if p ≡ 0 (mod 3), ε = 1 if p ≡ 1 (mod 3) and ε = 22

if p ≡ 2 (mod 3). This shows that, as soon as the dimension exceeds 19 the

number of polynomial equations is greater than the number of parameters ai,j .

If g admits a contact form, then from [16] the form ω2p is also a contact

form. We deduce

Proposition 35. A (2p + 1)-dimensional �liform Lie algebra admits a

contact form if and only if the structure constants related to a Vergne basis

satisfy:

a1,2p−2 · a2,2p−3 · · · ai,2p−1−i · · · ap−1,p 6= 0.

Since any deformation of a contact Lie algebra is also a contact Lie algebra,

we deduce that the set of (2p+ 1)-dimensional �liform contact Lie algebra is a

Zariski open set in Fil2p+1. Let us consider the family A contained in this open

set and corresponding to Lie algebras whose structure constants satisfy ai,j = 0

except a1,2p−2, a2,2p−3, · · · , ai,2p−1−i, · · · , ap−1,p which are supposed to be di�e-

rent from 0. It is clear that any contact �liform (2p+1)-dimensional Lie algebra

is a deformation of a Lie algebra of this family. We remark that this family is

parametrized by the (p−1) structure constants a1,2p−2, a2,2p−3, ai,2p−1−i, ap−1,p

but the system of polynomial equations deduced from the Jacobi conditions,

which is a consequence of d(dω2p) = 0 is composed, when p is greater than 7,

of a number of equations greater than p−1. This number depend to p mod(3).

For example, if p = 3k+1, we have 3k parameters and 3k2−3k+1 polynomial

equations and 3k2 − 3k + 1 > 3k as soon as k ≥ 2.

Let us note also that the set A is not empty. In fact the Lie algebra
corresponding to

(19) a1,2p−2 = 1, a2,2p−3 = −1, · · · , ai,2p−1−i = (−1)i+1, · · · , ap−1,p = (−1)p
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belongs to this family and more generally, if

a1,2p−2 = λ, a2,2p−3 = −λ, · · · , ai,2p−1−i = (−1)i+1λ, · · · , ap−1,p = (−1)pλ

then the corresponding Lie algebras are in A. This implies that dimA ≥ 1.
Let us denote by g0 the Lie algebra of A corresponding to (19) and let us
compute the space of deformations. As we have seen in previous work [13], it
is su�cient to compute the cocycles of g0 which preserves the Vergne's basis.
For example, in case of dimension 9, from (14), the space of such cocycles is
of dimension 8. Let us compute the space of coboundaries. It is generated
by the δf satisfying δf(X0, Y ) = 0 and f ∈ gl(9,K). This last condition
implies that f is determined when we know f(X0) = α0X0 + · · · + α8X8 and
f(X1) = β1X1 + · · ·+ β8X8. We obtain

δf(X1, X6) = (−2α0 + β1)X8 = −δf(X2, X5) = δf(X3X4)

and

δf(X1, X4) = −δf(X2, X3) = −2β3X8, δf(X1, X2) = −2β5X8,

in all other cases δf(Xi, Xj) = 0. We deduce that the space of deformations
is of dimension 4. In dimension 2p, the space of cocycles which preserves the
Vergne's basis is embedded in a vector space of dimension (p−1)2 parametrized
by the structure constants

{a1,2p−2, · · · , a1,2, a2,p−3, · · · , a2,3, · · · , ap−2,p, ap−2,p−1, ap−1,p}

that is ai,j with 1 ≤ i < j ≤ 2p − 2, 3 ≤ i + j ≤ 2p − 1 and with ai,j = C2p
i,j .

If f is a linear endomorphism of gl(2p,K), then δf(X0, Xi) = 0 implies that
f(Xi) is determined for 2 ≤ i ≤ 2p by f(X0) = α0X0 + · · · + α2pX2p and
f(X1) = β1X1 + · · ·+ β2pX2p. This implies

δf(X1, X2p−2) = (−2α0+β1)X2p = −δf(X2, X2p−3) = · · · = (−1)pδf(Xp−1Xp),

and the other non zero δf(Xi, Xj) are
δf(X1, X2i) = 2β2p−2i−1X2p, 1 ≤ i ≤ p− 2,
δf(X2, X2i+1) = −2β2p−2i−3X2p, 1 ≤ i ≤ p− 3,
δf(X3, X2i) = 2β2p−2i−5X2p, 2 ≤ i ≤ p− 2,
· · ·
δf(Xp−2, Xp−1) = β3X2p.

We remark also that the parameters a1,2, a1,3, a2,3, a1,4, a2,4,
a1,5 do not appear in the polynomial Jacobi equations because the forms ωi∧ωj
which appear in the expression of dω2p are closed for (i, j) ∈ {(1, 2), (1, 3), (2, 3),
(1, 4), (2, 4), (1, 5)}. From the previous computations of the coboundaries, we
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have in particular
δf(X1, X2) = 2β2p−3X2p, δf(X1, X4) = 2β2p−5X2p,
δf(X1, X3) = δf(X1, X5) = 0,
δf(X2, X3) = 2β2p−5X2p, δf(X2, X4) = 0.

Then we can consider that the parameters a1,2, a1,4 are orbital parameters
and a1,3, a2,3, a2,4, a1,5 are parameters of non trivial deformations. To end this
work, we compute the space of deformation of g0. It remains to compute the
dimension of the space of cocycles. We have seen that it is embedded in a vector
space of dimension (p−1)2 and the number of polynomial equations given by the
Jacobi relations was (18). But the a�ne scheme associated to this polynomial
equations is not reduced. We can �nd relations between these equations from
the following remark that we illustrate in dimension 11. In this dimension
the Jacobi polynomial equation is constituted of 4 equations corresponding to
J(Xi, Xj , Xk) = 0 (J for the Jacobi condition related to triple (Xi, Xj , Xk)). To
simplify we denote by (i, j, k) the polynomial J(Xi, Xj , Xk) and let p = i+j+k
be its weight. In this case, we have 4 parameters (a1,8 = a2, a2,7 = a4, a3,6 =
a7, a4,5 = a10) and 4 equations corresponding to (p = 6, (i, j, k) = (1, 2, 3)),
(p = 7, (i, j, k) = (1, 2, 4)), (p = 8, (i, j, k) = (1, 2, 5), (1, 3, 4)). But we have

[X0, (1, 2, 3)] = (1, 2, 4)
[X0, (1, 2, 4)] = (1, 3, 4) + (1, 2, 5).

Thus the system of Jacobi equations can be reduced to the system

(1, 2, 3) = 0, (1, 3, 4) = 0

and the corresponding a�ne scheme is reduced. Then we have 4 parameters
which have to satisfy 2 independent relations. The space of parameters is then
of dimension 2. Let us come back to the general model g0. The linear space of
parameters is of dimension (p−1) and it is generated by the structure constants

a1,2p−2, a2,2p−3, · · · , ap−2,p+1, ap−1,p.

The weights take their values in (6, 7, · · · , 2p− 2) and concern the Jacobi
equation:

(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), · · ·, (1, p−2, p−1), (1, p−3, p), · · ·, (1, 2, 2p−5),

(2, p− 1, p+ 1), · · · , (2, 3, 2p− 7), · · · }
the last term in this ordered sequence depends on (p mod3), more precisely, if
2p−2 ≡ 2 (mod 3), then the last term is (k−1, k+1, k+2) with 2p−2 = 3k+2,
if 2p− 2 ≡ 1 (mod 3), then the last term is (k − 1, k, k + 2), and if 2p− 2 ≡ 0
(mod 3), then the last term is (k − 1, k, k + 2). We have seen (18) that the



29 On �liform Lie algebras 207

number of Jacobi polynomial equations is

(p− 3)2 + (p− 4)(p− 5) + (p− 6)2 + · · ·+ ε

where ε = 2 if p ≡ 0 (mod 3), ε = 1 if p ≡ 1 (mod 3) and ε = 22 if p ≡ 2
(mod 3). This scheme is not reduced. To reduce it we consider the relations

[X0, (i, j, k)] = (i+ 1, j, k) + (i, j + 1, k) + (i, j, k + 1).

Putting 2p−2 = 3m+r with 0 ≤ r ≤ 2, we can write the reduced number
Nr of equations:

• If m = 2h and r = 0, then Nr = 3h2 − 3h+ 1,

• If m = 2h+ 1 and r = 1, then Nr = 3h2 + 3h,

• If m = 2h and r = 2, then Nr = 3h2 − h.

We can see than, as soon as n ≥ 14, that is p = 7,m = 4, r = 2 then the
number of parameters is 6 and Nr = 10. In the same way, we can reduce this
new polynomial system using the identity

[X1, (i, j, k)] = ((i+2, j, k)Ci+2
1,i +(i, j+2, k)Cj+2

1,j +(i, j, k+2)Ck+2
1,k )Xi+j+k+2.

which is a direct consequence of the natural grading of g0. We deduce in
particular

[X1, (1, 2, 3)] = (−(1, 3, 4)C4
1,2 + (1, 2, 5)C5

1,3)X10.

To end this section, we can look at the case n = 14, this case corresponding
to Nr > p − 1. We have 6 coe�cients and 7 relations after the reduction of
the �rst type. We can choose as generating relations, the relation (1, 2, i) for
i = 3, 5, 6, 7, 8, 9 and (3, 4, 5). The relation of second type concerning these
equations are, where 1(i, j, k) is the coe�cient of [X1, (i, j, k)],

1(1, 2, 3) = (1, 2, 5)C5
1,3,

1(1, 2, 4) = (1, 2, 6)C6
1,4,

1(1, 2, 5) = (1, 4, 5)C4
1,2 + (1, 2, 7)C7

1,5,

1(1, 2, 6) = (1, 4, 6)C4
1,2 + (1, 2, 8)C8

1,6,

1(1, 2, 7) = (1, 4, 7)C4
1,2 + (1, 2, 9)C9

1,7,

1(2, 3, 5) = −(3, 4, 5)C4
1,2 + (2, 3, 7)C7

1,5,

If C4
1,2C

5
1,3C

6
1,4C

7
1,5C

8
1,6C

9
1,7 6= 0, then the Jacobi polynomial system is

reduced only to one equation (1, 2, 3). In this open set, the space of parameters
of deformations of the models is of dimension greater or equal to 5.
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4.2. Filiform symplectic algebras

From the previous study, we have that the (2p)-dimensional symplectic �-
liform Lie algebras are isomorphic to a quotient of a contact (2p+1)-dimensional
�liform Lie algebra g2p+1 by its center K{X2p}. Then it can be written with
the structure constants of g2p+1 with the condition a1,2p−2a2,2p−4 · · · ap−1,p 6= 0.
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