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Our goal in this note is to obtain an extension of a result known as the Port-
manteau theorem (see, for instance, Theorem 2.1 of Chapter 1, pp. 16�17 of
P. Billingsley, Convergence of Probability Measures, Second Edition, Wiley, New
York and Toronto, 1999, or Theorem 3.1 of Chapter 3, pp. 108�110, of S.N. Ethier
and T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley,
Hoboken, New Jersey, 2005).

As in the Portmanteau theorem, our result consists of several equivalent
assertions.

The theorem that we obtain is stated using the vector space of all con-
tinuous bounded functions with bounded supports and the vector space of all
uniformly continuous bounded functions with bounded supports.

Like in the Portmanteau theorem, we deal with sequences of probability
measures. However, when dealing with our more general type of convergence,
the limit of the sequence is not necessarily a probability measure.
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1. INTRODUCTION

As usual, by a Polish space we mean a metric space whose topology de�ned
by the metric is separable and complete.

Let (X, d) be a Polish space.

Let B(X) be the Borel σ-algebra de�ned by the metric topology on X,
and letM(X) be the real Banach space of all real-valued signed measures on
(X,B(X)), whereM(X) is endowed with the total variation norm.

Like in many of our earlier works, we let Bb(X) and Cb(X) be the real
Banach spaces of all real-valued bounded Borel measurable functions on X and
of all continuous bounded real-valued functions on X, respectively, the norms
on both Bb(X) and Cb(X) being the uniform (sup) norm.
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As in Szarek and Zaharopol [7], we will use the notations

〈f, µ〉 =

∫
X

f(x) dµ(x)

for f ∈ Bb(X) and µ ∈M(X);

B(x0, r) = {x ∈ X | d(x, x0) < r}= the open ball with center x0 and radius r,

for x0 ∈ X and r ∈ R, r > 0;

Ā and
◦
A= the closure and the interior of a subset A of X, respectively.

As usual, we say that a subset A of X is bounded if A can be included in
an open ball (of �nite radius); that is, if there exist x0 ∈ X and r ∈ R, r > 0,
such that A ⊆ B(x0, r).

Given f : X → R, we will use the notation supp f = {x ∈ X | f(x) 6= 0} =
the support of f .

We will denote by C
(b)
bs (X) the vector space of all bounded continuous

functions f : X → R with bounded support.

Also, let C
(ucb)
bs (X) be the vector space of all real-valued uniformly conti-

nuous bounded functions on X that have bounded supports.
Now, let (µn)n∈N be a sequence of elements ofM(X), and let µ ∈M(X).

We say that (µn)n∈N converges to µ along C
(b)
bs (X) if, for every f ∈

C
(b)
bs (X), the sequence (〈f, µn〉)n∈N converges to 〈f, µ〉.

Similarly, we say that (µn)n∈N converges to µ along C
(ucb)
bs (X) if, for every

f ∈ C(ucb)
bs (X), the sequence (〈f, µn〉)n∈N converges to 〈f, µ〉.
As usual, given a subset A of X, we use the notation ∂A = Ā \

◦
A= the

boundary of A.
Following Ethier and Kurtz's monograph [5] (see p. 108), or Gugushvili

[6], given a Borel subset A of X, and ν ∈ M(X), ν ≥ 0, we say that A is a

ν-continuity subset of X if ν(∂A) = 0.
Our goal in this paper is to prove the following theorem:

Theorem 1.1. Let µn)n∈N be a sequence of probability measures, µn ∈
M(X) for every n ∈ N. Also, let µ ∈M(X), µ ≥ 0.

The following assertions are equivalent:

(a) The sequence (µn)n∈N converges to µ along C
(b)
bs (X).

(b) The sequence (µn)n∈N converges to µ along C
(ucb)
bs (X).

(c) The following two statements hold true:

(c1) For every closed bounded subset F of X, we have

lim sup
n→∞

µn(F ) ≤ µ(F ).
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(c2) For every open bounded subset G of X, we have

lim inf
n→∞

µn(G) ≥ µ(G).

(d) For every bounded Borel µ-continuity subset A of X, we have that

the sequence (µn(A))n∈N converges to µ(A).

Note that Theorem 1.1 is obviously true if X is a �nite set. Thus, we will
assume from now on that X is in�nite; if D is a countable dense subset of X,
then D is an in�nite set, as well (such a countable dense subset of X exists
because X is separable).

Theorem 1.1 is an extension of a well-known result referred to as the
Portmanteau theorem (see, for example, Theorem 2.1, pp. 16�17, in Chapter
1 of Billingsley's monograph [1], or Theorem 2.1, pp. 3�4, of Billingsley [2], or
Theorem 3.1, pp. 108�110, in Chapter 3 of Ethier and Kurtz's monograph [5],
or Theorem 6 of Gugushvili [6]).

The convergence of sequences of probability measures that appears at
(a) and at (b) of Theorem 1.1 in this paper is signi�cantly more general than
the convergence in the Cb(X)-weak topology of M(X) that appears in the
Portmanteau theorem (for details on the Cb(X)-weak topology of M(X), see
Section 1 of Szarek and Zaharopol [7], see also Section 1.1 of [8]; for various
kinds of topologies on spaces of measures, see Section 4.6, Section 4.7, and
Chapter 8 of the impressive monograph of Bogachev [3]).

Indeed, it is well-known and easy to prove that if a sequence (νn)n∈N of
Borel probability measures converges in the Cb(X)-weak topology ofM(X) to
an element ν ofM(X), ν ≥ 0, then, necessarily, ν is a probability measure; by
contrast, if a sequence (νn)n∈N converges to an element ν ofM(X), ν ≥ 0, in
the sense described at (a) or (b) of Theorem 1.1 of this paper, then ν may fail
to be a probability measure.

The paper is organized as follows: in the next section (Section 2), we
discuss several families of continuous functions that are used in the work; in
Section 3, we present several properties of continuous functions; in the last
section (Section 4), we use all the results discussed earlier in order to prove
Theorem 1.1.

2. USEFUL FAMILIES OF CONTINUOUS FUNCTIONS

We will employ the notations introduced so far. Thus, we assume given a
Polish space (X, d).

As usual, if A is a nonempty subset of X and x ∈ X, we use the notation
d(x,A) = inf

y∈A
d(x, y).
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Let A ∈ X, A 6= ∅. We will denote by gA the function gA : X → R de�ned
by gA(x) = d(x,A) for every x ∈ X.

Lemma 2.1. Given a nonempty subset A of X, the function gA is uni-

formly continuous.

Proof. Let A be a nonempty subset of X.

Using Theorem 5.1.6, pp. 50�51 of Dixmier [4], we obtain that

|d(x,A)− d(y,A)| ≤ d(x, y),

or

(2.1) |gA(x)− gA(y)| ≤ d(x, y)

for every x ∈ X and y ∈ X.

Clearly, in view of the inequalities (2.1), we obtain that gA is uniformly
continuous. �

Let φ : R→ R be de�ned by

(2.2) φ(z) =


1 if z ≤ 0
1− z if 0 < z < 1
0 if z ≥ 1

Lemma 2.2. The function φ is uniformly continuous.

Proof. We have to prove that for every ε ∈ R, ε > 0, there exists δ ∈ R,
δ > 0, such that |φ(x)− φ(y)| < ε whenever |x− y| < δ.

To this end, let ε ∈ R, ε > 0, and set δ =
ε

2
.

We will assume that ε < 1 (obviously, we can make this assumption).

Now let x ∈ R and y ∈ R be such that |x− y| < δ.

We may and do assume that x ≤ y (because if x > y, we just switch the
roles of x and y).

Clearly, it is enough to prove that |φ(x) − φ(y)| < ε in the following �ve
cases:

Case I: x ≤ y ≤ 0;

Case II: x ≤ 0 and y ∈ (0, 1);

Case III: x ∈ (0, 1) and y ∈ (0, 1);

Case IV: x ∈ (0, 1) and y ≥ 1;

Case V: 1 ≤ x ≤ y.

Case I and Case V: If x ≤ y ≤ 0, or if 1 ≤ x ≤ y, then using the de�nition
of φ (see the equality (2.2)), we obtain that |φ(x)− φ(y)| = 0 < ε.
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Case II: Using the de�nition of φ, we obtain that

(2.3) |φ(x)− φ(y)| = |1− (1− y)| = y.

Since x ≤ 0 and |x− y| = y − x < ε

2
, it follows that

(2.4) y < x+
ε

2
≤ ε

2
< ε.

In view of (2.3) and (2.4), we further obtain that |φ(x)− φ(y)| < ε.

Case III: Since x ∈ (0, 1) and y ∈ (0, 1), using (2.2), we obtain that

|φ(x)− φ(y)| = |(1− x)− (1− y)| = |y − x| < ε

2
< ε.

Case IV: Since x ∈ (0, 1) and y ≥ 1, using (2.2), we obtain that

|φ(x)− φ(y)| = |1− x− 0| = 1− x ≤ y − x < ε

2
< ε. �

Lemma 2.3. Let F be a closed nonempty subset of X and let ε ∈ R, ε > 0.

(a) The function g
(ε)
F : X → R de�ned by g

(ε)
F (x) =

(
1− d(x, F )

ε

)
∨ 0

for every x ∈ X, is bounded and uniformly continuous.

(b) If, in addition, F is also a bounded subset of X, then g
(ε)
F is a

bounded uniformly continuous function and has a bounded support.

Proof. (a) Let ε ∈ R, ε > 0, and let F be a closed nonempty subset of X.
Set Fε =

⋃
y∈F

B(y, ε).

It is easy to see that

(2.5) g
(ε)
F (x) =


1− d(x, F )

ε
if x ∈ Fε \ F

1 if x ∈ F
0 if x ∈ X \ Fε

for every x ∈ X.

Using (2.5), we obtain that 0 ≤ g
(ε)
F (x) ≤ 1 for every x ∈ X. Therefore,

g
(ε)
F is a bounded function.

We will now prove that g
(ε)
F is uniformly continuous.

To this end, we will show that

(2.6) g
(ε)
F (x) = φ

(
d(x, F )

ε

)
for every x ∈ X.

Note that if we prove that (2.6) holds true for every x ∈ X, then we obtain

that g
(ε)
F is uniformly continuous. Indeed, using Lemma 2.1, we obtain that the
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function x 7→ d(x, F )

ε
, x ∈ X, is uniformly continuous; since, by Lemma 2.2,

the function φ is uniformly continuous, we obtain the uniform continuity of

g
(ε)
F , as well.

In order to prove that (2.6) holds true for every x ∈ X, it is enough to
prove that (2.6) is true in the following three situations:

(i) x ∈ X \ Fε;
(ii) x ∈ Fε \ F ;
(iii) x ∈ F .

(i) Let x ∈ X \ Fε. Using the equality (2.5), we obtain that g
(ε)
F (x) = 0.

On the other hand, d(x, F ) ≥ ε because x ∈ X \Fε, so
d(x, F )

ε
≥ 1; there-

fore, using the de�nition of φ (the equality (2.2)), we obtain that

φ

(
d(x, F )

ε

)
= 0.

(ii) We now assume that x ∈ Fε \ F .

In view of (2.5), we obtain that g
(ε)
F (x) = 1− d(x, F )

ε
.

Since x ∈ Fε \ F , it follows that 0 < d(x, F ) < ε, so
d(x, F )

ε
∈ (0, 1);

therefore, using the de�nition of φ (see (2.2)), we obtain that

φ

(
d(x, F )

ε

)
= 1− d(x, F )

ε
.

Thus, (2.6) holds true for x ∈ Fε \ F .

(iii) Let x ∈ F .
Using the equality (2.5), we obtain that g

(ε)
F (x) = 1.

Since x ∈ F , it follows that d(x, F ) = 0, so φ

(
d(x, F )

ε

)
= φ(0) = 1 (see

the equality (2.2)).

(b) Assume that (in addition to being a closed nonempty subset of X) F
is also bounded.

We have to prove that g
(ε)
F has bounded support.

To this end, we will prove that:

(1) supp
(
g
(ε)
F

)
= F̄ε

and

(2) F̄ε is a bounded subset of X.
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(1) We have to prove that

(2.7) supp
(
g
(ε)
F

)
⊆ F̄ε

and

(2.8) F̄ε ⊆ supp
(
g
(ε)
F

)
.

Proof of the Inclusion (2.7). Let g ∈ supp
(
g
(ε)
F

)
. Then, there exists a

convergent sequence (zn)n∈N of elements of X such that g
(ε)
F (zn) 6= 0 for every

n ∈ N and such that (zn)n∈N converges to z.
Using the equality (2.5), we obtain that zn /∈ X \Fε, so zn ∈ Fε for every

n ∈ N. Since (zn)n∈N converges to z, it follows that z ∈ F̄ε.
We have therefore proved that if z ∈ supp

(
g
(ε)
F

)
, then z ∈ F̄ε. Thus,

(2.7) holds true.

Proof of the Inclusion (2.8). Let z ∈ F̄ε. Thus, there exists a sequence
(zn)n∈N such that zn ∈ Fε for every n ∈ N, and such that (zn)n∈N converges to
z.

Since zn ∈ Fε, it follows that d(zn, F ) < ε, so
d(zn, F )

ε
< 1 for every

n ∈ N.
Thus, using the equality (2.5), we obtain that g

(ε)
F (zn) 6= 0 for every

n ∈ N. Since (zn)n∈N converges to z, it follows that z ∈ supp
(
g
(ε)
F

)
. Thus,

z ∈ supp
(
g
(ε)
F

)
whenever z ∈ F̄ε. Accordingly, (2.8) holds true.

(2) Since F is bounded, it follows that there exists x0 ∈ X and η ∈ R,
η > 0, such that F ⊆ B(x0, η). We now note that

(2.9) Fε ⊆ B(x0, η + ε).

Indeed, if z ∈ Fε, then there exists x ∈ F such that d(z, x) < ε; therefore,
d(z, x0) ≤ d(z, x) + d(x, x0) < ε+ η.

Using the inclusion (2.9), we obtain that F̄ε ⊆ B(x0, η + ε), so F̄ε is a
bounded set.

Since (1) and (2) hold true, we obtain that g
(ε)
F has bounded support. �

Let D be a countable dense subset of X. As pointed out in Introduction,
we may and do assume that D is in�nite.

Since D is an in�nite countable subset of X, there exists a sequence
(xi)n∈N of elements of D such that:

(i) xi 6= xj for every i ∈ N and j ∈ N, i 6= j, and
(ii) D = {xi | i ∈ N}; that is, the range of the sequence (xi)i∈N is the

entire set D.
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For every i ∈ N and j ∈ N, let fij : X → R be de�ned by
fij(x) = 2(1− jd(x, xi)) ∨ 0 for every x ∈ X.

Since fij(x) = 2×

((
1− d(x, xi)

1
j

)
∨ 0

)
for every i ∈ N, j ∈ N, and

x ∈ X, and since the singletons {xi}, i ∈ N, are closed bounded subsets of X,

it follows that fij = g

(
1
j

)
{xi} where g

(
1
j

)
{xi} is the function that appears in Lemma

2.3 for F = {xi} and ε =
1

j
for every i ∈ N and j ∈ N.

Using Lemma 2.3, we obtain that fij , i ∈ N, j ∈ N, are uniformly con-
tinuous functions with bounded supports (actually, from the proof of (b) of

Lemma 2.3, we obtain that supp fij = B

(
xi,

1

j

)
for every i ∈ N and j ∈ N).

Next, for every open bounded subset G of X, and every m ∈ N, we de�ne

L(G)
m =

{
(i, j) ∈ N× N

∣∣∣∣ i ≤ m, j ≤ m,B(xi, 1

j

)
⊆ G

}
.

Now, for every m ∈ N and every open bounded subset G of X,

let g
(G)
m : X → R be de�ned by g

(G)
m (x) = 0 for every x ∈ X if L

(G)
m = ∅,

and g(G)
m (x) =

 ∑
(i,j)∈L(G)

m

fij(x)

 ∧ 1 if L
(G)
m is nonempty and x ∈ X.

Lemma 2.4. Let G be an open bounded subset of X, and let m ∈ N. Then
the function g

(G)
m is bounded, has bounded support, and is uniformly continuous.

Proof. It is easy to see that

(2.10) 0 ≤ g(G)
m (x) ≤ 1G(x)

for every x ∈ X, so g
(G)
m is obviously a bounded function.

Taking into consideration that G is a bounded subset of X, we obtain
that Ḡ is bounded as well. Thus, using again the inequalities (2.10), we obtain

that the function g
(G)
m has bounded support.

We now prove that g
(G)
m is uniformly continuous. We �rst note that if

L
(G)
m = ∅, then g(G)

m (x) = 0 for every x ∈ X, so, obviously, g
(G)
m is uniformly

continuous in this case. Thus, we may and do assume that L
(G)
m is nonempty.

Set h(G)
m =

∑
(i,j)∈L(G)

m

fij .

Since L
(G)
m is a �nite set, and since fij is uniformly continuous for every i

and j, it follows that h
(G)
m is uniformly continuous, as well.
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Clearly,

(2.11) g(G)
m = h(G)

m ∧ 1.

Let ε ∈ R, ε > 0. Since h
(G)
m is uniformly continuous, it follows that there

exists δ ∈ R, δ > 0, such that
∣∣∣h(G)
m (x)− h(G)

m (y)
∣∣∣ < ε whenever x ∈ X and

y ∈ X satisfy the inequality d(x, y) < δ.

Our goal now is to prove that, for every x ∈ X and y ∈ X such that
d(x, y) < δ, we have that

(2.12)
∣∣∣g(G)
m (x)− g(G)

m (y)
∣∣∣ < ε.

To this end, let x ∈ X and y ∈ X be such that d(x, y) < δ. We have to
study the following �ve cases:

(a) h
(G)
m (x) = 0 and h

(G)
m (y) = 0.

(b) h
(G)
m (x) · h(G)

m (y) = 0 and
(
h
(G)
m (x)

)2
+
(
h
(G)
m (y)

)2
> 0.

(c) 0 < h
(G)
m (x) < 1 and 0 < h

(G)
m (y) < 1.

(d) 0<h
(G)
m (x)<1 and h

(G)
m (y)≥1, or h

(G)
m (x) ≥ 1 and 0<h

(G)
m (y)<1.

(e) h
(G)
m (x) ≥ 1 and h

(G)
m (y) ≥ 1.

We now discuss the �ve cases.

(a) and (e). If x and y are in case (a) or in case (e), using the equality

(2.11), we obtain that
∣∣∣g(G)
m (x)− g(G)

m (y)
∣∣∣ = 0, so, obviously, the inequality

(2.12) holds true.

(b) Since we assume that h
(G)
m (x) · h(G)

m (y) = 0 and(
h(G)
m (x)

)2
+
(
h(G)
m (y)

)2
> 0,

we distinguish two situations:

((b)-1) h
(G)
m (x) = 0 and h

(G)
m (y) > 0,

and

((b)-2) h
(G)
m (x) > 0 and h

(G)
m (y) = 0.

Note that it is enough to prove that (2.12) holds true only for x and y
in the situation ((b)-1) because if x and y are in the situation ((b)-2), then,
by switching the roles of x and y, we obtain that x and y are in the situation
((b)-1).

Proof of (2.12) for x and y in the situation ((b)-1). Since we assume that

h
(G)
m (x) = 0 and h

(G)
m (y) > 0, we obtain that g

(G)
m (x) = 0 and

g(G)
m (y) =

(
h(G)
m ∧ 1

)
(y) ≤ h(G)

m (y).
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Since we also assume that d(x, y) < δ, we further obtain that∣∣∣h(G)
m (x)− h(G)

m (y)
∣∣∣ < ε.

Since
∣∣∣h(G)
m (x)− h(G)

m (y)
∣∣∣ = h

(G)
m (y), it follows that h

(G)
m (y) < ε.

Accordingly,
∣∣∣g(G)
m (x)− g(G)

m (y)
∣∣∣ = g

(G)
m (y) ≤ h(G)

m (y) < ε.

Thus, the inequality (2.12) holds true whenever

h(G)
m (x) = 0 and h(G)

m (y) > 0.

(c) Since we now assume that 0 < h
(G)
m (x) < 1 and 0 < h

(G)
m (y) < 1, we

obtain that g
(G)
m (x) = h

(G)
m (x) and g

(G)
m (y) = h

(G)
m (y).

Since we also assume that d(x, y) < δ (so,
∣∣∣h(G)
m (x)− h(G)

m (y)
∣∣∣ < ε), we

obtain that (2.12) holds true.

(d) We now assume that

(d1) 0 < h
(G)
m (x) < 1 and h

(G)
m (y) ≥ 1,

or that

(d2) h
(G)
m (x) ≥ 1 and 0 < h

(G)
m (y) < 1.

As in case (b), it is enough to prove that (2.12) holds true for x and y in
the situation (d1), because if x and y are in the situation (d2), we can prove
that (2.12) is true by switching the roles of x and y.

Proof of (2.12) in the situation (d1). In this situation, we obtain that

g
(G)
m (x) = h

(G)
m (x) and g

(G)
m (y) = 1.

Since we also assume that d(x, y) < δ, we obtain that∣∣∣h(G)
m (x)− h(G)

m (y)
∣∣∣ < ε.

It follows that (2.12) holds true in this case because∣∣∣g(G)
m (x)− g(G)

m (y)
∣∣∣ = g(G)

m (y)− g(G)
m (x) = 1− h(G)

m (x) ≤ h(G)
m (y)− h(G)

m (x) < ε.

Since the inequality (2.12) holds true in all cases (a)-(e), it follows that

(2.12) holds true for all x ∈ X and y ∈ X such that d(x, y) < δ; therefore, g
(G)
m

is uniformly continuous. �

Proposition 2.5. For every open bounded subset G of X, and for every

m ∈ N, we have g
(G)
m ∈ C(ucb)

bs (X).

Proof. Use Lemma 2.4. �



11 Sequences of probabilities 299

3. PROPERTIES OF CONTINUOUS FUNCTIONS

Our goal in this section is to discuss several properties of certain con-
structions, constructions which involve continuous functions.

As usual in this work, we assume given a Polish space (X, d).

We will need the following (known) lemma:

Lemma 3.1. Let F be a nonempty closed subset of X. Then:

(a) For every sequence (εk)k∈N of real numbers that is decreasing (i.e.,

εk ≥ εk+1 for every k ∈ N) and that converges to zero, we have that
∞⋂
k=1

Fεk =

F , where Fεk , k ∈ N are the subsets of X de�ned in the proof of (a) of Lemma

2.3.

(b) For every sequence (εk)k∈N of strictly positive real numbers that con-

verges to zero, we have that
∞⋂
k=1

Fεk = F .

(c)
⋂
ε∈R
ε>0

Fε = F .

The proof of the lemma appears implicitly in the proof of the implication
(a) =⇒ (b) of Theorem 2.1 of Billingsley [2], or in the proof of the implication
(i) =⇒ (ii) of Theorem 6 of Gugushvili [6].

Lemma 3.2. Let F be a closed nonempty subset of X, and let (εk)k∈N
be a sequence of strictly positive real numbers such that (εk)k∈N converges

to zero. Then the sequence
(
g
(εk)
F (x)

)
k∈N

converges pointwise to 1F on X

(here, g
(εk)
F , k ∈ N, are the functions de�ned at (a) of Lemma 2.3; that is,

g
(εk)
F (x) =

(
1− d(x, F )

εk

)
∨ 0 for every x ∈ X and k ∈ N).

Proof. Let (εk)k∈N be a sequence of strictly positive real numbers that

converges to zero. We have to prove that the sequence
(
g
(εk)
F

)
k∈N

satis�es the

following condition: for every x ∈ X, the sequence
(
g
(εk)
F

)
k∈N

converges and

lim
k→+∞

g
(εk)
F (x) =

{
1 if x ∈ F
0 if x ∈ X \ F .

Thus, it is enough to prove that the following two assertions are true:

(A) If x ∈ F , then the sequence (of real numbers)
(
g
(εk)
F (x)

)
k∈N

con-

verges to 1.

(B) If x ∈ X \ F , then the sequence
(
g
(εk)
F (x)

)
k∈N

converges to zero.
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Proof of (A). Let x ∈ F . Using the equality (2.5), we obtain that

g
(εk)
F (x) = 1 for every k ∈ N. Thus, obviously,

(
g
(εk)
F (x)

)
k∈N

converges to 1.

Proof of (B). Let x ∈ X \F . Set αx = d(x, F ). Since F is a closed subset

of X, it follows that αx > 0.

Taking into consideration that (εk)k∈N converges to zero, we obtain that

there exists kx ∈ N such that εk < αx for every k ∈ N, k ≥ kx.
We obtain that d(x, F ) > εk, so x /∈ Fεk ; using the equality (2.5), we

further obtain that g
(εk)
F (x) = 0 for every k ∈ N, k ≥ kx.

We have therefore proved that all the terms of the sequence
(
g
(εk)
F (x)

)
k∈N

are equal to zero except possibly a �nite number of them. Hence,
(
g
(εk)
F (x)

)
k∈N

converges to zero. �

If F is a closed nonempty subset of X, if µ ∈M(X) is a positive element

(a �nite measure), and if ε ∈ R, ε > 0, then the function g
(ε)
F is µ-integrable

(because, by (a) of Lemma 2.3, g
(ε)
F is uniformly continuous and bounded, so

g
(ε)
F is a bounded Borel measurable function; since µ is a �nite measure, it

follows that g
(ε)
F is µ-integrable). Accordingly, the assertion of the following

lemma makes sense:

Lemma 3.3. As before, let F be a closed nonempty subset of X. Also, let

µ ∈M(X), µ ≥ 0. Then lim
ε→0
ε>0

〈
g
(ε)
F , µ

〉
does exist and is equal to µ(F ).

Proof. In order to prove the lemma, it is enough to prove that for every

sequence (εk)k∈N of real numbers such that εk > 0 for every k ∈ N, and such

that (εk)k∈N converges to zero, we have that the sequence
(〈
g
(εk)
F , µ

〉)
k∈N

converges to µ(F ).

To this end, let (εk)k∈N be a sequence of real numbers such that εk > 0

for every k ∈ N, and such that (εk)k∈N converges to zero.

We now note that:

(i) As explained before the lemma, the functions g
(εk)
F , k ∈ N, are µ-

integrable.

(ii) Using the equality (2.5), we obtain that 0 ≤ g
(εk)
F (x) ≤ 1X(x) for

every x ∈ X and k ∈ N.
(iii) The function 1X is µ-integrable because µ is a �nite measure.

(iv) The sequence
(
g
(εk)
F

)
k∈N

converges pointwise to 1F on X (by

Lemma 3.2).
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In view of the fact that the above assertions (i), (ii), (iii), and (iv) hold

true, we obtain that we can apply the Lebesgue dominated convergence theorem

to the sequence
(
g
(εk)
F

)
k∈N

with respect to the measure µ.

Using the Lebesgue dominated convergence theorem, we obtain

that lim
k→+∞

∫
g
(εk)
F (x) dµ(x) does exist and is equal to

∫
X

1F dµ = µ(F ).

Thus, the sequence
(〈
g
(εk)
F , µ

〉)
k∈N

converges to µ(F ). �

We will now discuss several facts that will be used in the proof of the

implication (d) =⇒ (a) of our main result in this paper (Theorem 1.1).

In our approach, we will use an idea of the proof of (iv) =⇒ (i) of The-

orem 6 (Portmanteau Lemma) of Gugushvili [6] (see also the proof of (d) =⇒
(a) of Theorem 2.1, pp. 3�4 of Billingsley [2]).

Let µ ∈ M(X) be a probability measure. Also, let g ∈ C(b)
bs (X), g ≥ 0,

g 6= 0. Since g is a bounded function, and since g ≥ 0, there exists bg ∈ R,
bg > 0, such that 0 ≤ g(x) ≤ bg for every x ∈ X.

Set D
(g)
µ = {x ∈ (0, bg] |µ({z ∈ X | g(z) = x}) > 0}. Note that the set

D
(g)
µ is at most countable (empty, �nite, or countable) because µ is a �nite

measure.

Now, let ε ∈ R, ε > 0. Clearly, there exists a partition P
(ε)
bg ,µ

: 0 = x
(µ,g)
0,bg

<

x
(µ,g)
1,bg

< · · · < x
(µ,g)
k,bg

= bg of the interval [0, bg] such that xµ,gi,bg , i = 1, 2, . . . , k,

do not belong to D
(g)
µ , and such that σ

(
P

(ε)
bg ,µ

)
< ε (where σ

(
P

(ε)
bg ,µ

)
is the size

(or the norm) of P
(ε)
bg ,µ

; for details on the size of a partition, see Section 4 of

Szarek and Zaharopol [7]).

Thus, let P
(ε)
bg ,µ

: 0 = x
(µ,g)
0,bg

< x
(µ,g)
1,bg

< · · · < x
(µ,g)
k,bg

= bg be such a

partition of [0, bg] (that is, P
(ε)
bg ,µ

has the following properties: σ
(
P

(ε)
bg ,µ

)
< ε,

and x
(µ,g)
i,bg

/∈ D(g)
µ for every i = 1, 2, . . . , k).

Set A
i,P

(ε)
bg,µ

=
{
z ∈ X

∣∣∣x(µ,g)i−1,bg ≤ g(z) < x
(µ,g)
i,bg

}
= g−1

([
x
(µ,g)
i−1,bg , x

(µ,g)
i,bg

))
for every i = 1, 2, . . . , k.

Next, let v
P

(ε)
bg,µ

: X → R be de�ned by v
P

(ε)
bg,µ

(z) =
k∑
i=1

x
(µ,g)
i−1,bg1Ai,P

(ε)
bg,µ

(z)

for every z ∈ X.

Also, let w
P

(ε)
bg,µ

: X → R be de�ned by w
P

(ε)
bg,µ

(z) =
k∑
i=1

x
(µ,g)
i,bg

1
Ai,P

(ε)
bg,µ

(z)

for every z ∈ X.
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Lemma 3.4. The functions v
P

(ε)
bg,µ

and w
P

(ε)
bg,µ

are Borel measurable,

and v
P

(ε)
bg,µ

≤ g ≤ w
P

(ε)
bg,µ

(in the sense that

(3.1) v
P

(ε)
bg,µ

(z) ≤ g(z) ≤ w
P

(ε)
bg,µ

(z)

for every z ∈ X).

Proof. Since g is a continuous function, and since
[
x
(µ,g)
i−1,bg , x

(µ,g)
i,bg

)
is a

Borel subset of real numbers, it follows that A
i,P

(ε)
bg,µ

∈ B(X) for every i =

1, 2, . . . , k, so both v
P

(ε)
bg,µ

and w
P

(ε)
bg,µ

are Borel measurable functions.

We now prove that the inequalities (3.1) hold true for every z ∈ X. To
this end, let z ∈ X.

Taking into consideration the manner in which the partition P
(ε)
bg ,µ

is de�-

ned, we obtain that there exists a unique i ∈ {1, 2, . . . , k} such that

x
(µ,g)
i−1,bg ≤ g(z) < x

(µ,g)
i,bg

.

Thus, v
P

(ε)
bg,µ

(z) = x
(µ,g)
i−1,bg and w

P
(ε)
bg,µ

(z) = x
(µ,g)
i,bg

, so the inequalities (3.1)

hold true for z. �

We will use the notation g−1(x) = {z ∈ X | g(z) = x}, x ∈ R.

Lemma 3.5. (a)

(3.2) ∂A
i,P

(ε)
bg,µ

⊆ g−1
(
x
(µ,g)
i−1,bg

)
∪ g−1

(
x
(µ,g)
i,bg

)
for every i = 2, 3, . . . , k.

(b) µ

(
∂A

i,P
(ε)
bg,µ

)
= 0 for every i = 2, 3, . . . , k.

Proof. (a) Let i ∈ {2, 3, . . . , k}. Clearly, the inclusion (3.2) holds true if
∂A

i,P
(ε)
bg,µ

is empty. Thus, we may and do assume that ∂A
i,P

(ε)
bg,µ

6= ∅.

Let z ∈ ∂A
i,P

(ε)
bg,µ

. Since ∂

(
A
i,P

(ε)
bg,µ

)
= ∂A

i,P
(ε)
bg,µ

\
◦︷ ︸︸ ︷

∂A
i,P

(ε)
bg,µ

, and since X

is a metric space, we note that there exist:

� a sequence (ρn)n∈N of elements of A
i,P

(ε)
bg,µ

, such that (ρn)n∈N converges

to z,

and

� a sequence (ηn)n∈N of elements of X \ A
i,P

(ε)
bg,µ

, such that (ηn)n∈N con-

verges to z, as well.
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Since g is continuous, and since the sequences (ρn)n∈N and (ηn)n∈N con-
verge to z, it follows that (g(ρn))n∈N and (g(ηn))n∈N converge to g(z).

Since ρn ∈ A
i,P

(ε)
bg,µ

, it follows that g(ρn) ∈
[
x
(µ,g)
i−1,bg , x

(µ,g)
i,bg

)
for every

n ∈ N, so g(z) ∈
[
x
(µ,g)
i−1,bg , x

(µ,g)
i,bg

]
.

Since ηn ∈ X \ A
i,P

(ε)
bg,µ

, it follows that g(ηn) /∈
[
x
(µ,g)
i−1,bg , x

(µ,g)
i,bg

)
for

every n ∈ N, so, since (g(ηn))n∈N converges to g(z), and since g(z) belongs to[
x
(µ,g)
i−1,bg , x

(µ,g)
i,bg

]
, we obtain that g(z) = x

(µ,g)
i−1,bg , or else g(z) = x

(µ,g)
i,bg

; that is,

g(z) ∈
{
x
(µ,g)
i−1,bg , x

(µ,g)
i,bg

}
.

Accordingly, z ∈ g−1
(
x
(µ,g)
i−1,bg

)
∪ g−1

(
x
(µ,g)
i,bg

)
. Thus, the inclusion (3.2)

holds true.

(b) Using (a) and the fact that x
(µ,g)
i,bg

/∈ D(g)
µ for every i = 1, 2, . . . , k, we

obtain that (b) is true. �

Lemma 3.6. Let µ ∈ M(X), g ∈ C
(b)
bs (X), g ≥ 0, P

(ε)
bg ,µ

, and A
i,P

(ε)
bg,µ

,

i = 2, 3, . . . , k, be as before. Assume also that there exists a sequence (µn)n∈N
of elements of M(X) such that µn ≥ 0 and ‖µn‖ = 1 for every n ∈ N, and
such that the following condition is satis�ed:

(C) The sequence (µn(A))n∈N converges to µ(A) whenever A is a bounded

Borel measurable subset of X such that µ(∂A) = 0.

Then, for every i = 2, 3, . . . , k, the sequence

(
µn

(
A
i,P

(ε)
bg,µ

))
n∈N

conver-

ges to µ

(
A
i,P

(ε)
bg,µ

)
.

Proof. Let i ∈ {2, 3, . . . , k}. Using (b) of Lemma 3.5, we obtain that

µ

(
∂A

i,P
(ε)
bg,µ

)
= 0. Thus, taking into consideration that A

i,P
(ε)
bg,µ

is a Borel

bounded set, we obtain that we can use condition (C ), and we conclude that(
µn

(
A
i,P

(ε)
bg,µ

))
n∈N

converges to µ

(
A
i,P

(ε)
bg,µ

)
. �

4. WEAK TYPE CONVERGENCE OF SEQUENCES

OF MEASURES

In this section, we prove the main result of the paper (Theorem 1.1) and
we state an open problem which was our motivation for obtaining the result.
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Proof of Theorem 1.1. (a) =⇒ (b). Since C
(ucb)
bs (X) ⊆ C(b)

bs (X), it follows

that, if (µn)n∈N converges to µ along C
(b)
bs (X), then, obviously, the sequence

(〈g, µn〉)n∈N converges to 〈g, µ〉 whenever g ∈ C(ucb)
bs (X).

Accordingly, (µn)n∈N converges to µ along C
(ucb)
bs (X).

(b) =⇒ (c). Assume that (µn)n∈N converges to µ along C
(ucb)
bs (X).

We have to prove that (b) =⇒ (c-1) and that (b) =⇒ (c-2).

Proof of (b) =⇒ (c-1). Assume that (µn)n∈N converges to µ along

C
(ucb)
bs (X), and let F be a closed bounded subset of X. We have to prove

that the inequality (1.1) holds true.

Clearly, (1.1) is true whenever F is the empty set. Thus, we may and do
assume that F 6= ∅.

For every ε ∈ R, ε > 0, let g
(ε)
F : X → R be de�ned by

g
(ε)
F (x) =

(
1− d(x, F )

ε

)
∧ 0

for every x ∈ X (note that the functions g
(ε)
F , ε ∈ R, ε > 0, appear also at (a)

of Lemma 2.3).

Using Lemma 2.3, we obtain that g
(ε)
F ∈ C

(ucb)
bs (X) for every ε ∈ R, ε > 0.

Since we assume that (b) holds true, we obtain that, for every ε ∈ R,
ε > 0, we have that the sequence

(〈
g
(ε)
F , µn

〉)
n∈N

converges to
〈
g
(ε)
F , µ

〉
.

We now de�ne a function η : (0,+∞) → R as follows: η(ε) =
〈
g
(ε)
F , µ

〉
for every ε ∈ R, ε > 0.

Next, we note that η is increasing. Indeed, let ε1 ∈ R and ε2 ∈ R be such

that 0 < ε1 < ε2. Then,
d(x, F )

ε1
≥ d(x, F )

ε2
, so −d(x, F )

ε1
≤ −d(x, F )

ε2
for every

x ∈ X.

Using the equality (2.5), we obtain that 0 ≤ g
(ε1)
F (x) ≤ g

(ε2)
F (x) for every

x ∈ X.

Thus, η is increasing because we have η(ε1) ≤ η(ε2) for every ε1 ∈ R and
ε2 ∈ R such that 0 < ε1 < ε2.

By Lemma 3.3, lim
ε→0
ε>0

η(ε) does exist and

(4.1) lim
ε→0
ε>0

η(ε) = µ(F ).

Using the equality (2.5), we obtain that

(4.2) 1F ≤ g(ε)F



17 Sequences of probabilities 305

for every ε ∈ R, ε > 0.

Since µn, n ∈ N, are probability measures, using (4.2), we obtain that

(4.3) µn(F ) ≤
〈
g
(ε)
F , µn

〉
for every n ∈ N and ε ∈ R, ε > 0.

Using (4.3), we obtain that

(4.4)

lim sup
n→+∞

µn(F ) ≤ lim sup
n→+∞

〈
g
(ε)
F , µn

〉
= lim

n→+∞

〈
g
(ε)
F , µn

〉
=
〈
g
(ε)
F , µ

〉
= η(ε)

for every ε ∈ R, ε > 0.

Finally, using (4.4) and (4.1), we obtain that

lim sup
n→+∞

µn(F ) ≤ lim
ε→+∞
ε>0

η(ε) = µ(F ).

Thus, the inequality (1.1) holds true.

Proof of (b) =⇒ (c-2). Let G be an open bounded subset of X.

We have to prove that the inequality (1.2) holds true.

To this end, let g
(G)
m , m ∈ N, be the functions de�ned before Lemma 2.4.

Since, as pointed out in the proof of Lemma 2.4, 0 ≤ g(G)
m ≤ 1G, it follows

that

(4.5)

∫
X

1G dµn ≥
∫
X

g(G)
m dµn

for every m ∈ N and n ∈ N.
The inequalities (4.5) can be restated as follows:

(4.6) µn(G) ≥
∫
X

g(G)
m dµn

for every m ∈ N and n ∈ N.
Using (4.6), we obtain that for every k ∈ N, we have

(4.7) µk(G) ≥ inf
n≥k

∫
X

g(G)
m dµn.

Accordingly,

(4.8) µl(G) ≥ inf
n≥k

∫
X

g(G)
m dµn

for every k ∈ N and l ∈ N such that k ≤ l.
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Using (4.8), we obtain that

(4.9) inf
l≥k

µl(G) ≥ inf
n≥k

∫
X

g(G)
m dµn

for every k ∈ N and m ∈ N.
Since inf

l≥k
µl(G) ≤ sup

j∈N
inf
l≥j

µl(G) for every k ∈ N, using (4.9), we obtain that

sup
j∈N

inf
l≥j

µl(G) ≥ inf
n≥k

∫
X

g
(G)
m dµn for every k ∈ N, so, for every m ∈ N, we have

sup
j∈N

inf
l≥j

µl(G) ≥ sup
k∈N

inf
n≥k

∫
X

g(G)
m dµn.

We can restate the above inequality as follows:

(4.10) lim inf
n→+∞

µn(G) ≥ lim inf
n→+∞

∫
X

g(G)
m dµn

for every m ∈ N.
Since g

(G)
m ∈ C(ucb)

bs (X) for every m ∈ N (see Proposition 2.5), using the

assumption (b), we obtain that the sequence

(∫
X

g
(G)
m dµn

)
n∈N

converges to∫
X

g
(G)
m dµ, so (4.10) becomes

(4.11) lim inf
n→+∞

µn(G) ≥
∫
X

g(G)
m dµ

for every m ∈ N.
We now note that the sequence

(
g
(G)
m

)
m∈N

converges pointwise to 1G (in

the sense, of course, that
(
g
(G)
m (x)

)
m∈N

converges to 1G(x) for every x ∈ X).

Since 0 ≤ g(G)
m ≤ 1G for every m ∈ N, and since µ is a (positive) �nite me-

asure (so, the function 1G is µ-integrable), it follows that we can apply the Le-

besgue dominated convergence theorem to the sequence of functions
(
g
(G)
m

)
m∈N

with respect to the measure µ.

We obtain that the sequence
(
g
(G)
m

)
m∈N

converges, and

(4.12) lim
m→+∞

∫
X

g(G)
m dµ =

∫
X

1G dµ = µ(G).

In view of (4.12), using (4.11), we obtain that the inequality (1.2) is valid.
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(c) =⇒ (d). Let A be a bounded Borel subset of X such that µ(∂A) = 0.

Since A is bounded, it follows that both Ā and
◦
A are bounded, as well.

Therefore, we can use statement (c-1) for Ā and statement (c-2) for
◦
A.

We obtain that

(4.13) lim sup
n→+∞

(µn(Ā)) ≤ µ(Ā) = µ(
◦
A) ≤ lim inf

n→+∞
(µn(

◦
A)).

Since µn(
◦
A) ≤ µn(Ā) for every n ∈ N, it follows that

(4.14) lim inf
n→+∞

µn(
◦
A) ≤ lim inf

n→+∞
µn(Ā) ≤ lim sup

n→+∞
µn(Ā).

Combining the inequalities (4.13) and (4.14), we obtain that
(4.15)

lim inf
n→+∞

µn(
◦
A) = lim inf

n→+∞
µn(Ā) = µ(Ā) = µ(

◦
A) = lim sup

n→+∞
µn(
◦
A) = lim sup

n→+∞
µn(Ā).

Using the equalities (4.15), we further obtain that

lim inf
n→+∞

µn(A) = µ(A) = lim sup
n→+∞

µn(A).

Thus, the sequence (µn(A))n∈N converges to µ(A). We have therefore
proved that, for every bounded µ-continuity subset A of X, the sequence
(µn(A))n∈N converges to µ(A).

(d) =⇒ (a). Under the assumption that (d) holds true, we have to prove

that, for every g ∈ C
(b)
bs (X), the sequence (〈g, µn〉)n∈N converges to 〈g, µ〉.

Thus, assume that (d) holds true.

We will prove the convergence of the sequence (〈g, µn〉)n∈N in two steps:

Step 1. At this step we will prove that (〈g, µn〉)n∈N converges to 〈g, µ〉 for
every g ∈ C(b)

bs (X), g ≥ 0.

Step 2. Here we will prove that (〈g, µn〉)n∈N converges to 〈g, µ〉 for

every g ∈ C(b)
bs (X).

Step 1 (Full Details). As pointed out after Lemma 3.3, in our discussion
we will use the approach of the proof of (iv) =⇒ (i) of Theorem 6 (Portmanteau
Lemma) of Gugushvili [6] (see also the proof of (d) =⇒ (a) of Theorem 2.1,
pp. 3-4 of Billingsley [2]).

Let g ∈ C(b)
bs (X), g ≥ 0. Clearly, (〈g, µn〉)n∈N converges to 〈g, µ〉 if g = 0.

Thus, we may and do assume that g 6= 0.

Since g is a bounded function and g ≥ 0, there exists b ∈ R, b > 0, such
that 0 ≤ g(z) < b for every z ∈ X.
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Also, let D
(g)
µ be the set de�ned before Lemma 3.4.

We will show that (〈g, µn〉)n∈N converges to 〈g, µ〉, by proving that for
every ε ∈ R, ε > 0, there exists nε ∈ N such that |〈g, µn〉− 〈g, µ〉| < ε for every
n ∈ N, n ≥ nε.

To this end, let ε ∈ R, ε > 0.

Next, let P : 0 = x0 < x1 < · · · < xk = b be a partition of the interval

[0, b] such that σ(P ) <
ε

b+ 1 + µ(X)
(where σ(P ) is the norm (or mesh) of P )

and such that xi, i = 1, 2, . . . , k, do not belong to D
(g)
µ . (Such a partition does

exist because (as pointed out when we de�ned D
(g)
µ (before Lemma 3.4)), the

set D
(g)
µ is at most countable.)

Set Ai = {z ∈ X |xi−1 ≤ g(z) < xi} = g−1([xi−1, xi)) for every i =
1, 2, . . . , k.

Next, let v : X → R be de�ned by v(z) =
k∑
i=1

xi−11Ai(z) for every z ∈ X.

Also, let w : X → R be de�ned by w(z) =
k∑
i=1

xi1Ai(z) for every z ∈ X.

Using Lemma 3.4, we obtain that v(z) ≤ g(z) ≤ w(z) for every z ∈ X.

Taking into consideration that µn, n ∈ N, and µ are �nite (positive)
measures, by integrating each side of the above inequalities with respect to
µn, n ∈ N, and with respect to µ, and using the de�nitions of the functions v
and w, we obtain that

(4.16)
k∑
i=1

xi−1µn(Ai) ≤
∫
X

g(z) dµn(z) ≤
k∑
i=1

xiµn(Ai)

for every n ∈ N, and

(4.17)
k∑
i=1

xi−1µ(Ai) ≤
∫
X

g(z) dµ(z) ≤
k∑
i=1

xiµ(Ai).

Using Lemma 3.6, we obtain that the sequence (µn(Ai))n∈N converges to
µ(Ai) for every i = 2, 3, . . . , k.

Thus, there exists nε ∈ N large enough such that

|µn(Ai)− µ(Ai)| ≤
ε

k(b+ 1 + µ(X))

for every n ∈ N, n ≥ nε, and every i = 2, 3, . . . , k.
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For n ∈ N, n ≥ nε, it follows that∣∣∣∣∣∣
∫
X

g(z) dµn(z)−
∫
X

g(z) dµ(z)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
X

g(z) dµn(z)−
k∑
i=1

xiµn(Ai)

∣∣∣∣∣∣+

∣∣∣∣∣
k∑
i=1

xiµn(Ai)−
k∑
i=1

xiµ(Ai)

∣∣∣∣∣
+

∣∣∣∣∣∣
k∑
i=1

xiµ(Ai)−
∫
X

g(z) dµ(z)

∣∣∣∣∣∣
=

 k∑
i=1

xiµn(Ai)−
∫
X

g(z) dµn(z)

+

∣∣∣∣∣
k∑
i=1

xiµn(Ai)−
k∑
i=1

xiµ(Ai)

∣∣∣∣∣
+

 k∑
i=1

xiµ(Ai)−
∫
X

g(z) dµ(z)


≤

(
k∑
i=1

xiµn(Ai)−
k∑
i=1

xi−1µn(Ai)

)
+

k∑
i=1

xi|µn(Ai)− µ(Ai)|

+

(
k∑
i=1

xiµ(Ai)−
k∑
i=1

xi−1µ(Ai)

)
.

Taking into consideration that x0 = 0, that

x1 = x1 − x0 ≤ σ(P ) <
ε

b+ 1 +mu(X)
,

that |µn(Ai)− µ(Ai)| <
ε

b+ 1 +mu(X)
for every n ∈ N, n ≥ nε, and every

i = 2, 3, . . . , k, that xi − xi−1 ≤ σ(P ) for every i = 1, 2, . . . , k, and that
A1, A2, . . . , Ak are mutually disjoint Borel subsets of X, we obtain that for
n ∈ N, n ≥ nε, we have(

k∑
i=1

xiµn(Ai)−
k∑
i=1

xi−1µn(Ai)

)
+

k∑
i=1

xi|µn(Ai)− µ(Ai)|

+

(
k∑
i=1

xiµ(Ai)−
k∑
i=1

xi−1µ(Ai)

)

= x1µn(A1) +

k∑
i=2

(xi − xi−1)µn(Ai) +

k∑
i=1

xi|µn(Ai)− µ(Ai)|



310 Radu Zaharopol 22

+x1µ(A1) +
k∑
i=2

(xi − xi−1)µ(Ai)

≤ ε

b+ 1 + µ(X)
µn(A1) +

k∑
i=2

(xi − xi−1)µn(Ai) +

k∑
i=1

xi
ε

k(b+ 1 + µ(X))

+
ε

b+ 1 + µ(X)
µ(A1) +

k∑
i=2

(xi − xi−1)µ(Ai)

≤ ε

b+ 1 + µ(X)
µn(A1) +

k∑
i=2

σ(P )µn(Ai) +

k∑
i=1

xi
ε

k(b+ 1 + µ(X))

+
ε

b+ 1 + µ(X)
µ(A1) +

k∑
i=2

σ(P )µ(Ai)

≤ ε

b+ 1 + µ(X)
µn(A1) +

k∑
i=2

ε

b+ 1 + µ(X)
µn(Ai)

+
k∑
i=1

xi
ε

k(b+ 1 + µ(X))
+

ε

b+ 1 + µ(X)
µ(A1) +

k∑
i=2

ε

b+ 1 + µ(X)
µ(Ai)

=
ε

b+ 1 + µ(X)
µn

(
k⋃
i=1

Ai

)
+

k∑
i=1

xi
ε

k(b+ 1 + µ(X))

+
ε

b+ 1 + µ(X)
µ

(
k⋃
i=1

Ai

)

=
ε

b+ 1 + µ(X)
+

K∑
i=1

xi
ε

k(b+ 1 + µ(X))
+

ε

b+ 1 + µ(X)
µ(X)

≤ ε

b+ 1 + µ(X)
+ b

k∑
i=1

ε

k(b+ 1 + µ(X))
+

ε

b+ 1 + µ(X)
µ(X)

=
ε

b+ 1 + µ(X)
+ kb

ε

k(b+ 1 + µ(X))
+

ε

b+ 1 + µ(X)
µ(X)

=
ε

b+ 1 + µ(X)
(1 + b+ µ(X)) = ε.

Thus, we have proved that for every ε ∈ R, ε > 0, there exists nε ∈ N
such that |〈g, µn〉 − 〈g, µ〉| < ε for every n ∈ N, n ≥ nε.

Therefore, the sequence (〈g, µn〉)n∈N converges to 〈g, µ〉 whenever

g ∈ C(b)
bs (X), g ≥ 0.

Step 2. We now prove that the sequence (〈g, µn〉)n∈N converges to 〈g, µ〉
whenever g ∈ C(b)

bs (X).

To this end, let g ∈ C(b)
bs (X).



23 Sequences of probabilities 311

Set g+ = g ∨ 0 and g− = (−g)∨ 0 (here, we may think of g as an element
of Bb(X); therefore, in Bb(X), the functions g+ and g− are well-de�ned and
belong to Bb(X)).

It is easy to see that both g+ and g− are continuous bounded functions
and have bounded supports.

Thus, g+ ∈ C(b)
bs (X) and g− ∈ C(b)

bs (X).
Since g+ ≥ 0 and g− ≥ 0, using Step 1, we obtain that the sequences

(〈g+, µn〉)n∈N and (〈g−, µn〉)n∈N converge to 〈g+, µ〉 and 〈g−, µ〉, respectively.
Since 〈g, µn〉 = 〈g+, µn〉 − 〈g−, µn〉 for every n ∈ N, and since

〈g, µ〉 = 〈g+, µ〉 − 〈g−, µ〉, it follows that the sequence (〈g, µn〉)n∈N converges
to 〈g, µ〉. �

We will conclude the paper with two open problems.
The terminology we will use here is inspired by the terms introduced by

Ethier and Kurtz in Section 4 of Chapter 3 of [5].

A subset A of C
(b)
bs (X) is said to be convergence determining for the

convergence along C
(b)
bs (X) if every sequence (µn)n∈N of elements of M(X)

such that µn is a probability measure for every n ∈ N, and every µ ∈ M(X),

µ ≥ 0, have the property that (µn)n∈N converges to µ along C
(b)
bs (X) whenever

the following condition is satis�ed:

(C
(b)
bs (X),A) The sequence (〈g, µn〉)n∈N converges to 〈g, µ〉 for every g ∈ A.

Similarly, given a subset S of C
(ucb)
bs (X), we say that S is convergence

determining for the convergence along C
(ucb)
bs (X) if any sequence (µn)n∈N of

probability measures inM(X) and any µ ∈ M(X), µ ≥ 0, have the property

that (µn)n∈N converges to µ along C
(ucb)
bs (X) if the condition (C

(ucb)
bs (X),S)

below is satis�ed:

(C
(ucb)
bs (X),S) The sequence (〈g, µn〉)n∈N converges to 〈g, µ〉 whenever g ∈ S.

Question 1. Is there a countable convergence determining set A for the

convergence along C
(b)
bs (X)?

Question 2. Is there a countable convergence determining set S for the

convergence along C
(ucb)
bs (X)?

A positive answer to any of the above questions would allow us to complete
the ergodic decomposition de�ned by transition probabilities in Polish spaces
to a decomposition quite similar to the decomposition de�ned by transition
probabilities in locally compact separable metric spaces.

Note that even proofs of the existence of such sets, without explicit met-
hods of obtaining the sets, are enough for the completion of the ergodic decom-
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position. Of course, having also methods for constructing such sets would be
very useful for practical and theoretical purposes.
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