ON THE CONTINUITY OF THE LIPSMAN MAPPING OF SEMIDIRECT PRODUCTS

ANIS MESSAOUD and AYMEN RAHALI

Communicated by Vasile Brînzănescu

We consider the semidirect product $G = K \ltimes V$ where K is a connected compact Lie group acting by automorphisms on a finite dimensional vector space V equipped with an inner product \langle , \rangle . We denote by \widehat{G} the unitary dual of G and by $\mathfrak{g}^{\ddagger}/G$ the space of admissible coadjoint orbits, where \mathfrak{g} is the Lie algebra of G. It was pointed out by Lipsman that the correspondence between \widehat{G} and $\mathfrak{g}^{\ddagger}/G$ is bijective. In this paper, we explicitly determine the topology of the spaces \widehat{G} . Also we prove that the Lipsman mapping $\Theta : \mathfrak{g}^{\ddagger}/G \longrightarrow \widehat{G}$ is continuous.

AMS 2010 Subject Classification: 22D10, 22E27, 22E45.

Key words: Lie groups, semidirect product, unitary representations, coadjoint orbits, symplectic induction.

1. INTRODUCTION

Let G be a second countable locally compact group and \widehat{G} the unitary dual of G, *i.e.*, the set of all equivalence classes of irreducible unitary representations of G. It is well-known that \widehat{G} is equipped with the Fell topology [8]. The description of the dual topology is a good candidate for some aspects of harmonic analysis on G (for example, see [4, 7]). For a simply connected nilpotent Lie group and more generally for an exponential solvable Lie group $G = exp(\mathfrak{g})$, its dual space \widehat{G} is homeomorphic to the space of coadjoint orbits \mathfrak{g}^*/G through the Kirillov mapping (see [16]). In the context of semidirect products $G = K \ltimes N$ of compact connected Lie group K acting on simply connected nilpotent Lie group N, then it was pointed out by Lipsman in [17], that we have again an orbit picture of the dual space of G. The unitary dual space of Euclidean motion groups is homeomorphic to the admissible coadjoint orbits [7]. This result was generalized in [4], for a class of Cartan motion groups.

In this paper, we consider the semidirect product $G = K \ltimes V$ where K is a connected compact Lie group acting by automorphisms on a finite dimensional vector space V equipped with an inner product \langle, \rangle . In the spirit of the orbit method due to Kirillov, R. Lipsman established a bijection between a class of coadjoint orbits of G and the unitary dual \hat{G} . For every admissible linear form ψ of the Lie algebra \mathfrak{g} of G, we can construct an irreducible unitary representation π_{ψ} by holomorphic induction and according to Lipsman (see [17]), every irreducible representation of G arises in this manner. Then we get a map from the set \mathfrak{g}^{\ddagger} of the admissible linear forms onto the dual space \hat{G} of G. Note that π_{ψ} is equivalent to $\pi_{\psi'}$ if and only if ψ and ψ' are on the same G-orbit, finally we obtain a bijection between the space $\mathfrak{g}^{\ddagger}/G$ of admissible coadjoint orbits and the unitary dual \hat{G} . The preceding discussion motivates our main result:

THEOREM 1.1. The Lipsman mapping

 $\Theta: \mathfrak{g}^{\ddagger}/G \longrightarrow \widehat{G}$

is continuous.

The present work is organized as follows: Section 2 is devoted to the description of the unitary dual \hat{G} of G. Section 3 deals with the space of admissible coadjoint orbits $\mathfrak{g}^{\ddagger}/G$ of G. Theorem 1.1 is proved below in Section 4.

2. DUAL SPACES OF SEMIDIRECT PRODUCT

Throughout this paper, K will denote a connected compact Lie group acting by automorphisms on a finite dimensional vector space (V, \langle, \rangle) . We write k.v and A.v (resp. $k.\ell$ and $A.\ell$) for the result of applying elements $k \in K$ and $A \in \mathfrak{k} := Lie(K)$ to $v \in V$ (resp. to $\ell \in V^*$).

Now, one can form the semidirect product $G := K \ltimes V$ which is the socalled generalized motion group. As a set $G = K \times V$ and the multiplication in this group is given by

$$(k, v)(h, u) = (kh, v + k.u), \, \forall (k, v), (h, u) \in G.$$

The Lie algebra of G is $\mathfrak{g} = \mathfrak{k} \oplus V$ (as a vector space) and the Lie algebra structure is given by the bracket

$$[(A,a),(B,b)]=([A,B],A.b-B.a),\,\forall (A,a),(B,b)\in\mathfrak{g}.$$

Under the identification of the dual \mathfrak{g}^* of \mathfrak{g} with $\mathfrak{k}^* \oplus V^*$, we can express the duality between \mathfrak{g} and \mathfrak{g}^* as $F(A, a) = f(A) + \ell(a)$, for all $F = (f, \ell) \in \mathfrak{g}^*$ and $(A, a) \in \mathfrak{g}$. The adjoint representation Ad_G and coadjoint representation Ad_G^* of G are given respectively, by the following relations

$$Ad_G(k,v)(A,a) = (Ad_K(k)A, k.a - Ad_K(k)A.v), \forall (k,v) \in G, (A,a) \in \mathfrak{g},$$

$$Ad_G^*(k,v)(f,\ell) = (Ad_K^*(k)f + k.\ell \odot v, k.\ell), \forall (k,v) \in G, (f,\ell) \in \mathfrak{g}^*,$$

where $\ell \odot v$ is the element of \mathfrak{k}^* defined by

$$\ell \odot v(A) = \ell(A.v) = -(A.\ell)(v), \forall A \in \mathfrak{k}, \ell \in V^*, v \in V.$$

Note that the map $\odot: V^* \times V \longrightarrow \mathfrak{k}^*$ defined by $(\ell \odot v)(A) = \ell(A.v), v \in V, A \in \mathfrak{k}$ satisfies a fundamental equivariance property:

$$Ad_K^*(k)(\ell \odot v) = (k.\ell) \odot (k.v), k \in K.$$

Therefore, the coadjoint orbit of G passing through $(f, \ell) \in \mathfrak{g}^*$ is given by

(2.1)
$$\mathcal{O}_{(f,\ell)}^G = \left\{ \left(Ad_K^*(k)f + k.\ell \odot v, k.\ell \right), k \in K, v \in V \right\}.$$

For $\ell \in V^*$, we define $K_{\ell} := \{k \in K; k.\ell = \ell\}$ the isotropy subgroup of ℓ in K and the Lie algebra of K_{ℓ} is given by the vector space $\mathfrak{k}_{\ell} = \{A \in \mathfrak{k}; A.\ell = 0\}$. Let $\imath_{\ell} : \mathfrak{k}_{\ell} \hookrightarrow \mathfrak{k}$ be the injection map, then $\imath_{\ell}^* : \mathfrak{k}^* \longrightarrow \mathfrak{k}_{\ell}^*$ is the projection map and we have

(2.2)
$$\mathfrak{k}^{\circ}_{\ell} = \operatorname{Ker}(i^*_{\ell})$$

where $\mathfrak{k}_{\ell}^{\circ}$ is the annihilator of \mathfrak{k}_{ℓ} . If we define the linear map $h_{\ell}: \mathfrak{k} \longrightarrow V^*$ by

$$h_{\ell}(A) := -A.\ell, \ \forall A \in \mathfrak{k},$$

then we have $\mathfrak{k}_{\ell} = \operatorname{Ker}(h_{\ell})$. The dual $h_{\ell}^* : V \longrightarrow \mathfrak{k}^*$ of h_{ℓ} is given by the relation $h_{\ell}^*(v)(A) = h_{\ell}(A)(v) = -(A.\ell)(v)$, and so $h_{\ell}^*(v) = \ell \odot v$, $\forall \ell \in V^*$, $\forall v \in V$ (for more details see [3]).

The following is a useful lemma from [3], giving a characterization of the annihilator $\mathfrak{t}_{\ell}^{\circ}$ in terms of the linear map h_{ℓ} .

LEMMA 2.1. Using the previous notations, then we have the equality

$$\mathfrak{k}_{\ell}^{\circ} = \operatorname{Im}(h_{\ell}^*).$$

Here we recall briefly the description of the unitary dual of G via Mackey's little group theory (see [18]). For every non-zero linear form ℓ on V, we denote by χ_{ℓ} the unitary character of the vector Lie group V given by $\chi_{\ell} = e^{i\ell}$. Let ρ be an irreducible unitary representation of K_{ℓ} on some Hilbert space \mathcal{H}_{ρ} . The map

$$\rho \otimes \chi_{\ell} : (k, v) \longmapsto \mathrm{e}^{i\ell(v)}\rho(k)$$

is a representation of the Lie group $K_{\ell} \ltimes V$ such that one induces, in order to get a unitary representation of G. We denote by $\mathcal{H}_{(\rho,\ell)} := L^2(K, \mathcal{H}_{\rho})^{\rho}$ the subspace of $L^2(K, \mathcal{H}_{\rho})$ consisting of all the maps ξ which satisfy the covariance condition

$$\xi(kh) = \rho(h^{-1})\xi(k), \forall k \in K, h \in K_{\ell}.$$

The induced representation

$$\pi_{(\rho,\ell)} := \operatorname{Ind}_{K_{\ell} \ltimes V}^{K \ltimes V} (\rho \otimes \chi_{\ell})$$

is defined on $\mathcal{H}_{(\rho,\ell)}$ by

$$\pi_{(\rho,\ell)}(k,v)\xi(h) = e^{i\ell(h^{-1}.v)}\xi(k^{-1}h)$$

where $(k, v) \in G, h \in K$ and $\xi \in \mathcal{H}_{(\rho,\ell)}$. By Mackey's theory we can say that the induced representation $\pi_{(\rho,\ell)}$ is irreducible and every infinite dimensional irreducible unitary representation of G is equivalent to one of $\pi_{(\rho,\ell)}$. Moreover, tow representations $\pi_{(\varrho,\ell)}$ and $\pi_{(\varrho',\ell')}$ are equivalent if and only if ℓ and ℓ' are contained in the same K-orbit and the representation ρ and ρ' are equivalent under the identification of the conjugate subgroups K_{ℓ} and $K_{\ell'}$. All irreducible representations of G which are not trivial on the normal subgroup V, are obtained by this manner. On the other hand, we denote also by τ the extension of every unitary irreducible representation τ of K on G, which are simply defined by $\tau(k, v) := \tau(k)$ for $k \in K$ and $v \in V$. Let Ω be a K-orbit in V^* . We fix $\ell \in \Omega$ and we define the subset $\widehat{G}(\Omega)$ of \widehat{G} by

$$\widehat{G}(\Omega) = \left\{ \operatorname{Ind}_{K_{\ell} \ltimes V}^{K \ltimes V}(\rho \otimes \chi_{\ell}); \rho \in \widehat{K_{\ell}} \right\}.$$

Then we conclude that

$$\widehat{G} = \widehat{K} \bigcup \left(\bigcup_{\Omega \in \Lambda} \widehat{G}(\Omega) \right)$$

where Λ is the set of the non-trivial orbits in V^*/K .

In the remainder of this paper, we shall assume that G is exponential, *i.e.*, K_{ℓ} is connected for all $\ell \in V^*$. Let ρ_{μ} be an irreducible representation of K_{ℓ} with highest weight μ . For simplicity, we shall write $\pi_{(\mu,\ell)}$ instead of $\pi_{(\rho_{\mu},\ell)}$ and $\mathcal{H}_{(\mu,\ell)}$ instead of $\mathcal{H}_{(\rho_{\mu},\ell)}$.

We close this section by presenting two results which are being used in the description of the dual topology of G. These are required for our proof of Theorem 1.1.

Let N be an abelian group, and assume that the compact Lie group Kacts on the left on N by automorphisms. As sets, the semidirect product $K \ltimes N$ is the Cartesian product $K \times N$ and the group multiplication is given by

$$(k_1, x_1) \cdot (k_2, x_2) = (k_1 k_2, x_1 + k_1 x_2)$$

Let χ be a unitary character of N, and let K_{χ} be the stabilizer of χ under the action of K on \widehat{N} defined by

$$(k \cdot \chi)(x) = \chi(k^{-1}x).$$

If ρ is an element of $\widehat{K_{\chi}}$, then the triple $(\chi, (K_{\chi}, \rho))$ is called a cataloguing triple. From the notations of [2], we denote by $\pi(\chi, K_{\chi}, \rho)$ the induced representation $\operatorname{Ind}_{K_{\chi} \ltimes N}^{K \ltimes N}(\rho \otimes \chi)$. Referring to [2, p. 187], we have

PROPOSITION 1. The mapping $(\chi, (K_{\chi}, \rho)) \longrightarrow \pi(\chi, K_{\chi}, \rho)$ is onto $\widehat{K \ltimes N}$.

We denote by $\mathcal{A}(K)$ the set of all pairs (K', ρ') , where K' is a closed subgroup of K and ρ' is an irreducible representation of K'. We equip $\mathcal{A}(K)$ with the Fell topology (see [8]). Therefore, every element in $\overline{K \ltimes N}$ can be catalogued by elements in the topological space $\widehat{N} \times \mathcal{A}(K)$. Larry Baggett has given an abstract description of the topology of the dual space of a semidirect product of a compact group with an abelian group in terms of the Mackey parameters of the dual space (see [2, Theorem 6.2-A]). The following result provides a precise and neat description of the topology of $\widehat{K \ltimes N}$.

THEOREM 2.2. Let Y be a subset of $\widehat{K} \ltimes \widehat{N}$ and π an element of $\widehat{K} \ltimes \widehat{N}$. Then π is weakly contained in Y if and only if there exist: a cataloguing triple $(\chi, (K_{\chi}, \rho))$ for π , an element (K', ρ') of $\mathcal{A}(K)$, and a net $\{(\chi_n, (K_{\chi_n}, \rho_n))\}$ of cataloguing triples such that:

- (i) for each n, the irreducible unitary representation $\pi(\chi_n, K_{\chi_n}, \rho_n)$ of $K \ltimes N$ is an element of Y;
- (ii) the net $\{(\chi_n, (K_{\chi_n}, \rho_n))\}$ converges to $(\chi, (K', \rho'));$
- (iii) K_{χ} contains K', and the induced representation $\operatorname{Ind}_{K'}^{K_{\chi}}(\rho')$ contains ρ .

3. ADMISSIBLE COADJOINT ORBITS OF SEMIDIRECT PRODUCT

We keep the notations of Section 2. Fix a non-zero linear form $\ell \in V^*$, and we consider an irreducible representation ρ_{μ} of K_{ℓ} with highest weight μ . Then the stabilizer G_{ψ} of $\psi = (\mu, \ell)$ in G is given by

$$G_{\psi} = \left\{ (k, v) \in G; \ (Ad_{K}^{*}(k)\mu + k.\ell \odot v, k.\ell) = (\mu, \ell) \right\}$$

= $\left\{ (k, v) \in G; \ k \in K_{\ell}, Ad_{K}^{*}(k)\mu + \ell \odot v = \mu \right\}$
= $\left\{ (k, v) \in G; \ k \in K_{\ell}, Ad_{K}^{*}(k)\mu = \mu \right\}$

since $\imath_{\ell}^{*}(\ell \odot v) = 0$ (see Lemma 2.1 and the equality (2.2)). Thus, we have $G_{\psi} = K_{\psi} \ltimes V_{\psi}$, then ψ is aligned (see [17]). A linear form $\psi \in \mathfrak{g}^{*}$ is called admissible if there exists a unitary character χ of the identity component of G_{ψ} such that $d\chi = i\psi_{|\mathfrak{g}_{\psi}}$. According to Lipsman (see [17]), the representation of G obtained

by holomorphic induction from (μ, ℓ) is equivalent to the representation $\pi_{(\mu,\ell)}$. Let τ_{λ} be an irreducible representation of K with highest weight λ , then the representation of G obtained by holomorphic induction from $(\lambda, 0)$ is equivalent to τ_{λ} . The coadjoint orbit of G through $(\lambda, 0) \in \mathfrak{g}^*$ is denoted by \mathcal{O}_{λ}^G . It is clear that \mathcal{O}_{λ}^G is an admissible coadjoint orbit of G. We denote by $\mathfrak{g}^{\ddagger} \subset \mathfrak{g}^*$ the set of all admissible linear forms on \mathfrak{g} . The quotient space $\mathfrak{g}^{\ddagger}/G$ is called the space of admissible coadjoint orbits of G. Moreover, one can check that $\mathfrak{g}^{\ddagger}/G$ is the union of the set of all orbits $\mathcal{O}_{(\mu,\ell)}^G$ and the set of all orbits \mathcal{O}_{λ}^G .

We conclude this section by recalling needed results. Let L be a closed subgroup of K. Let T_K and T_L be maximal tori respectively in K and L such that $T_L \subset T_K$. Their corresponding Lie algebras are denoted by $\mathfrak{t}_{\mathfrak{t}}$ and $\mathfrak{t}_{\mathfrak{l}}$. We denote by W_K and W_L the Weyl groups of K and L associated respectively to the tori T_K and T_L . Notice that every element $\lambda \in P_K$ takes pure imaginary values on $\mathfrak{t}_{\mathfrak{t}}$, where P_K is the integral weight lattice of T_K . Hence such an element $\lambda \in P_K$ can be considered as an element of $(i\mathfrak{t}_{\mathfrak{t}})^*$. Let C_K^+ be a positive Weyl chamber in $(i\mathfrak{t}_{\mathfrak{t}})^*$, and we define the set P_K^+ of dominant integral weights of T_K by $P_K^+ := P_K \cap C_K^+$. For $\lambda \in P_K^+$, denote by \mathcal{O}_{λ}^K the K-coadjoint orbit passing through the vector $-i\lambda$. It was proved by Kostant in [15], that the projection of \mathcal{O}_{λ}^K on $\mathfrak{t}_{\mathfrak{t}}^*$ is a convex polytope with vertices $-i(w.\lambda)$ for $w \in W_K$, and that is the convex hull of $-i(W_K.\lambda)$. For the same manner, we fix a positive Weyl chamber C_L^+ in $\mathfrak{t}_{\mathfrak{t}}^*$ and we define the set P_L^+ of dominant integral weights of T_L .

Also we denote by $i_{\mathfrak{l}}^*$ the \mathbb{C} -linear extension of both the natural projection of \mathfrak{k}^* onto \mathfrak{l}^* and the natural projection of $\mathfrak{t}_{\mathfrak{k}}^*$ onto $\mathfrak{t}_{\mathfrak{l}}^*$. Consider tow irreducible representations $\tau_{\lambda} \in \widehat{K}$ and $\rho_{\mu} \in \widehat{L}$ with respective highest weights $\lambda \in P_K^+$ and $\mu \in P_L^+$. We have the following result.

LEMMA 3.1. If $\mu = i^*_{\mathfrak{l}}(s,\lambda)$ with $s \in W_K$, then τ_{λ} occurs in the induced representation $\operatorname{Ind}_L^K(\rho_{\mu})$.

We refer to [1], for the proof of this Lemma.

4. MAIN RESULTS

Let us now return to the context and notations of the previous Sections. To an irreducible representation ρ_{μ} of K_{ℓ} with highest weight μ and a non-zero linear form ℓ on V, we associate the representation $\pi_{(\mu,\ell)}$ of G and its corresponding cataloguing triple $(\ell, (K_{\ell}, \rho_{\mu}))$. Also for an irreducible representation τ_{λ} of K with highest weight λ , we denote by $(0, (K, \tau_{\lambda}))$ the cataloguing of the trivial extension of τ_{λ} to G. By $\mathcal{C}(K)$ we mean the space of all closed subgroups of K equipped with the compact-open topology [8]. Its well-known that $\mathcal{C}(K)$ is a compact space and an important fact worth mentioning here is that:

Remark 4.1. If we have the following convergence

$$(4.1) \qquad \qquad \ell_m \longrightarrow \ell$$

where L is a subgroup of K, then K_{ℓ} contains L.

Thanks to Baggett's theorem (Theorem 2.2), we have the following tow first Propositions.

PROPOSITION 4.2. Let $(\pi_{(\mu^n,\ell_n)})_n$ be a sequence of elements in \widehat{G} . Then we have: $(\pi_{(\mu^n,\ell_n)})_n$ converges to $\pi_{(\mu,\ell)}$ in \widehat{G} , if and only if for every subsequence $(K_{\ell_{nm}})_m$, for which the sequence of subgroup-representation pairs $((K_{\ell_{nm}}, \rho_{\mu^{nm}}))_m$ converges to (L,ρ) in $\mathcal{A}(K)$, we have that $(\ell_{nm})_m$ converges to ℓ and $\rho_{\mu} \in \operatorname{Ind}_L^{K_{\ell}}(\rho)$.

PROPOSITION 4.3. Let $(\pi_{(\mu^n,\ell_n)})_n$ be a sequence of elements in \widehat{G} . Then $(\pi_{(\mu^n,\ell_n)})_n$ converges to τ_{λ} in \widehat{G} , if and only if for every subsequence $(K_{\ell_{nm}})_m$, for which the sequence of subgroup-representation $((K_{\ell_{nm}},\rho_{\mu^{nm}}))_m$ converges to (L,ρ) in $\mathcal{A}(K)$, we have that $(\ell_{nm})_m$ converges to 0 and $\tau_{\lambda} \in \mathrm{Ind}_{K}^{K}(\rho)$.

To study the convergence in the quotient space $\mathfrak{g}^{\ddagger}/G$, we need the following result (see [16. p. 135] for the proof).

LEMMA 4.4. Let G be a unimodular Lie group with Lie algebra \mathfrak{g} and let \mathfrak{g}^* be the vector dual space of \mathfrak{g} . We denote \mathfrak{g}^*/G the space of coadjoint orbits and by $p_G : \mathfrak{g}^* \longrightarrow \mathfrak{g}^*/G$ the canonical projection. We equip this space with the quotient topology, i.e., a subset V in \mathfrak{g}^*/G is open if and only if $p_G^{-1}(V)$ is open in \mathfrak{g}^* . Therefore, a sequence $(\mathcal{O}_n^G)_n$ of elements in \mathfrak{g}^*/G converges to the orbit \mathcal{O}^G in \mathfrak{g}^*/G if and only if for any $l \in \mathcal{O}^G$, there exist $l_n \in \mathcal{O}_n^G$, $n \in \mathbb{N}$, such that $l = \lim_{n \longrightarrow +\infty} l_n$.

Now, we can prove the following propositions.

PROPOSITION 4.5. Let $(\mathcal{O}_{(\mu^n,\ell_n)}^G)_n$ be a sequence in $\mathfrak{g}^{\ddagger}/G$. If $(\mathcal{O}_{(\mu^n,\ell_n)}^G)_n$ converges to $\mathcal{O}_{(\mu,\ell)}^G$ in $\mathfrak{g}^{\ddagger}/G$, then for every subsequence $(K_{\ell_{n_m}})_m$, for which the sequence of subgroup-representation pairs $((K_{\ell_{n_m}},\rho_{\mu^{n_m}}))_m$ converges to (L,ρ) in $\mathcal{A}(K)$, we have that $(\ell_{n_m})_m$ converges to ℓ and $\rho_{\mu} \in \mathrm{Ind}_L^{K_{\ell}}(\rho)$.

Proof. We assume that the sequence of admissible coadjoint orbits $(\mathcal{O}_{(\mu^n,\ell_n)}^G)_n$ converges to $\mathcal{O}_{(\mu,\ell)}^G$ in $\mathfrak{g}^{\ddagger}/G$. By referring to [3], we show that the

coadjoint orbit $\mathcal{O}_{(\mu,\ell)}^G$ is always obtained by symplectic induction from the coadjoint orbit $M = \mathcal{O}_{(\mu,\ell)}^H$ of $H := K_\ell \ltimes V$ passing through $(\mu,\ell) \in \mathfrak{k}_\ell^* \oplus V^*$ $(\mathfrak{k}_\ell \ltimes V := Lie(H)), i.e.,$

(4.3)
$$\mathcal{O}_{(\mu,\ell)}^G = M_{ind} := J_{\widetilde{M}}^{-1}(0)/H,$$

where $J_{\widetilde{M}}: \widetilde{M} = M \times T^*G \longrightarrow \mathfrak{k}_{\ell}^* \ltimes V^*$ is the momentum map of \widetilde{M} and the zero level set $J_{\widetilde{M}}^{-1}(0)$ is given by

$$J_{\widetilde{M}}^{-1}(0) = \Big\{ \Big((Ad_K^*(k)\mu, \ell), g, (Ad_K^*(k)\mu + \ell \odot v, \ell) \Big), \ k \in K_\ell, g \in G, v \in V \Big\}.$$

Let φ_M be the action of H on M, hence H acts on $M = M \times T^*G$ by $\varphi_{\widetilde{M}}$ as follows

(4.4)
$$\varphi_{\widetilde{M}}(h)(m,g,f) = \left(\varphi_M(h)(m), gh^{-1}, Ad_H^*(h)f\right),$$

for all $h \in H, (m, g, f) \in M \times T^*G$. By identifying \mathfrak{g}^* with the left-invariant 1-form on G. Then we can write $T^*G \cong G \times \mathfrak{g}^*$.

Using Lemma 4.4 and by combining (4.3) with (4.4), then we deduce that for every subsequence $(K_{\ell_{n_m}})_m$, for which the sequence of subgroup-representation pairs $(K_{\ell_{n_m}}, \rho_{\mu^{n_m}})_m$ converges to (L, ρ) in $\mathcal{A}(K)$, there exist sequences $k_m, h_m \in K_{\ell_{n_m}}, v_m, w_m \in V$, and $g_m \in G$ such that the sequence $(\phi_m)_m$ defined by

$$\begin{split} \phi_m &= \varphi_{\widetilde{M}}(k_m, v_m) \big((Ad_K^*(h_m)\mu^{n_m}, \ell_{n_m}), g_m, (Ad_K^*(h_m)\mu^{n_m} \\ &+ \ell_{n_m} \odot w_m, \ell_{n_m}) \big) \\ &= \Big(Ad_K^*(k_m h_m)\mu^{n_m} + i_{\ell_{n_m}}^*(\ell_{n_m} \odot v_m), \ell_{n_m} \big), g_m(k_m, v_m)^{-1}, \\ &\quad (Ad_K^*(k_m h_m)\mu^{n_m} + Ad_K^*(k_m)(\ell_{n_m} \odot w_m) + \ell_{n_m} \odot v_m, \ell_{n_m}) \Big) \end{split}$$

converges to $((\mu, \ell), e_G, (\mu, \ell))$. It follows that

$$(4.5) \qquad \qquad \ell_{n_m} \longrightarrow \ell$$

and

(4.6)
$$Ad_K^*(k_m h_m)\mu^{n_m} + \imath_{\ell_{n_m}}^*(\ell_{n_m} \odot v_m) \longrightarrow \mu$$

as $n \to +\infty$. By compactness of K we may assume that $(k_m h_m)_m$ converges to $p \in L \subset K_{\ell}$. Using the fact that $i^*_{\ell_{n_m}}(\ell_{n_m} \odot v_m) = 0$, we obtain from (4.6) that

(4.7)
$$\mu^{n_m} = Ad^*(p^{-1})\mu$$

for *m* large enough. Furthermore, we known that there exists an element $s \in W_{K_{\ell}}$ such that $Ad^*(p^{-1})\mu = s.\mu$. Hence $\mu^{n_m} = s.\mu$ for *m* large enough and we

conclude by Lemma 3.1 that $\rho_{\mu} \in \operatorname{Ind}_{L}^{K_{\ell}}(\rho)$. This completes the proof of the Proposition. \Box

PROPOSITION 4.6. If the sequence $\left(\mathcal{O}_{(\mu^n,\ell_n)}^G\right)_n$ converges to \mathcal{O}_{λ}^G in \mathfrak{g}^{\dagger}/G , then for every subsequence $(K_{\ell_{n_m}})_m$, for which the sequence of subgroup-representation pairs $\left((K_{\ell_{n_m}},\rho_{\mu^{n_m}})\right)_m$ converges to (L,ρ) in $\mathcal{A}(K)$, we have that $(\ell_{n_m})_m$ converges to 0 and $\tau_{\lambda} \in \operatorname{Ind}_L^K(\rho_{\mu})$.

Proof. We use the notations and proceedings of the proof of the last proposition. Let us assume that the sequence $(\mathcal{O}_{(\mu^n,\ell_n)}^G)_n$ converges to \mathcal{O}_{λ}^G . Also for every subsequence $(K_{\ell_{nm}})_m$, for which the sequence of subgroup-representation pairs $((K_{\ell_{nm}},\rho_{\mu^{nm}}))_m$ converges to (L,ρ) in $\mathcal{A}(K)$, there exist sequences $k_m, h_m \in K_{\ell_{nm}}, v_m, w_m \in V$, and $g_m \in G$ such that the sequence $(\Psi_m)_m$ defined by

$$\begin{split} \Psi_m &= \varphi_{\widetilde{M}}(k_m, v_m) \big((Ad_K^*(h_m) \mu^{n_m}, \ell_{n_m}), g_m, (Ad_K^*(h_m) \mu^{n_m} \\ &+ \ell_{n_m} \odot w_m, \ell_{n_m}) \big) \\ &= \Big(Ad_K^*(k_m h_m) \mu^{n_m} + i_{\ell_{n_m}}^*(\ell_{n_m} \odot v_m), \ell_{n_m} \big), g_m(k_m, v_m)^{-1}, \\ &\quad (Ad_K^*(k_m h_m) \mu^{n_m} + Ad_K^*(k_m)(\ell_{n_m} \odot w_m) + \ell_{n_m} \odot v_m, \ell_{n_m}) \Big) \end{split}$$

converges to $((\lambda, 0), e_G, (\lambda, 0))$. From the above facts, we conclude the following convergence

$$(4.8) \qquad \qquad \ell_{n_m} \longrightarrow 0$$

(4.9)
$$Ad^*(k_m h_m)\mu^{n_m} \longrightarrow \lambda.$$

By assumption that the sequence $(k_m h_m)_m$ converges to $p \in L$, we obtain from (4.9), that $\mu^{n_m} = Ad^*(p^{-1})\lambda$ for m large enough. Hence there exists $w \in W_K$, such that $\mu^{n_m} = w.\lambda$ for m large enough. Lemma 3.1 allows us to derive that $\tau_{\lambda} \in \operatorname{Ind}_L^K(\rho_{\mu})$. \Box

We have finished the proof of Theorem 1.1.

REFERENCES

- D. Arnal, M. Ben Ammar and M. Selmi, Le problème de la réduction à un sous-groupe dans la quantification par déformation. Ann. Fac. Sci. Toulouse 12 (1991), 7–27.
- W. Baggett, A description of the topology on the dual spaces of certain locally compact groups. Trans. Amer. Math. Soc. 132 (1968), 175-215.
- [3] P. Baguis, Semidirect product and the Pukanszky condition. J. Geom. Phys. 25 (1998), 245-270.
- M. Ben Halima and A. Rahali, On the dual topology of a class of Cartan motion groups. J. Lie Theory 22 (2012), 491-503.

- [5] T. Bröcker and T. tom Dieck, Representations of compact Lie groups. Grad. Texts in Math. 98, Springer-Verlag, New York, 1985.
- [6] J. Dixmier, Les C*-Algèbres et leurs Représentations. Gauthier-Villars, 1969.
- [7] M. Elloumi and J. Ludwig, Dual topology of the motion groups $SO(n) \ltimes \mathbb{R}^n$. Forum Math. **22** (2008), 397-410.
- [8] J.M.G. Fell, Weak containment and induced representations of groups (II). Trans. Amer. Math. Soc. 110 (1964), 424-447.
- [9] V. Guillemin and S. Sternberg, Convexity properties of the moment mapping. Invent. Math. 67 (1982), 491-513.
- [10] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations. Invent. Math. 67 (1982), 515-538.
- G.J. Heckman, Projection of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Invent. Math. 67 (1982), 333-356.
- S. Helgason, Differential geometry, Lie groups and symmetric spaces. Pure Appl. Math. 80, Academic Press, New York, 1978.
- [13] E. Kaniuth and K.F. Taylor, Kazhdan constants and the dual space topology. Math. Ann. 293 (1992), 495-508.
- [14] A. Kleppner and R.L. Lipsman, The Plancherel formula for group extensions. Ann. Sci. Éc. Norm. Supér. 4 (1972), 459–516.
- B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. Éc. Norm. Supér. 6 (1973), 413–455.
- [16] H. Leptin and J. Ludwig, Unitary representation theory of exponential Lie groups. De Gruyter Exp. Math. 18, De Gruyter, Berlin, 1994.
- [17] R.L. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical. J. Math. Pures Appl. 59 (1980), 337–374.
- [18] A. Rahali, Dual topology of generalized motion groups. Math Rep. (Buc.). In press.
- [19] G.W. Mackey, The theory of unitary group representations. Chicago Lectures in Mathematics, Chicago Univ. Press, 1976.
- [20] G.W. Mackey, Unitary group representations in physics, probability and number theory. Mathematics Lecture Note Series 55, Benjamin-Cummings Publ. Company, 1978.

Received 2 February 2017

Université de Sfax Faculté des Sciences Sfax BP 1171, 3038 Sfax, Tunisia aymenrahali@yahoo.fr