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The Lugiato-Lefever equation arises as a model in nonlinear optics. Using tools
from bifurcation theory, we study the existence and the stability of periodic ste-
ady waves which bifurcate from spatially constant solutions. For the stability
problem, we focus on subharmonic perturbations, i.e., spatially periodic pertur-
bations with periods equal to an integer multiple of the period of the steady
wave.
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1. INTRODUCTION

The Lugiato-Lefever equation

(1.1)
∂ψ

∂t
= −iβ

∂2ψ

∂x2
− (1 + iα)ψ + iψ|ψ|2 + F,

is a nonlinear Schr�odinger type equation with damping, detuning and driving,
which has been derived in nonlinear optics by Lugiato and Lefever [7]. More
recently, it has been used as a model for frequency combs, i.e., optical sig-
nals consisting of a superposition of modes with equally spaced frequencies, in
whispering-gallery-mode resonators with Kerr nonlinearity [2]. In this context,
the complex-valued unknown ψ, which depends upon the temporal variable t
and the spatial variable x, represents the overall intracavity �eld, the real pa-
rameters α and β are the frequency detuning and the overall dispersion para-
meters, respectively, and the positive constant F is the dimensionless external
pump �eld intensity. Upon rescaling x, we may take |β| = 1, and we distinguish
between normal dispersion, β = 1, and anomalous dispersion, β = −1.

The important questions for the physical problem concern the dynamics
of nonlinear waves, and in particular the existence and the stability of steady
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periodic and localized waves. These questions have been intensively studied in
the physics literature (e.g., see [1] and the references therein), but much less
in the mathematics literature. The �rst rigorous mathematical results have
been obtained in the case of anomalous dispersion in [9], where tools from local
bifurcation theory have been used to study the existence of steady periodic
and localized waves at the onset of Turing instability, where a stable constant
solution becomes unstable with respect to periodic perturbations with nonzero
wavenumbers. A systematic study of local bifurcations for steady bounded
solutions, including steady periodic and localized solutions, have been done
in [4,5], whereas a study of global bifurcations of steady periodic solutions have
been done in [8]. The stability problem is widely open, stability results have
been obtained so far only for the steady periodic waves bifurcating at the onset
of Turing instability, for co-periodic perturbations, i.e., periodic perturbations
with period equal to the period of the steady wave, in [10], and for general
bounded perturbations in [3].

The purpose of this paper is to study the existence and the stability of
all steady periodic solutions bifurcating from constant solutions, without re-
stricting to the onset of instability. The starting point of our analysis is the
spectral stability analysis of constant solutions from [3], which allows us to pre-
cisely identify the parameter regions where steady periodic solutions bifurcate
from constant solutions. It turns out that steady periodic solutions bifurcate at
the onset of instability of constant solutions, on the one hand, and when these
instabilities are fully developed, on the other hand. The solutions bifurcating at
the onset of instability have been analyzed in [3]. Here, we discuss the solutions
bifurcating when instabilities are fully developed.

In [3], two types of instabilities have been found for the constant solutions:
the Turing instability mentioned above and a zero-mode instability, in which
the instability of the constant solution is due to constant perturbations. For
parameter values in the Turing instability region, we prove the existence of two
families of steady periodic solutions with wavelengths kmin < kmax, whereas
for parameter values in the zero-mode instability region we show the existence
of one family of steady periodic solutions with wavelengths kmax. The values
kmax and kmin are precisely determined in terms of the physical parameters α,
β, and F from the Lugiato-Lefever equation (1.1).

The existence proofs rely upon a formulation of the equation (1.1) as an
in�nite-dimensional dynamical system and a center manifold reduction. In this
approach, the dynamics close to the bifurcation points is described by a two-
dimensional reduced system of ordinary di�erential equations, and the periodic
steady solutions of the equation (1.1) are found as equilibria of this reduced
system. We identify a steady bifurcation which, depending upon the values of
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the parameters, may be supercritical or subcritical. Besides the existence of
periodic solutions, we can also conclude on their stability with respect to co-
periodic perturbations: the periodic solutions are stable when the bifurcation
is supercritical and unstable when the bifurcation is subcritical. For general
bounded perturbations, all these solutions are unstable, due to the instability
of the background constant solution which is fully developed, but they may be
stable for particular classes of perturbations. Here, we focus on subharmonic
perturbations, i.e., periodic perturbations with periods which are equal to an
integer multiple of the period of the wave, which are of particular importance
for the physical problem. We distinguish between background instabilities,
which are due to instabilities of the background constant solution, and shape
instabilities, which are induced by the periodic wave itself.

In our presentation, we focus on the case of anomalous dispersion which
is analyzed in detail in Sections 2�4, and only summarize the results found in
the case of normal dispersion in Section 5. We recall the stability results for
constant solutions in Section 2, analyze the bifurcation problem in Section 3,
and discuss the stability of the bifurcating steady periodic solutions in Section 4.

2. STABILITY OF CONSTANT SOLUTIONS

In this section, we summarize the stability properties of the constant solu-
tions of the Lugiato-Lefever equation (1.1) in the case of anomalous dispersion,
β = −1 (see [3] for more details).

Constant solutions ψ ∈ C of the equation (1.1) satisfy the algebraic equa-
tion

(1 + iα)ψ − iψ|ψ|2 = F,

and upon setting ψ = ψr + iψi and ρ = |ψ|2 = ψ2
r + ψ2

i , a direct calculation
gives

(2.1) ψr =
ρ

F
, ψi =

ρ(ρ− α)

F
, ρ

(
(ρ− α)2 + 1

)
= F 2.

The monotonicity properties of the cubic polynomial in the left hand side of
the last equation above determine the number of constant solutions: for any
α 6
√

3 and F > 0 there is precisely one constant solution, whereas for α >
√

3,
there exist F−(α) < F+(α),

F 2
±(α) = ρ±(α)

(
(ρ±(α)− α)2 + 1

)
, ρ±(α) =

1

3

(
2α∓

√
α2 − 3

)
,

such that the equation possesses three constant solutions with ρ = ρj , j =
1, 2, 3,

ρ1 < ρ+(α) < ρ2 < ρ−(α) < ρ3,
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Fig. 1 � Number of constant solutions of the

Lugiato-Lefever equation (1.1): three solutions in

the region between the curves F 2 = F 2
±(α), two so-

lutions along the curves, and one solution otherwise.

when F−(α) < F < F+(α), two distinct constant solutions when F = F±(α),
and one constant solution when F < F−(α) or F+(α) < F (see Figure 1).

The linear stability of a constant solution ψ∗ = ψ∗
r + iψ∗

i is determined by
the spectrum of the 2× 2 matrix operator A∗ in the linear equation

dV

dt
= A∗V,

obtained by setting ψ = ψ∗ + (u+ iv) in (1.1), V = (u, v)T , and taking the real
and imaginary parts of the resulting linearized equation. We �nd

(2.2) A∗ = −I + JL∗,
in which

(2.3) I =

(
1 0

0 1

)
, J =

(
0 −1

1 0

)
,

and

L∗ =

(
∂2x − α+ 3ψ∗

r
2 + ψ∗

i
2 2ψ∗

rψ
∗
i

2ψ∗
rψ

∗
i ∂2x − α+ ψ∗

r
2 + 3ψ∗

i
2

)
.

A standard Fourier analysis shows that the spectrum σ(A∗) of A∗, in both the
Hilbert space L2(R) × L2(R) of square integrable functions and the Banach
space Cb(R)× Cb(R) of uniformly continuous functions, is given by

(2.4) σ(A∗) =
{
λ ∈ C ; λ2 + 2λ+ a(k) = 0, k ∈ R

}
,

in which

a(k) = k4 + 2(α− 2ρ∗)k2 + α2 − 4αρ∗ + 3ρ∗2 + 1, ρ∗ = |ψ∗|2 = ψ∗
r
2 + ψ∗

i
2.
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Fig. 2 � Stability of constant solutions in the case of anomalous dispersion. In the

(α, ρ∗)-plane, the shaded regions represent the values for which a constant solution with

ρ∗ = |ψ∗|2 is Turing unstable (left plot) and zero-mode unstable (right plot). The

insets show a typical shape of the largest eigenvalue λ1(k) in these instability regions.

The constant solution ψ∗ is unstable if one of the two roots λ1,2(k) of the
quadratic polynomial in (2.4) has positive real part, for some wavelength k ∈ R,
and stable otherwise. Since the sum of these two roots is −2, we may take
λ2(k) = −2 − λ1(k) such that Re(λ2(k)) 6 −1 and Re(λ1(k)) > −1, for any
k ∈ R. Furthermore Re(λ1(k)) > −1 if and only if λ1(k) is real, and it is
straightforward to check that λ1(k) > 0 if and only if a(k) < 0. Consequently,
instabilities are found when λ1(k) > 0, or equivalently a(k) < 0, for some
k ∈ R.

According to the analysis in [3], two types of instabilities occur: a Turing
instability when λ1(0) < 0 and λ1(k) > 0 for some k 6= 0, and a zero-mode
instability when λ1(0) > 0. The corresponding parameter values are found from
the condition a(k) < 0 and are represented in Figure 2. The instability regions
are determined by the values of α and ρ∗, only, the values of the parameter F
and of the constant solution ψ∗ being obtained from the equalities (2.1). The
curves Γ1, Γ+, and Γ−, which form the boundaries of these two regions, are
de�ned through

(2.5) Γ1 = {α < 2, ρ∗ = 1}, Γ+ = {α > 2, ρ∗ = ρ+(α)},

and

(2.6) Γ− = {
√

3 < α < 2, ρ∗ = ρ+(α)} ∪ {α >
√

3, ρ∗ = ρ−(α)}.

A constant solution loses its stability upon increasing ρ∗ and becomes Turing
or zero-mode unstable when crossing the curves Γ1 or Γ+, respectively. The
instability is fully developed in the open sets situated between the curves Γ1 and
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Γ− (Turing instability region) and the curves Γ− and Γ+ (zero-mode instability
region).

Remark 2.1. The three curves Γ1, Γ+, and Γ− above are precisely the
bifurcation curves found in the local bifurcation analysis of the steady Lugiato-
Lefever equation in [5]. In the spatial dynamics approach from [5], the bifur-
cation points are the parameter values where the number of purely imaginary
eigenvalues of a certain 4 × 4 matrix changes. It turns out that these purely
imaginary eigenvalues are precisely the values ik with k such that λ1(k) = 0.
This property implies that the curves Γ1, Γ+, and Γ− correspond to the local
bifurcations (iω)2, 02, and 02(iω), respectively, studied [5].

3. BIFURCATION ANALYSIS

In this section, we study the bifurcations of steady periodic solutions which
occur in the Turing and zero-mode instability regions de�ned in Section 2. We
assume that the instabilities are fully developed, so that the boundaries Γ1,
Γ+, and Γ− are excluded from the analysis. We follow the approach used in [3]
for the analysis of the onset of Turing instability, i.e., for parameter values
(α, ρ∗) ∈ Γ1.

3.1. Dynamical system and choice of parameters

We �x (α, ρ∗) in either the Turing instability region, or the zero-mode
instability region, denote by F∗ the corresponding value of the parameter F
given by (2.1), and take F as bifurcation parameter by setting F 2 = F 2

∗ + µ,
with small µ.

For the Lugiato-Lefever equation (1.1), we look for spatially periodic so-
lutions with wavelength k∗ > 0 of the form

(3.1) ψ(x, t) = ψ∗
µ + (u+ iv)(y, t), y = k∗x,

where ψ∗
µ = ψ∗

rµ + iψ∗
iµ is the constant solution given by (2.1) for F 2 = F 2

∗ + µ,
and the functions u and v are real-valued and 2π-periodic in y. Inserting (3.1)
into (1.1) we obtain a system of the form

(3.2)
dU

dt
= A∗

µU + F(U, µ),

for U = (u, v)T , in which A∗
µ is the linear operator

A∗
µ = −I + JL∗µ,
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with I and J the matrices de�ned by (2.3),

L∗µ =

(
k2∗∂

2
y − α+ 3ψ∗

rµ
2 + ψ∗

iµ
2 2ψ∗

rµψ
∗
iµ

2ψ∗
rµψ

∗
iµ k2∗∂

2
y − α+ ψ∗

rµ
2 + 3ψ∗

iµ
2

)
,

and F(U, µ) is a nonlinear map,

F(U, µ) = J (R2(U,U, µ) +R3(U,U, U)) ,

where R2(·, ·, µ) and R3 are bilinear and trilinear maps, respectively, such that

(3.3) R2(U1, U2, µ) =

(
ψ∗
rµ(3u1u2 + v1v2) + ψ∗

iµ(u1v2 + u2v1)

ψ∗
iµ(u1u2 + 3v1v2) + ψ∗

rµ(u1v2 + u2v1)

)
,

for Uj = (uj , vj)
T , j = 1, 2, and

(3.4) R3(U,U, U) =

(
u(u2 + v2)

v(u2 + v2)

)
,

for Uj = (u, v)T .
We choose as phase-space for the dynamical system (3.2) the Hilbert space

of 2π-periodic, square-integrable functions X = L2(0, 2π) × L2(0, 2π). In this
space, A∗

µ is a closed linear operator with domain Y = H2(0, 2π)×H2(0, 2π), J
and L∗µ are skew- and self-adjoint operators, respectively, and F(·, µ) : Y → Y
is a smooth map. Furthermore, as a consequence of the invariance of the
Lugiato-Lefever equation (1.1) under the re�ection x 7→ −x and under spatial
translations x 7→ x+ a, a ∈ R, the dynamical system (3.2) is equivariant under
the actions of the re�ection operator T and the translation operators Ta de�ned
through

(3.5) (T U)(y) = U(−y), (TaU)(y) = U(y + a), y ∈ R,

i.e., both A∗
µ and F(·, µ) commute with T and Ta, for any µ.

In this setting, we look for wavelengths k∗ such that µ = 0 is a bifurcation
point for the dynamical system (3.2). These bifurcation points are determined
by the spectrum of the linear operator A∗

µ at µ = 0. Since the domain Y of A∗
µ

is compactly embedded in X , the operator has compact resolvent and therefore
purely point spectrum consisting of isolated eigenvalues. Consequently, µ = 0
is a bifurcation point if the operator A∗

0 possesses purely imaginary eigenvalues.
Upon comparingA∗

0 with the operatorA∗ given by (2.2) in Section 2, and taking
into account the fact that the phase-space X consists of 2π-periodic functions,
we �nd that the eigenvalues of A∗

0 can be computed from the formula (2.4) by
taking k = nk∗, n ∈ Z, so that

σ(A∗
0) = {λ1(nk∗), λ2(nk∗), n ∈ Z},
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where λ1(nk∗) and λ2(nk∗) are the two roots of the quadratic polynomial

λ2 + 2λ+ a(nk∗) = 0.

With the notations from Section 2, Re(λ1(k)) > −1 if and only if λ1(k) is
real, so that µ = 0 is a bifurcation point when λ1(nk∗) = 0, for some n ∈ Z.
Without loss of generality we may assume n = 1, otherwise we may replace k∗
by nk∗. Taking into account the shape of λ1(k) (see the insets in Figure 2), for
(α, ρ∗) in the Turing instability region there are precisely two positive values
kmin < kmax such that λ1(kmin) = λ1(kmax) = 0, whereas in the zero-mode
instability region there is only one positive value kmax such that λ1(kmax) = 0.
We can compute these values from the condition a(k) = 0, which is equivalent
to λ1(k) = 0, and �nd

(3.6) k2max = 2ρ∗ − α+
√
ρ∗2 − 1

and

(3.7) k2min = 2ρ∗ − α−
√
ρ∗2 − 1.

Notice that k2max vanishes precisely along the curve Γ+, whereas k
2
min vanis-

hes along the curve Γ−. In the next two subsections we study separately the
bifurcations obtained for wavelengths k∗ = kmax and k∗ = kmin.

3.2. Periodic solutions with wavelengths kmax

For (α, ρ∗) �xed in either the Turing instability region, or the zero-mode
instability region, we take k∗ = kmax. Then λ1(kmax) = 0, so that 0 is an
eigenvalue of A∗

0, and the results in Section 2 imply that all other eigenvalues
in the spectrum σ(A∗

0) are either negative, or have negative real part equal
to −1, in the Turing instability region, and that there exists an additional
positive eigenvalue, with Fourier mode n = 0, in the zero-mode instability
region. Consequently, we have the spectral decomposition

(3.8) σ(A∗
0) = σs(A∗

0) ∪ σc(A∗
0) ∪ σu(A∗

0),

with
σc(A∗

0) = {0}, σs(A∗
0) ∪ σu(A∗

0) ⊂ {λ ∈ C ; |Reλ| > δ},

for some δ > 0, and σu(A∗
0) = ∅ in the Turing instability region. A direct

computation shows that 0 is a double semi-simple eigenvalue with associated
eigenvectors ζ and ζ,

(3.9) ζ =

(
(ρ∗ −

√
ρ∗2 − 1)(α+

√
ρ∗2 − 1)

2ρ∗ − α−
√
ρ∗2 − 1

)
eiy.
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Following the approach in [3], we rewrite the system (3.2) in the form

(3.10)
dU

dt
= A∗

0U + G(U, µ),

in which

G(U, µ) = J (R1(U, µ) +R2(U,U, µ) +R3(U,U, U)) ,

where R1(·, µ) = L∗µ−L∗0 and J , R2, R3 are de�ned as before. Upon checking
the hypotheses of the center manifold theorem [6, Chapter 2, Theorem 3.3], we
conclude that the dynamical system (3.10) possesses a two-dimensional center
manifold,

Mc(µ) = {U ∈ Y ; U = Aζ +Aζ + Ψ(A,A, µ), A ∈ C},

which contains all su�ciently small bounded solutions of (3.10), for any µ
su�ciently small. Here Ψ is a map of class Ck, for any arbitrary but �xed k > 3,
de�ned in a neighborhood of 0 in C × C × R, where C × C = {(A,A) ; A ∈
C}, and taking values in the spectral subspace Xh associated to the union
σs(A∗

0) ∪ σu(A∗
0) of the stable and unstable spectra of the operator A∗

0.
The dynamics on the center manifoldMc(µ) is described by the reduced

equation

(3.11)
dA

dt
= f(A,A, µ),

in which f is a complex-valued map obtained by inserting the Ansatz

U = Aζ +Aζ + Ψ(A,A, µ),

into the dynamical system (3.10) and then projecting on the eigenvector ζ.
The symmetries (3.5) of the dynamical system (3.2) are inherited by the re-
duced system (3.11) which is O(2)-equivariant (see [3] for more details). As a
consequence, the vector �eld f in (3.11) is of the form

f(A,A, µ) = Ag(|A|2, µ),

where g is a real-valued map of class Ck−1 de�ned in a neighborhood of 0 in
R2, and has the Taylor expansion

(3.12) f(A,A, µ) = c11µA+ c30A|A|2 +O(|A|(|µ|2 + |A|4)).

The signs of the two real coe�cients c11 and c30 determine the dynamics on
the center manifold.

Assuming that both coe�cients c11 and c30 are nonzero, the reduced sy-
stem (3.11) undergoes a steady bifurcation with O(2) symmetry at µ = 0, which
is supercritical when c30 < 0 and subcritical when c30 > 0. More precisely, we
have the following properties (see also [6, Section 1.2.4]):
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Fig. 3 � Bifurcations of steady periodic solutions in the case of anomalous dispersion.

In the (α, ρ∗)-plane, the bifurcation is supercritical (c30 < 0) in the lighter shaded re-

gions (light blue online) and subcritical (c30 > 0) in the darker shaded regions (navy

blue online). In the case k∗ = kmin, we also represent the curves Γn, for n = 2, 3, 4,

along which resonances occur, and the line ρ∗ = 2/
√

3 along which c11 changes sign.

(i) If c30c11µ > 0, then the reduced equation possesses a unique equilibrium
A = 0 which is stable when c30 < 0, and unstable when c30 > 0.

(ii) If c30c11µ < 0, then the reduced equation possesses the equilibrium A = 0
which is unstable when c30 < 0, and stable when c30 > 0, and a circle
of nontrivial equilibria with opposite stability, Aµ(φ) = rµeiφ, for φ ∈
R/2πZ.

In contrast to [3], the computation of these coe�cients is much more involved
here. We summarize these computations in the Annex. From the formulas
(A.2) and (A.4) we conclude that both coe�cients change sign when crossing
the boundary Γ− between the two instability regions, where k2min vanishes, and
in addition c30 changes sign when crossing the curve Γ30 with cartesian equa-
tion c̃30 = 0, where c̃30 is given by (A.5). The curve Γ30 lies inside the Turing
instability region, starting at the point (α, ρ∗) = (41/30, 1) and being asymp-
totic to Γ−, as α → ∞ (see Figure 3a). Taking into account the signs of the
coe�cients c11 and c30 in the di�erent parameter regions, from the properties
(i) and (ii) above we obtain the following result.

Theorem 1. Consider the Lugiato-Lefever equation (1.1) in the case β =
−1 of anomalous dispersion. Assume that ψ∗ is a constant solution of (1.1) with
square modulus ρ∗, for parameter values α and F∗. If (α, ρ∗) belongs to either

the Turing instability region, or the zero-mode instability region, as de�ned in

Section 2, and does not belong to the curve Γ30, then for F 2 = F 2
∗ + µ and
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k∗ = kmax the dynamical system (3.2) undergoes a steady bifurcation with O(2)
symmetry at µ = 0, and the following properties hold.

(i) If (α, ρ∗) belongs to the open set situated to the left of the curve Γ30 in

the Turing instability region, then the coe�cients of the reduced equation

(3.11) satisfy c11 > 0 and c30 < 0, so that the bifurcation is supercritical

and the reduced equation possesses a circle of stable nontrivial equilibria,

Aµ(φ) = rµeiφ, φ ∈ R/2πZ, for any su�ciently small µ > 0.

(ii) If (α, ρ∗) belongs to the open set situated to the right of the curve Γ30 in

the Turing instability region, then the coe�cients of the reduced equation

(3.11) satisfy c11 > 0 and c30 > 0, so that the bifurcation is subcritical and

the reduced equation possesses a circle of unstable nontrivial equilibria,

Aµ(φ) = rµeiφ, φ ∈ R/2πZ, for any su�ciently small µ < 0.

(iii) If (α, ρ∗) belongs to the zero-mode instability region, then the coe�cients

of the reduced equation (3.11) satisfy c11 < 0 and c30 < 0, so that the

bifurcation is supercritical and the reduced equation possesses a circle of

stable nontrivial equilibria, Aµ(φ) = rµeiφ, φ ∈ R/2πZ, for any su�-

ciently small µ < 0.

Going back to the Lugiato-Lefever equation (1.1), the circle of nontrivial
equilibria Aµ(φ) = rµeiφ corresponds to a family of steady periodic solutions in
x with wavelengths kmax. The positive equilibrium Aµ(0) = rµ gives an even
periodic solution of the Lugiato-Lefever equation (1.1), with Taylor expansion

(3.13) ψµ(x) = ψ∗ + ψ1 cos(kmax x) |µ|1/2 +O(|µ|),

in which

ψ1 =
(

(ρ∗ −
√
ρ∗2 − 1)(α+

√
ρ∗2 − 1) + i(2ρ∗ − α−

√
ρ∗2 − 1)

) ∣∣∣∣c11c30
∣∣∣∣1/2,

whereas the other equilibria on the circle correspond to translations in x of this
even periodic solution. This latter property is a consequence of the translation
invariance of the Lugiato-Lefever equation (1.1).

3.3. Periodic solutions with wavelengths kmin

We consider now (α, ρ∗) in the Turing instability region and take k∗ =
kmin. Then 0 is an eigenvalue of A∗

0, but in contrast to the case k∗ = kmax

above, its algebraic multiplicity is not always two. In this case, resonances
occur for parameter values for which the two values kmin < kmax are such
that kmax = nkmin, for some n ∈ N, n > 2. Then λ1(nkmin) = 0 and 0 is
a quadruple eigenvalue of A∗

0, with two additional eigenvectors in the Fourier
mode n. We exclude these resonances from our analysis, since they lead to a
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four-dimensional, instead of a two-dimensional, reduced system which requires
a di�erent bifurcation analysis.

A direct calculation shows that a resonance kmax = nkmin, n > 2, occurs
when

(3.14) α = 2ρ∗ − n2 + 1

n2 − 1

√
ρ∗2 − 1.

This equality is the cartesian equation of a curve Γn in the (α, ρ∗)-plane, which
starts at (α, ρ∗) = (2, 1) and lies in the Turing instability region. The curves
Γ2, Γ3, and Γ4 are represented in Figure 3b. As n increases, the curves Γn move
to the right in the (α, ρ∗)-plane and accumulate at Γ−, as n → ∞. Assuming
that (α, ρ∗) does not belong to any of the curves Γn, n > 2, the eigenvalue 0 of
A∗

0 is double and semi-simple with associated eigenvectors ζ and ζ given by

(3.15) ζ =

(
(ρ∗ +

√
ρ∗2 − 1)(α−

√
ρ∗2 − 1)

2ρ∗ − α+
√
ρ∗2 − 1

)
eiy.

Furthermore, the spectral decomposition (3.8) holds, and σu(A∗
0) is empty for

(α, ρ∗) in the open set situated to the left of the curve Γ2, and above Γ1, and
contains precisely n−1 positive eigenvalues, λ1(jkmin), j = 2, . . . , n, for (α, ρ∗)
in the open set between two consecutive curves Γn and Γn+1, n > 2.

Following the arguments used in the case k∗ = kmax, we obtain a reduced
system of the same form (3.11), in which the coe�cients c11 and c30 in the Taylor
expansion (3.12) of f are given by the equalities (A.3) and (A.6), respectively,
in the Annex. In this case, the coe�cient c11 vanishes when ρ∗ = 2/

√
3, the

coe�cient c30 is not de�ned along the curve Γ2 and vanishes along the curve
Γ30 with cartesian equation c̃30 = 0, where c̃30 is given by (A.7), and both
coe�cients change sign when crossing one of the curves where they vanish or
are not de�ned. It is now straightforward to obtain the following result, similar
to the one in Theorem 1.

Theorem 2. Consider the Lugiato-Lefever equation (1.1) in the case β =
−1 of anomalous dispersion. Assume that ψ∗ is a constant solution of (1.1)
with square modulus ρ∗, for parameter values α and F∗. If (α, ρ∗) belongs to the

Turing instability region and does not belong to any of the curves Γn, n > 2,
Γ30, and ρ

∗ = 2/
√

3, then for F 2 = F 2
∗ +µ and k∗ = kmin the dynamical system

(3.2) undergoes a steady bifurcation with O(2) symmetry at µ = 0, and the

following properties hold.

(i) If (α, ρ∗) belongs to the lighter shaded regions in Figure 3b and ρ∗ < 2/
√

3,
then c11 > 0 and c30 < 0, so that the bifurcation is supercritical and the

reduced equation possesses a circle of stable nontrivial equilibria, Aµ(φ) =
rµeiφ, φ ∈ R/2πZ, for any su�ciently small µ > 0.
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(ii) If (α, ρ∗) belongs to the lighter shaded regions in Figure 3b and ρ∗ > 2/
√

3,
then c11 < 0 and c30 < 0, so that the bifurcation is supercritical and the

reduced equation possesses a circle of stable nontrivial equilibria, Aµ(φ) =
rµeiφ, φ ∈ R/2πZ, for any su�ciently small µ < 0.

(iii) If (α, ρ∗) belongs to the darker shaded regions in Figure 3b and ρ∗ <
2/
√

3, then c11 > 0 and c30 > 0, so that the bifurcation is subcritical and

the reduced equation possesses a circle of unstable nontrivial equilibria,

Aµ(φ) = rµeiφ, φ ∈ R/2πZ, for any su�ciently small µ < 0.

(iv) If (α, ρ∗) belongs to the darker shaded regions in Figure 3b and ρ∗ >
2/
√

3, then c11 < 0 and c30 > 0, so that the bifurcation is subcritical and

the reduced equation possesses a circle of unstable nontrivial equilibria,

Aµ(φ) = rµeiφ, φ ∈ R/2πZ, for any su�ciently small µ > 0.

Going back to the Lugiato-Lefever equation (1.1), the positive equilibrium
Aµ(0) = rµ gives an even periodic solution of the Lugiato-Lefever equation
(1.1), with Taylor expansion

(3.16) ψµ(x) = ψ∗ + ψ1 cos(kmin x) |µ|1/2 +O(|µ|),

in which

ψ1 =
(

(ρ∗ +
√
ρ∗2 − 1)(α−

√
ρ∗2 − 1) + i(2ρ∗ − α+

√
ρ∗2 − 1)

) ∣∣∣∣c11c30
∣∣∣∣1/2,

whereas the other equilibria on the circle correspond to translations in x of this
even periodic solution.

4. INSTABILITIES OF PERIODIC WAVES

In this section, we study the stability of the steady periodic solutions
found in Section 3 in the two cases, k∗ = kmax and k∗ = kmin. We focus on
co-periodic and subharmonic perturbations, i.e., periodic perturbations with
periods 2πN/k∗, where N = 1 for co-periodic perturbations and N > 2 for
subharmonic perturbations.

4.1. Background and shape instabilities

The bifurcation results in Section 3 also allow to conclude on the nonlinear
stability of the bifurcating steady periodic solutions for perturbations which
belong to the phase space X = L2(0, 2π) × L2(0, 2π) of the dynamical system
(3.2), i.e., for co-periodic perturbations which have the same period as the
stationary solution. In this approach, the stability of a bifurcating solution
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ψµ(x) is determined by the location in the complex plane of the spectrum σ(A∗
0)

of the operator A∗
0, on the one hand, and by the stability of the corresponding

equilibrium Aµ(φ) of the reduced equation (3.11), on the other hand. More
precisely, a bifurcating periodic solution ψµ(x) is stable if the spectrum σ(A∗

0)
is stable, i.e., it does not contain eigenvalues with positive real part, and if
the corresponding equilibrium Aµ(φ) of the reduced equation is stable, as well.
Then for initial data ψ(x, 0) = ψµ(x) + φ0(x), su�ciently close to a periodic
wave ψµ(x), the solution ψ(x, t) of the Lugiato-Lefever equation converges to
a translated periodic wave ψµ(x+ a), for some a ∈ R,

(4.1) ‖ψ(·, t)− ψµ(·+ a)‖H2
per
→ 0, as t→∞.

The decay rate is given by the convergence rate towards equilibria on the center
manifold, hence it is slowly exponential, O(e−dµ), for some d > 0. If one of the
two properties above does not hold then the bifurcating periodic solution ψµ(x)
is unstable. We distinguish between two types of instabilities: background
instabilities, when σ(A∗

0) contains eigenvalues with positive real part, and shape
instabilities, when the equilibrium Aµ(φ) of the reduced equation is unstable.

Upon replacing the phase space X = L2(0, 2π)× L2(0, 2π) of 2π-periodic
functions by the phase space XN = L2(0, 2πN) × L2(0, 2πN) of 2πN -periodic
functions, for some arbitrary, but �xed N , we can extend the class of pertur-
bations from co-periodic to subharmonic perturbations. The key di�erence is
that now the spectrum of the operator A∗

0 possesses additional eigenvalues,

(4.2) σ(A∗
0) = {λ1(nk∗/N), λ2(nk∗/N), n ∈ Z} ,

where λ1(nk∗/N) and λ2(nk∗/N) are the two roots of the quadratic polynomial

λ2 + 2λ+ a(nk∗/N) = 0.

As a consequence, the operator A∗
0 may have additional unstable eigenvalues,

hence leading to additional background instabilities, and more resonances may
occur, as the ones found for k∗ = kmin in Section 3, where the eigenvalue 0 is
quadruple, instead of double. In the next two subsections, we study separately
the cases k∗ = kmax and k∗ = kmin.

4.2. Periodic solutions with wavelengths kmax

Consider the family of steady periodic solutions ψµ(x) with wavelengths
k∗ = kmax constructed in Theorem 1. For co-periodic perturbations, N = 1,
their stability follows from the results in Section 3. The spectral decomposition
(3.8) implies that the spectrum σ(A∗

0) is stable in the Turing instability region,
whereas it contains one positive eigenvalue in the zero-mode instability region,
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and according to Theorem 1 the equilibria Aµ(φ) are stable when the bifurcation
is supercritical and unstable when the bifurcation is subcritical. Consequently,
in the three cases in Theorem 1 the periodic solutions are stable in the case (i),
background stable and shape unstable in the case (ii), and background unstable
and shape stable in the case (iii).

For subharmonic perturbations, N > 2, we consider the dynamical system
(3.2) in the phase space XN = L2(0, 2πN)×L2(0, 2πN). In contrast to the case
N = 1, for N > 2 resonances occur for certain parameter values, due to the
presence of additional eigenvalues in the spectrum of A∗

0. Indeed, the equality
(4.2) implies that the eigenvalue 0 of the operator A∗

0 is quadruple instead of
double, hence a resonance occurs, when kmin = nkmax/N , for n = 1, . . . , N − 1.
From the formulas (3.6) and (3.7) we obtain that kmin = nkmax/N when the
equalities

(4.3) α = 2ρ∗ − N2 + n2

N2 − n2
√
ρ∗2 − 1

hold, for n = 1, . . . , N − 1. Each of these equalities de�nes a curve Γn,N in
the (α, ρ∗)-plane which lies in the Turing instability region. For increasing
n = 1, . . . , N − 1, these curves are ordered from right to the left between the
curves Γ− and Γ1 in the (α, ρ∗)-plane. Notice that the values n = 0 and n = N
correspond to the curves Γ− and Γ1, respectively, and that Γ1,N is the curve
ΓN de�ned by (3.14) in Section 3.

Assuming that (α, ρ∗) does not belong to any of the curves Γn,N , n =
1, . . . , N − 1, the spectral decomposition (3.8) holds, with 0 a double semi-
simple eigenvalue. The unstable spectrum σu(A∗

0) is empty for (α, ρ∗) in the
open set between the curves Γ1 and ΓN−1,N , it consists of N − n positive
eigenvalues in the open set between two consecutive curves Γn,N and Γn−1,N , for
any n = 2, . . . , N−1, of N−1 positive eigenvalues in the open set between Γ1,N

and Γ−, and of N positive eigenvalues for (α, ρ∗) in the zero-mode instability
region. In particular, this shows that the periodic solution is background stable
with respect to 2πN/kmax-periodic perturbations when (α, ρ∗) belongs to the
open set between the curves Γ1 and ΓN−1,N , and it is background unstable
otherwise.

Next, we �nd the shape instabilities by applying the center manifold re-
duction, as in Section 3. Since the eigenvalue 0 is double, the center manifold
is two-dimensional, and it turns out that the reduced dynamics is governed by
the same reduced system (3.11). Consequently, the result in Theorem 1 holds
in XN , for any N , implying that shape instabilities occur only for the periodic
solutions obtained in the subcritical bifurcation.

Along the resonance curves Γn,N , n = 1, . . . , N − 1, the eigenvalue 0 of
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A∗
0 is quadruple, and the center manifold reduction leads to a four-dimensional,

instead of a two-dimensional system, just as in the case k∗ = kmin in Section 3.
The present bifurcation analysis does not allow to detect shape instabilities
along these curves, but we can conclude that background instabilities occur
along Γn,N , n = 1, . . . , N − 2.

We summarize the main stability results above in the following theorem
(see also Figure 4a).

Theorem 3. Consider the Lugiato-Lefever equation (1.1) in the case β =
−1 of anomalous dispersion, and the steady periodic solutions ψµ(x) given by

(3.13), with wavelengths kmax and the properties in Theorem 1. For any N > 2,
consider the curve ΓN−1,N de�ned through (4.3), and set Γ0,1 = Γ−. Then

the following stability properties hold for periodic perturbations with periods

2πN/kmax, for any N > 1.

(i) If (α, ρ∗) belongs to the open set situated to the left of the curve ΓN−1,N

in the Turing instability region, then the steady periodic solutions found

in the supercritical bifurcation are stable, whereas the steady periodic so-

lutions found in the subcritical bifurcation are unstable and the instability

is a shape instability.

(ii) If (α, ρ∗) belongs to the open set situated to the right of the curve ΓN−1,N

in the Turing instability region, then the steady periodic solutions are un-

stable; the instability is a background instability for the solutions found in

the supercritical bifurcation, whereas the solutions found in the subcritical

bifurcation are both background and shape unstable.

(iii) If (α, ρ∗) belongs to the zero-mode instability region, then the steady peri-

odic solutions are unstable and the instability is a background instability.

4.3. Periodic solutions with wavelengths kmin

The stability of the family of steady periodic solutions with wavelengths
k∗ = kmin found in Theorem 2 is studied in the same way. In this case resonances
occur when kmax = nkmin/N , for n > N + 1, and using the formulas (3.6) and
(3.7) we obtain a sequence of curves Γn,N , n > N + 1, in the (α, ρ∗)-plane with
parametric equations

(4.4) α = 2ρ∗ +
N2 + n2

N2 − n2
√
ρ∗2 − 1.

Notice that the curves Γn,1, for N = 1, are the curves Γn de�ned by (3.14) in
Section 3. Using the same arguments as in the case k∗ = kmax, we obtain the
following stability result (see also Figure 4b).
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N=1,2,3

ρ∗

αΓ1

Γ+

Γ−

Γ30

Γ1,2Γ2,3

Γ3,4

Γ4,5

(a) k∗ = kmax

unstable
stable

N=1

N=1,2

ρ∗

αΓ1

Γ−

Γ30

Γ2,1Γ3,2

Γ4,3

Γ5,4

(b) k∗ = kmin

Fig. 4 � Stability of steady periodic solutions in the case of anomalous dis-

persion. In the (α, ρ∗)-plane, the steady periodic solutions are background

stable for subharmonic perturbations with periods 2πN/k∗ for the values

of N as indicated, and unstable otherwise. In the lighter shaded regions

(light blue online) they are shape stable, whereas in the darker shaded re-

gions (navy blue online) they are shape unstable. The curves Γn,N are de-

�ned by (4.3) in the case k∗ = kmax and by (4.4) in the case k∗ = kmin.

Theorem 4. Consider the Lugiato-Lefever equation (1.1) in the case β =
−1 of anomalous dispersion, and the steady periodic solutions ψµ(x) given by

(3.16), with wavelengths kmin and the properties in Theorem 2. For any N > 1,
consider the curve ΓN+1,N de�ned through (4.4). Then the following stability

properties hold for periodic perturbations with periods 2πN/kmin, for any N > 1.

(i) If (α, ρ∗) belongs to the open set situated to the left of the curve ΓN+1,N

in the Turing instability region, then the steady periodic solutions found

in the supercritical bifurcation are stable, whereas the steady periodic so-

lutions found in the subcritical bifurcation are unstable and the instability

is a shape instability.
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(ii) If (α, ρ∗) belongs to the open set situated to the right of the curve ΓN+1,N

in the Turing instability region, then the steady periodic solutions are un-

stable; the instability is a background instability for the solutions found in

the supercritical bifurcation, whereas the solutions found in the subcritical

bifurcation are both background and shape unstable.

5. THE CASE OF NORMAL DISPERSION

In this section, we brie�y discuss the case β = 1 of normal dispersion.
The main di�erence with the case β = −1 of anomalous dispersion occurs in
the linear stability analysis of constant solutions. This implies that the periodic
waves bifurcate in di�erent parameter regions, but the bifurcation and stability
analysis in Sections 3-4 remain the same, including computations.

ρ∗

α

Γ̃1

Γ+

Γ−

k

λ1(k)

ρ∗

α

Γ̃1

Γ+

Γ−

k

λ1(k)

Fig. 5 � Stability of constant solutions in the case of normal dispersion. In the (α, ρ∗)-

plane, the shaded regions represent the values for which a constant solution with

ρ∗ = |ψ∗|2 is Turing unstable (left plot) and zero-mode unstable (right plot). The

insets show a typical shape of the largest eigenvalue λ1(k) in these instability regions.

5.1. Stability of constant solutions

The constant solutions of the Lugiato-Lefever equation (1.1) are the same
in both cases of normal and of anomalous dispersion (see Figure 2), but they
have di�erent stability properties. For a constant solution ψ∗ = ψ∗

r + iψ∗
i , with

modulus square ρ∗, the linear operator A∗ has the same form (2.2), but the
linear operator L∗ changes in the case of normal dispersion, the terms ∂2x having
now a coe�cient −1,

L∗ =

(
−∂2x − α+ 3ψ∗

r
2 + ψ∗

i
2 2ψ∗

rψ
∗
i

2ψ∗
rψ

∗
i −∂2x − α+ ψ∗

r
2 + 3ψ∗

i
2

)
.
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As a consequence, the sign of the coe�cient of k2 changes in the formula of
a(k) in the spectrum of linear operator A∗,

σ(A∗) =
{
λ ∈ C : λ2 + 2λ+ a(k) = 0, k ∈ R

}
,

in which
a(k) = k4 − 2(α− 2ρ∗)k2 + α2 − 4αρ∗ + 3ρ∗2 + 1.

This implies a change in the stability properties of the constant solutions (see
[3]). The zero-mode instability region is the same, but the Turing instability
region is now situated between the curve Γ+ de�ned in (2.5) and the half-line

Γ̃1 = {α > 2, ρ∗ = 1}.
These regions are represented in Figure 5.

5.2. Bifurcations and stability of periodic solutions

As in the case of anomalous dispersion, in the Turing instability region
we expect bifurcations of steady periodic solutions with wavelengths k∗ = k̃min

and k∗ = k̃max, where k̃min < k̃max are such that λ1(k̃min) = λ1(k̃max) = 0,
whereas in the zero-mode instability region we expect bifurcations of steady
periodic solutions with wavelengths k∗ = k̃max. Since the di�erence between
the formulas of a(k) in the two cases is only a change of the sign of the coe�cient
of k2, we �nd that

k̃2max = −k2min, k̃2min = −k2max,

where kmax and kmin are the wavelengths given by (3.6) and (3.7), respectively.
Together with the fact that in the Lugiato-Lefever equation (1.1) the di�erence
between the two cases of normal and anomalous dispersion is the sign of β, this
implies that the dynamical systems found for k∗ = k̃max and k∗ = k̃min in the
case of normal dispersion are precisely the ones found in the case of anomalous
dispersion for k∗ = kmin and k∗ = kmax, respectively. As a consequence, the
calculations are the same as the ones in Sections 3 and 4, with the only dif-
ference that (α, ρ∗) belongs to a di�erent parameter region in the case of the
Turing instability. We do not give the precise statements of the analogue of
Theorems 1�4 in this case, but only summarize the results in Figure 6.

ANNEX

COEFFICIENTS OF THE REDUCED SYSTEM

A.1. Computation of c11. According to [3], the coe�cient c11 in the
Taylor expansion (3.12) of the reduced vector �eld f can be computed from the
formula

c11 =
dλ∗
dµ

(0),
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N=1

N=1,2

ρ∗

α

Γ−
Γ+

Γ30

Γ1,2

Γ2,3

Γ3,4

(a) k∗ = k̃max

unstable

N=1

N=1,2

ρ∗

α

Γ+ Γ30 Γ2,1

Γ3,2

Γ4,3

(b) k∗ = k̃min

Fig. 6 � Stability of steady periodic solutions in the case of normal dispersion. In the

(α, ρ∗)-plane, the steady periodic solutions are background stable for subharmonic

perturbations with periods 2πN/k∗ for the values of N as indicated, and unstable ot-

herwise. In the lighter shaded regions (light blue online) they are shape stable, whereas

in the darker shaded regions (navy blue online) they are shape unstable. The curves

Γn,N are de�ned by (4.4) in the case k∗ = k̃max and by (4.3) in the case k∗ = k̃min.

where λ∗(µ) is the eigenvalue of the operator A∗
µ which is the continuation of

the eigenvalue 0 of the operator A∗
0, for small µ. The results in Section 2 imply

that λ∗(µ) is the largest root of the polynomial

(A.1) λ2 + 2λ+ aµ(k∗) = 0,

in which

aµ(k∗) = k4∗ + 2(α− 2ρ∗µ)k2∗ + α2 − 4αρ∗µ + 3ρ∗µ
2 + 1,

and ρ∗µ is the square modulus of the constant solution ψ∗
µ in (3.1), ρ∗µ = |ψ∗

µ|2.
Upon di�erentiating (A.1) with respect to µ and taking µ = 0, after some
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elementary calculations, we obtain

(A.2) c11 =
1

k2maxk
2
min

(
ρ∗ + 2

√
ρ∗2 − 1

)
,

in the case k∗ = kmax, and

(A.3) c11 =
1

k2maxk
2
min

(
ρ∗ − 2

√
ρ∗2 − 1

)
,

in the case k∗ = kmin. Notice that we can obtain the formula for k∗ = kmin from
the one for k∗ = kmax just by changing the sign of the square root

√
ρ∗2 − 1.

A.2. Computation of c30. According to [3], the coe�cient c30 in the
Taylor expansion (3.12) can be computed from the formula

c30 =
1

〈ζ,J ζ2〉
〈
2R2(ζ,Ψ11, 0) + 2R2(ζ,Ψ20, 0) + 3R3(ζ, ζ, ζ), ζ2

〉
,

in which R2 and R3 are the bilinear and trilinear maps, respectively, given
by (3.3)-(3.4), ζ and ζ2 are eigenvectors of A∗

0 associated to the eigenvalues 0
and −2, respectively, and the vectors Ψ11 and Ψ20 are solutions of the linear
equations:

A∗
0Ψ11 = −2JR2(ζ, ζ, 0), A∗

0Ψ20 = −JR2(ζ, ζ, 0).

In the case k∗ = kmax, the eigenvector ζ is given by (3.9) and a direct
calculation gives

ζ2 =

(
(ρ∗ −

√
ρ∗2 − 1)(2ρ∗ − α+

√
ρ∗2 − 1)

−α+
√
ρ∗2 − 1

)
eiy.

A symbolic computation using Maple gives

Ψ11 =
4F∗

k2max k
2
min

(
u11

v11

)
,

Ψ20 =
2F∗

k2max(9(2ρ∗ − α) + 15
√
ρ∗2 − 1)

(
u20

v20

)
e2iy,

in which

u11 = (ρ∗ −
√
ρ∗2 − 1)α2 + (2ρ∗

√
ρ∗2 − 1− 2ρ∗2 + 2)α

−ρ∗2
√
ρ∗2 − 1 + ρ∗3 +

√
ρ∗2 − 1− 3ρ∗,

v11 = (ρ∗
√
ρ∗2 − 1− ρ∗2 − 1)α2

−2(ρ∗2
√
ρ∗2 − 1− ρ∗3 +

√
ρ∗2 − 1− 2ρ∗)α

+ρ∗3
√
ρ∗2 − 1− ρ∗4 + 3ρ∗

√
ρ∗2 − 1− 4ρ∗2 + 1,
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u20 = 3(
√
ρ∗2 − 1− ρ∗)α2 − 2(ρ∗

√
ρ∗2 − 1− ρ∗2 − 1)α

−ρ∗2
√
ρ∗2 − 1 + ρ∗3 + 5

√
ρ∗2 − 1 + 5ρ∗,

v20 = −3(ρ∗
√
ρ∗2 − 1− ρ∗2 − 1)α2

+2(3ρ∗2
√
ρ∗2 − 1− 3ρ∗3 −

√
ρ∗2 − 1− 8ρ∗)α

−3ρ∗3
√
ρ∗2 − 1 + 3ρ∗4 + 3ρ∗

√
ρ∗2 − 1 + 12ρ∗2 + 5,

and then the formula for the coe�cient c30,

(A.4) c30 =
2F 2

∗ (ρ∗ −
√
ρ∗2 − 1)

k2max k
2
min(9(2ρ∗ − α) + 15

√
ρ∗2 − 1)

c̃30,

where

c̃30 = −27
√
ρ∗2 − 1α3 + 3(4ρ∗

√
ρ∗2 − 1− 25ρ∗2 + 5)α2(A.5)

+(345ρ∗2
√
ρ∗2 − 1 + 438ρ∗3 − 67

√
ρ∗2 − 1− 236ρ∗)α

−330ρ∗3
√
ρ∗2 − 1− 363ρ∗4 + 144ρ∗2 + 55.

Finally, as for the coe�cient c11, we obtain the formula for the coe�cient
c30 in the case k∗ = kmin by changing the sign of the square root

√
ρ∗2 − 1 in

the formula (A.4) for k∗ = kmax, so that

(A.6) c30 =
2F 2

∗ (ρ∗ +
√
ρ∗2 − 1)

k2max k
2
min(9(2ρ∗ − α)− 15

√
ρ∗2 − 1)

c̃30,

where

c̃30 = 27
√
ρ∗2 − 1α3 − 3(4ρ∗

√
ρ∗2 − 1 + 25ρ∗2 − 5)α2(A.7)

−(345ρ∗2
√
ρ∗2 − 1− 438ρ∗3 − 67

√
ρ∗2 − 1 + 236ρ∗)α

+330ρ∗3
√
ρ∗2 − 1− 363ρ∗4 + 144ρ∗2 + 55.
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