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We consider the semidirect product G = K n V where K is a connected com-
pact Lie group acting by automorphisms on a �nite dimensional vector space V
equipped with an inner product 〈, 〉. We denote by Ĝ the unitary dual of G and
by g‡/G the space of admissible coadjoint orbits, where g is the Lie algebra of

G. It was pointed out by Lipsman that the correspondence between Ĝ and g‡/G

is bijective. In this paper, we explicitly determine the topology of the spaces Ĝ.
Also we prove that the Lipsman mapping Θ : g‡/G −→ Ĝ is continuous.
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1. INTRODUCTION

Let G be a second countable locally compact group and Ĝ the unitary
dual of G, i.e., the set of all equivalence classes of irreducible unitary repre-
sentations of G. It is well-known that Ĝ is equipped with the Fell topology
[8]. The description of the dual topology is a good candidate for some aspects
of harmonic analysis on G (for example, see [4, 7]). For a simply connected
nilpotent Lie group and more generally for an exponential solvable Lie group
G = exp(g), its dual space Ĝ is homeomorphic to the space of coadjoint orbits
g∗/G through the Kirillov mapping (see [16]). In the context of semidirect
products G = K nN of compact connected Lie group K acting on simply con-
nected nilpotent Lie group N , then it was pointed out by Lipsman in [17], that
we have again an orbit picture of the dual space of G. The unitary dual space
of Euclidean motion groups is homeomorphic to the admissible coadjoint orbits
[7]. This result was generalized in [4], for a class of Cartan motion groups.

In this paper, we consider the semidirect product G = K n V where K is
a connected compact Lie group acting by automorphisms on a �nite dimensional
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vector space V equipped with an inner product 〈, 〉. In the spirit of the orbit
method due to Kirillov, R. Lipsman established a bijection between a class
of coadjoint orbits of G and the unitary dual Ĝ. For every admissible linear
form ψ of the Lie algebra g of G, we can construct an irreducible unitary
representation πψ by holomorphic induction and according to Lipsman (see
[17]), every irreducible representation of G arises in this manner. Then we get
a map from the set g‡ of the admissible linear forms onto the dual space Ĝ of
G. Note that πψ is equivalent to πψ′ if and only if ψ and ψ′ are on the same
G-orbit, �nally we obtain a bijection between the space g‡/G of admissible
coadjoint orbits and the unitary dual Ĝ. The preceding discussion motivates
our main result:

Theorem 1.1. The Lipsman mapping

Θ : g‡/G −→ Ĝ

is continuous.

The present work is organized as follows: Section 2 is devoted to the
description of the unitary dual Ĝ of G. Section 3 deals with the space of
admissible coadjoint orbits g‡/G of G. Theorem 1.1 is proved below in Section 4.

2. DUAL SPACES OF SEMIDIRECT PRODUCT

Throughout this paper, K will denote a connected compact Lie group
acting by automorphisms on a �nite dimensional vector space (V, 〈, 〉). We
write k.v and A.v (resp. k.` and A.`) for the result of applying elements k ∈ K
and A ∈ k := Lie(K) to v ∈ V (resp. to ` ∈ V ∗).

Now, one can form the semidirect product G := K n V which is the so-
called generalized motion group. As a set G = K × V and the multiplication
in this group is given by

(k, v)(h, u) = (kh, v + k.u), ∀(k, v), (h, u) ∈ G.

The Lie algebra of G is g = k⊕ V (as a vector space) and the Lie algebra
structure is given by the bracket

[(A, a), (B, b)] = ([A,B], A.b−B.a), ∀(A, a), (B, b) ∈ g.

Under the identi�cation of the dual g∗ of g with k∗ ⊕ V ∗, we can express
the duality between g and g∗ as F (A, a) = f(A) + `(a), for all F = (f, `) ∈ g∗

and (A, a) ∈ g. The adjoint representation AdG and coadjoint representation
Ad∗Gof G are given respectively, by the following relations

AdG(k, v)(A, a) = (AdK(k)A, k.a−AdK(k)A.v), ∀(k, v) ∈ G, (A, a) ∈ g,
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Ad∗G(k, v)(f, `) = (Ad∗K(k)f + k.`� v, k.`),∀(k, v) ∈ G, (f, `) ∈ g∗,

where `� v is the element of k∗ de�ned by

`� v(A) = `(A.v) = −(A.`)(v),∀A ∈ k, ` ∈ V ∗, v ∈ V.

Note that the map � : V ∗×V −→ k∗ de�ned by (`� v)(A) = `(A.v), v ∈
V, A ∈ k satis�es a fundamental equivariance property:

Ad∗K(k)(`� v) = (k.`)� (k.v), k ∈ K.

Therefore, the coadjoint orbit of G passing through (f, `) ∈ g∗ is given by

OG(f,`) =
{(
Ad∗K(k)f + k.`� v, k.`

)
, k ∈ K, v ∈ V

}
.(2.1)

For ` ∈ V ∗, we de�neK` := {k ∈ K; k.` = `} the isotropy subgroup of ` in
K and the Lie algebra of K` is given by the vector space k` = {A ∈ k; A.` = 0}.
Let ı` : k` ↪→ k be the injection map, then ı∗` : k∗ −→ k∗` is the projection map
and we have

k◦` = Ker(ı∗` )(2.2)

where k◦` is the annihilator of k`. If we de�ne the linear map h` : k −→ V ∗ by

h`(A) := −A.`, ∀A ∈ k,

then we have k` = Ker(h`). The dual h
∗
` : V −→ k∗ of h` is given by the relation

h∗` (v)(A) = h`(A)(v) = −(A.`)(v), and so h∗` (v) = `� v, ∀` ∈ V ∗, ∀v ∈ V (for
more details see [3]).

The following is a useful lemma from [3], giving a characterization of the
annihilator k◦` in terms of the linear map h`.

Lemma 2.1. Using the previous notations, then we have the equality

k◦` = Im(h∗` ).

Here we recall brie�y the description of the unitary dual of G via Mackey's
little group theory (see [18]). For every non-zero linear form ` on V, we denote
by χ` the unitary character of the vector Lie group V given by χ` = ei`. Let ρ
be an irreducible unitary representation of K` on some Hilbert space Hρ. The
map

ρ⊗ χ` : (k, v) 7−→ ei`(v)ρ(k)

is a representation of the Lie group K` n V such that one induces, in order
to get a unitary representation of G. We denote by H(ρ,`) := L2(K,Hρ)ρ the
subspace of L2(K,Hρ) consisting of all the maps ξ which satisfy the covariance
condition

ξ(kh) = ρ(h−1)ξ(k), ∀k ∈ K,h ∈ K`.
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The induced representation

π(ρ,`) := IndKnV
K`nV (ρ⊗ χ`)

is de�ned on H(ρ,`) by

π(ρ,`)(k, v)ξ(h) = ei`(h
−1.v)ξ(k−1h)

where (k, v) ∈ G, h ∈ K and ξ ∈ H(ρ,`). By Mackey's theory we can say that
the induced representation π(ρ,`) is irreducible and every in�nite dimensional
irreducible unitary representation of G is equivalent to one of π(ρ,`). Moreover,
tow representations π(ρ,`) and π(ρ′,`′) are equivalent if and only if ` and `′ are
contained in the same K-orbit and the representation ρ and ρ′ are equivalent
under the identi�cation of the conjugate subgroups K` and K`′ . All irreducible
representations of G which are not trivial on the normal subgroup V, are obtai-
ned by this manner. On the other hand, we denote also by τ the extension of
every unitary irreducible representation τ of K on G, which are simply de�ned
by τ(k, v) := τ(k) for k ∈ K and v ∈ V. Let Ω be a K-orbit in V ∗.We �x ` ∈ Ω
and we de�ne the subset Ĝ(Ω) of Ĝ by

Ĝ(Ω) =
{

IndKnV
K`nV (ρ⊗ χ`); ρ ∈ K̂`

}
.

Then we conclude that

Ĝ = K̂
⋃( ⋃

Ω∈Λ

Ĝ(Ω)
)

where Λ is the set of the non-trivial orbits in V ∗/K.

In the remainder of this paper, we shall assume that G is exponential,
i.e., K` is connected for all ` ∈ V ∗. Let ρµ be an irreducible representation of
K` with highest weight µ. For simplicity, we shall write π(µ,`) instead of π(ρµ,`)

and H(µ,`) instead of H(ρµ,`).

We close this section by presenting two results which are being used in
the description of the dual topology of G. These are required for our proof of
Theorem 1.1.

Let N be an abelian group, and assume that the compact Lie group K
acts on the left on N by automorphisms. As sets, the semidirect product KnN
is the Cartesian product K ×N and the group multiplication is given by

(k1, x1) · (k2, x2) = (k1k2, x1 + k1x2).

Let χ be a unitary character of N , and let Kχ be the stabilizer of χ under

the action of K on N̂ de�ned by

(k · χ)(x) = χ(k−1x).
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If ρ is an element of K̂χ, then the triple (χ, (Kχ, ρ)) is called a catalo-
guing triple. From the notations of [2], we denote by π(χ,Kχ, ρ) the induced
representation IndKnN

KχnN (ρ⊗ χ). Referring to [2, p. 187], we have

Proposition 1. The mapping (χ, (Kχ, ρ)) −→ π(χ,Kχ, ρ) is onto K̂ nN .

We denote by A(K) the set of all pairs (K ′, ρ ′), where K ′ is a closed
subgroup of K and ρ ′ is an irreducible representation of K ′. We equip A(K)

with the Fell topology (see [8]). Therefore, every element in K̂ nN can be
catalogued by elements in the topological space N̂ ×A(K). Larry Baggett has
given an abstract description of the topology of the dual space of a semidirect
product of a compact group with an abelian group in terms of the Mackey
parameters of the dual space (see [2, Theorem 6.2-A]). The following result

provides a precise and neat description of the topology of K̂ nN .

Theorem 2.2. Let Y be a subset of K̂ nN and π an element of K̂ nN .

Then π is weakly contained in Y if and only if there exist: a cataloguing triple

(χ, (Kχ, ρ)) for π, an element (K ′, ρ ′) of A(K), and a net {(χn, (Kχn , ρn))} of
cataloguing triples such that:

(i) for each n, the irreducible unitary representation π(χn,Kχn , ρn) of KnN
is an element of Y ;

(ii) the net {(χn, (Kχn , ρn))} converges to (χ, (K ′, ρ ′));

(iii) Kχ contains K ′, and the induced representation Ind
Kχ
K,′(ρ ′) contains ρ.

3. ADMISSIBLE COADJOINT ORBITS

OF SEMIDIRECT PRODUCT

We keep the notations of Section 2. Fix a non-zero linear form ` ∈ V ∗,
and we consider an irreducible representation ρµ of K` with highest weight µ.
Then the stabilizer Gψ of ψ = (µ, `) in G is given by

Gψ =
{

(k, v) ∈ G; (Ad∗K(k)µ+ k.`� v, k.`) = (µ, `)
}

=
{

(k, v) ∈ G; k ∈ K`, Ad
∗
K(k)µ+ `� v = µ

}
=

{
(k, v) ∈ G; k ∈ K`, Ad

∗
K(k)µ = µ

}
since ı∗` (`�v) = 0 (see Lemma 2.1 and the equality (2.2)). Thus, we have Gψ =
Kψ nVψ, then ψ is aligned (see [17]). A linear form ψ ∈ g∗ is called admissible
if there exists a unitary character χ of the identity component of Gψ such that
dχ = iψ|gψ . According to Lipsman (see [17]), the representation of G obtained
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by holomorphic induction from (µ, `) is equivalent to the representation π(µ,`).
Let τλ be an irreducible representation of K with highest weight λ, then the
representation of G obtained by holomorphic induction from (λ, 0) is equivalent
to τλ. The coadjoint orbit of G through (λ, 0) ∈ g∗ is denoted by OGλ . It is clear
that OGλ is an admissible coadjoint orbit of G. We denote by g‡ ⊂ g∗ the set
of all admissible linear forms on g. The quotient space g‡/G is called the space
of admissible coadjoint orbits of G. Moreover, one can check that g‡/G is the
union of the set of all orbits OG(µ,`) and the set of all orbits OGλ .

We conclude this section by recalling needed results. Let L be a closed
subgroup of K. Let TK and TL be maximal tori respectively in K and L such
that TL ⊂ TK . Their corresponding Lie algebras are denoted by tk and tl. We
denote by WK and WL the Weyl groups of K and L associated respectively to
the tori TK and TL. Notice that every element λ ∈ PK takes pure imaginary
values on tk, where PK is the integral weight lattice of TK . Hence such an
element λ ∈ PK can be considered as an element of (itk)

∗. Let C+
K be a positive

Weyl chamber in (itk)
∗, and we de�ne the set P+

K of dominant integral weights
of TK by P+

K := PK ∩ C+
K . For λ ∈ P

+
K , denote by OKλ the K-coadjoint orbit

passing through the vector −iλ. It was proved by Kostant in [15], that the
projection of OKλ on t∗k is a convex polytope with vertices −i(w.λ) for w ∈WK ,
and that is the convex hull of −i(WK .λ). For the same manner, we �x a positive
Weyl chamber C+

L in t∗l and we de�ne the set P+
L of dominant integral weights

of TL.

Also we denote by ı∗l the C-linear extension of both the natural projection
of k∗ onto l∗ and the natural projection of t∗k onto t∗l . Consider tow irreducible

representations τλ ∈ K̂ and ρµ ∈ L̂ with respective highest weights λ ∈ P+
K and

µ ∈ P+
L . We have the following result.

Lemma 3.1. If µ = i∗l (s.λ) with s ∈ WK , then τλ occurs in the induced

representation IndKL (ρµ).

We refer to [1], for the proof of this Lemma.

4. MAIN RESULTS

Let us now return to the context and notations of the previous Sections.
To an irreducible representation ρµ of K` with highest weight µ and a non-zero
linear form ` on V, we associate the representation π(µ,`) of G and its corre-
sponding cataloguing triple (`, (K`, ρµ)). Also for an irreducible representation
τλ of K with highest weight λ, we denote by (0, (K, τλ)) the cataloguing of the
trivial extension of τλ to G. By C(K) we mean the space of all closed subgroups
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of K equipped with the compact-open topology [8]. Its well-known that C(K)
is a compact space and an important fact worth mentioning here is that:

Remark 4.1. If we have the following convergence

`m −→ `(4.1)

K`m −→ L(4.2)

where L is a subgroup of K, then K` contains L.

Thanks to Baggett's theorem (Theorem 2.2), we have the following tow
�rst Propositions.

Proposition 4.2. Let (π(µn,`n))n be a sequence of elements in Ĝ. Then

we have: (π(µn,`n))n converges to π(µ,`) in Ĝ, if and only if for every subsequence

(K`nm )m, for which the sequence of subgroup-representation pairs
(
(K`nm ,

ρµnm )
)
m

converges to (L, ρ) in A(K), we have that (`nm)m converges to ` and

ρµ ∈ IndK`L (ρ).

Proposition 4.3. Let (π(µn,`n))n be a sequence of elements in Ĝ. Then

(π(µn,`n))n converges to τλ in Ĝ, if and only if for every subsequence (K`nm )m,
for which the sequence of subgroup-representation

(
(K`nm , ρµnm )

)
m

converges

to (L, ρ) in A(K), we have that (`nm)m converges to 0 and τλ ∈ IndKL (ρ).

To study the convergence in the quotient space g‡/G, we need the following
result (see [16. p. 135] for the proof).

Lemma 4.4. Let G be a unimodular Lie group with Lie algebra g and let

g∗ be the vector dual space of g. We denote g∗/G the space of coadjoint orbits

and by pG : g∗ −→ g∗/G the canonical projection. We equip this space with the

quotient topology, i.e., a subset V in g∗/G is open if and only if p−1
G

(V ) is open
in g∗. Therefore, a sequence (OGn )n of elements in g∗/G converges to the orbit

OG in g∗/G if and only if for any l ∈ OG, there exist ln ∈ OGn , n ∈ N, such
that l = lim

n−→+∞
ln.

Now, we can prove the following propositions.

Proposition 4.5. Let
(
OG(µn,`n)

)
n
be a sequence in g‡/G. If

(
OG(µn,`n)

)
n

converges to OG(µ,`) in g‡/G, then for every subsequence (K`nm )m, for which the

sequence of subgroup-representation pairs
(
(K`nm , ρµnm )

)
m

converges to (L, ρ)

in A(K), we have that (`nm)m converges to ` and ρµ ∈ IndK`L (ρ).

Proof. We assume that the sequence of admissible coadjoint orbits(
OG(µn,`n)

)
n
converges to OG(µ,`) in g‡/G. By referring to [3], we show that the
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coadjoint orbit OG(µ,`) is always obtained by symplectic induction from the co-

adjoint orbit M = OH(µ,`) of H := K` n V passing through (µ, `) ∈ k∗` ⊕ V ∗

(k` n V := Lie(H)), i.e.,

OG(µ,`) = Mind := J−1

M̃
(0)/H,(4.3)

where J
M̃

: M̃ = M × T ∗G −→ k∗` n V ∗ is the momentum map of M̃ and the

zero level set J−1

M̃
(0) is given by

J−1

M̃
(0) =

{(
(Ad∗K(k)µ, `), g, (Ad∗K(k)µ+ `� v, `)

)
, k ∈ K`, g ∈ G, v ∈ V

}
.

Let ϕM be the action of H on M, hence H acts on M̃ = M ×T ∗G by ϕ
M̃

as follows

ϕ
M̃

(h)(m, g, f) =
(
ϕM (h)(m), gh−1, Ad∗H(h)f

)
,(4.4)

for all h ∈ H, (m, g, f) ∈ M × T ∗G. By identifying g∗ with the left-invariant
1-form on G. Then we can write T ∗G ∼= G× g∗.

Using Lemma 4.4 and by combining (4.3) with (4.4), then we deduce that
for every subsequence (K`nm )m, for which the sequence of subgroup-representat-
ion pairs (K`nm , ρµnm )m converges to (L, ρ) in A(K), there exist sequences
km, hm ∈ K`nm , vm, wm ∈ V, and gm ∈ G such that the sequence (φm)m
de�ned by

φm = ϕ
M̃

(km, vm)
(
(Ad∗K(hm)µnm , `nm), gm, (Ad

∗
K(hm)µnm

+ `nm � wm, `nm)
)

=
(
Ad∗K(kmhm)µnm + ı∗`nm (`nm � vm), `nm

)
, gm(km, vm)−1,

(Ad∗K(kmhm)µnm +Ad∗K(km)(`nm � wm) + `nm � vm, `nm)
)

converges to
(
(µ, `), eG, (µ, `)

)
. It follows that

`nm −→ `(4.5)

and

Ad∗K(kmhm)µnm + ı∗`nm (`nm � vm) −→ µ(4.6)

as n −→ +∞. By compactness of K we may assume that (kmhm)m converges
to p ∈ L ⊂ K`. Using the fact that ı∗`nm (`nm � vm) = 0, we obtain from (4.6)
that

µnm = Ad∗(p−1)µ(4.7)

for m large enough. Furthermore, we known that there exists an element s ∈
WK` such that Ad∗(p−1)µ = s.µ. Hence µnm = s.µ for m large enough and we
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conclude by Lemma 3.1 that ρµ ∈ IndK`L (ρ). This completes the proof of the
Proposition. �

Proposition 4.6. If the sequence
(
OG(µn,`n)

)
n
converges to OGλ in g‡/G,

then for every subsequence (K`nm )m, for which the sequence of subgroup-repre-

sentation pairs
(
(K`nm , ρµnm )

)
m

converges to (L, ρ) in A(K), we have that

(`nm)m converges to 0 and τλ ∈ IndKL (ρµ).

Proof. We use the notations and proceedings of the proof of the last
proposition. Let us assume that the sequence

(
OG(µn,`n)

)
n
converges to OGλ .

Also for every subsequence (K`nm )m, for which the sequence of subgroup-
representation pairs

(
(K`nm , ρµnm )

)
m

converges to (L, ρ) in A(K), there exist
sequences km, hm ∈ K`nm , vm, wm ∈ V, and gm ∈ G such that the sequence
(Ψm)m de�ned by

Ψm = ϕ
M̃

(km, vm)
(
(Ad∗K(hm)µnm , `nm), gm, (Ad

∗
K(hm)µnm

+ `nm � wm, `nm)
)

=
(
Ad∗K(kmhm)µnm + ı∗`nm (`nm � vm), `nm

)
, gm(km, vm)−1,

(Ad∗K(kmhm)µnm +Ad∗K(km)(`nm � wm) + `nm � vm, `nm)
)

converges to
(
(λ, 0), eG, (λ, 0)

)
. From the above facts, we conclude the following

convergence

`nm −→ 0(4.8)

Ad∗(kmhm)µnm −→ λ.(4.9)

By assumption that the sequence (kmhm)m converges to p ∈ L, we obtain from
(4.9), that µnm = Ad∗(p−1)λ for m large enough. Hence there exists w ∈WK ,
such that µnm = w.λ for m large enough. Lemma 3.1 allows us to derive that
τλ ∈ IndKL (ρµ). �

We have �nished the proof of Theorem 1.1.
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