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Let H be a Hilbert space. An unitary operator W in B(H ®H) is said to be mul-
tiplicative if it satisfies the pentagonal equation WioWi3Wa3 = Wa3Wia, more-
over, it is said to be commutative if it satisfies the equation Wi3Was = WasWis.
A well-known result of Baaj and Skandalis asserts that every commutative mul-
tiplicative unitary on a separable Hilbert space is equivalent, up to tensoring
with a n-dimensional Hilbert space, to the commutative multiplicative unitary
Ve induced from a locally compact group G constructed in a suitable manner
from W. In this paper, we prove that it is possible to remove the condition on
the separability of the Hilbert space provided that the commutative multiplica-
tive unitary has a regularity condition. We also study the case where the von

Neumann algebras .~ (W) and .~ (W) generated from W are standard.
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1. INTRODUCTION

One of the purposes of this paper is to examine how the regularity con-
dition for the commutative multiplicative unitaries allows the construction of
a locally compact group even in the absence of the separability of underlying
Hilbert space.

We recall the following definitions [1, §]:

e A multiplicative unitary on the Hilbert space H is a unitary operator
W belonging to B(H ® H) and verifying the pentagonal rule: WioWi3Was =
WosWia  |where, if X' is the unitary “fip” defined by X(§ ® n) = n ® &,
Wii=W®I, Wipz=2X1o2Wylis (21222@)]), W23:I®W].

¢ A commutative multiplicative unitary is a multiplicative unitary
W verifying the condition: Wi3Wag = WosWis .

¢ A multiplicative unitary is said to be regular when the norm closure
of the operator algebra {(id @ w)(XW) / w € B(H).} coincides with the ideal
IC(H) of the compact operators on H .
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We prove that, if the commutative multiplicative unitary W on a Hilbert
space H is regular, then, even if H is not separable, the Gelfand spectrum G
of the commutative C*-algebra C*(W) is a locally compact group.

Subsequently, we prove that, for a given commutative multiplicative uni-
tary W, if the abelian von Neumann algebra (W) bicommutant of C*(W)
and the von Neumann algebra (W) dual of (W) (generally non commuta-
tive) are standard and if their modular conjugations satisfy certain properties
(certainly satisfied for the multiplicative unitary induced by a locally compact
group), then the unitary W is regular and the Gelfand spectrum of the com-
mutative C*-algebra C*(W) is a locally compact group.

2. DEFINITIONS, RECALLS AND NOTATIONS

Let’s set H a Hilbert space and W a unitary operator on H ® H.
We let L, = (w®id)(W) for all w € B(H). and Ag(W) = {L,/ w €
Aog(WW) is a linear subspace of B(H) and it is also an algebra with:

Ly, Ly = Lyysw, and wixwa(X) = (w1®@we)(W*(IX)W) for all X e B(H).

We denote with C*(W) the C*-algebra generated by Ag(W) in B(H).
This algebra is non degenerate in B(H).

It is known [1] that C*(W) is commutative if and only if W is commutative.
In this case, G denotes the Gelfand spectrum of C*(W).

Henceforth, we denote with W a commutative multiplicative unitary on
the Hilbert space H (not necessarily separable). In this context, we denote with
(W) the von Neumann algebra bicommutant of C*(W) (which is commuta-
tive).

Moreover, we let R, = (id®w)(W) for all w € B(H). and we denote with
C*(W) the C*-algebra (generally non comml/lfative) generated by the operators

R,,. This algebra is non degenerate and (W) denotes the von Neumann
algebra bicommutant of C*(W).

3. REGULAR COMMUTATIVE MULTIPLICATIVE UNITARIES

THEOREM 1. If the commutative multiplicative unitary W on the Hilbert
space H 1is regular, then:
(1) The Gelfand spectrum G of C*(W) is a locally compact group.
(2) The von Neumann algebra (W) s of type I, where n is a cardinal
number.
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(3) In particular, W is equivalent to the multiplicative unitary tensor product
Vo W I with K Hilbert space of dimension n.

Proof. As B(H)* can be identified with (B(#).)** we have that the unit
ball (B(H).):1 is dense for the weak*-topology in the unit ball (B(#H)*); in
virtue of the Goldstine theorem [3].

From [1], if ¢ € G and if X denotes the Gelfand transform of X in
C*(W), then:

there exists unique 7, € B(#H) such that w(7},) = g(L.) = I/L:,(g)
for all w € B(H)x.

Moreover, it is known (always from [1]) that: TyL, = L1,Ty.

We prove that Tj is a unitary operator. Indeed T, has norm 1. Since g
is a state on C*(W), then there exists v state on B(H) which extends g.

Hence, it is possible to construct a net {w, },e; in the unit ball of (B(H).)+
weak*-convergent to . But W is regular, therefore W € M(C*(W)®C*(W)
(as C*(W) is commutative, the C*-tensor product is unique).

Thus, it is possible to apply id®@ vy to W.

On the other hand, id®g is a *-homomorphism between C*(W)®C*(W)

P

and B(H). Therefore id ® g extends to a unique *-homomorphism id ® g
between M (C*(W) @ C*(W)) and B(H). From such a uniqueness and as

id ® v extends id ® g, it follows that (id®@~)(W) = (id ® g)(W).
For all w € B(H). we have:

W((1d87)(W)) = w(lim(id@w) (W) = lmw,(Ly) = 1(Ly) = g(Ly) = w(T).

Whence, we have (id®~)(W) = T,. Since id ® v is a *-homomorphism
and W is a unitary operator then (id ®~)(W) is unitary and therefore T is
unitary.

If g € G, we define «, : C*(W) — C*(W) such that «,(X) = T,XTy.
Since T,C*(W)T; = C*(W) we have that ay, is an *-automorphism. (Indeed,
TngTg* = LTgw and Lw = LTgT;w = TgLT;ng*.)

Taking advantage of a4 is an *-automorphism and using an argument
similar to that used in [2], we can conclude that G is a locally compact group.

We set 7 : Z0(G) — (W) the inverse of the Gelfand transformation of
C*(W).

As ay(f) = f(-g), then m(ay(f)) = Tym(f)T,; forall g€ G, f e %(G).
[For the sake of simplicity we denote with «, also the *-automorphism of
7Z0(G) such that ay4(f) = f(-9)]-
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If P(A) with A Borel set of G is the spectral measure induced from 7,
then the following identity holds:
T,P(A)T; = P(Ag™!) forall g € G, A Borel set of G.
Indeed, if ¢ ,(A) = (P(A)E,n) for all £, neH, then we have:

/G F(Odguzsern(t) = (=())THE Tim)
— (nag(f)€. 1) = /G F(to)dnen(t), | € Z(G).

That implies:

/GXA(t)dMT;g,T;n(t) = /GXA(tg)dﬂé,n(t) = /GXAgl(t)d:uf,n(t)
that is:
prye T (A) = pen(Ag™) for all g € G, A Borel set of G.

From that we have: T, P(A)T} = P(Ag™"). In this case, it is possible to
apply a result of L.H. Loomis [4] that extends the Stone-von Neumann-Mackey
theorem to the non-separable case [5], and therefore conclude completely the
proof. [

In the previous theorem, we assumed that the commutative multiplicative
unitary W is regular. But, for our purposes, it is sufficient to assume that the
W is semi-regular, namely W € M (C*(W) @ C*(W)).

4. CASE STUDY: /(W) AND (W) ARE STANDARD

If G is alocally compact group, dt is the right invariant Haar measure on
G, then we denote with R(G) the von Neumann algebra generated by the right
translations {ps}seq [ps(t) = st]. If § is the modular function of G and if Jg

is the conjugation on L?(G,dt) defined by Jg&(t) := (5(t)%§(t—1) for all £€
L?(G,dt), then R(G) is standard with modular conjugation Jg [6].

Also L*°(G,dt) identified as maximal abelian von Neumann algebra on
the Hilbert space L?(G,dt) is standard and its modular conjugation is given

by Cgé(s) = &(s) for all £€ L?(G,dt).
The following equation:

(Veé)(s,t) = &(st,t) for all € € L*(GxG,dtxdt) and forall s,t € G

defines a commutative and regular multiplicative unitary

Vo : L*(G,dt) @ L2(G, dt) — L*(G,dt) ® L3(G, dt).
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The corresponding operators L, and R, are given by [8]:

L, C(5) = (p()E, )2 C(5) Ru, € / (1) (1)
for all £,n,¢e L*(G,dt).

The following identities express a link between the multiplicative unitary,
the right translations and the conjugations:
Cap(s)Cq = p(s) forall seG
(Ca®Ja)Va(Co® Jg) =Va (7).
In according to the previous considerations, starting from a commutative

multiplicative unitary whose related objects satisfy similar identities, we want
to obtain the regularity of the unitary. Therefore, we prove the following:

THEOREM 2. Let’s W a commutative multiplicative unitary on the Hilbert
space M. Suppose that the von Neumann algebras (W) and (W) are
standard with modular conjugations respectively J and J.

If G is the Gelfand spectrum of C*(W') and if the following relations are
satisfied:

1. JIyJ =1, foralgeG

2. (JQIW(J®J)=W*

then W is reqular and G is a locally compact group.

In order to prove the theorem, we need the following results:
LeMMA 3. The following statements are equivalent:

a) (JoHW(J@J)=W*

b) JLwE *J = Ly, e forall EneH

¢) JRy,,"J =Ry, - forall {E,neH.

We,n n,JE

Proof. a) <= D) For all £,n,(,0€H we have:
(JLug, " JC,0) = (J0, L, " TC) = (Lus. , T0, JC) = w3, 50 (Luse )
= wey @ Wiy 5 (W) = weg 5905 (W) = (W(E @ J6),n ® JC)
= (W(J @ )(JE@0),(J@J)(JIn () =
= (In® (), (J& )W (J @ J)(JE®0))).
On the other hand:

<LWJn,J5C7 9> = <Lan,J5Cv 0> = wCﬂ(Lan,Jg) =Wy, @ wCﬁ(W)
= wnecsee0(W) = (W(Jn® (), JE® 0)
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= (Jn@Q), W (JE®0)) = (Jn@(), W' (JE®0)).
Since the vectors &,m,(, 0 are totally arbitrary we obtain the equivalence

between a) and b).
a) <= c¢) For all & n,(,0€c€H we have:

(n® J¢, (J & HW(J @ J)(E© J)))
= (W(J e J)(E®J0),(JoJ)neJC) = (W(IE0),(Jne])
= WJ§®9J77®C(W) = waJn(Rwe,g) = <Rw9,g‘]€ Jn)

= (0, JRuy JE) = (J Ry [~ JE, ).
On the other hand:

(@ JCWH(JE® J0) = (W(n©J()),E @ T0) =w, 5 e 75 (W)

= wpe(Ruj ;) = (Ruj_;m.6) = (R 5, 8) = (Ruj_;,m,8)-
Even in this case, given the arbitrariness of the vectors &, 7, (, 6, we obtain
the equivalence between a) and c¢). O

LEMMA 4. The following statements are equivalent:
a) JT,J =T, forallgeG

b) L, == LwJ&”,n forall &meH

We,n
¢) Ry, =JRy, J foral §neH

Proof.

a) <= b) The statement JT,J =T, forall g€ G is equivalent to
Wen(JTyJ) = wen(Ty) forall ge G and §,neH.

But wf,n(‘]Tg‘]> = <JTgJ5777> = <TgJ£7JT’> = g(Lng,Jn) = g(Lng,Jn*)a
whereas we,(Ty) = (14€,1) = g(Luw,,)- Therefore, the statement JTyJ =
T, forall g € G is equivalent to L = Ly, forall {,n € H namely,
Ly, = Lu,, ,, forall {,neH.

b) <= c) The statement Ly, * = Ly, ,,
to weo(Luwe, ") = we (L, ,,) forall §,n,¢,0€H.

But wC,e(ng,n*> = <Lw§7n97 C> - we,C(ng,n) - wf,n(Rwe,g) = <Rw9,g£7n>a

wie,gn

for all £,meH is equivalent

whereas  w¢o(Luye ;) = (LwyesnC0) = weo(Luse,,) = wiean(Ru,)
= (RueoJE In) = (JRy o JE, ), namely, Ry, = JRy ,J forall (,0 €
H. O

Proof of Theorem 2. In order to prove the theorem, it is sufficient to
adapt to the current context a result of Baaj-Skandalis [1] that states that a
multiplicative unitary V on the Hilbert space K is regular if there ex-
ists a unitary operator S : K — K such that S*L,S = L.+ forallw €
B(H). [K is the conjugate Hilbert space of K].
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In our case, we have: for all {,neH
JLy,,J = Ly, because (W) is standard.
From this it follows that:
JJ Ly, ,JJ = Jme*J = Lu;, 5 [by b) of the Lemma 3]
= Ly, [by b) of the Lemma 4]
=JL,, J [once again, because (W) is standard.]

Therefore, we have: for all {,neH
JJ[JLug,, J|JJ = L, .
Now, for all £,n,(,0€H, we have:
((id @ wy ) (XW)(,0) = we g @ wye(EW) = wegno0e(XW)
= (W({®n),{®0).
On the other hand:

(J@ JTINW(J @ JITI)(JE@n), (JCR0)) = (@ JTJO,W(E® JTJIn))
= (W(E®JTJn),(© JTJ6) = Wewe g Tmer770W) = @55, 7770 (Lwe o)
= (Lue JT 0, JTJO) = (JJ(J Lus, )T J1,0) = (Lo, (1, 0)

= wno(Lug ) = wee @ wno(W) = weanexo(W)
= (W({C®@n),{®0).

Thus, we have: for all £,n,(,0€eH
(id @ wy ) (ZW)C,0) = ((J @ JTI)W(J @ JII)(JE ®n), (JC @ 6)).

Now, set V = (J®@JJJ)W(J®JJJ), V is a unitary operator on H & H
and therefore, identifying H ® H with L?*(J(H)), V can be regarded as a
unitary operator on the conjugate Hilbert space L?(J(H)) and thus, V can
be regarded as a conjugate unitary operator on the Hilbert space L?(H).
Then, we have:

((id @ wye ) (EW)C,m) = (V(IE @), (JC® 0)) = (V(Tye ) JIC,0)
for all £,7n,(,0€H.

Since V(Ty¢y)J is a compact operator as product of two conjugate ope-
rators one of which compact, (id ® wy¢)(XW) is compact for all {,n€H.

That implies the regularity of W. 0O
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