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Let H be a Hilbert space. An unitary operator W in B(H⊗H) is said to be mul-
tiplicative if it satis�es the pentagonal equation W12W13W23 = W23W12, more-
over, it is said to be commutative if it satis�es the equation W13W23 = W23W13.
A well-known result of Baaj and Skandalis asserts that every commutative mul-
tiplicative unitary on a separable Hilbert space is equivalent, up to tensoring
with a n-dimensional Hilbert space, to the commutative multiplicative unitary
VG induced from a locally compact group G constructed in a suitable manner
from W . In this paper, we prove that it is possible to remove the condition on
the separability of the Hilbert space provided that the commutative multiplica-
tive unitary has a regularity condition. We also study the case where the von

Neumann algebras L (W ) and L̂ (W ) generated from W are standard.
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1. INTRODUCTION

One of the purposes of this paper is to examine how the regularity con-
dition for the commutative multiplicative unitaries allows the construction of
a locally compact group even in the absence of the separability of underlying
Hilbert space.

We recall the following de�nitions [1, 8]:

� Amultiplicative unitary on the Hilbert space H is a unitary operator
W belonging to B(H ⊗ H) and verifying the pentagonal rule: W12W13W23 =
W23W12 [where, if Σ is the unitary ��ip� de�ned by Σ(ξ ⊗ η) = η ⊗ ξ,
W12 = W ⊗ I, W13 = Σ12W23Σ12 (Σ12 = Σ ⊗ I), W23 = I ⊗W ].

� A commutative multiplicative unitary is a multiplicative unitary
W verifying the condition: W13W23 = W23W13 .

� A multiplicative unitary is said to be regular when the norm closure
of the operator algebra {(id⊗ ω)(ΣW ) / ω ∈ B(H)∗} coincides with the ideal
K(H) of the compact operators on H .
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We prove that, if the commutative multiplicative unitary W on a Hilbert
space H is regular, then, even if H is not separable, the Gelfand spectrum G
of the commutative C*-algebra C∗(W ) is a locally compact group.

Subsequently, we prove that, for a given commutative multiplicative uni-
tary W , if the abelian von Neumann algebra L (W ) bicommutant of C∗(W )

and the von Neumann algebra L̂ (W ) dual of L (W ) (generally non commuta-
tive) are standard and if their modular conjugations satisfy certain properties
(certainly satis�ed for the multiplicative unitary induced by a locally compact
group), then the unitary W is regular and the Gelfand spectrum of the com-
mutative C*-algebra C∗(W ) is a locally compact group.

2. DEFINITIONS, RECALLS AND NOTATIONS

Let's set H a Hilbert space and W a unitary operator on H⊗H.
We let Lω = (ω ⊗ id)(W ) for all ω ∈ B(H)∗ and A0(W ) = {Lω / ω ∈

B(H)∗}.
A0(W ) is a linear subspace of B(H) and it is also an algebra with:

Lω1 ·Lω2 = Lω1∗ω2 and ω1∗ω2(X) = (ω1⊗ω2)(W ∗(I⊗X)W ) for all X∈B(H).

We denote with C∗(W ) the C*-algebra generated by A0(W ) in B(H).
This algebra is non degenerate in B(H).

It is known [1] that C∗(W ) is commutative if and only ifW is commutative.
In this case, G denotes the Gelfand spectrum of C∗(W ).

Henceforth, we denote with W a commutative multiplicative unitary on
the Hilbert space H (not necessarily separable). In this context, we denote with
L (W ) the von Neumann algebra bicommutant of C∗(W ) (which is commuta-
tive).

Moreover, we let Rω = (id⊗ω)(W ) for all ω ∈ B(H)∗ and we denote with
Ĉ∗(W ) the C∗-algebra (generally non commutative) generated by the operators

Rω. This algebra is non degenerate and L̂ (W ) denotes the von Neumann
algebra bicommutant of Ĉ∗(W ).

3. REGULAR COMMUTATIVE MULTIPLICATIVE UNITARIES

Theorem 1. If the commutative multiplicative unitary W on the Hilbert

space H is regular, then:

(1) The Gelfand spectrum G of C∗(W ) is a locally compact group.

(2) The von Neumann algebra L (W )′ is of type In where n is a cardinal

number.
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(3) In particular, W is equivalent to the multiplicative unitary tensor product

VG � IK with K Hilbert space of dimension n.

Proof. As B(H)∗ can be identi�ed with (B(H)∗)
∗∗ we have that the unit

ball (B(H)∗)1 is dense for the weak*-topology in the unit ball (B(H)∗)1 in
virtue of the Goldstine theorem [3].

From [1], if g ∈ G and if X̂ denotes the Gelfand transform of X in
C∗(W ), then:

there exists unique Tg ∈ B(H) such that ω(Tg) = g(Lω) = L̂ω(g)

for all ω ∈ B(H)∗.

Moreover, it is known (always from [1]) that: TgLω = LTgωTg.

We prove that Tg is a unitary operator. Indeed Tg has norm 1. Since g
is a state on C∗(W ), then there exists γ state on B(H) which extends g.

Hence, it is possible to construct a net {ωι}ι∈I in the unit ball of (B(H)∗)+

weak*-convergent to γ. But W is regular, therefore W ∈M(Ĉ∗(W )⊗C∗(W ))
(as C∗(W ) is commutative, the C∗-tensor product is unique).

Thus, it is possible to apply id⊗ γ to W .

On the other hand, id⊗g is a *-homomorphism between Ĉ∗(W )⊗C∗(W )

and B(H). Therefore id ⊗ g extends to a unique *-homomorphism ĩd⊗ g
between M(Ĉ∗(W ) ⊗ C∗(W )) and B(H). From such a uniqueness and as

id⊗ γ extends id⊗ g , it follows that (id⊗ γ)(W ) = ˜(id⊗ g)(W ).

For all ω ∈ B(H)∗ we have:

ω((id⊗γ)(W )) = ω(lim
ι

(id⊗ωι)(W )) = lim
ι
ωι(Lω) = γ(Lω) = g(Lω) = ω(Tg).

Whence, we have (id⊗ γ)(W ) = Tg. Since id⊗ γ is a *-homomorphism
and W is a unitary operator then (id⊗ γ)(W ) is unitary and therefore Tg is
unitary.

If g ∈ G, we de�ne αg : C∗(W ) →C∗(W ) such that αg(X) = TgXT
∗
g .

Since TgC∗(W )T ∗g = C∗(W ) we have that αg is an *-automorphism. (Indeed,
TgLωT

∗
g = LTgω and Lω = LTgT ∗

g ω = TgLT ∗
g ωT

∗
g .)

Taking advantage of αg is an *-automorphism and using an argument
similar to that used in [2], we can conclude that G is a locally compact group.

We set π :C 0(G)→L (W ) the inverse of the Gelfand transformation of
C∗(W ).

As αg(f) = f(·g), then π(αg(f)) = Tgπ(f)T ∗g for all g ∈ G, f ∈C 0(G).
[For the sake of simplicity we denote with αg also the *-automorphism of
C 0(G) such that αg(f) = f(·g)].
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If P (∆) with ∆ Borel set of G is the spectral measure induced from π,
then the following identity holds:

TgP (∆)T ∗g = P (∆g−1) for all g ∈ G, ∆ Borel set of G.

Indeed, if µξ,η(∆) = 〈P (∆)ξ, η〉 for all ξ, η∈H, then we have:∫
G
f(t)dµT ∗

g ξ,T
∗
g η(t) = 〈π(f)T ∗g ξ, T

∗
g η〉

= 〈π(αg(f))ξ, η〉 =

∫
G
f(tg)dµξ,η(t), f ∈C 0(G).

That implies:∫
G
χ∆(t)dµT ∗

g ξ,T
∗
g η(t) =

∫
G
χ∆(tg)dµξ,η(t) =

∫
G
χ∆g−1(t)dµξ,η(t)

that is:

µT ∗
g ξ,T

∗
g η(∆) = µξ,η(∆g

−1) for all g ∈ G, ∆ Borel set of G.

From that we have: TgP (∆)T ∗g = P (∆g−1). In this case, it is possible to
apply a result of L.H. Loomis [4] that extends the Stone-von Neumann-Mackey
theorem to the non-separable case [5], and therefore conclude completely the
proof. �

In the previous theorem, we assumed that the commutative multiplicative
unitary W is regular. But, for our purposes, it is su�cient to assume that the
W is semi-regular, namely W ∈M(Ĉ∗(W )⊗ C∗(W )).

4. CASE STUDY: L (W ) AND L̂ (W ) ARE STANDARD

If G is a locally compact group, dt is the right invariant Haar measure on
G, then we denote with R(G) the von Neumann algebra generated by the right
translations {ρs}s∈G [ρs(t) = st]. If δ is the modular function of G and if JG

is the conjugation on L2(G, dt) de�ned by JGξ(t) := δ(t)
1
2 ξ(t−1) for all ξ∈

L2(G, dt), then R(G) is standard with modular conjugation JG [6].
Also L∞(G, dt) identi�ed as maximal abelian von Neumann algebra on

the Hilbert space L2(G, dt) is standard and its modular conjugation is given
by CGξ(s) = ξ(s) for all ξ∈L2(G, dt).

The following equation:

(VGξ)(s, t) = ξ(st, t) for all ξ ∈ L2(G×G, dt×dt) and for all s, t ∈ G

de�nes a commutative and regular multiplicative unitary

VG : L2(G, dt)⊗  L2(G, dt)→ L2(G, dt)⊗  L2(G, dt).
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The corresponding operators Lω and Rω are given by [8]:

Lωξ,ηζ(s) = 〈ρ(s)ξ, η〉2 ζ(s)Rωξ,ηζ(s) =

∫
G
ξ(t)η(t)ζ(st)d(t)

for all ξ, η, ζ∈L2(G, dt).

The following identities express a link between the multiplicative unitary,
the right translations and the conjugations:

CGρ(s)CG = ρ(s) for all s∈G
(CG ⊗ JG)VG(CG ⊗ JG) = V ∗G [7].

In according to the previous considerations, starting from a commutative
multiplicative unitary whose related objects satisfy similar identities, we want
to obtain the regularity of the unitary. Therefore, we prove the following:

Theorem 2. Let's W a commutative multiplicative unitary on the Hilbert

space H. Suppose that the von Neumann algebras L (W ) and L̂ (W ) are

standard with modular conjugations respectively J and Ĵ .
If G is the Gelfand spectrum of C∗(W ) and if the following relations are

satis�ed:

1. JTgJ = Tg for all g∈G
2. (J ⊗ Ĵ)W (J ⊗ Ĵ) = W ∗

then W is regular and G is a locally compact group.

In order to prove the theorem, we need the following results:

Lemma 3. The following statements are equivalent:

a) (J ⊗ Ĵ)W (J ⊗ Ĵ) = W ∗

b) ĴLωξ,η
∗Ĵ = LωJη,Jξ for all ξ, η∈H

c) JRωξ,η
∗J = Rω

Ĵη,Ĵξ
for all ξ, η∈H.

Proof. a) ⇐⇒ b) For all ξ, η, ζ, θ∈H we have:

〈ĴLωξ,η
∗Ĵζ, θ〉 = 〈Ĵθ, Lωξ,η

∗Ĵζ〉 = 〈Lωξ,η Ĵθ, Ĵζ〉 = ω
Ĵθ,Ĵζ

(Lωξ,η)

= ωξ,η ⊗ ωĴθ,Ĵζ(W ) = ω
ξ⊗Ĵθ,η⊗Ĵζ(W ) = 〈W (ξ ⊗ Ĵθ), η ⊗ Ĵζ〉

= 〈W (J ⊗ Ĵ)(Jξ ⊗ θ), (J ⊗ Ĵ)(Jη ⊗ ζ)〉 =

= 〈Jη ⊗ ζ), (J ⊗ Ĵ)W (J ⊗ Ĵ)(Jξ ⊗ θ))〉.

On the other hand:

〈LωJη,Jξζ, θ〉 = 〈LωJη,Jξζ, θ〉 = ωζ,θ(LωJη,Jξ) = ωJη,Jξ ⊗ ωζ,θ(W )

= ωJη⊗ζ,Jξ⊗θ(W ) = 〈W (Jη ⊗ ζ), Jξ ⊗ θ〉
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= 〈Jη ⊗ ζ),W ∗(Jξ ⊗ θ)〉 = 〈Jη ⊗ ζ),W ∗(Jξ ⊗ θ)〉.
Since the vectors ξ, η, ζ, θ are totally arbitrary we obtain the equivalence

between a) and b).
a) ⇐⇒ c) For all ξ, η, ζ, θ∈H we have:

〈η ⊗ Ĵζ, (J ⊗ Ĵ)W (J ⊗ Ĵ)(ξ ⊗ Ĵθ))〉

= 〈W (J ⊗ Ĵ)(ξ ⊗ Ĵθ), (J ⊗ Ĵ)(η ⊗ Ĵζ)〉 = 〈W (Jξ ⊗ θ), (Jη ⊗ ζ)〉
= ωJξ⊗θ,Jη⊗ζ(W ) = ωJξ,Jη(Rωθ,ζ ) = 〈Rωθ,ζJξ, Jη〉

= 〈η, JRωθ,ζJξ〉 = 〈JRωθ,ζ
∗Jξ, η〉.

On the other hand:

〈η ⊗ Ĵζ,W ∗(Jξ ⊗ Ĵθ)〉 = 〈W (η ⊗ Ĵζ)), ξ ⊗ Ĵθ〉 = ω
η⊗Ĵζ,ξ⊗Ĵθ(W )

= ωη,ξ(RωĴζ,Ĵθ) = 〈Rω
Ĵζ,Ĵθ

η, ξ〉 = 〈Rω
Ĵζ,Ĵθ

η, ξ〉 = 〈Rω
Ĵζ,Ĵθ

η, ξ〉.
Even in this case, given the arbitrariness of the vectors ξ, η, ζ, θ, we obtain

the equivalence between a) and c). �

Lemma 4. The following statements are equivalent:

a) JTgJ = Tg for all g∈G
b) Lωξ,η

∗ = LωJξ,Jη for all ξ, η∈H
c) Rωξ,η = JRωη,ξJ for all ξ, η∈H

Proof.

a) ⇐⇒ b) The statement JTgJ = Tg for all g ∈ G is equivalent to
ωξ,η(JTgJ) = ωξ,η(Tg) for all g∈G and ξ, η∈H.

But ωξ,η(JTgJ) = 〈JTgJξ, η〉 = 〈TgJξ, Jη〉 = g(LωJξ,Jη) = g(LωJξ,Jη
∗),

whereas ωξ,η(Tg) = 〈Tgξ, η〉 = g(Lωξ,η). Therefore, the statement JTgJ =
Tg for all g ∈ G is equivalent to LωJξ,Jη

∗ = Lωξ,η for all ξ, η ∈ H namely,
Lωξ,η

∗ = LωJξ,Jη for all ξ, η∈H.
b) ⇐⇒ c) The statement Lωξ,η

∗ = LωJξ,Jη for all ξ, η∈H is equivalent
to ωζ,θ(Lωξ,η

∗) = ωζ,θ(LωJξ,Jη) for all ξ, η, ζ, θ∈H.
But ωζ,θ(Lωξ,η

∗) = 〈Lωξ,ηθ, ζ〉 = ωθ,ζ(Lωξ,η) = ωξ,η(Rωθ,ζ ) = 〈Rωθ,ζξ, η〉,
whereas ωζ,θ(LωJξ,Jη) = 〈LωJξ,Jηζ, θ〉 = ωζ,θ(LωJξ,Jη) = ωJξ,Jη(Rωζ,θ)

= 〈Rωζ,θJξ, Jη〉 = 〈JRωζ,θJξ, η〉, namely, Rωθ,ζ = JRωζ,θJ for all ζ, θ ∈
H. �

Proof of Theorem 2. In order to prove the theorem, it is su�cient to
adapt to the current context a result of Baaj-Skandalis [1] that states that a
multiplicative unitary V on the Hilbert space K is regular if there ex-
ists a unitary operator S : K → K such that S∗LωS = Lω∗ for all ω ∈
B(H)∗ [ K is the conjugate Hilbert space of K].
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In our case, we have: for all ξ, η∈H
JLωξ,ηJ = Lωξ,η

∗ because L (W ) is standard.

From this it follows that:

ĴJLωξ,ηJĴ = ĴLωξ,η
∗Ĵ = LωJη,Jξ [by b) of the Lemma 3]

= Lωη,ξ
∗ [by b) of the Lemma 4]

= JLωη,ξJ [once again, because L (W ) is standard.]

Therefore, we have: for all ξ, η∈H
JĴ [JLωξ,ηJ ]ĴJ = Lωη,ξ .

Now, for all ξ, η, ζ, θ∈H, we have:

〈(id⊗ ωη,ξ)(ΣW )ζ, θ〉 = ωζ,θ ⊗ ωη,ξ(ΣW ) = ωζ⊗η,θ⊗ξ(ΣW )

= 〈W (ζ ⊗ η), ξ ⊗ θ〉.
On the other hand:

〈(J ⊗ JĴJ)W (J ⊗ JĴJ)(Jξ ⊗ η), (Jζ ⊗ θ)〉 = 〈ζ ⊗ JĴJθ,W (ξ ⊗ JĴJη)〉

= 〈W (ξ ⊗ JĴJη), ζ ⊗ JĴJθ〉 = ω
ξ⊗ζ,JĴJη⊗JĴJθ(W ) = ω

JĴJη,JĴJθ
(Lωξ,ζ )

= 〈Lωξ,ζJĴJη, JĴJθ〉 = 〈JĴ(JLωξ,ζJ)ĴJη, θ〉 = 〈Lωζ,ξη, θ〉
= ωη,θ(Lωζ,ξ) = ωζ,ξ ⊗ ωη,θ(W ) = ωζ⊗η,ξ⊗θ(W )

= 〈W (ζ ⊗ η), ξ ⊗ θ〉.
Thus, we have: for all ξ, η, ζ, θ∈H
〈(id⊗ ωη,ξ)(ΣW )ζ, θ〉 = 〈(J ⊗ JĴJ)W (J ⊗ JĴJ)(Jξ ⊗ η), (Jζ ⊗ θ)〉.

Now, set V = (J⊗JĴJ)W (J⊗JĴJ), V is a unitary operator on H⊗H
and therefore, identifying H ⊗ H with L2(J(H)), V can be regarded as a
unitary operator on the conjugate Hilbert space L2(J(H)) and thus, V can
be regarded as a conjugate unitary operator on the Hilbert space L2(H).

Then, we have:

〈(id⊗ ωη,ξ)(ΣW )ζ, η〉 = 〈V (Jξ ⊗ η), (Jζ ⊗ θ)〉 = 〈V (TJξ,η)Jζ, θ〉
for all ξ, η, ζ, θ∈H.

Since V (TJξ,η)J is a compact operator as product of two conjugate ope-
rators one of which compact, (id⊗ ωη,ξ)(ΣW ) is compact for all ξ, η∈H.
That implies the regularity of W . �
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