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Let (M, go) be a complete Riemannian manifold with a pole zo and (N, h) be
a Riemannian manifold. We show that if f : (M, n°go) — (N, h) is an expo-
nentially harmonic map such that n (a smooth function on M) satisfies some
condition (%), then certain monotonicity formula is derived. We study the mo-
notonicity of exponentially harmonic maps under a few different circumstances
and discuss their vanishing.
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1. INTRODUCTION

In 1990, exponentially harmonic maps were first explored by Eells and Le-
maire [11]. Afterwards, Duc and Eells [10], M. Hong [15], J. Hong and Yang [16],
Chiang, Pan, Wolak and Yang [2-7], Cheung and Leung [8], Liu [14], Zhang,
Wang and Liu [20], and others also investigated exponentially harmonic maps.
In 2002, Kanfon, Fiizfa and Lambert [17] discovered the applications of ex-
ponentially harmonic maps on Friedmann-Lemaitre universe, and constructed
some new models of exponentially harmonic maps which were coupled with gra-
vity based on a generalization of Lagrangian for bosonic strings coupled with
diatonic field. In 2011-2012, Omori [18,19] obtained Eells-Sampson’s existence
theorem and Sacks-Uhlenbeck’s existence theorem for harmonic maps via ex-
ponentially harmonic map. Exponentially harmonic maps and harmonic maps
are different. There are exponentially harmonic maps which are not harmo-
nic maps, and there are harmonic maps which are not exponentially harmonic
maps either (cf. [16]).

Let (M, go) be a complete m-dimensional Riemannian manifold with a
pole xg, (N, h) be an n-dimensional Riemannian manifold, and f : (M, n%go) —
(N, h) be an exponentially harmonic map (where 7 is a smooth function on M).
Denote by r(x) = distg,(z, xo) the go-distance function relative to the pole
xo. Set B(r) = {x € M : r(z) < r}. It is known that % is an eigenvector of
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Hessg, (r?) associated with the eigenvalue 2. Denote by fimaz (1€SpP. fmin) the
maximum (resp. minimal) eigenvalues of Hessy,(r?) — 2dr @ dr at each point
of M — {xp}. We obtain a theorem as follows: Suppose that 7 satisfies the
condition (x) % > 0 and there is a positive constant C' such that

Odlo m—1
g77+

(m - Q)T or 2 Hmin +1- max{2, /Lmax} > C.
Then
af1% Ja g2 41 Jag[?
fB(Jl) e 2 —-dv < fB(@) e 2 -dv
of B of
1 2
|df[2

2
for any 0 < o1 < 09. In particular, if fB(R) e 2 %dv = o(R®), then f is con-
stant. As a corollary, if f : (M, n?go) — (N, h) is a non-constant exponentially
harmonic map and 7 satisfies the condition (x), then

ldr|2 ldf|?
Jpen® 2 4 _ Jpeye 2 dv
of N of

for any 0 < o1 < g9. We also investigate the monotonicity of an exponenti-
ally harmonic map with the radial curvature K, of M. We finally study the
monotonicity of exponentially harmonic maps on a star-like domain.

2. EXPONENTIALLY HARMONIC MAPS

An exponentially harmonic map f : (M, g) — (IV, h) from an m-dimen-
sional Riemannian manifold into an n-dimensional Riemannian manifold is a
critical point of the exponential energy functional

ldr|?
E.(f)= Me 2 dvy,

where dv, is the volume form of M determined by the metric g. More precisely,
aC?map f: M — N is exponentially harmonic if it satisfies the Euler-
Lagrange equation of the exponential energy

d
&E@(ftﬂtzo =0,

for any compactly supported variations f; : M — N with fy = f.

In Proposition 2.1, we derive the first variation of the exponential energy
of f in a different way but equivalent to [2-4]. Let V and V¥ be the Levi-Civita
connections of M and N, respectively. Denote V the induced connection on
f7ITN given by VxW = VéVf(X)W, where X is a tangent vector field of M

and W is a section of f~'TN.
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PROPOSITION 2.1. If f : (M, g) — (N, h) is a C? map, then

4
dt

where V = %fth:o.

Proof. Let ¢ : (—€,e) x M — N be defined by ¢(t,z) = fi(z), where
(—e,€) x M is equipped with the product metric. We extend the vector fields
% on (—e,€), and X on M to vector fields on (—¢,€) x M, and still denote
those by %, X. Then V = d¢>(%)|t=0- We use the same notations V and V for
the Levi-Civita connection on (—¢, €) x M and the induced connection ¢~ 'T'N.
Let {e;}*, be a local orthonormal frame on M. We calculate

B0

where we used

in the fourth equality.
Let X; be a compactly supported vector field on M such that (X¢,Y), =
(dqﬁ(%), dfi(Y))s, for any vector filed Y on M. Then

< Blfkmo =

/e'd

M

| e

Eu(fo)lemo = — /Mm(f), V) du,,

a2 O |dfy
ot 2 }‘t—o dv
rdn21l o
e 2

L0 (S @hle), dfien)] o
1

=

em > (Vo doe), dofes)) |l imodv

1

[las® ~ 9]
Y (Vedols), do(en)|li—odv

)

=Y e (d¢(%>7 dﬁ(a))—(dd%), Vedfi(ei) )] lezodv

(2

0

~ ~ 0
V%dqﬁ(@i) - Veid¢(§) = ¢([§7 ei]) =0,

ldf

= 3 [eiXies - (06(). ¥ 2 dfen)) Jlimoo

£12

: [div(Xt)—Z(dqb(%),@%dft(ei)—dft(veiei))]|t:0dv

7

/M[div(edJ;Q X;)— (dgﬁ(%), e‘dé‘Q (T(ft)+dft'grade(f))} t:Odv
- [ wnvyae,
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where we applied the divergence theorem in the last equality, 7(f) = Zﬁl{@el
df(e;) —df(Ve,ei)} is the tension field of f. O

Definition 2.2. A map f: (M, gi;) = (N, hqag) is exponentially harmonic
if the exponential tension field of f

dr|2

() =e 2 (T() +df -grade(f)) =0,

where e(f) = % is the energy density of f. In terms of local coordinates, f
satisfies

Y T o of 04
g ( r ) T oxl Ox™ Qxtoxd

oxidxi Y oxk BY 9zt 9zi
g of*off ofr 4 offof” ofr of*
il _jm kY YJ o ij Im 18 _
979" ho 1 ozl ozm ok 97 fon ozt 9zl dxm dxd
where 74(f) = g"jfio“j = g¥( o - I‘f]fg‘ + F’g,yfff;’) is the tension field of f,

and Ffj and F/gv are the Christoffel symbols on M and N.

+ gllg]mhﬁ

For a 2-tensor Q € I'(T*M @ T*M), its divergence divQ € I'(T*M) is
given by

m

divQ(X) =) (Ve,Q)(es, X),

=1

where X is any smooth vector field on M. For two 2-tensors Q1, Q2 € I'(T*M®
T*M), their inner product is defined by

(Q1, Q2) = > Qulei, €))Qa(ei, €5),
ij=1

where {¢;} is an orthonormal frame on M with respect to g. For a vector field
X € I'(T'M), denote by fx its dual one form, i.e., x(Y) = (X,Y),, where
Y € T(T'M). The covariant derivative of Ox gives a 2-tensor field VO y:

Vox(Y, Z) = Vy0x(Z) = (Vy X, Z),.

If X = Vn is the gradient field of a C? function 7 on M, then fx = dn and
VOx = Hessn.

LEMMA 2.3. Let Q be a symmetric (0,2)-type tensor field and let X be a
vector field. Then

(21)  div(ix@) = (@vQ)(X) + (@ Vox) = ([dv@)(X) + 3 (@, Lxg).
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where Lx 1is the Lie derivative of the metric g in the direction of X. Let

{e1, -+ ,em} be a local orthonormal frame on M. We obtain
1 1
5@, Lxg) = > 5 {Qei e5), Lxg(eise5))
ij=1
= > Qei, ) (VeiX, ¢j)g = (Q, Vox).
ij=1
(cf. [1,9]).

Let D be a bounded domain of M with C! boundary. Applying the Stokes’
theorem, we have

22) QX s, = [ (6@ + Q. 5Lx9))duy

oD

where n is the unit outward normal vector field along 0D.

The exponential stress-energy tensor of a C2 map f : M — N between
Riemannian manifolds is defined by
dff? R
s = (Y0 )
The exponential stress-energy tensor of f is conserved if div Se(f) = 0. The
following proposition was mentioned by Eells and Lemaire [11], and Chiang
provided a different proof in [2].

ldf|2
e 2

PROPOSITION 2.4. If f : (M, g) — (N, h) an exponentially harmonic map,
then

divSe(f) = = (7). (X)) = 0,

where X is a vector field on M. Hence, the associated exponential stress-energy
tensor of f is conserved.

If f is an exponentially harmonic map, then we obtain
1
23 SUOXn)ds, = [ (5.0, jLxg)du,
aD D
by applying (2.2) to @ = Se(f) and Proposition 2.4.

3. MONOTONICITY

Let (M, go) be a complete m-dimensional Riemannian manifold with a
pole zg and (N, h) be an n-dimensional Riemannian manifold. Denote by
r(x) = distg, (x, zo) the go-distance function relative to the pole zg. Put B(r) =
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{z € M : r(z) < r}. It is known that % is an eigenvector of Hessg,(r?)
associated with the eigenvalue 2. Denote by fimar (reSp. fimin) the maximum
(resp. minimal) eigenvalues of Hessg, (r?) —2dr @ dr at each point of M —{z¢}.
Suppose that f: (M, g) — (N, h) is a stationary map (via exponential energy)
with g = n?go, 0 < n € C*°(M). It is obvious that the vector field n = 77_15%
is an outer normal vector field along 0B(r) C (M, g).

THEOREM 3.1. Let f : (M, n?go) — (N, h) be an ezponentially harmonic
map. Suppose that n salisfies the condition (%): % > 0 and there is a
constant C' > 0 such that

Olo m—1
(m—2)r 8577 + 5 Hmin + 1 —maz{2, maz} > C.
Then
a1 |d g2 14/ a2
(3.1) fB(al) e 2 —-dv - fB(@) e 2 =-dv
of B o

ldf|?
for any 0 < o1 < 9. In particular, if fB(R)e 4f \ngdv = o(R®), then f is

constant.

Proof. In (2.3), take D = B(r) and X = r% = VO ? (the covariant
derivative V° determined by go), we have

s [ e pLxgidsy = [ S.()(X. n)ds,

OB(r)
Firstly, we calculate the left-hand side of the above equation and obtain

(5:(), 5Ex) = (Se(), r B g) 4 (.(1), g Loxan)

0l
ES(F)20) + 5T Se(f), Hessgy (),

by a straightforward computation. Let {e;}/”; be an orthonormal frame with
respect to go and e, = %. We may assume that Hessg,(r?) is a diagonal
matrix with respect to {e;}. Note that {&; = n~le;} is an orthonormal frame
with respect to g. Therefore,

(3.3) = r

1 1, & o .
SR (SeF). Hessg () = sn° S Self) @) Hessyy (12) (e &)
Q=1

1 o= 1a72 |df|? .
:2772[26 2 5 Hessgy (%) (s, €5)
m 2
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1 las® d
=5¢ ’ | f ZHesng )(ei, €;)

1
2

5 S (AF (@), A (@) Hess () (ers 1)
=1

1 \de2 df|? 1 4f12 o
> Y o i 2] Sman(2, ke Y (@), 2)
=1
2 2 2
:;edﬂdg' [(m—l)umm+2]—%max{2, fimaz Yo T [d 2
1 2 2
(3.4) 27[( — 1) ftmin + 2 — 2maz{2, MW}] ot [df
2 2
and
ds? . R o
(Se(f), g) = me 2 (df(é:), df(é5))n(éisé5)q
2 2 2 2
(3.5) L A

It follows from (3.3), (3.4), (3.5) and the condition (x) that

1 dlogn m—1
Z > _ ) _
(Se(F), 3Lxg) > [rge (m = 2) 4+ 2 fiauin + 1 = Maz{2: e}
2 2 2
2T g

(3.6)

Secondly, applying the co-area and following fact:

m m—1

Vrlz = ) (@) =) n(er) + 7
i= i=1
m—1
- ,7—2 [(ei’ ;ﬂgor - 77_2 - 77_2 (e, |Vr|y = 77_1)7
i=1
we have
af? rld 2
[ sanecomas, = [ S8R0 - @reo, arm as,
dB(r) 0B(r)

12 |d fJ? af? 5, 0
[ ndsg—/ M A, df<5>>hdsg
OB(r) 0B(r) "

2 2 f
< r/ i / / T ds |t
OB(r) 2 8B(t |V7”\

|df|2 ]df\Q Qo

dT B()
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We obtain from (3.3), (3.6) and (3.7) that

2 2 2 2
o<c [ LI, o rd/ S g
2 B(r) 2

B(r) dr
i.e.,
1d£1% 14 712
de(r)e 2 |£l d”>0
dr r¢ -
Consequently,
|df|2 2 1ar2
(3.5) fB(al)e 2 fB(ch | g' dv
' of of

forany 0 < o1 <oo. 0O

COROLLARY 3.2. Let f : (M, n%go) — (N, h) be a non-constant exponen-
tially harmonic map. Suppose that n satisfies the condition (x). Then

\df\Q lds#
fB(UI dw fB(UQ) e z dv

C = C
01 09

(3.9)

for any 0 < 01 < 09.

LEMMA 3.3. Let (M, g) be a complete Riemannian manifold with a pole
xo ond K, the radial curvature of M.
(i) If —a® < K, < —b? witha >b>0 and (m — 1)b— 2a > 0, then
2a

[( — 1) pemin + 2 — 2maz{2, umw}] > 2(m — ?)

(ii)[f—ﬁg[(g( )1+€wzthe>0E>0and0<F<2e
then

F
[(m — 1) fimin + 2 — 2maz{2, umm}] > 2[1 +(m—-1)(1-5) - 2% |.
€

(iii) If — 2+ s < K, < Zfi s with a >0, 82 € [0, 1/4] and v > 0, then
[(m — D) pimin + 2 — 2max{2, ,umm}}

2

14142 1417 da2
22[1+(m—1) i > Pt 2+O‘ .

(cf. [9,12,13]).

THEOREM 3.4. Let (M, g) be a complete Riemannian manifold with a pole
xg. Suppose that the radial curvature K, of M satisfies one of three conditions
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(i), (ii) or (iii) in Lemma 3.3. If f : (M,g) — (N,h) is an exponentially
harmonic map with A > 0, then

9% a2 4/ a2
3.10 fB(al) e 2 —5-dv fB(@)e 2 pdv
(3.10) oA = oA
1 2

for any 0 < o1 < g9, where

m — %" if K, satisfies (i),

E

(311) A={1+(m-1)(1- g) - 2e27 if K, satisfies (ii)

14 (m— )1+ v — gLty 1+4°‘2] if K, satisfies (iii).

laf|?
In particular, if fB(R) e 2z %dv = o(R4), then fis constant.

Proof. Setting n = 1 in Theorem 3.1 and applying Lemma 3.3, we have

2 |df)?

|df]
ifB(r)e = | 2

dv > 0.

Hence, we obtain

(3.12)

forany 0 <o; <oo. O

COROLLARY 3.5. Let (M, g) be a complete Riemannian manifold with a
pole xg. Suppose that the radial curvature K, of M satisfies one of three con-
ditions (i), (ii) or (iii) n Lemma 3.3. If f : (M, g) — (N, h) is a non-constant
exponentially harmonic map with A > 0, then

\df\2 Ide
fB(Ul) fB (o2)
o' 05‘
for any 0 < o1 < 09.
Definition 3.6. The energy functional Ey(f fM

f: M — N is slowly divergent if there exists a positive functlon ¢(r) with
f;j T;)ir = +o0o(Rp > 0) such that
47 Ja |2

2
(3.13) lim ——2 dv < c0.
R—o0 JB(R) o(r(z))

e
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THEOREM 3.7. Let f : (M, n?go) — (N, h) be an ezponentially harmonic
map. Suppose that n satisfies the condition (x) and E1(f) is slowly divergent,
then f is constant.

Proof. In the proof of Theorem 3.1, we have

lags? |de2 d oy [df[?
(3.14) C dvy < R— ds,.
/ dr dB(R ) ’ 2 1459

Assume that f is a non-constant map. Then there exists Ry > 0 such that for
R >Ry

2 14 2
(3.15) / w2 S o,
B 2
where C} is a positive constant. It follows from (3.14) and (3.15) that

a2 |df|? C,-C
3.16 / e 2 ndsy >
( ) OB(R) 2 g R

for R > Ry. Consequently,

)

2
Al dfP

) e > dR 1as? [df|?
lim 72dv = / / e 2 nds
R—o Jpr) ¢(r(x) o 9(R) Japr) 2 I

* dR / asi? |d f|?
> — e 2 nds
Ry P(R) Jon(r) 2 I

> dR
> C-C = 00,
= " Jro RO(R)

which contradicts with (3.13). Hence, f must be constant. [

Definition 3.8. A bounded domain D C M with C' boundary 0D is
star — like if there exists an interior point xg € D such that

(o) 0.
where n is the unit outer normal to 9D, the vector field % is a unit vector
field such that for any = € (D — {x0}) U 0D, % is also a unit vector field
tangent to the unique geodesic joining ¢ and pointing away from xq (cf. [9]).
It is clear that any convex domain is star-like.
THEOREM 3.9. Let f : (M, n?go) — (N, h) be an ezponentially harmonic
map and D C M be a bounded star-like domain with C' boundary with the pole

xo € D. Suppose that n satisfies the condition (x) on D. If flop = constant =
P € N, then fis constant in D.
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Proof. In the proof of Theorem 3.1, letting X = r% with r = r;, we have

(3.7 (S1), xg) = co YT S

Since flopp = P and df(£) = 0 for any tangent vector £ of 0D, we obtain the
following on 0D

S(NXm) = 7SN asm)
=[RS H ap( D), s
= o, [T o gy
(3.18) = —T(%, 7’L)gedf|2‘d§|2 <0.

It follows from (3.2), (3.17) and (3.18) that
2 2
0 §/ C’eldé| Mdv <0,
D 2

which implies that f is constant on D. [
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