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Hirota’s bilinear method can be quite useful in the solution of nonlinear differ-
ential and difference equations. In this paper, we show how this method can
lead to a novel proof that the e-algorithm of Wynn implements the Shanks’
sequence transformation and, reciprocally, that the quantities it computes are
expressed as ratios of Hankel determinants as given by Shanks. New identities
between Hankel determinants and the quantities involved in Hirota’s method are
obtained, and they form the basis of our proof. Then, the same bunch of results
is showed to hold also for the confluent form of the e-algorithm. This treatment
could also be useful for other sequence transformations and the corresponding
recursive algorithms.
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1. THE SCENERY

Let (S,,) be a sequence of numbers converging to S. If its convergence is
slow, it can be transformed, by a sequence transformation, into a set of new
sequences {(T,gn))} depending on two indexes n and k, and converging, under
certain assumptions, faster to the same limit, that

(n) (n)
vk, lim L =5_4 Vn, lim Ty =5
n— o0 Sn*S k—oo Sn*S
A well-known example of such a transformation is the Richardson’s extrapo-
lation process, which gives rise to the Romberg’s method for accelerating the
convergence of the trapezoidal rule for approximating a definite integral.

Similarly, let f be a function such that lim;_, f(¢) = S. If f tends slowly

to S, it can be transformed, by a function transformation, into a set of new

=0 or both.
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functions {T}} which, under some assumptions, converge to S faster than f,
that is

vk, lim =5 _, Vi, lim Te) =5 _ o o1 both.

—oo f(t) =S —oo f(t) =S

In most of the sequence (and function) transformations, the terms of the
new sequences (and the new functions) can be expressed as ratios of determi-
nants, and there exists, in each particular case, a (usually nonlinear) recursive
algorithm for avoiding the computation of these determinants and implement-
ing the transformation under consideration |16, 31,33, 34].

Hirota’s bilinear method [22] was conceived for resolving integrable non-
linear partial differential or difference evolution equations that have soliton
solutions. The aim of this paper is to apply this method to a well known se-
quence transformation for accelerating the convergence of some sequences due
to Shanks [30] which can be implemented via the e-algorithm of Wynn [35].
Hirota’s method was already applied to a multistep generalization of the e—
algorithm [14]. However, since the derivation of this algorithm and the cor-
responding transformation were quite tedious, the interest of Hirota’s method
was hidden by the technical difficulties of the proofs. Thus, it seemed to us
that it could be interesting to show its interest in a simpler case.

The Shanks’ transformation and the e-algorithm are presented in Sec-
tion 2. Relations between Hankel determinants are given in Section 3. Hirota’s
bilinear method is explained in Section 4. These two Sections contain new
identities. In Section 5, we first show how Hirota’s bilinear method leads to a
proof that the e—algorithm of Wynn implements the Shanks’ sequence trans-
formation, and, vice versa, that the quantities computed by this algorithm are
expressed by the ratios of Hankel determinants defining the Shanks’ transfor-
mation. Then, in Section 6, we point out that the same bunch of results also
holds for the confluent form of the e-algorithm [36]. A conclusion with trails
for new research ends the paper.

2. THE SHANKS’ TRANSFORMATION
AND THE e-ALGORITHM

A well-known sequence transformation is due to Shanks [30]. It consists
in transforming (S,,) into a set of sequences {(ex(Sy))} where

(1) cn(Su) = L,

where A is the usual forward difference operator whose powers are defined by
AH_lSn = AiSTL—‘rl - AiSna

k,n=0,1,...,
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with AYS,, = S,,, and where H}(u,,) denotes the following Hankel determinant

Un, Un+1  ° Untk—1
Un+1 Un+2 Un+k
(2) Hk (un> = . . . 5
Un+k—1 Un+k - Un42k—2

with Ho(u,) = 1.

Obviously, replacing each row by its difference with the previous one, and
repeating this operation several times, and performing it also on the columus,
we also have

Aup, - AUpig1 Aup, - AFu,
Ak_lun . Ak_lun—i-k—l Ak_lun . AQk—2un

The e-algorithm is a recursive algorithm due to Wynn [35] for implement-
ing the Shanks’ transformation without computing the Hankel determinants
appearing in (1). Its rule is

(n) _ _(n+1) 1 _
(4) €k+1—6k_1 +W, k,n—O,l,...
k k
with 6(_711) =0 and 6(0n) =5,,n=0,1,..., and it holds, for all £ and n,
n n 1
(5) 5gk) =er(S,) and el

2k+1 — €k<ASn) '
Thus, the egz,zrl’s are intermediated results, and we have

(n) _ Hk+1(Sn) (n) Hk(ASSn)
(6) o = Hk:(A2Sn) and E2k-i-1 - H]H_l(ASn)'

The proof of these relations was obtained by Wynn by using the Sylvester’s
determinantal identity (see Section 3) and the Schweins’ one, which can both be
found, for example, in [1] (see [12, pp. 142-143]| for their proofs). The difficulty
lays in the nonlinearity of the algorithm. Of course, Wynn’s great merit was to
discover the rules of the e-algorithm.

There are three approaches for linking a sequence transformation and a
(usually nonlinear) recursive algorithm for its implementation. By increasing
order of complexity, they are:

1. Verification. The transformation and the algorithm are both known, and
one has to verify that they lead to identical sequences. This is what we



364 C. Brezinski and M. Redivo-Zaglia 4

will do in this paper, but by a new and different path from that followed
by Wynn for deriving his e—algorithm.

2. Derwation. Only the transformation is known, and one has to derive the
algorithm for its implementation. This was the way followed by Wynn to
obtain his e-algorithm. It was a fruitful idea since it opened the route for
obtaining other algorithms (see [18]). This is the case of the E—algorithm
which is the most general convergence acceleration algorithm known so
far [10]. The topological e-algorithms were also derived similarly [7,17].

3. Formulation. Only the algorithm is known, and one has to guess a for-
mula (for example, a ratio of determinants) for the transformation it
implements, and to prove it. This was the situation for the second gen-
eralization of the e—algorithm proposed in [6], whose form was obtained
by Salam [27,28]. The #-algorithm is also such a recursive algorithm [4],
but the formula for the corresponding transformation is still unknown.

For some years now, there has been a great concern for convergence accel-
eration algorithms among the community of mathematical physicists working
on integrable systems, KdV and other equations, soliton theory, Toda lattices,
etc. [13,23-26]. They are interested by the fact that convergence acceleration
algorithms are nonlinear difference equations in two variables whose solutions
are explicitly known. An important procedure for obtaining a closed—form so-
lution of soliton equations is Hirota’s bilinear method [22] which consists in
writing the solution as a ratio, and then working with its numerator and its
denominator. In this paper, inspired by the approach followed in [19], we will
show how to link the Shanks’ transformation and the e-algorithm by means of
Hirota’s method. Let us begin by some relations between Hankel determinants
that will be needed for that purpose, and some others which could intervene in
other transformations and in Padé approximation.

3. RELATIONS BETWEEN HANKEL DETERMINANTS

In this section, recurrence relations between Hankel determinants will be
given (see [14] for some of them and their generalization).
Let A be a square matrix, «, 8,7 and § numbers, a,b,c and d vectors of
the same dimension as A. Let M be the matrix
a ol B
M = b A ¢
v dl s

Q
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The Sylvester’s determinantal identity is
T ‘ A ¢

al B
c

a a

— D;-Dy— D;-Dy.

Applying the Sylvester’s identity to the Hankel determinant Hpq(uy)
defined by (2) leads to the well-known recurrence relation for these determinants

(8) Hios (1) i1 (tny2) = i () Hi () — [H ()

Shanks himself used this relation with u, = S, and u, = A2S,, for computing
recursively the numerators and the denominators of his transformation (found
in 1949 [29], but only published in 1955 [30]).

For u, = A!S, for i = 0,...,3, the identity (8) leads to the following
known relations which are useful, for example, for simplifying the proofs of the
results about the e-algorithm when applied to totally monotonic and totally
oscillating sequences [5,8]. We have

b 4
v dr

(7)

e = ey — [Hu(AS,)/[Hi(A%S,) Hi_1(A%S,)]

e = e [Hy(A2S,)]2/[Hk(AS,) Hy 1 (AS,)]
e = 168 |~ [H(A28,)]%/[Hi(A3S,) Hyy 1 (APS,)].

We now consider the determinant

(n)

1 1 .. 1 1
AS, ASpi1 - ASpir ASuqrq
) =] 5 z
AkSn AkSnJrl T Aksn-i-/c Aksn—i-k—&—l
Sh Snt1 e Stk Sntk+1

where M is a (k4 2) x (k + 2) matrix. Replacing each column, from the last
one, by its difference with the previous one, we obtain a determinant whose first
row only contains 0 except in the first column where the first element is equal
to 1. Expanding this determinant with respect to its first row, and putting its
last row as the first one, we see that |M;| = (—1)¥Hy1(AS,). Let us now
apply the Sylvester’s identity to the matrix M;. By using the notation given in
(7), we see that |A|, that is the determinant of the matrix obtained from M; by
suppressing the first and last rows and columns, is equal to Hp(AS,+1), that
Dy = (=1)*Hp11(Sps1), and Dy = (—1)*Hp1(S,). By performing similar
manipulations directly on |Mi|, we see also that Dy = Hy(A2%S,), and D3 =
Hy(A2%S,,1). We finally obtain

(10)

Hip1(ASn) Hi(ASpy1) = Hi(A*Sp) Hpy1(Sns1) — He(A%Sn41) Hyg1(Sh).
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Directly from (10), by replacing the S,’s by AS, (that is by increasing
by 1 all the powers of the operator A), we find
(11)
Hy1(A?S,) Hiy(A%Spi1) = Hi(A*Sp)Hip1(ASni1) —Hi(A%Spi1) Hy1(ASy,).

We now apply the Sylvester’s determinantal identity to Hyi1(Sh)
= (=1)*D4. We directly get

(12)  Hg1(Sn)Hik—1(ASny1) = Hy(Sn)Hi(ASny1) — Hi(Sn+1)Hi(ASy).

By replacing, as above, the S,,’s in (12) by AS,,, we obtain
(13)
Hi1(ASn)Hi—1(A?Spy1) = Hp(AS,) Hi(A?Sni1) — Hi(ASn41)Hr(A%S,,).

We consider now the following determinant of the (k+1) x (k+1) matrix

My
1 1 e 1 1
ASn ASn—s—l to ASn«Hcfl ASn+k
| M| = : : : :
ASyip—2 ASpip—1 - ASpjop—3 ASpiok-—2
ASpyk—1  ASppx o ASpior2 ASpyop-1

Replacing each column, from the last one, by its difference with the previ-
ous one, we obtain again a determinant whose first row only contains 0 except
in the first column where the first element is equal to 1. Expanding this deter-
minant with respect to its first row, we have |My| = Hy(A2S,,).

Applying now the Sylvester’s identity to the matrix My we see that |A| =
Hk_l(ASnJrl), Dy = Hk(ASnJrl), Dy = Hk(ASn), and that Dy and D3 have
the same form as |Ma|, without the last row and column for Dy, and without
the last row and the first column for D3. Thus Dy = Hy_1(A2S,) and D3 =
Hy(A2%S,,11), and we finally obtain the relation
(14)

Hip(A?Sp)Hi—1(ASnt1) = Hee1 (A*Sp) Hi(ASpi1) — Hy—1 (A Spy1) Hi(ASy).

Replacing the S;,’s by AS,,, we also have
(15)
Hi(A3S,)Hy— 1 (A%S, 1) = Hy_1(A3S,) H (A%S,, 11 -Hy—1 (A3S, 1) Hy(A2S,).

All the relations given above are, of course, valid independently of the
dimension of the Hankel determinants.

Let us now derive a relation for the product of Hankel determinants of
the same dimension. We multiply (14) by Hg(Sp+1), we multiply (12) by
Hy_1(A%S,.1), and we subtract. Tt gives

Hi 1 (ASp 1) [Hi(A*Sn) Hi(Sns1) — Hiy1(Sn) Hy—1 (A Spp1)]
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= Hk(ASN-&-l)[Hk(sn-i-l)Hk—l(AzSn) - Hk—l(A2Sn+l)Hk(Sn)]‘

Using (10), but with the dimension of the Hankel determinants decreased
by 1, we see that the bracket in the right hand side is equal to Hy(AS,)Hy_1
(ASp+1), and, after simplifying both sides by Hy_1(ASp+1), we obtain

(16) Hp(ASni1)Hr(AS,) = Hp(A%S,)Hy(Spi1) — Hyp1(Sn)Hi—1(A%S,41).

Of course, the following relation also holds
(17)
Hi(A?Spy1)Hp(A*S,) = Hi(ASy) Hip(ASni1) — Hp1(ASp)Hi—1 (A Sp41).

For finding the identities given in this section, the difficulty laid in iden-
tifying the determinant to which the Sylvester’s determinantal identity had to
be applied.

4. THE HIROTA’S BILINEAR METHOD

Hirota’s bilinear method [22] is a technique which could be much useful
for solving certain nonlinear partial differential and difference equations. It
consists in expressing the unknown as a ratio and, then, treating separately the
numerator and the denominator.

We will now apply this method to the e-algorithm, and set

18 n _ Gk
(18) i = .

Thus, from (6), we have

(19) G% = Hi1(Sn),  Fj = Hi(ASn),  Ghypy = Hi(A%S,),
Fjp1 = Hip1(ASy).

These expressions are proved in Sections 5.1 and 5.2. For that purpose, we
follow a procedure based on Hirota’s bilinear method which is similar to that
used in the case of the multistep e—algorithm [14]. The same method was also
adopted in [19] for deriving a determinantal expression for a new convergence
acceleration algorithm derived from the lattice Boussinesq equation. The only
differences between [19] and what is presented below is that these authors
employed the Jacobi’s determinantal identity, while we consider the Sylvester’s
one (which is in fact the same after a permutation of rows and columns), and
we do not use the Schweins’ identity (since the e-algorithm is simpler than the
algorithm considered in [19]).

Plugging the expressions (19) into the relations (10) to (17) leads respec-
tively to

(20) Py Fth = PGyt — FitGy,
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(21) F;HQFanH = gk+1F2nktll - G;llji1F2nk+1a
(22) By = Gh o Fn — GLEL R,
(23) F273s+1F2nkt12 = Fglklean_H - F;:llF;k’
(24) PPty = Fy oFyt — FpthFg ),
(25) Gh Py = Gy Ft —Got Py
(26) Fh Ry = FRGol, — GRFRt,

(27) Fy R = Gh PRt — B GREL

All these relations can be coupled by pair, and each of them can be re-
covered by replacing k by 2k and by 2k + 1 (or by 2k — 1) in the following
identities. Thus, the relations (20) and (21) can be gathered in

(28) FpoFy = (CDMGE P - G AL
Similarly, (22) and (25) cluster into

(29) GZnggl = Z—ngjf - GZEFI;LD
and, from (23) and (24), we have

(30) Fl?nggl = Fl?—zFl?jll - FI?j_;FI?flv
and, finally, (26) and (27) can be coupled into

(31) Fy R = (FD)MGE A B - FRa G

Let us give some additional identities which can easily be obtained. Using
the relation (8) with u,, = A'S,, for i = 0 and 2, and the expressions (19), gives

n n+2 _ n n+2 n+1 12

QkGQk—4 - 2k—2G2k—2 [GQk—2]

n n+2 _ n n-+2 n+1 12
FQkFQk—4 - F2k:—2F2k—2 - [F2k:—2] :

Similarly, when u,, = A’S, for i =1 and 3, (8) leads to

n n—+2 _ n n—+2 n+1 12

2k+1G2k73 - 2k71G2k—1 - [GQk—l]

n n+2 _ n n+2 n+112
F2k+1F2k—3 - F2k—1F2k—1 [F2k—1] .

These four identities can be gathered into two, valid for k£ even or odd
2 2 112
GZGZJ—Z; = GZ—zGZJ—rz - [Gth]
2 2 112
FRFITE = FRo R — [FR5%
Finally, applying the Sylvester’s identity to the second determinant in (3)
with u, = S, and u,, = AS,, leads to

ngFg‘ka = ngszfk—[ngfﬂg
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2
Fo Gy = Fo 1 Goppr — [Fi]7,
which can be coupled into

[Fia)? = (CDMGE L — GRF ).

5. HIROTA’S METHOD, THE e-ALGORITM,
AND THE SHANKS’ TRANFORMATION

In this section, we will show how the relations obtained from Hirota’s
method allow to recover the Shanks’ transformation from the recursive rule of
the e—algorithm and, then, how this rule can be deduced from the definition of
the transformation.

5.1. FROM THE ¢-ALGORITHM TO THE SHANKS’
TRANSFORMATION

In this section, starting from the rule (4) of the e-algorithm, we will show
how to recover the determinantal expressions (5) and (6) linking it with the
Shanks’ transformation.

Plugging (18) into the recursive rule (4) of the e-algorithm, we get

Gri Gt 1
- 1= 1
Fl,  FYGETGR
FI?Jrl F]?
that is
+1 +1 1
(32) GZ#’IF’?fl - F£+1G’Zfl _ F£+ F];Zn
Fp FRY - GrEp — Fpt Gy
k+11Tk—1 k k k k

Equating the numerators and equating the denominators in both sides of this
identity, we obtain the coupled relations

(33) Z+1F1?j11 - Fl?+1GZi_% = (_1)kF1?+1Fl?

(34) GZHFI? - F/?HGZ = (_1)kFl?+1F/?_+1l'

Although it does not appear in (32) since it could be cancelled out, the sign
(—1)* in these relations is needed to recover (31) and (28). By (19), these
relations are those given in Section 3 among the Hankel determinants which

show that the ratios of determinants defining the Shanks’ transformation have
been recovered.
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Remark 1. Let us remind that, as noticed in [2]| and fully explained in [11],
the sl(Cn)’s can be written as

6(n) _ fk(sn; ) Sn+2k) 6(n) _ ka(ASnv cee 7ASn+2k)
2k Dfe(Sny .-y Snaiok)’ 2k+1 fu(AS,, ..., AS, o)

where f} is a function depending on 2k + 1 variables and such that D?f;, = 0,
where D fj, denotes the sum of the partial derivatives of f;. We thus obtain the
following connection with Hirota’s bilinear method

ng = fk(sna ) Sn+2k)a Fan = ka(Sn, C 7Sn+2k)a
ng-s-l = ka<ASna s 7ASn+2k)7 F2nk+1 = fk(AS'ru cee 7A5n+2k).

5.2. FROM THE SHANKS’ TRANSFORMATION
TO THE e-~ALGORITHM

Starting from the definition of Shanks’ transformation as ep(S,) =
Hy1(S,)/Hy(A%S,,), we will prove that these quantities, also denoted by

6;2), can be recursively computed by the rule of the e-algorithm (4) where

557;?“ = 1/ex(AS,,), and that these eg,z)

+1 s can be themselves computed by the

same recursive rule.

The proof can be conducted in two different ways. The first one consists in
using directly the relations between the Hankel determinants proved in Section
3, while the second considers the corresponding identities among the F}'’s and
the G}!’s given in Section 4 together with their definitions (19).

We choose the second procedure because the coupled relations given above
allow to treat simultaneously the cases where k is odd or even, which is not the
case with the Hankel determinants. Of course, by using the definitions (19) in
(18), and replacing k by 2k, we have

=5 = G/ Fgi, = Hisa (Sa)/Hi(A%Sh) = ex(Sh),
and replacing k by 2k + 1
S = Gt/ s = Hi(A*S0)/Hyy1(ASy) = 1/ex(AS).
Writing (28) with the index k — 1 instead of k and using (31), we obtain
by division
FPEp - (—DMGE L — FR LG

(*1)]{71[GZFI?H —GZ“F,?] F’z:-le‘njll
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Dividing by F;‘HF,? the numerator and the denominator of the first ratio, and
simplifying the second ratio leads to

Tl+1 n
1 Gili Grp

GR/FL = G E R R

which is nothing else than the rule (4) of the e-algorithm
n n+1 n+1 n
1/(5,(C ) _512; * )) = a,i_ﬁ ) _ E,(H)l.

Since the 8;2)_,’_1’8 are intermediate results, they can be eliminated thus

leading to a relation between quantities with an even lower index. But, sim-
ilarly, the 5;7,2) can be eliminated and a relation between quantities with an
odd lower index is obtained. This is the so—called cross rule carried out by

Wynn [37] directly from the rule of the e-algorithm

1 1 1 1

- = + :
n n+1 n+2 n+1 n—+2 n+1 n n+1
RO R R LR

The validity of this rule can be verified by our approach. Using (18) and
the relationships (28), (30), and (31), we arrive at a tautology which proves the
rule.

6. THE CONFLUENT ¢e~ALGORITHM

The confluent form of the e-algorithm was obtained by Wynn [36] by
replacing, in the rule (4) of his scalar algorithm, the discrete variable n by the

continuous one ¢ + nh, ESZL_I by eor+1(t)/h, 552) by e9x(t), and, then, letting h
tend to 0. Thus, he obtained

35 t) =¢ep_1(t) + ——
(35) cinn(t) = 2+
with e_1(¢) = 0 and eo(t) = f(¢). It holds

H(O) ¢ H(S)t
k+1( ) and 62k+1(t) _ k ( )

(36) gox(t) =

1 (1) Hi (1)
where H ,gn) (t) denotes the following funtional Hankel determinant
F () fOD@) o pltk=1) (g
f(n+1)(t) f(n+2) (t) .. f(n+k) (t)

67 H"() = : : : ,

f(n-i-k.—l)(t) f(n-i:k)(t) f(n+21;—2)(t)
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with Vn, Hé") (t) = 1 and where f( is the i-th derivative of the function f.

This algorithm is aimed at transforming f into a set of functions {eox}
which, under some assumptions, converge to S, the limit of f(¢) when ¢ tends
to infinity, faster than f. With notations similar to those used for the Shanks’
transformation, we set 9k (t) = ex(f)(t), then eopi1(t) = 1/ex(f")(¢).

We will now show that Hirota’s method can be an alternative to Wynn’s
approach for linking the confluent Shanks’ transformation and the correspond-
ing confluent form of the e—algorithm. This technique was already employed
in [32] for treating the confluent form of the discrete algorithm presented in [19].

Setting

we have from (36)
(38) Gon(t) = HO (1), For(t) = HO(1),  Gopia(t) = HO (1),

Fopa (t) = HO, ().

Then, applying Hirota’s bilinear method to the recursive rule (35) of the con-
fluent form of the e—algorithm, leads to the coupled equations

(39)  Gra1()Fec1(t) — Frr()Geoa(t) = (=1 FE(2)
(40) G;(t)Fk(t) - Gk(t)F,g(t) = (—l)kaH(t)Fk_l(t).

For proving that the Fj’s and Gi’s can be expressed by formulae (38), we
have to prove that determinantal identities similar to those given in Section 3

hold for the functional Hankel determinants (37). We consider the second
determinant in (3) with u, = A’S,,

Az'Sn Ai—H Sn . Ai+k—15n
A Ai+1Sn Ai+2sn L. AiJrkSn
Hi(A'S,) = . . :
Ai‘i’k.*l Sn AiJr.kSn . Ai+2l.c725n

Replacing, in this determinant, AJS, by fU) (t + nh) for all j, dividing the
terms of the first column by A’, those of the second column by ~**! and so on,
and then performing the same operations on the rows from the first one, and
finally letting h tend to zero, we get H ,gl) (t) (see [36] for detailed explanations).

Then, all the determinantal identities of Section 3, previously defined by
applying the Sylvester’s determinantal identity to determinants of the form of
(3) and (2), with the appropriate changes, are valid for the functional Hankel
determinants. In particular, when h tends to 0, (39) directly follows from (33),
and (40) from (34).
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Finally, all the results given in the preceding Sections for the scalar e—
algorithm are also valid for its confluent form (see [15] for a generalization to
the multistep e-algorithm).

7. CONCLUSION AND FUTURE RESEARCH

In this paper, after giving identities relating Hankel determinants and ex-
plaining Hirota’s bilinear method, we were first able to show that the quantities
s,(cn) computed by the e-algorithm are expressed as ratios of Hankel determi-
nants related to the Shanks’ transformation, and conversely to derive the re-
cursive rule (4) of the e-algorithm from the determinantal formulae defining the
Shanks’ transformation. It must be noticed that, contrarily to the approach
of Wynn [35], we do not make use of the Schweins’ determinantal identity.
The difficult point in these tasks was to find the determinants to which the
Sylvester’s determinantal identity had to be applied. Our approach was then
extended to the confluent case.

The approach developed in this paper could possibly be extended to other
nonlinear convergence acceleration algorithms such as, for example, the two
generalizations of the e—algorithm given in [6], or the one proposed in [21], or its
g-difference version |20], or the p—algorithm. Other algorithms related to them,
such as the qd, the n, the w, and the rs—algorithms, and the g-decomposition,
could also be treated in a similar way (see [16] for their definitions). The
quantities computed by these algorithms can all be represented by ratios of
determinants. These extensions, as well as extensions to other acceleration
algorithms such as the f—algorithm [4], will be the subject of future research.

Acknowledgements. The work of C.B. was supported in part by the Labex CEMPI
(ANR-11-LABX-0007-01). M.R.-Z. is member of the INAAM Research group GNCS.
Her work was partially supported by the University of Padua, Project
No. DOR1807909/18.

REFERENCES

[1] A.C. Aitken, Determinants and Matrices. Oliver and Boyd, Edinburgh and London,
1949.

[2] M.D. Benchiboun, Etude de Certaines Généralisations du A* d’Aitken et Comparaison
de Procédés d’Accélération de la Convergence. These de 3eme Cycle, Université des
Sciences et Techniques de Lille, 1987.

[3] C. Brezinski, Convergence d’une forme confluente de l's—algorithme. C. R. Acad. Sci.
Paris, Sér A 273 (1971), 582-585.

[4] C. Brezinski, Accélération de suites a convergence logarithmigue. C. R. Acad. Sci. Paris,
Sér. A 273 (1971), 727-730.



374

C. Brezinski and M. Redivo-Zaglia 14

[5]

[6]
[7]
(8]
9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]
[17]

[18]

[19]
[20]

21]

22]
23]

24]

C. Brezinski, Méthodes d’Accélération de la Convergence en Analyse Numérique. These
de Doctorat d’Etat &s Sciences Mathématiques, Université Scientifique et Médicale de
Grenoble, Grenoble, 26 avril 1971.

C. Brezinski, Conditions d’application et de convergence de procédés d’extrapolation.
Numer. Math. 20 (1972), 64-79.

C. Brezinski, Généralisation de la transformation de Shanks, de la table de Padé et de
l’e—algorithme. Calcolo 12 (1975), 317-360.

C. Brezinski, Accélération de la Convergence en Analyse Numérique. Lecture Notes in
Math. 584, Springer-Verlag, Heidelberg, 1977.

C. Brezinski, Sur le calcul de certains rapports de déterminants. In: L. Wuytack (Ed.),
Padé Approzimation and its Applications. Lecture Notes in Math. 765, Springer—Verlag,
Heidelberg, 1979, pp. 184-210.

C. Brezinski, A general extrapolation algorithm. Numer. Math. 35 (1980), 175-187.

C. Brezinski, Quasi-linear estrapolation processes. In: R.P. Agarwal et al. (Eds.),
Numerical Mathematics. Singapore 1988. ISNM 86, Birkhduser, Basel, 1988, pp. 61—
78.

C. Brezinski, Biorthogonality and its Applications of Numerical Analysis. Marcel Dekker,
New York, 1992.

C. Brezinski, Cross rules and non-Abelian lattice equations for the discrete and confluent
non-scalar epsilon-algorithms. J. Phys. A 43 (2010), 205-201.

C. Brezinski, Y. He, X.-B. Hu, M. Redivo—Zaglia and J.-Q. Sun, Multistep epsilon-
algorithm, Shanks’ transformation, and the Lotka-Volterra system by Hirota’s method.
Math. Comp. 81 (2012), 1527-1549.

C. Brezinski, Y. He, X.-B. Hu, J.-Q. Sun and H.-W. Tam, Confluent form of the multistep
epsilon-algorithm, and the relevant integrable system. Stud. Appl. Math. 127 (2011),
191-209.

C. Brezinski and M. Redivo-Zaglia, Eztrapolation Methods. Theory and Practice. North—
Holland, Amsterdam, 1991.

C. Brezinski and M. Redivo-Zaglia, The simplified topological e—algorithms for acceler-
ating sequences in a vector space. STAM J. Sci. Comput. 36 (2014), A2227-A2247.

C. Brezinski and M. Redivo-Zaglia, The genesis and early developments of Aitken’s pro-
cess, Shanks’ transformation, and related fized point methods. Numer. Algorithms 80
(2019), doi: 10.1007/s11075-018-0567-2.

Y. He, X.-B. Hu, J.-Q. Sun and E.J. Weniger, Convergence acceleration algorithm via
the lattice Boussinesq equation. STAM J. Sci. Comput. 33 (2011), 1234-1245.

Y. He, X.-B. Hu and H.-W. Tam, Q-difference version of the e-algorithm. J. Phys. A
42 (2009), 095202.

Y. He, X.-B. Hu, H.-W. Tam and S. Tsujimoto, Convergence acceleration algorithms
related to a general E-transformation and its particular cases. Japan J. Indust. Appl.
Math. 30 (2013), 263-285.

R. Hirota, The Direct Method in Soliton Theory. Cambridge Univ. Press, Cambridge,
1992.

A. Nagai and J. Satsuma, Discrete soliton equations and convergence acceleration algo-
rithms. Phys. Lett. A 209 (1995), 305-312.

A. Nagai, T. Tokihiro and J. Satsuma, The Toda molecule equation and the e—algorithm.
Math. Comp. 67 (1998), 1565-1575.



15

Hirota’s bilinear method, Shanks’ transformation, and the e—algorithms 375

25]

[26]
27]
28]

[29]

[30]
31]

[32]

[33]
[34]
[35]
[36]

[37]

V. Papageorgiou, B. Grammaticos and A. Ramani, Integrable difference equations and
numerical analysis algorithms. In: D. Levi et al. (Eds.), Symmetries and Integrability of
Difference Equations. CRM Proceedings and Lecture Notes 9, AMS, Providence, 1996,
pp. 269-279.

V. Papageorgiou, B. Grammaticos and A. Ramani, Integrable lattices and convergence
acceleration algorithms. Phys. Lett. A 179 (1993), 111-115.

A. Salam, Eztrapolation: Eztension et Nouveauz Résultats. These, Université des Sci-
ences et Technologies de Lille, 1993.

A. Salam, On a generalization of the e-algorithm. J. Comput. Appl. Math. 46 (1993),
455-464.

D. Shanks, An analogy between transient and mathematical sequences and some nonlin-
ear sequence-to-sequence transforms suggested by it. Part I. Memorandum 9994, Naval
Ordnance Laboratory, White Oak, July 1949.

D. Shanks, Non linear transformations of divergent and slowly convergent sequences. J.
Math. Phys. 34 (1955), 1-42.

A. Sidi, Practical Eztrapolation Methods. Theory and Applications. Cambridge Univ.
Press, Cambridge, 2003.

J.-Q. Sun, Y. He, X.-B. Hu and H.-W. Tam, Q-difference and confluent forms of the lat-
tice Boussinesq equation and the relevant convergence acceleration algorithms. J. Math.
Phys. 52 (2011), 023522.

E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence
and the summation of divergent series. Comp. Phys. Reports 10 (1989), 189-371.

J. Wimp, Sequence Transformations and their Applications. Academic Press, New York,
1981.

P. Wynn, On a device for computing the en(Syn) transformation. Math. Tables Aids
Comput. 10 (1956), 91-96.

P. Wynn, Confluent forms of certain nonlinear algorithms. Arch. Math. 11 (1960),
223-234.

P. Wynn, Upon systems of recursions which obtain among the quotients of the Padé
table. Numer. Math. 8 (1966), 264—269.

Received 5 April 2018 Université de Lille,
CNRS, UMR 8524 - Laboratoire Paul Painlevé,
F-59000 Lille, France
Claude. Brezinski@Quniv-lille!.fr

Universita degli Studi di Padova,
Dipartimento di Matematica
“Tullio Levi-Civita”,

Via Trieste 63,
35121-Padova, Italy
Michela.RedivoZaglia@unipd. it



