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In this survey we consider free interface problems that do not fall within the
class of Stefan problems, as there is no speci�c condition on the velocity of the
interface. At least near some equilibrium, we are able to associate the velocity
with a combination of spatial derivatives up to the second order that we de�ne as
a second-order Stefan condition. Then, we may reformulate the system as a fully
nonlinear problem, for which it holds local in time existence and uniqueness.
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1. INTRODUCTION

In the physical literature, free interface evolution problems are often called
�Stefan problems�, with reference to the work of Joseph Stefan who introduced
the general class of moving boundary problems around 1890, in relation to
the melting of polar ice cap (see, e.g., [15, Section 1.1]). In dimension one, a
simple one-phase problem for the temperature distribution in the water and
the position of the melting interface reads in non-dimensional variables

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x), t > 0, 0 < x < ξ(t),(1.1)

subject to a �xed boundary condition at x = 0. At the free interface x = ξ(t)
it holds for t > 0:

u(t, ξ(t)) = 0,(1.2)

∂u

∂x
(t, ξ(t)) = −ξ′(t).(1.3)
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The second condition (1.3) is usually called a Stefan condition; we will refer
to as a �rst-order Stefan condition, because it involves a �rst-order spatial
derivative of u at the interface. The classical Stefan problem (1.1)�(1.3) has
multiple generalizations: multiphase, nonlinear Stefan problems (see [14, 16]),
two and three space dimensions, etc. There exists a vast literature on the
matter, which among many other relevant references includes the books by
Crank [15], Gupta [17], Me��rmanov [28], Rodrigues [29], Ruben�ste��n [30].

However, several free interface evolution problems in physics, in particular
in combustion theory, do not a priori belong to the class of Stefan problems, for
the simple reason that there is no Stefan condition in the formulation. More
speci�cally, the velocity of the interface is not explicit. In the case of thin
�ames the temperature's gradient is discontinuous at the free interface (the
�ame front), which characterizes �combustion type� free boundary conditions
(see Ca�arelli-V�azquez [13]).

The purpose of this survey is to discuss local in time existence and unique-
ness of a solution of some typical free interface problems in which there is
no prima facie velocity of the free interface, at least near some equilibrium.
We will revisit two models which stem from combustion theory: a simple
one-dimensional, one-phase problem [10], and the Near-Equidi�usional �ames
(NEF) system in the whole space ( [7], see also [23�25] for a comprehensive
study). Then, we study a general overdetermined problem in a domain Ωt of
RN , N ≥ 1, whose boundary ∂Ωt is now the free interface (see [6]). In all
these cases, further analysis enables us to relate the interface's velocity to a
combination of spatial derivatives up to the second-order. As we called (1.3) a
�rst-order Stefan condition, it sounds natural to call second-order Stefan condi-

tion a similar condition involving second-order spatial derivatives (see, e.g., [4]).
We want to emphasize that �rst-order and second-order Stefan conditions

lead to di�erent mathematical problems. For simplicity, consider the following
one-dimensional free interface problem:

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x), t > 0, −∞ < x < ξ(t).(1.4)

At the free interface x = ξ(t), we may consider, either a �rst-order (nonlinear)
Stefan condition such as

ξ′(t) = f1

(
∂u

∂x
(t, ξ(t))

)
,(1.5)

where f1 : R → R is a smooth function, or a second-order (nonlinear) Stefan

condition of the form:

ξ′(t) = f2

(
∂u

∂x
(t, ξ(t)),

∂2u

∂x2
(t, ξ(t))

)
,(1.6)
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where f2 is a smooth function from R2 to R. Each condition, (1.5) or (1.6),
is supplemented by another condition at the free interface, such as u(t, ξ(t))
given.

Next, in the coordinates t′ = t, x′ = x − ξ(t), the interface is �xed at
x′ = 0. Equation (1.4) reads:

∂u

∂t′
(t′, x′)− dξ

dt′
(t′)

∂u

∂x′
(t′, x′) =

∂2u

∂x′∂x′
(t′, x′), x′ ∈ (−∞, 0).

Replacing − dξ
dt′

(t′) by (1.5), we get

∂u

∂t′
(t′, x′) = f1

(
∂u

∂x
(t′, 0)

)
∂u

∂x′
(t′, x′) +

∂2u

∂x′∂x′
(t′, x′),

which is a quasilinear parabolic equation with a nonlocal term; replacing it by
(1.6), now it follows that

∂u

∂t′
(t′, x′) = f2

(
∂u

∂x
(t′, 0),

∂2u

∂x2
(t′, 0)

)
∂u

∂x′
(t′, x′) +

∂2u

∂x′∂x′
(t′, x′),

which is a fully nonlinear parabolic equation with a nonlocal term.
Therefore, in contrast to the classical �rst-order situation which leads to

quasilinear problems, system containing a second-order Stefan condition may
be reformulated as fully nonlinear problems of the form:

(1.7)


∂w

∂t
= Lw + F(w),

Bw = G(w),

supplemented by an ad hoc initial condition at time t = 0. Here, L and B
are linear di�erential operators, whereas F and G are nonlinear functions, see
Section 5 for a general framework.

Let us conclude this introduction with two comments.
(i) It is worthwhile noting that the above approach via second-order Stefan

condition and fully nonlinear problems has been also successful in interface
problems with no jumps at the free interface. For example, in the case of
thick �ames, the temperature remains continuously di�erentiable. In thermo-
di�usive model of �ame propagation with stepwise temperature kinetics and
zero-order reaction (see [2]), the main qualitative feature is that it has two
interfaces: the ignition interface where the ignition temperature is attained and
the trailing interface where the concentration of de�cient reactant reaches zero.
For this model, underlying second-order Stefan conditions appear naturally at
both fronts (see [1, 3]). When converted into free interface problems, similar
features may hold in parabolic problems with ignition temperature or with
discontinuous nonlinearities (see [1] and the references therein).
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(ii) Local existence near equilibria has been initially motivated by stability
issues. However, stability in fully nonlinear problems goes beyond the scope
of this survey. We refer the interested reader to [1], [3�10], [19], [25] and to
e.g., [26] for a comprehensive abstract analysis.

2. A ONE-PHASE, ONE-DIMENSIONAL PROBLEM ([10])

As a �rst step, let us consider a simple, one-phase, one-dimensional prob-
lem on the real line, which stems from combustion theory (see [10]). For a
two-phase, one-dimensional problem, see [8] (and [9] in dimension two). It
reads for t > 0:

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x), −∞ < x < ξ(t),(2.1)

subject to conditions at the free interface x = ξ(t). To �x ideas, for t > 0, the
(normalized) temperature at the �ame front is set to 1 and the temperature
gradient is equal to a > 0:

u(t, ξ(t)) = 1,(2.2)

∂u

∂x
(t, ξ(t)−) = a.(2.3)

It is easy to see that problem (2.1)�(2.3) admits a traveling wave solution
U(z) = exp(cz), c = a, z < 0, which travels at velocity −c. It is convenient
to set x′ = x − ξ(t) = x + ct − s(t), t′ = t, where s is a perturbation of the
traveling wave interface −ct. In the coordinates (t′, x′), the system (2.1)�(2.3)
reads:

∂u

∂t′
(t′, x′) + (c− s′(t′)) ∂u

∂x′
(t′, x′) =

∂2u

∂x′∂x′
(t′, x′), t′ > 0, x′ ∈ (−∞, 0),

u(t′, 0) = 1, t > 0,

∂u

∂x′
(t, 0−) = a, t > 0.

Omitting the primes, we may also write u(t, x) = U(x) + v(t, x), where v is a
perturbation of the traveling wave U . It comes for t > 0 and x < 0:

∂v

∂t
(t, x) + c

∂v

∂x
(t, x)− ∂2v

∂x2
(t, x)− s′(t)U ′(x) = s′(t)

∂v

∂x
(t, x),(2.4)

v(t, 0) =
∂v

∂x
(t, 0−) = 0.(2.5)

The next step is the ansatz:

v(t, x) = s(t)U ′(x) + w(t, x).(2.6)
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First, it allows the elimination of −s(t)U ′ in the left-hand side of (2.4). Keeping
v for convenience in the right-hand side, the equation for w easily reads:

∂w

∂t
(t, x) + c

∂w

∂x
(t, x)− ∂2w

∂x2
(t, x) = s′(t)

∂v

∂x
(t, x), x < 0.(2.7)

Second, the ansatz (2.6) enables to express the (perturbation of the) interface
s thanks to the conditions (2.5):

s(t) = −1

c
w(t, 0−) = − 1

c2

∂w

∂x
(t, 0−), s′(t) = −1

c

∂w

∂t
(t, 0−).(2.8)

Therefore, the �natural� boundary condition associated with w at x = 0− is
∂w

∂x
(t, 0−)−cw(t, 0−) = 0. The information about

∂w

∂t
(t, 0−) is missing, however

the latter can be easily retrieved by evaluating both sides of (2.7) at x = 0−:

∂w

∂t
(t, 0−) = −c∂w

∂x
(t, 0−) +

∂2w

∂x2
(t, 0−),(2.9)

taking advantage of the second condition in (2.5).
Summarizing, it follows from (2.8) and (2.9) the underlying second-order

Stefan condition:

s′(t) =
∂w

∂x
(t, 0−)− 1

c

∂2w

∂x2
(t, 0−), t > 0.

The problem for w can �nally be formulated as a fully nonlinear parabolic

boundary value problem of the form (1.7) where Lw =
∂2w

∂x2
− c

∂w

∂x
, Bw =

∂w

∂x
(0−)− cw(0−), G(w) = 0 and

F(w) = s′
(
sU ′′ +

∂w

∂x

)
=

(
∂w

∂x
(·, 0−)− 1

c

∂2w

∂x2
(·, 0−)

)(
− w(·, 0−)U ′ +

∂w

∂x

)
.

For such a problem, the following local in time existence and uniqueness
result can be proved.

Theorem 2.1. Fix any T > 0 and α ∈ (0, 1). There exists ρ > 0 such

that for every u0 ∈ C2+α
b ((−∞, 0)) with ‖u0‖C2+α

b ((−∞,0)) ≤ ρ and satisfying

the compatibility conditions

B(u0) = G(u0) = 0,

problem (1.7), with L, B, F and G as above, admits a unique solution u ∈
C

1+α/2,2+α
b ((0, T )× (−∞, 0)) such that u(0, ·) = u0. Moreover,

‖u‖
C

1+α/2,2+α
b ((0,T )×(−∞,0))

≤ c‖u0‖C2+α
b ((−∞,0)).
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In the previous theorem, C2+α
b ((−∞, 0)) is the space of all twice contin-

uously di�erentiable functions v : (−∞, 0] → R, which are bounded together
with their �rst- and second-order derivatives and with second-order derivative
which is α-H�older continuous in (−∞, 0]. It is normed by setting

‖v‖C2+α
b ((−∞,0)) = ‖v‖∞ + ‖v′‖∞ + ‖v′′‖∞ + [v′′]Cαb ((−∞,0)),

where [v′′]Cαb ((−∞,0)) denotes the classical H�older seminorm of v′′. Similarly,

C
1+α/2,2+α
b ((0, T ) × (−∞, 0)) is the parabolic H�older space of functions w :

[0, T ]× (−∞, 0]→ R which are once continuously di�erentiable with respect to
the time variable and twice-continuously di�erentiable with respect to the spa-
tial variable. Moreover, w and its derivatives are bounded, and the time deriva-
tive and the second-order spatial derivative are α-H�older continuous in [0, T ]×
(−∞, 0] with respect to the parabolic distance d((t, x), (s, y))=

√
|t−s|+|x−y|2.

It is normed by setting

‖v‖
C

1+α/2,2+α
b ((0,T )×(−∞,0))

=‖w‖∞ +

∥∥∥∥∂w∂t
∥∥∥∥
∞

+

∥∥∥∥∂w∂x
∥∥∥∥
∞

+

∥∥∥∥∂2w

∂x2

∥∥∥∥
∞

+

[
∂w

∂t

]
C
α/2,α
b ((0,T )×(−∞,0))

+

[
∂2w

∂x2

]
C
α/2,α
b ((0,T )×(−∞,0))

where [ · ]
C
α/2,α
b ((0,T )×(−∞,0))

denotes the H�older-seminorm with respect to the

parabolic distance.

3. THE �NEF� SYSTEM IN R2 ([7])

A paradigm in premixed �ame combustion is the two-dimensional thermo-
di�usive model, a simpli�ed combustion model that involves two equations: the
heat equation for the system's temperature and the di�usion equation for the
de�cient reactant's concentration (see, e.g., [11]):

(3.1)
∂T

∂t
= ∆T + ω(Y, T ),

∂Y

∂t
= Le−1∆Y − ω(Y, T ).

The parameter Le is the Lewis number, the reaction rate ω(Y, T ) is given by
the Arrhenius law

(3.2) ω = BY exp(−E/RT ),

E and R being, respectively, the activation energy and the gas constant. The
conventional high activation energy limit converts the reaction rate term into
a localized source distributed over a free-interface, x = ξ(t, y), the �ame front
(see [11, p. 218]).
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The Near-Equidi�usional Flame (NEF) model (see Matkowsky-Sivashin-
sky [27]) combines the limit of large normalized activation energy β with the
limit of Lewis number near unity. The NEF theory is characterized ([12]) by
the requirements:

(i) Le−1 = 1− β−1`, where ` = O(1) is the reduced Lewis number;

(ii) H = Hf +O(β−1), where H = Y + T is the enthalpy and Hf is its limit
as x tends to −∞.

In particular (ii) corresponds to expand T and Y as follows:

T = T0 + β−1T1 + · · · , Y = (Hf − T0) + β−1(H1 − T1) + · · · .
Under the above assumptions, model (3.1)-(3.2) yields to a free-interface prob-
lem for T0 and H1. Writing θ and S instead of T0 and H1/2, ` = −2λ, to be
consistent with the notation of [31], the NEF system for θ, S and the �ame
front x = ξ(t, y) reads:

∂θ

∂t
(t, x, y) = ∆θ(t, x, y), t > 0, x < ξ(t, y), y ∈ R,

θ(t, x, y) = 1, t > 0, x ≥ ξ(t, y), y ∈ R,
∂S

∂t
(t, x, y) = ∆S(t, x, y)− λ∆θ(t, x, y), t > 0, x 6= ξ(t, y), y ∈ R.

The functions θ and S are continuous at the front, whereas their normal deriva-
tives satisfy the following jump conditions at the interface:1

(3.3)

[
∂θ

∂n

]
= − exp(S),

[
∂S

∂n

]
= λ

[
∂θ

∂n

]
.

Further, as x tends to ±∞, the following conditions are prescribed

(3.4) θ(t,−∞, y) = S(t,−∞, y) = S(t,+∞, y) = 0.

As it is easily veri�ed, this system admits a planar traveling wave solution, with
velocity −1, which reads in the coordinate z = x+ t:

Θ0 = ez, S0 = λzez, z ≤ 0, Θ0 = 1, S0 = 0, z > 0.

It is standard to �x the interface at the origin by setting ξ(t, y) = −t+ s(t, y),
x′ = x− ξ(t, y) = z − s(t, y). In this new framework:

(3.5)



∂θ

∂t
+

(
1− ∂s

∂t

)
∂θ

∂x′
= ∆sθ, in (0,+∞)× (−∞, 0)× R,

θ = 1, in (0,+∞)× (0,+∞)× R,
∂S

∂t
+

(
1− ∂s

∂t

)
∂S

∂x′
= ∆sS − λ∆sθ, in (0,+∞)× R \ {0} × R,

1Here, [v](t, y) := limx→ξ(t,y)+ v(t, x, y)− limx→ξ(t,y)− v(t, x, y) for a given function v.



346 Claude-Michel Brauner and Luca Lorenzi 8

where

∆s =

[
1 +

(
∂s

∂y

)2] ∂2

∂x′∂x′
+

∂2

∂y2
− ∂2s

∂y2

∂

∂x′
− 2

∂s

∂y

∂2

∂x′∂y
.

The jump conditions (computed at x′ = 0) are [θ] = [S] = 0 and

(3.6)

√
1 +

(
∂s

∂y

)2 [ ∂θ
∂x′

]
= − exp(S),

[
∂S

∂x′

]
= λ

[
∂θ

∂x′

]
,

which follow from (3.3). Omitting the primes, the main step now is the ansatz,

(3.7) θ = Θ0 + s
dΘ0

dx
+ v, S = S0 + s

dS0

dx
+ w,

which, taking advantage of the boundary conditions

[θ] = [Θ0] = 0,

[
∂θ0

∂x

]
=

[
dΘ0

dx

]
= −1,

enables us to express the interface s in terms of the trace of v at x = 0−:

(3.8) s(t, y) = [v] = −v(t, 0−, y).

Replacing (3.8) in (3.5) and (3.6), we obtain a system in the only unknowns v,
w. However, it is convenient to rewrite it in the standard form of a system in
R2
− = {(x, y) ∈ R2 : x < 0}, setting u = (v, w, h) where h(t, x, y) = w(t,−x, y)

for x < 0 and y ∈ R. We get

(3.9)


∂u

∂t
= Lu + F0(u)− ∂v

∂t
(·, 0, ·)Ψ(u), in (0,∞)× R2

−,

Bu = G(u), in (0,∞)× R,
where the linear operator L is given by

Lu = L(v, w, h) =

(
∆v − ∂v

∂x
, ∆w − ∂w

∂x
− λ∆v, ∆h+

∂h

∂x

)
,

the linear boundary operator B has three components B1, B2 and B3, de�ned
by

(3.10)


B1u = λv(0, ·)− w(0, ·) + h(0, ·),

B2u = λv(0, ·) + λ
∂v

∂x
(0, ·)− ∂w

∂x
(0, ·)− ∂h

∂x
(0, ·),

B3u = v(0, ·) + h(0, ·)− ∂v

∂x
(0, ·),

F0(u) = (f1(u), f2(u), f3(u)) with

f1(u) =

(
∂v

∂y
(0, ·)

)2(d2Θ0

dx2
− v(0, ·)d

3Θ0

dx3
+
∂2v

∂x2

)



9 Local existence in free interface problems 347

+ 2
∂v

∂y
(0, ·)

(
− ∂v

∂y
(0, ·)d

2Θ0

dx2
+

∂2v

∂x∂y

)
+
∂2v

∂y2
(0, ·)

(
− v(0, ·)d

2Θ0

dx2
+
∂v

∂x

)
,

f2(u) =

(
∂v

∂y
(0, ·)

)2(d2S0

dx2
− v(0, ·)d

3S0

dx3
+
∂2w

∂x2

)
+ 2

∂v

∂y
(0, ·)

(
− ∂v

∂y
(0, ·)d

2S0

dx2
+

∂2w

∂x∂y

)
+
∂2v

∂y2
(0, ·)

(
− v(0, ·)d

2S0

dx2
+
∂w

∂x

)
− λf1(u),

f3(u) =

(
∂v

∂y
(0, ·)

)2∂2h

∂x2
− 2

∂v

∂y
(0, ·) ∂

2h

∂x∂y
− ∂2v

∂y2
(0, ·)∂h

∂x
.

Finally,

Ψ(u) =

(
− v(0, ·)d

2Θ0

dx2
+
∂v

∂x
, −v(0, ·)d

2S0

dx2
+
∂w

∂x
, −∂h

∂x

)
,

and

G(u) = (0, 0, g(u)), g(u) = 1 + h(0, ·)−
[
1 +

(
∂v

∂y
(0, ·)2

)]− 1
2

eh(0,·).

However, the di�erential system in (3.9) contains
∂v

∂t
(t, 0, y) in the right-

hand side. The main point is that Equation (3.8) yields
∂v

∂t
(t, 0, y) = −∂s

∂t
(t, y).

The �rst equation in (3.9) reads for v and
∂v

∂x
small enough:

∂v

∂t
(t, x, y) =∆v(t, x, y)− ∂v

∂x
(t, x, y) + (f1(u(t·, ·))(x, y)

− ∂v

∂t
(t, 0, y)

(
− v(t, 0, y)ex +

∂v

∂x
(t, x, y)

)
,

so that if we evaluate it at x = 0 then we get the formula:

(3.11)
∂s

∂t
(t, y) = −

∆v(t, 0, y)− ∂v
∂x(t, 0, y) + (f1(u(t, ·, ·)))(0, y)

1− v(t, 0, y) + ∂v
∂x(t, 0, y)

.

Therefore, the velocity of the interface s is expressed in terms of the trace of
�rst- and second-order derivatives of u at the interface itself. The relation
(3.11) is the underlying second-order Stefan condition.
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Plugging (3.11) in (3.9), we get the fully nonlinear parabolic problem for
u which is of the form (1.7):
(3.12)

∂u

∂t
(t, x, y) = Lu(t, x, y) + (F(u(t, ·, ·)))(x, y), t ≥ 0, x < 0, y ∈ R,

(Bu(t, ·))(y) = G(u(t, ·))(y), t ≥ 0, y ∈ R,

with

F(u) = F0(u)−
∆v(0, ·)− ∂v

∂x(0, ·) + f1(u)(0, ·)
1− v(0, ·) + ∂v

∂x(0, ·)
Ψ(u).

We shall set problem (3.12) in spaces of H�older continuous functions. So,
for α ∈ (0, 1), we de�ne

Xα = {u ∈ Cα(R2
−;R3) ∩ L∞(R2

−;R3) : lim
x→−∞

|u(x, y)| = 0 for all y ∈ R},

where Cα(R2
−;R3) is the set of functions u : R2

− → R3 such that

[u]Cα(R2
−) = sup

x,y∈R2−
x 6=y

|u(x)− u(y)|
|x− y|α

< +∞ .

It is endowed with the norm ‖u‖Xα = ‖u‖∞ + [u]Cα(R2
−).

Similarly, X2+α is the set of all twice continuously di�erentiable functions

u : R2
− → R3 such that

∂2u

∂xγ1∂yγ2
∈ Cα(R2

−) for every γ1 + γ2 = 2 and u

together with its �rst- and second-order derivatives vanishes as x tends to −∞
for each y ∈ R. The norm is, as usual,

‖u‖X2+α =

2∑
γ1+γ2=0

∥∥∥∥ ∂γ1+γ2u

∂xγ1∂yγ2

∥∥∥∥
∞

+
∑

γ1+γ2=2

[
∂2u

∂xγ1∂yγ2

]
Cα(R2

−)

.

For T > 0 we also introduce the parabolic H�older spaces Xα/2,α(0, T ) and
X1+α/2,2+α(0, T ) de�ned by

Xα/2,α(0, T ) =

{
u : u(t, ·) ∈ Xα for all t ∈ [0, T ], sup

0<t<T
‖u(t, ·)‖Xα <∞,

u(·, x, y) ∈ Cα/2([0, T ];R3) for all x < 0, y ∈ R,

sup
x<0, y∈R

‖u(·, x, y)‖Cα/2([0,T ];R3) <∞
}
,

‖u‖Xα/2,α(0,T ) = sup
0<t<T

‖u(t, ·)‖Xα + sup
x<0, y∈R

[u(·, x, y)]Cα/2([0,T ];R3),



11 Local existence in free interface problems 349

X1+α/2,2+α(0, T ) =

{
u :

∂γ1+γ2+γ3u

∂tγ1∂xγ2∂yγ3
∈ Xα/2,α(0, T ) for 2γ1 + γ2 + γ3 ≤ 2

}
,

‖u‖X1+α/2,2+α(0,T ) =
∑

2γ1+γ2+γ3≤2

∥∥∥∥ ∂γ1+γ2+γ3u

∂tγ1∂xγ2∂yγ3

∥∥∥∥
Xα/2,α(0,T )

.

We �nally state a local in time existence and uniqueness theorem:

Theorem 3.1. Fix any T > 0 and α ∈ (0, 1). There exist ρ, ρ0 > 0 such

that for every u0 ∈ X2+α with ‖u0‖X2+α ≤ ρ0 and satisfying the compatibility

conditions

B1u0 = B2u0 = 0, B3u0 = g(u0), B1(Lu0 + F(u0)) = 0,

problem (3.12) admits a unique solution u ∈ X1+α/2,2+α(0, T ) such that u(0) =
u0 and ‖u‖X1+α/2,2+α(0,T ) ≤ ρ.

4. OVERDETERMINED PARABOLIC PROBLEMS IN RN ([6])

In this section, we are going to present a general approach in some more
abstract setting. We assume that Ωt is a bounded domain in RN , N ≥ 1, with
moving boundary ∂Ωt, L is a time independent uniformly elliptic operator with
smooth coe�cients, f and g are given smooth functions de�ned on the whole
of RN . We consider the problem:

(4.1)
∂u

∂t
(t, x) = Lu(t, x) + f(t, x), t > 0, x ∈ Ωt,

with free boundary conditions on ∂Ωt:

(4.2) u = g1 and
∂u

∂n
= g2.

We assume that there exists a pair (Ω, U), with Ω bounded, ∂Ω and U smooth,
which is an equilibrium for problem (4.1)�(4.2), i.e.,

LU + f = 0 in Ω with U = g1 and
∂U

∂ν
= g2 on ∂Ω.

The main hypothesis is that the functions g1 and g2 satisfy a non-degeneracy
(or transversality) condition

(4.3)
∂g1

∂n
− g2 6= 0 at ∂Ω.

As it is usual, we transform the problem on the variable domain Ωt to a problem
on the �xed domain Ω and we denote by y and ν, respectively, the spatial
variable and the outward unit normal vector to ∂Ω.



350 Claude-Michel Brauner and Luca Lorenzi 12

Since we are interested in solutions close to the equilibrium (Ω, U), the
�rst main idea is to look for Ωt in the form

(4.4) ∂Ωt = {x = y′ + s(t, y′)ν(y′), y′ ∈ ∂Ω},

where s : I×∂Ω→ [−δ, δ] is a smooth function corresponding to a free interface,
I is a suitable interval, containing 0, and δ > 0 is chosen su�ciently small such
that the function Ψ : [−δ, δ] × ∂Ω → RN , de�ned by Ψ(r, y′) = x + rν(y′) for
any r ∈ [−δ, δ] and y′ ∈ ∂Ω, is bijective from I × ∂Ω to a small neighborhood
O of ∂Ω. Thus, Ωt lies inside O for any t ∈ I.

For y′ ∈ ∂Ω we write

ξ(t, y′) = s(t, y′)ν(y′)

and we localize the �eld ξ near ∂Ω thanks to a molli�er,2 as usual, and de�ne
the (bijective) coordinate transformation:

t = τ, x = y + ξ(τ, y).

Then, the time derivative and the spatial gradient transform as

∇x = (I + Jᵀ
ξ )−1∇y,

∂

∂t
=

∂

∂τ
− ∂ξ

∂τ
· (I + Jᵀ

ξ )−1∇y,

where Jᵀ
ξ is the transposed Jacobian matrix of ξ, just with respect to the spatial

variable.

The transformation of Ωt to Ω also acts on the equilibrium U itself. Com-
puting the Taylor expansion of U at y, we get

U(y + ξ(τ, y)) = U(y) + (∇yU(y)) · ξ(τ, y) +R(y, ξ(τ, y)),

where R is a (smooth) remainder,3 which is quadratic in ξ(τ, y). This expansion
suggests the following splitting (the ansatz) for the unknown function u in the
new variables τ and y (which we call û):

(4.5) û(τ, y) = U(y) + (∇yU(y)) · ξ(τ, y) + w(τ, y).

Using (4.5) to compute Lu, we get

(4.6) (Lu)(t, x) = (Lû)(τ, y) + (L1û)(τ, y) + (L2û)(τ, y),

where L1 is an operator whose coe�cients depend linearly on ξ and its spatial
derivatives up to the second-order, and the operator L2 has coe�cients which
can be bounded by suitable multiples of |ξ|2 + |Dyξ|2 + |D2

yξ|2.

2i.e., we set ξ(t, y) = α(y)s(t, y′)ν(y′) for any t ∈ I and y ∈ RN , where α ∈ C∞c (O) and
y′ denotes the orthogonal projection of y on ∂Ω.

3Throughout the section, we denote still by R (possibly) di�erent remainders which are
quadratic in the unknown functions.
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Similarly, computing the time derivative of u, using the expansion (4.5),
we get

∂u

∂t
(t, x) =

∂û

∂τ
(τ, y)− ∂ξ

∂τ
(τ, y) · ∇yû(τ, y)

+
∂ξ

∂τ
(τ, y) · Jᵀ

ξ (τ, y)(I + Jᵀ
ξ (τ, y))−1∇yû(τ, y).(4.7)

Replacing (4.6) and (4.7) in (4.1), yields to the following equation for w:

(4.8)
∂w

∂τ
= Lw + F1(y, w,∇w,D2w, ξ,Dξ,D2ξ) +

∂ξ

∂τ
· F2(y,∇w, ξ,Dξ),

where

F1(y, w,∇w,D2w, ξ,Dξ,D2ξ) = L1w + L2w + L1(ξ · ∇yU)

+ L2(U + ξ · ∇yU) +R(·, ξ(·, ·)),

F2(y,∇w, ξ,Dξ) = ∇yw − Jᵀ
ξ (I + Jᵀ

ξ )−1∇yw +∇y(ξ · ∇yU)

− Jᵀ
ξ (I + Jᵀ

ξ )−1∇y(U + ξ · ∇yU).

Next, we transform the free boundary conditions in (4.2). At the bound-
ary, formula (4.5) gives

g1(y + s(τ, y)ν(y)) = g1(y) + s(τ, y)g2(y) + w(τ, y), y ∈ ∂Ω.

Computing the Taylor expansion centered at y of the left-hand side of the
previous formula, we get the equation

(4.9) s(τ, y)

(
∂g1

∂ν
(y)− g2(y)

)
+R(y, s(τ, y)) = w(τ, y).

The non-degeneracy assumption (4.3) allows us to make s explicit in terms of
w, at least for w small enough, and we obtain

(4.10) s(τ, y) =
w(τ, y)

∂g1
∂ν (y)− g2(y)

+R(y, w(τ, y)).

Let us now consider the second free boundary condition in (4.2), which
involves the normal derivative of u at ∂Ωt. Since

n =
(I + Jᵀ

ξ )−1ν

|(I + Jᵀ
ξ )−1ν|

and

(I + Jᵀ
ξ )−1 = I − Jᵀ

ξ + (Jᵀ
ξ )2(I + Jᵀ

ξ )−1,

we can expand

(4.11) n = ν −∇ys+R(·, s,∇ys),
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Thus, using (4.5), (4.11) and computing the Taylor expansion of g2 as it has
been done for g1, in the end, after some computations, we can write

(4.12)
∂w

∂ν
+s

(
∂2U

∂ν2
− ∂g2

∂ν

)
−∇tangs ·∇tangg1 = B(y, s,∇s)∇w+R(y, s,∇s),

which is reminiscent of Hadamard's work [18]. Here, B is a smooth matrix-
valued function, whose entries can be bounded (in moduli) in terms of s2 +
|∇ys|2.

We now have in mind to derive the second-order Stefan condition and
to eliminate the dependence of the right-hand side of (4.8) from ξ and its
derivatives. Due to the form of ξ, we need to express s and its derivatives in
terms of w. First, we evaluate both the sides of Equation (4.8) on the boundary
∂Ω. Since ξ(τ, y) = s(τ, y)ν(y) for y ∈ ∂Ω, we get

(4.13)
∂w

∂τ
= Lw + F̃1(y, w,∇w,D2w, s,∇s,D2s) +

∂s

∂τ
F̃2(y,∇w, s,∇s).

Removing the dependence on s from F̃1 and F̃2 is easy: it su�ces to use formula
(4.10). To eliminate the τ -derivative of s from the right-hand side of (4.13), we
�rst di�erentiate (4.9) with respect to τ to obtain

(4.14)
∂w

∂τ
−
(
∂g1

∂ν
− g2

)
∂s

∂τ
=
∂R

∂s
(y, s)

∂s

∂τ
= R∗(y, w)

∂s

∂τ
.

Note that R∗(·, w) is smooth as well and bounded by a multiple of w. From
(4.13) and (4.14), we obtain(
∂g1

∂ν
−g2 +R∗(y, w)

)
∂s

∂τ
−Lw = F1(y, w,∇w,D2w)+

∂s

∂τ
F2(y, w,∇w,D2w),

where we have also used (4.10) to absorb the s-dependence in w-dependence.
Summing up, the underlying second-order Stefan condition reads for y at

the boundary ∂Ω:

∂s

∂τ
=

Lw + F1(·, w,∇w,D2w)
∂g1
∂ν − g2 +R∗(·, w)−F2(·, w,∇w,D2w)

,

which holds provided w, ∇w and D2w are small. Taking into account that
the function Ψ is localized in the neighborhood O of ∂Ω, thanks to the above
formulas we can write the �nal equation for w as follows:
(4.15)
∂w

∂τ
= Lw + F(y, w(τ, y),∇w(τ, y), D2w(τ, y), w(y′, τ),∇w(y′, τ), D2w(y′, τ))

for τ ≥ 0 and y ∈ Ω ∩ O, and

(4.16)
∂w

∂τ
= Lw
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for τ ≥ 0 and y ∈ Ω \ O. We recall that y′ is the projection on ∂Ω of y ∈ O.
The boundary condition to be satis�ed by w follows directly from (4.9), (4.10)
and (4.12). It comes out as
(4.17)

Bw =
∂w

∂ν
+

w
∂g1
∂ν − g2

(
∂2U

∂ν2
−∂g2

∂ν

)
−∇tang

(
w

∂g1
∂ν − g2

)
·∇tangg1 = G(y, w,∇w),

where G is su�ciently smooth and quadratic in w.

We have obtained a fully nonlinear problem of the form (1.7) for w, namely
(4.15)�(4.17), with initial datum w(0, ·) = w0 determined by Ω0 and u0 via (4.4)
and (4.5). Since u0 is assumed to satisfy the boundary conditions at t = 0, it
follows that w0 satis�es Bw0 = G(·, w0,∇w0) at ∂Ω. We may solve this initial
boundary value problem for w provided w0 is su�ciently small, by means of
the general result in the next section and we get:

Theorem 4.1. For each T > 0 there exist r and ρ positive such that

problem (4.15)�(4.17) admits a solution w ∈ C1+α/2,2+α((0, T )×Ω) if the C2+α-

norm of the datum w0 does not exceed ρ. Moreover, w is the unique solution to

that problem in the ball B(0, r) of C1+α/2,2+α((0, T )× Ω).

5. FUNCTIONAL ANALYTIC TOOLS

In this last section, we recall some basic features about fully nonlinear

problems of parabolic type in a su�ciently smooth (not necessarily bounded)
domain of RN , N ≥ 1. We refer the reader to e.g., [20�22,26] for a comprehen-
sive analysis of partial di�erential equations of parabolic type.

Consider a fully nonlinear problem for the unknown u = (u1, . . . , ud):

(5.1)


∂u

∂t
(t, x) = Lu(t, x) + F(u(t, ·))(x), t > 0, x ∈ Ω,

Bu(t, x) = G(u(t, ·))(x), t > 0, x ∈ ∂Ω,

supplemented by the initial condition

(5.2) u(0, x) = u0(x), x ∈ Ω.

Here, L = (L1, . . . ,Ld) and

Lku =

N∑
i,j=1

akijDijuk +

N∑
i=1

d∑
j=1

bki,jDiuj +

d∑
j=1

ckjuj , k = 1, . . . , d,

is a uniformly elliptic operator (with su�ciently smooth coe�cients), F and
G are smooth enough functions de�ned in a neighborhood of 0 in C2

b (Ω) with
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values in Cb(Ω) and C1
b (∂Ω) respectively and L and B are linear di�erential

operators with regular coe�cients. Moreover,

F(0) = 0, F ′(0) = 0, G(0) = 0, G′(0) = 0,

so that u ≡ 0 is a solution of problem (5.1) and the linearization of (5.1) around
the null solution is

(5.3)


∂v

∂t
(t, x) = Lv(t, x) + f(t, x), t > 0, x ∈ Ω,

Bv(t, x) = g(t, x), t > 0, x ∈ ∂Ω,

where f ∈ Cα/2,α((0, T )×Ω;Rd) and g ∈ C(1+α)/2,1+α([0, T ]×∂Ω;Rd), for some
α ∈ (0, 1), are given functions. Of course, if G(u) has some null components,
then we can limit ourselves to considering g with nontrivial components only
in correspondence of nontrivial components of G(u).

If one, as in this paper, is interested in the Cauchy problem (5.3) for initial
data u0 close to 0, the strategy is to consider �rst the linear problem (5.3) and
then apply a �xed point argument to solve the original problem (5.1). As the
examples of the previous sections show, the nonlinear term F could depend
also on the trace on ∂Ω of the second-order spatial derivatives of the solution
u. This causes some additional di�culties and optimal regularity results are
required already for the Cauchy problem (5.3).

The picture is well-understood in the classical case (considered in Sec-
tion 4) when d = 1, Ω is bounded with a boundary of class C2+α and

B =

N∑
i=1

βiDi + γ

is a nontangential operator, i.e.,
∑N

i=1 βiνi never vanishes on ∂Ω, where ν(x)
denotes the outward unit normal vector to ∂Ω at x. In this case, under the
assumptions

H1 F : B(0, R) ⊂ C2(Ω)→ C(Ω) is continuously di�erentiable with Lipschitz
continuous derivative, F(0) = 0, F ′(0) = 0 and the restriction of F to
B(0, R) ⊂ C2+α(Ω) takes values in Cα(Ω) and is continuously di�eren-
tiable;

H2 G : B(0, R) ⊂ C1(Ω) → C(∂Ω) is continuously di�erentiable with Lips-
chitz continuous derivative, G(0) = 0, G′(0) = 0 and the restriction of
G to B(0, R) ⊂ C2+α(Ω) takes values in C1+α(∂Ω) and is continuously
di�erentiable too;

H3 u0 ∈ C2+α(Ω) satis�es4 the compatibility condition Bu0 = G(u0) in ∂Ω;

4as usual, when dealing with real-valued functions, we do not use bold style.
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H4 the coe�cients of the operator L = L1 belong to Cα(Ω), whereas βi (i =
1, . . . , N) and γ belongs to C1+α(∂Ω),

a local in time existence and uniqueness result for problem (5.1), subject to the
initial condition u(0, ·) = u0, can be proved and it reads:

Theorem 5.1. Under the above assumptions, for every T > 0 there exist

r, ρ > 0 such that problem (5.1), (5.2) admits a solution u ∈ C1+α/2,2+α((0, T )×
Ω) if ‖u0‖C2+α(Ω) ≤ ρ. Moreover u is the unique solution in B(0, r) ⊂
C1+α/2,2+α((0, T )× Ω).

The main core is the proof of the existence (and uniqueness) of a classical
smooth solution to problem (5.3), subject to the initial condition v(0, ·) =
v0 ∈ C2+α(Ω), where Bv0 = g(0, ·). It is based on decoupling that problem
introducing a suitable lifting operator N , to lift-up the boundary term g, with
the property BN g = g for each g as in problem (5.3). More precisely, the
smoothness of ∂Ω allows to prove (via local-charts) the existence of a bounded
operator N ∈ L(C1(∂Ω), C2(Ω)) ∩L(C1+α(∂Ω), C2+α(Ω)) such that BN g = g
on functions g as in problem (5.3). Thus, one �rst solves the Cauchy problem

(5.4)


∂v1

∂t
(t, x) = Lv1(t, x) + f(t, x) + LN g(t, x), t > 0, x ∈ Ω,

Bv1(t, x) = 0, t > 0, x ∈ ∂Ω,

v1(0, x) = v0(x), x ∈ Ω.

Since f +N g belongs to Cα/2,α((0, T )×Ω) and v0 ∈ C2+α(Ω), classical results
for parabolic equations (see e.g., [22]) show that the above problem admits a
unique solution v1 ∈ C1+α/2,2+α((0, T )× Ω). Moreover,

‖v1‖C1+α/2,2+α((0,T )×Ω)

≤c(‖u0‖C2+α(Ω) + ‖f‖Cα/2,α((0,T )×Ω) + ‖g‖C(1+α)/2,1+α([0,T ]×∂Ω)),

for some positive constant c, independent of v1 and the data.

Next one considers the Cauchy problem
∂w

∂t
(t, x) = Lw(t, x) +Nψ(t, x)−Nψ(0, x), t > 0, x ∈ Ω,

Bw(t, x) = 0, t > 0, x ∈ ∂Ω,

w(0, x) = 0, x ∈ Ω.

For the same reasons as above, this problem admits a (unique) solution w ∈
C1+α/2,2+α((0, T )× Ω), which satis�es the estimate

‖w‖C1+α/2,2+α((0,T )×Ω) ≤ c‖g‖C(1+α)/2,1+α([0,T ]×∂Ω).



356 Claude-Michel Brauner and Luca Lorenzi 18

Actually, due to the null initial condition, w is smoother. More precisely, the
function Lw lies in C1+α/2,2+α((0, T ) × Ω) and it satis�es an estimate similar
to that satis�ed by w. Hence, the function v2 = Lw +Nψ −Nψ(0, ·) belongs
to C1+α/2,2+α((0, T )× Ω) and

‖v2‖C1+α/2,2+α((0,T )×Ω) ≤ c‖g‖C(1+α)/2,1+α([0,T ]×∂Ω).

Moreover, simple computations show that

(5.5)


∂v2

∂t
(t, x) = Lv2(t, x)− LN g(t, x), t > 0, x ∈ Ω,

Bv2(t, x) = g(t, x), t > 0, x ∈ ∂Ω,

v2(0, x) = 0, x ∈ Ω.

As a byproduct, the function v = v1 + v2 solves the Cauchy problem (5.3) and
w(0, ·) = u0. Finally, the uniqueness of such a solution follows straightforwardly
from the classical maximum principle.

Things are less trivial when d > 1, the boundary conditions are of jump
type and the domain is unbounded, as in the relevant cases of halfplane, half-
space and strips. In these situations the existence of a solution to problems
(5.4) and (5.5) is not for free and a deeper analysis is required. One possible
way to �attack the problem� is via the theory of analytic semigroups, which
is a powerful tool in the theory of PDEs (of parabolic type). Some steps are
required, which we brie�y describe here below.

(i) One needs to show that the realization5 L of the operator L in X =
Cb(Ω;Rd) (or even6 in X = {u ∈ Cb(Ω;Rd) : u vanishes at in�nity (along
suitable directions)}) generates an analytic semigroup. This can be done look-
ing at the so-called resolvent equation, i.e., the equation λu − Lu = f ∈ X
with λ ∈ C. If one proves that the above equation admits a unique solution
u := R(λ, L)f in D(L) for λ in a suitable right-halfplane and, in such halfplane,
|λ|−1‖R(λ, L)f‖X ≤ c‖f‖X , with c independent of λ and f , then one concludes
that the operator L is sectorial and, hence, it generates an analytic semigroup
in X.

(ii) Next, one needs to characterize the so-called interpolation spaces,
which roughly speaking, are the subsets of maximal regularity for the equation

5Here, by realization of L in X we mean the operator L : D(L) = {u ∈ X : Lu ∈ X} → X,
de�ned by Lu = Lu for any u ∈ D(L), where Lu is meant in the sense of distributions.

6For instance, for the problem considered in Section 2, Cb(Ω) is a suitable choice. On the
other hand, for the �NEF� system in Section 3 X = Cb(Ω,R3) is not a suitable choice since
it does not take the conditions at in�nity (3.4) into due account. Indeed, a straightforward
computation reveals that, if θ and S are as in the ansatz (3.7), then conditions (3.4) result
in the following conditions on v and w: v(t,−∞, y) = 0 and w(t,±∞, y) = 0 for any t and y.
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λu−Lu = f . In much more precise terms, for any α ∈ (0, 1) the interpolation
spaceDL(α/2,∞) is the set of all f ∈ X such that supλ∈(0,1) λ

1−α/2‖LR(λ,L)f‖X
< +∞, whereas DL(1 + α/2,∞) is the set of all u ∈ D(L) such that Lu ∈
DL(α/2,∞). To characterize these interpolation spaces a representation for-
mula for the operator R(λ, L) (which in many concrete cases can be obtained,
e.g. via Fourier transform) and a much more precise characterization of D(L)
are of much help. One expects that

DL(α/2,∞) = Cα(Ω;Rd) ∩X,

if the operators B1, . . . ,Bd are all of the �rst-order, whereas

DL(α/2,∞) = {u ∈ Cα(Ω;Rd) ∩X : Bju = 0, j ∈ J},

otherwise, where Bu = (B1u, . . . ,Bdu) and Bj (j ∈ J) are the zeroth-order
operators in the de�nition of B. Similarly,

DL(1 + α/2,∞) = {u ∈ C2+α
b (Ω;Rd) ∩X : Lu ∈ X, Bu = 0},

if the (jump condition in the) boundary operator B are all of the �rst-order,
whereas

DL(1 + α/2,∞)

={u ∈ C2+α
b (Ω;Rd) : Lu ∈ X, Bu = 0, BjLu = 0, j ∈ J},

otherwise.7 The previous (topological equality) can be proved under very rea-
sonable assumptions on the operators L and B. Then, one needs also to prove
that {u ∈ C1

b (Ω;Rd) ∩ X : Bju = 0, j ∈ J} is continuously embedded into
DL(1/2,∞).

(iii) Finally, one needs to de�ne a lifting operator N mapping C1(∂Ω;Rd)
into C2

b (Ω;Rd) and C1+α(∂Ω;Rd) into C2+α
b (Ω;Rd), and such that BNg = g

for each function g as in problem (5.3). Typically, these operators are de�ned
via an appropriate integral operator. For instance, if B is as in Section 2, then
a possible choice of N is the following: Ng = (−N1g3,−λN1g3, 0) for any
g = (g1, g2, g3), where

(N1g3)(x, y) = η(x)x

∫
R
ϕ(ξ)g3(y + ξx)dξ, x ≤ 0, y ∈ R.

Here, η is a smooth function vanishing on (−∞,−2] and identically equal to
one in [−1, 0], whereas ϕ is smooth in R, with compact support and such that
‖ϕ‖L1(R) = 1.

7For instance, if B is the operator in Section 3 (see (3.10)), then DL(α/2,∞) = {u ∈
Xα : λv(0, ·) − w(0, ·) + h(0, ·) = 0} and DL(1 + α/2,∞) = {u ∈ X2+α : Bu = 0 and
λ(Lu)1(0, ·)− (Lu)2(0, ·) + (Lu)3(0, ·) = 0}.



358 Claude-Michel Brauner and Luca Lorenzi 20

Having all these tools at hand, one can apply time and spatial regularity
results for abstract Cauchy problems associated with sectorial operator (see e.g.
[26, Theorems 4.3.1, 4.3.8, 4.3.16], to prove Theorem 5.1, assuming the vector-
valued counterpart of Hypotheses H1�H3 and the �rst part of Hypothesis H4.
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