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We consider the semidirect product G = K X V where K is a connected com-
pact Lie group acting by automorphisms on a finite dimensional vector space V'
equipped with an inner product (,). We denote by G the unitary dual of G and
by g*/G the space of admissible coadjoint orbits, where g is the Lie algebra of
G. It was pointed out by Lipsman that the correspondence between G and gt/a
is bijective. In this paper, we explicitly determine the topology of the spaces G.
Also we prove that the Lipsman mapping © : gi/G — G is continuous.
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1. INTRODUCTION

Let G be a second countable locally compact group and G the unitary
dual of G, i.e., the set of all equivalence classes of irreducible unitary repre-
sentations of G. It is well-known that G is equipped with the Fell topology
[8]. The description of the dual topology is a good candidate for some aspects
of harmonic analysis on G (for example, see [4, 7]). For a simply connected
nilpotent Lie group and more generally for an exponential solvable Lie group
G = exp(g), its dual space G is homeomorphic to the space of coadjoint orbits
g*/G through the Kirillov mapping (see [16]). In the context of semidirect
products G = K x N of compact connected Lie group K acting on simply con-
nected nilpotent Lie group N, then it was pointed out by Lipsman in [17], that
we have again an orbit picture of the dual space of G. The unitary dual space
of Euclidean motion groups is homeomorphic to the admissible coadjoint orbits
[7]. This result was generalized in [4], for a class of Cartan motion groups.

In this paper, we consider the semidirect product G = K x V where K is
a connected compact Lie group acting by automorphisms on a finite dimensional
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vector space V equipped with an inner product (,). In the spirit of the orbit
method due to Kirillov, R. Lipsman established a bijection between a class
of coadjoint orbits of G and the unitary dual G. For every admissible linear
form ¢ of the Lie algebra g of G, we can construct an irreducible unitary
representation m,; by holomorphic induction and according to Lipsman (see
[17]), every irreducible representation of G arises in this manner. Then we get
a map from the set g¢ of the admissible linear forms onto the dual space G of
G. Note that my is equivalent to my if and only if ¢ and ¢’ are on the same
G-orbit, finally we obtain a bijection between the space g*/G of admissible
coadjoint orbits and the unitary dual G. The preceding discussion motivates
our main result:

THEOREM 1.1. The Lipsman mapping
o:¢t/¢ — @
1S continuous.
The present work is organized as follows: Section 2 is devoted to the

description of the unitary dual G of G. Section 3 deals with the space of
admissible coadjoint orbits g* /G of G. Theorem 1.1 is proved below in Section 4.

2. DUAL SPACES OF SEMIDIRECT PRODUCT

Throughout this paper, K will denote a connected compact Lie group
acting by automorphisms on a finite dimensional vector space (V,(,)). We
write k.v and A.v (resp. k.£ and A.¢) for the result of applying elements k € K
and A € t:= Lie(K) tov € V (resp. to £ € V*).

Now, one can form the semidirect product G := K x V which is the so-
called generalized motion group. As a set G = K x V and the multiplication
in this group is given by

(k,v)(h,u) = (kh,v+ k.u), V(k,v), (h,u) € G.

The Lie algebra of G is g = £ ® V (as a vector space) and the Lie algebra
structure is given by the bracket

[(A,a),(B,b)] = ([A, B],A.b— B.a), ¥(A,a),(B,b) € g.

Under the identification of the dual g* of g with £* & V™, we can express
the duality between g and g* as F(A,a) = f(A) + {(a), for all F = (f,¢) € g*
and (A,a) € g. The adjoint representation Adg and coadjoint representation
Adgof G are given respectively, by the following relations

Adg(k,v)(A,a) = (Adg(k)A, k.a — Adk(k)Av),Y(k,v) € G,(A,a) € g,
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Adg(k,v)(f,0) = (Adg(k)f +kLOv, kL), Y(k,v)eG,(f,{)eg,
where ¢ ® v is the element of £* defined by
LOv(A) =l(Av)=—(AL)(v),VActlecV ' veV.

Note that the map ©® : V* x V — €* defined by (¢ ©v)(A) = {(Av), v €
V, A € t satisfies a fundamental equivariance property:

Adi ()l ov) = (kf) o (kv), ke K.
Therefore, the coadjoint orbit of G passing through (f,£) € g* is given by

(2.1) 0%, = {(Ad";((k)f Y kLG, k:.f),k: cK,ve V}.

For ¢ € V* we define Ky := {k € K; k.l = {} the isotropy subgroup of £ in
K and the Lie algebra of K/ is given by the vector space ¢, = {A € ¢ A.L = 0}.
Let 1, : & < ¢ be the injection map, then ; : £ — £ is the projection map
and we have

(2.2) £, = Ker(y)
where £) is the annihilator of €. If we define the linear map hy: € — V* by
he(A) == —AL, VA € ¢,

then we have £y = Ker(hy). The dual hj : V' — €* of hy is given by the relation
hy(v)(A) = he(A)(v) = —(AL)(v), and so hj(v) =L O v, VL € V*, Vv € V (for
more details see [3]).

The following is a useful lemma from 3|, giving a characterization of the
annihilator £ in terms of the linear map hy.

LeMmMA 2.1. Using the previous notations, then we have the equality
£, = Im(hy).

Here we recall briefly the description of the unitary dual of G via Mackey’s
little group theory (see [18]). For every non-zero linear form ¢ on V, we denote
by x¢ the unitary character of the vector Lie group V given by x, = e?. Let p
be an irreducible unitary representation of K, on some Hilbert space H,. The
map

P& et (k) — p (k)

is a representation of the Lie group K, x V such that one induces, in order
to get a unitary representation of G. We denote by H, ) := L*(K,H,)’ the
subspace of L?(K, H,) consisting of all the maps £ which satisfy the covariance
condition

&(kh) = p(h™")E(k),Vk € K, h € K,.



252 Anis Messaoud and Aymen Rahali 4

The induced representation

(o) = Ind 1 (0 ® Xe)

is defined on H, ¢ by
o B
T (K, v)€(h) = O Ve (k™ 1h)

where (k,v) € G,h € K and § € H(, . By Mackey’s theory we can say that
the induced representation m(, is irreducible and every infinite dimensional
irreducible unitary representation of G is equivalent to one of m(, ,). Moreover,
tow representations 7, s and 7, ) are equivalent if and only if £ and ¢ are
contained in the same K-orbit and the representation p and p’ are equivalent
under the identification of the conjugate subgroups Ky and K. All irreducible
representations of G which are not trivial on the normal subgroup V| are obtai-
ned by this manner. On the other hand, we denote also by 7 the extension of
every unitary irreducible representation 7 of K on G, which are simply defined
by 7(k,v) := 7(k) for k € K and v € V. Let Q be a K-orbit in V*. We fix £ € Q
and we define the subset G(Q) of G by

G(Q) = {Indﬁi‘@(p ® Xe)ip € f@}

Then we conclude that

é:kU(U@m0
QeA
where A is the set of the non-trivial orbits in V*/K.

In the remainder of this paper, we shall assume that G is exponential,
i.e., Ky is connected for all £ € V*. Let p, be an irreducible representation of
K, with highest weight p. For simplicity, we shall write 7, ) instead of 7(,, s
and M, ¢ instead of H,, ¢)-

We close this section by presenting two results which are being used in
the description of the dual topology of GG. These are required for our proof of
Theorem 1.1.

Let N be an abelian group, and assume that the compact Lie group K
acts on the left on N by automorphisms. As sets, the semidirect product K x N
is the Cartesian product K x N and the group multiplication is given by

(k1,21) - (k2,22) = (k1ka, x1 + k122).

Let x be a unitary character of N, and let K, be the stabilizer of x under
the action of K on N defined by

(k- x)(x) = x (k™).
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If p is an element of I/(;, then the triple (x, (K, p)) is called a catalo-
guing triple. From the notations of [2|, we denote by m(x, K, p) the induced

representation Indﬁzi\fN(p ® x). Referring to [2, p. 187], we have

PROPOSITION 1. The mapping (x, (Ky, p)) — m(x, Ky, p) is onto K x N.

We denote by A(K) the set of all pairs (K',p’), where K’ is a closed
subgroup of K and p’ is an irreducible representation of K'. We equip A(K)
with the Fell topology (see [8]). Therefore, every element in K x N can be
catalogued by elements in the topological space N x A(K). Larry Baggett has
given an abstract description of the topology of the dual space of a semidirect
product of a compact group with an abelian group in terms of the Mackey
parameters of the dual space (see [2, Theorem 6.2-A]). The following result
provides a precise and neat description of the topology of K x N.

THEOREM 2.2. Let Y be a subset ofm and 7™ an element of KxN.
Then 7 is weakly contained in'Y if and only if there exist: a cataloguing triple

(X; (Ky, p)) for , an element (K', p") of A(K), and a net {(Xn, (Ky,., pn))} of
cataloguing triples such that:

(i) for each n, the irreducible unitary representation m(Xn, Ky, pn) of Kx N
is an element of Y;

(i) the net {(xn, (K, pa))} converges to (x, (K, p"));
iii) K, contains K', and the induced representation IndK’f, p') contains p.
X K

3. ADMISSIBLE COADJOINT ORBITS
OF SEMIDIRECT PRODUCT

We keep the notations of Section 2. Fix a non-zero linear form ¢ € V*,
and we consider an irreducible representation p,, of K, with highest weight u.
Then the stabilizer Gy, of ¥ = (u,£) in G is given by

Gy {wm)eQ(A@Amu+kﬁ®uh@:4m@}

- {%ﬂQGG;kEK@A@A@u+€®v:u}

= {kv) € G ke K, Adie () =}

since 15 ({®v) = 0 (see Lemma 2.1 and the equality (2.2)). Thus, we have G, =
Ky x Vy, then 1) is aligned (see [17]). A linear form 1) € g* is called admissible
if there exists a unitary character x of the identity component of G, such that
dy = iw'%' According to Lipsman (see [17]), the representation of G obtained
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by holomorphic induction from (1, ¢) is equivalent to the representation 7, ).
Let 7, be an irreducible representation of K with highest weight A, then the
representation of G obtained by holomorphic induction from (), 0) is equivalent
to 7x. The coadjoint orbit of G through (\,0) € g* is denoted by Of. It is clear
that (’)f\; is an admissible coadjoint orbit of G. We denote by gt C g* the set
of all admissible linear forms on g. The quotient space gt /G is called the space
of admissible coadjoint orbits of G. Moreover, one can check that g*/G is the
union of the set of all orbits O(CL’E) and the set of all orbits Of.

We conclude this section by recalling needed results. Let L be a closed
subgroup of K. Let Tk and T}, be maximal tori respectively in K and L such
that T, C Tk. Their corresponding Lie algebras are denoted by t; and ;. We
denote by Wx and Wy, the Weyl groups of K and L associated respectively to
the tori Tk and T7. Notice that every element A € Pgx takes pure imaginary
values on ty, where P is the integral weight lattice of T%. Hence such an
element A € Pg can be considered as an element of (ity)*. Let C?; be a positive
Weyl chamber in (ity)*, and we define the set P of dominant integral weights
of Tk by PI'(ir = Pg N C’;}. For A\ € P;, denote by (’)f\{ the K-coadjoint orbit
passing through the vector —i\. It was proved by Kostant in [15], that the
projection of OF on tf is a convex polytope with vertices —i(w.\) for w € W,
and that is the convex hull of —i(Wk.A). For the same manner, we fix a positive
Weyl chamber CZF in t{ and we define the set PL+ of dominant integral weights
of TL-

Also we denote by ¢/ the C-linear extension of both the natural projection
of £ onto [* and the natural projection of t; onto t{. Consider tow irreducible
representations 7y € K and Pu € L with respective highest weights A € PE and
1 € Pi". We have the following result.

LEMMA 3.1. If p = if(s.\) with s € W, then T\ occurs in the induced
representation Ind¥ (p,,).

We refer to [1], for the proof of this Lemma.

4. MAIN RESULTS

Let us now return to the context and notations of the previous Sections.
To an irreducible representation p,, of K, with highest weight ;» and a non-zero
linear form ¢ on V, we associate the representation 7, of G and its corre-
sponding cataloguing triple (¢, (K, p,)). Also for an irreducible representation
7y of K with highest weight A, we denote by (0, (K,7))) the cataloguing of the
trivial extension of 7, to G. By C(K) we mean the space of all closed subgroups
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of K equipped with the compact-open topology [8]. Its well-known that C(K)
is a compact space and an important fact worth mentioning here is that:

Remark 4.1. If we have the following convergence

(4.1) byy — L
(4.2) Ky, — L

where L is a subgroup of K, then K, contains L.

Thanks to Baggett’s theorem (Theorem 2.2), we have the following tow
first Propositions.

PROPOSITION 4.2. Let (m(yn ), be a sequence of elements in G. Then
we have: (T(,n ), converges to m, p in @, if and only if for every subsequence
(K¢, )m, for which the sequence of subgroup-representation pairs ((Kgnm,
punm ), converges to (L, p) in A(K), we have that ({y,,)m converges to £ and

Pu € Indfé(p).

PROPOSITION 4.3. Let (m(yn,)), be a sequence of elements in G. Then
(T (un ) COMUVETGES tO T i é, if and only if for every subsequence (K, )m,
for which the sequence of subgroup-representation ((Kgnm,p#nm))m converges
to (L, p) in A(K), we have that (€, )m converges to 0 and 7 € Ind% (p).

To study the convergence in the quotient space gt /G, we need the following
result (see [16. p. 135] for the proof).

LEMMA 4.4. Let G be a unimodular Lie group with Lie algebra g and let
g be the vector dual space of g. We denote g* /G the space of coadjoint orbits
and by p, : ¢ — g% /G the canonical projection. We equip this space with the
quotient topology, i.e., a subset V in g* /G is open if and only ifpgl(V) is open,
in g*. Therefore, a sequence (OF), of elements in g* /G converges to the orbit
O% in g* /G if and only if for any | € OF, there exist I, € OF, n € N, such
that | = lim [,.

n—>-+o0o

Now, we can prove the following propositions.

PROPOSITION 4.5. Let ((’)&n ﬁn)) be a sequence in gt /G. If (O(Gun én))
converges to (’)(GM 0 in gt /G, then for every subsequence (K, . )m, for which the
sequence of subgroup-representation pairs ((Kgnm,punm))m converges to (L, p)

in A(K), we have that ({y,,)m converges to £ and p,, € IndéQ (p).

Proof. We assume that the sequence of admissible coadjoint orbits
(O(Cin En)) converges to O(C; g in gt /G. By referring to [3], we show that the
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coadjoint orbit (9((:1 0 is always obtained by symplectic induction from the co-
adjoint orbit M = O(IZ 0 of H := K, x V passing through (u,¢) € €& @ V*
(¢ x V := Lie(H)), i.e.,

(4.3) Ofy = Mpa:= JJ%(O)/H,

where Jo7 M=MxTG — €, x V* is the momentum map of M and the
zero level set JJ\Z/Il(O) is given by

J(0) = {((Ad*K(k)u,E),g, (Adje (k) + £ ® v,€)), keKingeGue V}.

Let ¢as be the action of H on M, hence H acts on M= MxT*G by o7
as follows

(44) exi)m.g. f) = (par(R)m), gh™", Adyy(R) ),

for all h € H,(m,g, f) € M x T*G. By identifying g* with the left-invariant
1-form on G. Then we can write T*G = G x g*.

Using Lemma 4.4 and by combining (4.3) with (4.4), then we deduce that
for every subsequence (K, ), for which the sequence of subgroup-representat-
ion pairs (Ky, ,punm)m converges to (L,p) in A(K), there exist sequences
km,hm € Ky U, Wy, € V, and g, € G such that the sequence (¢m)m
defined by

Om = ‘Pﬁ(kmaUm)((Ad;((hm)Mn7n>€nm)agm»(Ad*K(hM)Mnm
+ EanU}maEnm))

= (Ady m) ™ +Z€n (n,, @Um)ygnm)agm(kmvvm)ila

(Adic (k)" + Adje (ki) (€, © W) 4 o, © Vi, L))

nm?

converges to ((u,£), eq, (i, £)). It follows that

(4.5) by, — ¢
and
(4.6) Adg (kpphom) ™™ + ZZWL (U ©vm) —> p

as n — +o00. By compactness of K we may assume that (k,,hpm)m converges
to p € L C K. Using the fact that 1; (s, © vm) = 0, we obtain from (4.6)
that

(4.7) phm = Ad*(pp

for m large enough. Furthermore, we known that there exists an element s €
Wk, such that Ad*(p~1)u = s.u. Hence p™m = s.u for m large enough and we
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conclude by Lemma 3.1 that p, € Indf‘-’ (p). This completes the proof of the
Proposition. [

PROPOSITION 4.6. If the sequence (O(C;",én))n converges to (9)(\; in g*/G,
then for every subsequence (Ky, )m, for which the sequence of subgroup-repre-
sentation pairs ((Kgnmjpunm))m converges to (L,p) in A(K), we have that
(bn,)m converges to 0 and 7y € Ind¥ (p,,).

Proof. We use the notations and proceedings of the proof of the last
proposition. Let us assume that the sequence (O&",Zn))n converges to (’)g.
Also for every subsequence (Kj, )m, for which the sequence of subgroup-
representation pairs ((Kgnm,punm))m converges to (L, p) in A(K), there exist
sequences Ky, hy € Ky, , Um, Wy € V, and g, € G such that the sequence
(U)m defined by

Uy = Wﬁ(kmvUm)((Ad*K(hm)Nnm7gnm)7gm7 (Ad (hp )™
+ Enmcawm,enm))

= (AdicUembon) 1™ 415, (s © V)b ) G (o vm) ™
(Adic (kb )1 + Adie (ki) (b, © W) + b, © Vi, b))
(r

converges to ((A,0), eq, (A,0)). From the above facts, we conclude the following

convergence
(4.8) lp, —> O
(4.9) Ad* (kph )™ — .

By assumption that the sequence (ky,hp,)m converges to p € L, we obtain from
(4.9), that p™ = Ad*(p~1)\ for m large enough. Hence there exists w € W,
such that pu"™ = w.\ for m large enough. Lemma 3.1 allows us to derive that
m € Indf (p,). O

We have finished the proof of Theorem 1.1.
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