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1. INTRODUCTION

We consider some model equations proposed for non-Newtonian �uids that
are a subset of the Oldroyd models [15]. This includes the upper-convected and
lower-convected Maxwellian models. Our objective is to extend the existence
proof of Renardy [16] for these equations in various ways. In particular, we show
that a variant of his proof can be the basis for an e�ective solution algorithm.
The subset of the Oldroyd models that we study involves three parameters, the
�uid kinematic viscosity η and two rheological parameters λ1 and µ1. We will
refer to this subset as the �three-parameter� subset. An extended version of
these results appeared in [11] and were announced in [10].

1.1. Notation

Let d denote the space dimension. We assume that the �uid domain
D ⊂ Rd is connected and has a boundary ∂D with di�erent degrees of regula-
rity for di�erent results. For simplicity, we assume that the boundary conditions
on the �uid velocity are Dirichlet: u = 0 on ∂D, although these can be relaxed
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to allow u = g on ∂D provided g · n = 0, where n is the unit outer normal to
∂D. We utilize standard Sobolev spaces W s

q (D) for nonnegative integers s and
1 ≤ q ≤ ∞, consisting of functions whose derivatives of order s or less are in the
Lebesgue space Lq(D) [1,4,6]. For vector-valued functions v and matrix-valued

functions T, we will write v ∈ W s
q (D)d or T ∈ W s

q (D)d
2
to indicate that each

component of v or T is in W s
q (D). For tensor-valued functions of tensor order

larger than 2, we will use analogous notation. The highest order of tensors
considered here is 3, but we develop some identities in Section 9 for general
tensor-valued functions.

We will also write the corresponding norms with the understanding that
the norms for vector-valued and tensor-valued functions are evaluated appro-
priately. More precisely, we de�ne

‖T ‖W s
q (D) =

s∑
m=0

‖ |∇mT| ‖Lq(D),

where, for example, |T(x)| is the Frobenius norm of T(x) in the case when T(x)
is a matrix and the Euclidean norm in the case when T(x) is a vector. We give
details about generalizations to arbitrary tensors in Section 9. For simplicity,
we do not use bold face to indicate points in Rd.

We collect here our assumptions regarding the regularity of the domain
boundary. We will always assume that D is bounded and ∂D is Lipschitz, but
in addition we make the following assumptions. Consider the elliptic equations

v −∆v = f in D
∇v · n = 0 on ∂D,

(1.1)

and

−∆v = f in D
v = 0 on ∂D.

(1.2)

We introduce the following condition: suppose that the domain D has the
property that there is a constant C such that each problem (1.1) and (1.2) has
a unique solution v ∈ H2(D) for all f ∈ L2(D) satisfying

(1.3) ‖ v ‖H2(D) ≤ C‖ f ‖L2(D).

Similarly, we consider a Stokes system,

−∆v +∇p = f in D
∇·v = 0 in D, v = 0 on ∂D.

(1.4)

We introduce the following condition: suppose that, for some q > 1, the domain
D has the property that there is a constant Cq,D such that for all f ∈ Lq(D)d
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there is a unique pair v ∈W 2
q (D)d and p ∈W 1

q (D)/R solving (1.4) such that

(1.5) ‖v ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D‖ f ‖Lq(D) for all f ∈ Lq(D)d.

We assume this holds for all q ≤ q0 where q0 > 1. Ultimately, many of the
results will be restricted to the case q0 > d, where d is the dimension of D.

We will utilize Sobolev's inequality, which says that for q > d, functions
in W s+1

q (D) may be viewed as being in Cs(D). We will in particular use the
case s = 0 frequently, and we introduce the corresponding Sobolev constant σq
which is the smallest real number such that

(1.6) ‖ v ‖L∞(D) ≤ σq‖ v ‖W 1
q (D) for all v ∈W 1

q (D).

We will be interested in the cases d = 2 and d = 3, and our estimates will
always be restricted to the case q <∞. The constant σq depends on d and the
domain D, but we will suppress this dependence in what follows.

Another type of Sobolev inequality is

(1.7) ‖ v ‖L2q/(q−2)(D) ≤ σq‖ v ‖H1(D) for all v ∈ H1(D),

provided that q > 2 for d = 2 and q ≥ d for d ≥ 3. Although the constant σq
may be di�erent from the one in (1.6), we will use the same notation for both,
that is, we will assume that σq is the maximum of the two constants.

2. THREE-PARAMETER OLDROYD MODELS

In all (time-independent) models of �uids, the basic equation can be writ-
ten as

(2.1) u · ∇u +∇p = ∇·T + f ,

where T is called the extra (also called deviatoric) stress and f represents
externally given data. The models only di�er according to the dependence of
the stress on the velocity u.

In the case of a Newtonian �uid

T = η(∇u +∇ut) .
Thus, when ∇·u = 0, it follows that ∇·T = η∆u, and we obtain the well
known Navier-Stokes equations for Newtonian �ow, where η is the kinematic
viscosity [13].

We now describe the particular family of non-Newtonian models on which
we focus here.

A three parameter subset of the eight parameter model of Oldroyd [15]
for the extra stress takes the form

T + λ1(u · ∇T + R◦T + T◦Rt)− µ1(E◦T + T◦E) = 2ηE,
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where the �ve parameters λ2, µ2, µ0, ν0, and ν1 in [15] are set to zero, and

R = 1
2(∇ut −∇u) and E = 1

2(∇u +∇ut).

Note that Et = E, Rt = −R, R + E = ∇ut, and R−E = −∇u.
We can write the full model in the steady case as

u · ∇u +∇p = ∇·T + f in D,
∇·u = 0 in D, u = 0 on ∂D,

(2.2)

(2.3) T + λ1(u · ∇T + R◦T + T◦Rt)− µ1(E◦T + T◦E) = 2ηE in D.

By combining R and E, formula (2.3) has the equivalent expression

(2.4) T+λ1(u · ∇T− (∇u)◦T−T◦(∇ut)) + (λ1−µ1)(E◦T+T◦E) = 2ηE.

There are physical reasons to assume that λ1 > 0, but we will allow λ1 < 0
as well. The case λ1 = 0 and µ1 = 0 which corresponds to the Navier-Stokes
equations, has not been considered here, but it can be treated similarly and
is essentially trivial by comparison. Therefore, from now on, we assume that
λ1 6= 0.

3. ALTERNATIVE FORMULATION

The di�culty with the simple formulation (2.2�2.3) is that there is no ob-
vious smoothing for u, i.e., there is no explicit dissipation in the basic equation
(2.1). In Section 8, we describe a technique proposed by Renardy in [16] that
addresses this issue by making a substitution based on (2.2). Of course, this is
not the only option. Following the work of Fernandez-Cara et al in [5], we de-
velop a modi�ed version of the Renardy formulation that uses a more selective
substitution. This formulation is simpli�ed in several terms and may be more
e�ective both analytically and numerically. Renardy suggested writing (2.2) as

(3.1) ∇·T = u · ∇u +∇p− f ,

and then inserting this expression for ∇·T into the divergence of (2.3), or
equivalently (2.4). We can use the expression (3.1) for ∇·T selectively in (2.3)
to get di�erent formulations with di�erent properties. In order to do so, we
need to use some identities, which we now develop.

3.1. Some identities

The reader will �nd in Section 9 the general de�nitions of the operators
used here. Let us now compute the divergence of the left-hand side of (2.4).
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We compute the divergence of u · ∇T as follows:

(∇· (u · ∇T))i =
∑
j

(u · ∇T)ij,j =
∑
j

(u · ∇Tij),j =
∑
jk

(
ukTij,k

)
,j

=
∑
jk

(
ukTij,kj + uk,jTij,k

)
= (u · ∇ (∇·T))i +

∑
jk

uk,jTij,k.

We compute the divergence of T◦∇ut as follows:(
∇·
(
T◦(∇u)t

))
i

=
∑
j

(
T◦(∇u)t

)
ij,j

=
∑
jk

(Tik(∇u)jk),j =
∑
jk

(Tikuj,k),j

=
∑
jk

(
Tik,juj,k + Tikuj,kj

)
=
∑
jk

Tik,juj,k +
∑
k

Tik(∇·u),k

=
∑
jk

Tik,juj,k =
∑
jk

Tij,kuk,j =
∑
jk

uk,jTij,k,

provided that ∇·u = 0. Therefore we have proved the following identity:

(3.2) ∇·
(
u · ∇T−T◦(∇u)t

)
= u · ∇ (∇·T) ,

valid in the sense of distributions for all su�ciently regular functions and ten-
sors. For instance, it holds when the left and right sides of equation (3.2) de�ne
elements of H−1(D), e.g., if the components of u and T belong to W 1

q (D) for
q > d; then

〈∇·(u · ∇T),φ〉 = −
∫
D

(u · ∇T) : ∇φ dx

〈∇·(T◦(∇u)t),φ〉 = −
∫
D

(T◦(∇u)t) : ∇φ dx

for all φ ∈ H1
0 (D)d. If moreover ∇·u = 0, then

〈u · ∇ (∇·T) ,φ〉 = 〈
∑
i

ui
∂

∂xi
(∇·T) ,φ〉 =

∑
i

〈 ∂
∂xi

(∇·T) , uiφ〉

= −〈∇·T,
∑
i

∂

∂xi
(uiφ)〉 = −〈∇·T,

∑
i

ui
∂

∂xi
φ〉

= −
∫
D

(∇·T) · (u · ∇φ) dx ∀φ ∈ H1
0 (D)d.

(3.3)

The main point of (3.2) is that the expression on the left, which involves
second derivatives of T, has the property that all such second derivatives can
be written as a �rst-order derivative of ∇·T.
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If ∇·u = 0, then we can establish another identity:

∇· ((∇u)◦v) =
∑
`

∂

∂x`

(
(∇u)◦v

)
`

=
∑
`

∂

∂x`

(∑
k

(∇u)`,kvk

)
=
∑
`

∂

∂x`

∑
k

u`,kvk =
∑
`

∑
k

∂

∂x`

(
u`,kvk

)
=
∑
`

∑
k

(
u`,k`vk + u`,kvk,`

)
=
∑
k

∑
`

u`,k`vk +
∑
`

∑
k

u`,kvk,`

=
∑
k

∂

∂xk

(∑
`

u`,`

)
vk +∇ut : ∇v = ∇ut : ∇v.

(3.4)

3.2. Applying the identities

For example, using (3.2), we get

(3.5) ∇·
(
u · ∇T− (∇u)◦T−T◦(∇u)t

)
= u · ∇ (∇·T)−∇· ((∇u)◦T) .

Thus the divergence of (2.4) becomes

(3.6) ∇·T+λ1(u·∇ (∇·T)−∇· ((∇u)◦T))+(λ1−µ1)∇· (E◦T+T◦E) = η∆u.

The only troublesome term in (3.6) is u · ∇ (∇·T). Although we have bounds
for this term, we cannot show that it is suitably smooth in the relevant spaces
required for a proof of existence. Thus we eliminate it by using (3.1). Inserting
the expression (3.1) for ∇·T into (3.6) gives

η∆u = u · ∇u +∇p− f + λ1u · ∇ (u · ∇u +∇p− f)

− λ1∇· ((∇u)◦T) + (λ1 − µ1)∇· (E◦T + T◦E).

Therefore

(3.7) − η∆u + u · ∇u +∇p+ λ1u · ∇(∇p) = f + λ1u · ∇f

− λ1
(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E◦T + T◦E).

Remark 3.1. If we consider an Oldroyd model with additional parame-
ters, other than λ1, µ1, and η, for instance the �ve-parameter model with λ2
and µ2, then the right-hand side of formula (3.7) has an additional term, say
∇· T (∇u, λ2, µ2), where T is some function, which is much more problematic,
since it involves third derivatives of u. This is consistent with the fact that cer-
tain Oldroyd models are asymptotically equivalent to a grade-two model [17].
This is the reason why we focus only on the equation (2.3).
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3.3. Pressure equation

De�ne an auxiliary pressure function π by

(3.8) π = p+ λ1u · ∇p.

Then

∇π = ∇p+ λ1∇(u · ∇p) = ∇p+ λ1∇
(∑

i

uip,i

)
= ∇p+ λ1

∑
i

(
(∇ui)p,i + ui∇p,i

)
= ∇p+ λ1

(
(∇u)t∇p+ u · ∇(∇p)

)
,

(3.9)

which agrees with (9.6) in this case. Substituting (3.9) in (3.7) yields

(3.10) − η∆u + u · ∇u +∇π − λ1(∇u)t∇p = f + λ1u · ∇f

− λ1
(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E◦T + T◦E).

We can think of (3.8) as determining p from π. This is exactly the problem
addressed in [12] as described subsequently in Lemma 4.2. Thus the following
result can be proved; for the proof see [12] or the proof of Lemma 4.2.

Lemma 3.2. Suppose that 2 ≤ d ≤ 4, q > d, D ⊂ Rd is a bounded,

Lipschitz domain, and u ∈W 1
∞(D)d with ∇ · u = 0 in D and u · n = 0 on ∂D.

De�ne U = ‖∇u ‖L∞(D) and suppose that U < |λ1|−1. Let p be determined

from π via (3.8). Then

‖ p ‖W 1
q (D) ≤

1

1− |λ1| U
‖π ‖W 1

q (D).

3.4. A Navier-Stokes system

Re-phrasing (3.10), we �nd

(3.11) −η∆u + u · ∇u +∇π = F(f ,u, p,T),

where F is de�ned by

F(f ,u, p,T) = f + λ1u · ∇f + λ1(∇u)t∇p−λ1
(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E◦T + T◦E).

(3.12)
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Lemma 3.3. Suppose that q>d, v∈W 2
q (D)d, T ∈W 1

q (D)d
2
, f ∈W 1

q (D)d,
and p ∈W 1

q (D). Then

‖F(f ,v, p,T) ‖Lq(D) ≤ ‖ f ‖Lq(D) + σq|λ1| ‖v ‖W 2
q (D)

(
‖ f ‖W 1

q (D) + ‖ p ‖W 1
q (D)

+2σq‖v ‖2W 2
q (D) + ‖T ‖W 1

q (D)

)
+ 4σq|λ1 − µ1| ‖v ‖W 2

q (D)‖T ‖W 1
q (D),

(3.13)

where σq is the Sobolev constant (1.6).

Proof. We use some relations in Section 9. From (9.7), we have

‖v · ∇(v · ∇v) ‖Lq(D) ≤ 2‖v ‖L∞(D)‖v ‖W 1
∞(D)‖v ‖W 2

q (D).

From (9.5), we have

‖∇· ((∇v)◦T) ‖Lq(D) ≤ ‖v ‖W 2
q (D)‖T ‖L∞(D) + ‖v ‖W 1

∞(D)‖T ‖W 1
q (D),

‖∇· (E◦T + T◦E) ‖Lq(D) ≤ 2
(
‖v ‖W 2

q (D)‖T ‖L∞(D) + ‖v ‖W 1
∞(D)‖T ‖W 1

q (D)
)
.

The remaining terms are simpler. Thus

‖F(f ,v, p,T) ‖Lq(D) ≤ ‖ f ‖Lq(D) + |λ1| ‖v ‖W 1
∞(D)

(
‖ f ‖W 1

q (D) + ‖ p ‖W 1
q (D)

+ 2‖v ‖L∞(D)‖v ‖W 2
q (D) + ‖T ‖W 1

q (D)
)

+ |λ1| ‖v ‖W 2
q (D)‖T ‖L∞(D)

+ 2|λ1 − µ1|
(
‖v ‖W 1

∞(D)‖T ‖W 1
q (D) + ‖v ‖W 2

q (D)‖T ‖L∞(D)
)

≤ ‖ f ‖Lq(D) + σq|λ1| ‖v ‖W 2
q (D)

(
‖ f ‖W 1

q (D) + ‖ p ‖W 1
q (D) + 2σq‖v ‖2W 2

q (D)

+ 2‖T ‖W 1
q (D)

)
+ 4σq|λ1 − µ1| ‖v ‖W 2

q (D)‖T ‖W 1
q (D). �

3.5. The new system

We can now state the alternative system. It involves (2.4) to de�ne T
in terms of u, the Navier-Stokes system (3.11), and the pressure transport
equation (3.8):

−η∆u + u · ∇u +∇π = F(f ,u, p,T)

∇·u = 0 in D and u = 0 on ∂D
p+ λ1u · ∇p = π

T+λ1(u · ∇T−(∇u)◦T−T◦(∇ut))+(λ1−µ1)(E◦T+T◦E) = 2ηE,

(3.14)

where F is de�ned by (3.12) and E = 1
2(∇u +∇ut).

We have the following equivalence theorem. Its proof is not straightfor-
ward and is developed below in several steps.
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Theorem 3.4. The formulations (2.2)�(2.3) and (3.14) are equivalent.

More precisely, let q > d. If u ∈ W 2
q (D)d, T ∈ W 1

q (D)d
2
, and p ∈ W 1

q (D)/R
satisfy one of them, then they satisfy the other.

In our derivation of (3.14), we assumed we had a solution of (2.2)�(2.3)
with the stated regularity. Thus we have proved one direction of the equiva-
lence. To prove the other direction, we must deal with the issue that we have
created a new system by di�erentiation. Thus we need a way to be sure that
we can go back to the original system and still have a solution. To do so, we
will make use of the following result.

Lemma 3.5. Suppose that v ∈W 2
q (D)d with ∇·v = 0 in D and v = 0 on

∂D, that z ∈ Lq(D)m, and that

(3.15) z + v · ∇z = 0,

where we interpret v · ∇z ∈ H−1(D)m as in (3.3). Then z = 0.

Proof. The equation (3.15) implies that v · ∇zi = −zi ∈ Lq(D) for i =
1, . . . ,m. Thus the uniqueness results in [9] imply z = 0. �

Remark. What makes the uniqueness result of Lemma 3.5 so much simpler
than the results of [9] is the extra regularity we are assuming on v. Thus the
product of v ∈ W 2

q (D)d and ∇z is well de�ned in H−1(D)dm, whereas if we

only assume that v ∈ H1(D)d as in [9], such a product is de�ned only in a
weaker space than H−1(D)dm.

We now return to the proof of Theorem 3.4. Recall that (2.3) and (2.4)
are equivalent algebraic restatements of the last equation in (3.14). So we need
to verify only the �rst line of (2.2), which is equivalent to (3.1). Let us verify
that (3.1) holds provided that (3.14) holds. De�ne

(3.16) w = u · ∇u +∇p− f ∈ Lq(D)d.

To prove (3.1), we have to show that ∇·T = w. With the de�nition (3.16) of
w, we have

−η∆u + w = −η∆u + u · ∇u +∇p− f

= −η∆u + u · ∇u +∇π +∇(p− π)− f

= F(f ,u, p,T) +∇(p− π)− f

= ∇(p− π) + λ1u · ∇f + λ1(∇u)t∇p
−λ1

(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E◦T + T◦E),

using (3.11) and (3.12). Now using (3.9), which is the gradient of the third
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equation in (3.14), we �nd

−η∆u + w = −λ1
(
(∇u)t∇p+ u · ∇(∇p)

)
+ λ1u · ∇f + λ1(∇u)t∇p

−λ1
(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E◦T + T◦E)

= −λ1 (u · ∇(∇p)) + λ1u · ∇f
−λ1

(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E◦T + T◦E)

= −λ1u · ∇w + λ1∇· ((∇u)◦T)− (λ1 − µ1)∇· (E◦T + T◦E).

Therefore

η∆u = w + λ1u · ∇w − λ1∇· ((∇u)◦T) + (λ1 − µ1)∇· (E◦T + T◦E).

(3.17)

Note that (3.6) is just the divergence of the last equation in (3.14), in view of
(3.5). Subtracting (3.17) from (3.6), we �nd

∇·T + λ1u · ∇ (∇·T) = w + λ1u · ∇w.

By the uniqueness result in Lemma 3.5, we conclude that ∇·T = w.

This completes the proof of Theorem 3.4. �

The next three sections are devoted to showing that the system (3.14) has
a solution u ∈ W 2

q (D)d, T ∈ W 1
q (D)d

2
, and p ∈ W 1

q (D) for q > d. This will
be done in three steps, �rst establishing regularity of solutions of (2.3) given
smooth u in Section 4. The reversed roles, showing u is smooth given smooth T
is standard Navier-Stokes theory, which we address in Section 5. We then show
how, by an iterative scheme, we can combine the two together in Section 6.

4. REGULARITY FOR T

We now consider the question of determining the regularity of the solution
T of (2.3), or equivalently (2.4), in terms of corresponding regularity of u. We
will later return to the Navier-Stokes type equation (3.11) to close the loop,
deriving regularity of u in terms of T.

The tensor T can be viewed as a type of projection of the symmetric
gradient E of u. For tensor quantities T of any order r ≥ 1, we denote by |T|
the Euclidean norm of T when viewed as a vector of dimension d r. We can
simplify (2.4) by de�ning v = λ1u, and it becomes

T + (v · ∇T− (∇v)◦T−T◦(∇vt)) + (1− µ1/λ1)(Ẽ◦T + T◦Ẽ) = 2ηE,

where Ẽ = λ1E = 1
2(∇v +∇vt).
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4.1. Bounds for T in Lq

The following result can be derived from [3,12].

Lemma 4.1. Suppose that 2 ≤ d ≤ 4, µ̃ ∈ R, q ≥ 2, D ⊂ Rd is bounded

and Lipschitz, and v ∈W 1
∞(D)d, with ∇·v = 0 in D, v · n = 0 on ∂D and

(4.1) ‖∇v ‖L∞(D) = ‖ |∇v| ‖L∞(D) ≤
(1− c0)

|1 + µ̃|+ |1− µ̃|
, where 0 < c0 < 1.

Then for each g ∈ Lq(D)d
2
, there is a unique solution T ∈ Lq(D)d

2
of the

equation

(4.2) T + v · ∇T + R̃◦T + T◦R̃t − µ̃(Ẽ◦T + T◦Ẽ) = g,

satisfying

(4.3) ‖T ‖Lq(D) ≤
1

c0
‖g ‖Lq(D).

Here R̃ = 1
2(∇vt −∇v) and Ẽ = 1

2(∇v +∇vt). Furthermore,

(4.4) ‖v · ∇T ‖Lq(D) ≤
3

c0
‖g ‖Lq(D).

The proof of this result will assume q < ∞, but once it is proved for
arbitrary q <∞, the case q =∞ immediately follows by taking limits on both
sides of (4.3) and (4.4) as q →∞.

Proof. The estimate (4.4) follows from (4.3) by using the equation (4.2)
as follows:

‖v · ∇T ‖Lq(D) ≤ ‖T ‖Lq(D) + ‖ R̃◦T + T◦R̃t ‖Lq(D)

+ |µ̃| ‖ Ẽ◦T + T◦Ẽ ‖Lq(D) + ‖g ‖Lq(D)

≤ ‖T ‖Lq(D)
(
1 + 2(1 + |µ̃|)‖∇v ‖L∞(D)

)
+ ‖g ‖Lq(D)

≤
(

1 +
1 + 2(1 + |µ̃|)

c0
‖∇v ‖L∞(D)

)
‖g ‖Lq(D)

=
1 + c0 + 2(1 + |µ̃|)

c0
‖∇v ‖L∞(D)‖g ‖Lq(D)

≤ (1 + c0 + 2(1 + |µ̃|))(1− c0)
c0(|1 + µ̃|+ |1− µ̃|)

‖g ‖Lq(D).

But

(1 + c0 + 2(1 + |µ̃|))(1− c0)
|1 + µ̃|+ |1− µ̃|

=
1− c20 + 2(1− c0)(1 + |µ̃|)

|1 + µ̃|+ |1− µ̃|

≤ 1 + 2(1 + |µ̃|)
|1 + µ̃|+ |1− µ̃|

≤ 3.
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Thus we only have to prove the well-posedness of (4.2) and establish the bound
(4.3). Let us make the change of variable

(4.5) S = −1
2 µ̃(∇vt +∇v) + R̃ = −µ̃Ẽ + R̃ = 1

2(1− µ̃)∇vt − 1
2(1 + µ̃)∇v.

Then

S◦T+T◦St = (−µ̃Ẽ+R̃)◦T+T◦(−µ̃Ẽ+R̃t) = R̃◦T+T◦R̃t− µ̃(Ẽ◦T+T◦Ẽ).

Thus (4.2) becomes

(4.6) T + v · ∇T + S◦T + T◦St = g.

To �t into the framework of [12], we view T as a function whose values are
vectors of dimension d 2, and we use the Frobenius product � : � as the inner-
product on such vectors, with norm |T(x)| =

√
T(x) : T(x). In particular, [12,

(4)] and [12, Theorem 3] can be phrased as follows.

Lemma 4.2. Suppose that 2 ≤ d ≤ 4, q ≥ 2, D ⊂ Rd is a bounded,

Lipschitz domain, and v ∈ H1(D)d with ∇ · v = 0 in D and v · n = 0 on ∂D.
Suppose further that C is an m×m matrix valued function such that for some

constant c0 > 0 (
C(x)ξ

)
· ξ ≥ c0|ξ|2 ∀ ξ ∈ Rm

for almost all x ∈ D. Then for all g ∈ Lq(D)m, there is a unique solution

T ∈ Lq(D)m to
v · ∇T + C◦T = g,

satisfying

(4.7) ‖T ‖Lq(D) ≤
1

c0
‖g ‖Lq(D).

We note that the results in [12] were stated for the special case when
the size of the vector m was the same as the dimension of the domain d (i.e.,
m = d), but it can be easily checked that the result holds for vectors of arbitrary
length m ≥ 1. As stated after Lemma 4.1, (4.7) is also valid for q =∞.

Since the mapping
T 7→ S◦T + T◦St

is linear, there is a matrix-valued functionM such that

(4.8) M◦T = S◦T + T◦St.
Therefore (4.2) takes the form

(4.9) T + v · ∇T +M◦T = g,

which corresponds to the equation in [12, (2)] with C = I +M. Thus we need
to show that I+M can be bounded below appropriately (that is, it is coercive).
For almost all x ∈ D,

(T(x) +M(x)◦T(x)) : T(x) = |T(x)|2 +M(x)◦T(x) : T(x)

≥ |T(x)|2 − |M(x)◦T(x) : T(x)|.
(4.10)
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By the de�nitions of S and M, we have by the multiplicative property of the
Frobenius norm that, for any tensor U of order 2,

|M(x)◦T(x) : U| = |S(x)◦T(x) : U + T(x)◦S(x)t : U|
≤ |S(x)◦T(x) : U|+ |T(x)◦S(x)t : U|
≤ |S(x)◦T(x)| |U|+ |T(x)◦S(x)t| |U|
≤ |S(x)| |T(x)| |U|+ |T(x)| |S(x)t| |U|
= 2|S(x)| |T(x)| |U|.

(4.11)

Recalling the de�nition of S in (4.5), we have

|S(x)| = 1
2 |(1− µ̃)∇v(x)t − (1 + µ̃)∇v(x)|

≤ 1
2(|1− µ̃|+ |1 + µ̃|)|∇v(x)|.

(4.12)

Therefore (4.11) and (4.12) imply
(4.13)
|M(x)◦T(x) : T(x)| ≤ (|1− µ̃|+ |1 + µ̃|)|∇v(x)| |T(x)|2 ≤ (1− c0)|T(x)|2,

where c0 is given by (4.1). Thus (4.10) and (4.13) imply that

(4.14) (T(x) +M(x)◦T(x)) : T(x) ≥ c0|T(x)|2.

This gives the required coercivity to use the results of [12]. In particular, (4.3)
follows from [12, Theorem 3]. �

Writing v = λ1u, and picking µ̃ = µ1/λ1, Lemma 4.1 implies the follo-
wing.

Lemma 4.3. Suppose that D and q satisfy the conditions of Lemma 4.1

and that u ∈W 1
∞(D)d, with ∇·u = 0 in D and u = 0 on ∂D. De�ne

ν = |λ1 + µ1|+ |λ1 − µ1|.

Suppose

U = ‖∇u ‖L∞(D) = ‖ |∇u| ‖L∞(D) <
1

ν
.

Then there is a unique solution T ∈ Lq(D)d
2
to (2.3) such that

max
{
‖T ‖Lq(D),

|λ1|
3
‖u · ∇T ‖Lq(D)

}
≤ 2η

1− ν U
‖∇u ‖Lq(D).

The proof follows from Lemma 4.1, by taking c0 = 1− ν U and g = 2ηE
and applying (4.3) and (4.4).
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4.2. Smoothness of T

Lemma 4.4. Suppose that the conditions of Lemma 4.1 hold, that condition

(1.3) holds, and that g ∈ H1(D)d. Suppose moreover that v ∈W 2
q (D)d for some

q > d and

(4.15) ‖∇v ‖L∞(D) ≤
(1− c1)

1 + |1 + µ̃|+ |1− µ̃|
,

where 0 < c1 < 1. Then the solution T to (4.2) satis�es T ∈ H1(D)d
2
.

Proof. We recall that (4.2) is equivalent to (4.6). Following [2], we intro-
duce a regularized problem: �nd Tε ∈ H1(D)d

2
such that

(4.16) −ε∆Tε + Tε + v · ∇Tε + S◦Tε + Tε◦St = g in D,

where S is de�ned in (4.5), with natural boundary conditions as in (1.1), that
is,

∇(Tε)ij · n = 0 on ∂D, for i, j = 1, . . . , d.

Multiplying (4.16) by Tε, integrating over D, and integrating by parts, we �nd

ε

∫
D
|∇Tε|2 dx+

∫
D
|Tε|2 dx+

∫
D

(v · ∇Tε) : Tε dx

+

∫
D

(S◦Tε + Tε◦St) : Tε dx =

∫
D
g : Tε dx.

(4.17)

We have ∫
D

(v · ∇Tε) : Tε dx =
∑
ij

∫
D

(v · ∇T εij)T εij dx = 0,

since ∇·v = 0 in D and v · n = 0 on ∂D. From (9.14), (4.12), and (4.1), we
have∣∣∣∫

D
(S◦Tε + Tε◦St) : Tε dx

∣∣∣ ≤ 2‖S ‖L∞(D)‖Tε ‖2L2(D)

≤ (|1 + µ̃|+ |1− µ̃|)‖∇v ‖L∞(D)‖Tε ‖2L2(D)

≤ (1− c0)‖Tε ‖2L2(D).

Applying these estimates to (4.17), we obtain

ε

∫
D
|∇Tε|2 dx+ c0

∫
D
|Tε|2 dx ≤

∣∣∣∫
D
g : Tε dx

∣∣∣ ≤ ‖g ‖L2(D)‖T
ε ‖L2(D)

≤ 1

2c0
‖g ‖2L2(D) + 1

2c0‖T
ε ‖2L2(D).

In particular, we obtain

(4.18) ‖Tε ‖L2(D) ≤
1

c0
‖g ‖L2(D),
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consistent with (4.3).
To proceed, we want to take the L2(D)d

2
inner-product of the terms on

both sides of (4.16) with −∆Tε and integrate by parts. Formally, this gives

ε

∫
D
|∆Tε|2 dx+

∫
D
|∇Tε|2 dx+

∫
D
∇(v · ∇Tε) : ∇Tε dx

+

∫
D
∇(S◦Tε + Tε◦St) : ∇Tε dx =

∫
D
∇g : ∇Tε dx.

(4.19)

On the one hand, since Tε ∈ H1(D)d
2
, we infer from (4.16) that −∆Tε ∈

L2(D)d
2
and thus the scalar products leading to (4.19) are well de�ned. But

on the other hand, integration by parts requires that v · ∇Tε be in H1(D)d
2
.

This follows from the regularity assumption (1.3). In particular, (9.6) implies

∇(v · ∇Tε) = ∇Tε◦∇v + v · ∇(∇Tε) = ∇Tε◦∇v + (∇2Tε)◦v,

and we see that it is necessary that ∇2Tε be integrable to some degree to justify
(4.19). We can expand the corresponding term as follows:∫

D
∇(v · ∇Tε) : ∇Tε dx =

∫
D

(∇Tε◦∇v + v · ∇(∇Tε)) : ∇Tε dx

=

∫
D

(∇Tε◦∇v) : ∇Tε dx.

Thus we have the bound∣∣∣∫
D
∇(v · ∇Tε) : ∇Tε dx

∣∣∣ ≤ ‖∇Tε ‖2L2(D)‖∇v ‖L∞(D).(4.20)

Next, by (9.12), we have∫
D
∇(S◦Tε + Tε◦St) : ∇Tε dx

=

∫
D

(
S◦∇Tε + B(∇S,Tε) + Tε◦∇St + B(∇Tε,St)

)
: ∇Tε dx,

(4.21)

where B is a bilinear mapping on tensors de�ned by (9.10), which here reduces
to

(4.22) (B(W,U))ijk =

d∑
`=1

(W)i`kU`j .

In what follows, we will frequently make use of two estimates. The �rst is

(4.23) ‖u v ‖L2(D) ≤ ‖u ‖Lq(D)‖ v ‖
L

2q
q−2 (D)

,

valid provided q > 2. To prove this, we use H�older's inequality to get

‖u v ‖2L2(D) =

∫
D
u2v2 dx ≤ ‖u2 ‖Ls(D)‖ v2 ‖Ls′ (D) = ‖u ‖2Lq(D)‖ v ‖

2
L2s′ (D),
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where s = q/2 and s′ = s/(s− 1) = q/(q − 2). This proves (4.23). The second
inequality, which follows from (4.23) and the Sobolev inequality (1.7), is∣∣∣ ∫

D
u(x)v(x)w(x) dx

∣∣∣ ≤ ‖u v ‖L2(D)‖w ‖L2(D)

≤ ‖u ‖Lq(D)‖ v ‖L 2q
q−2

(D)‖w ‖L2(D)

≤ σq‖u ‖Lq(D)‖ v ‖H1(D)‖w ‖L2(D),

(4.24)

valid provided q > d for d = 2 or q ≥ d for d ≥ 3.

From (9.13), |B(∇V(x),U(x))| ≤ |∇V(x)| |U(x)|, so (4.21) and (4.23)
imply

(4.25)
∣∣∣∫
D
∇(S◦Tε + Tε◦St) : ∇Tε dx

∣∣∣ ≤ 2‖∇Tε ‖2L2(D)‖S ‖L∞(D)

+ 2‖∇Tε ‖L2(D)‖T
ε ‖L 2q

q−2
(D)‖∇S ‖Lq(D).

By the Gagliardo-Nirenberg inequality [4, 6] and (4.18), there is a constant
cq <∞ such that

(4.26) ‖Tε ‖L 2q
q−2

(D) ≤ cq‖∇Tε ‖d/qL2(D)‖T
ε ‖1−d/qL2(D)

≤ cq

c
1−d/q
0

‖∇Tε ‖d/qL2(D)‖g ‖
1−d/q
L2(D),

provided q > d. We need to use the elementary inequality

(4.27) aθb1−θ ≤ θa+ (1− θ)b,

valid for a, b ≥ 0 and 0 ≤ θ ≤ 1, which is a consequence of the concavity of the
logarithm function. As a consequence of (4.27), we have

(4.28) AB ≤ 1

r
Ar +

1

r′
Br′ for A,B ≥ 0,

1

r
+

1

r′
= 1 (1 < r <∞),

by choosing r = 1/θ, A = aθ, and B = b1−θ. From (4.26) and (4.27), we have

‖Tε ‖L 2q
q−2

(D) ≤ δ‖∇Tε ‖L2(D) + Cδ‖g ‖L2(D),

where δ > 0 is arbitrary. Thus the estimate (4.25) becomes

∣∣∣∫
D
∇(S◦Tε + Tε◦St) : ∇Tε dx

∣∣∣ ≤ 2‖∇Tε ‖2L2(D)
(
‖S ‖L∞(D) + δ‖∇S ‖Lq(D)

)
+ 2Cδ‖g ‖L2(D)‖∇T

ε ‖L2(D)‖∇S ‖Lq(D).

(4.29)
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Combining (4.20) and (4.29), and using (4.15) and (4.12), (4.19) becomes

ε

∫
D
|∆Tε|2 dx+

∫
D
|∇Tε|2 dx ≤ ‖∇g ‖L2(D)‖∇T

ε ‖L2(D)

+ ‖∇Tε ‖2L2(D)

(
‖∇v ‖L∞(D) + 2‖S ‖L∞(D) + δ‖∇S ‖Lq(D)

)
+ 2Cδ‖g ‖L2(D)‖∇T

ε ‖L2(D)‖∇S ‖Lq(D)

≤ ‖∇g ‖L2(D)‖∇T
ε ‖L2(D) + ‖∇Tε ‖2L2(D)

(
(1− c1) + δ‖∇S ‖Lq(D)

)
+ 2Cδ‖g ‖L2(D)‖∇T

ε ‖L2(D)‖∇S ‖Lq(D).

(4.30)

If we choose δ > 0 so that δ‖∇S ‖Lq(D) ≤
1
2c1, then (4.30) implies

ε

∫
D
|∆Tε|2 dx+ 1

2c1

∫
D
|∇Tε|2 dx ≤ ‖∇g ‖L2(D)‖∇T

ε ‖L2(D)

+ C‖g ‖L2(D)‖∇T
ε ‖L2(D)‖∇S ‖Lq(D).

(4.31)

Dividing by ‖∇Tε ‖L2(D), we see that ‖∇Tε ‖L2(D) is bounded independently of
ε. Using (4.18), we conclude that ‖Tε ‖H1(D) is also bounded independently of ε.

Thus there is a subsequence εj such that Tεj converges weakly to T̃ ∈ H1(D)d
2
.

The estimate (4.31) also shows that

ε

∫
D
|∆Tε|2 dx ≤ C

for some constant C independent of ε, and thus

‖ ε∆Tε ‖L2(D) ≤
√
Cε

for all ε. Taking the weak limit εj → 0 in (4.16) shows that T̃ ∈ H1(D)d
2
is

a solution to (4.2), and by uniqueness of such solutions, we conclude that the
original solution T must be in H1(D)d

2
. �

4.3. Bounds for ∇T

Lemma 4.5. Under the conditions of Lemma 4.4, for each g ∈ W 1
q (D)d,

q > d, there is a unique solution T ∈W 1
q (D)d

2
to (4.2) such that

‖∇T ‖Lq(D) ≤
1

c1

(
‖∇g ‖Lq(D) +

|1− µ̃|+ |1 + µ̃|
c0

‖∇2v ‖Lq(D)‖g ‖L∞(D)

)
.

Recall that we have already obtained a bound for ‖v ·∇T ‖Lq(D) in (4.4).
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Proof. To estimate ∇T in Lq(D)d
3
, we write W = ∇T. In view of our

previous arguments, if g ∈ H1(D)d, then T ∈ H1(D)d
2
. Applying ∇ to (4.6),

which is equivalent to (4.2), we see that W ∈ L2(D)d
2
solves

(4.32) W+v ·∇W+W◦∇v+S◦W+B(W,St) = ∇g−B(∇S,T)−T◦∇St,
where S is de�ned in (4.5), B is de�ned in (4.22), and we have used the tensor
identities (9.6) and (9.12). Thus we seek coercivity for the linear map C where

C◦W = W + W◦∇v + S◦W + B(W,St).

By analogy with (4.8), we can write C = I +M where

(4.33) MW = W◦∇v + S◦W + B(W,St).

However, W is a tensor of order 3, so we view it as a vector of dimension
d 3, and we need to recapitulate the previous arguments. Let us introduce the
notation Tr for the set of tensors in d dimensions of order r. We can extend
the concept of the Frobenius product of matrices to Tr, because it corresponds
simply to the `2 inner-product of vectors of dimension d r. Thus (4.10) becomes

(W(x) +M(x)W(x)) : W(x) = |W(x)|2 +M(x)W(x) : W(x)

≥ |W(x)|2 − |M(x)W(x) : W(x)|.
Here M is simply a linear operator mapping T3 to T3 given by (4.33). This
requires the interpretation that the tensor contractions W 7→ W ◦∇v and
W 7→ S◦W, and the map W 7→ B(W,St), give linear operators on T3. Indeed,

(S◦W)ijk =

d∑
l=1

(S)il(W)ljk,

with a similar interpretation derived from (4.22). With the interpretation that
� : � is the usual `2 inner-product on vectors of dimension d 3, and that |W|
denotes the corresponding norm, (4.11) remains valid in this context, as a
consequence of (9.14):

|S(x)◦W(x) : W(x)| ≤ |S(x)| |W(x)|2.
Similarly, (9.14) implies

|W(x)◦∇v(x) : W(x)| ≤ |∇v(x)| |W(x)|2.
Applying (9.13) with U = St, we �nd

|B(W(x),St(x)) : W(x)| ≤ |B(W(x),St(x))| |W(x)| ≤ |W(x)|2|S(x)|.
Thus the following analog of (4.13) holds:

|M(x)W(x) : W(x)| ≤ (2|S(x)|+ |∇v(x)|) |W(x)|2

≤ (1 + |1− µ̃|+ |1 + µ̃|)|∇v(x)| |W(x)|2 ≤ (1− c1)|W(x)|2.
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Therefore

(C(x)◦W(x)) : W(x) = |W(x)|2 +M(x)W(x) : W(x) ≥ c1|W(x)|2,

which provides an analog of (4.14). So applying Lemma 4.2 to (4.32) yields

(4.34) ‖W ‖Lq(D) ≤
1

c1
‖∇g − B(∇S,T)−T◦∇St ‖Lq(D).

Applying (9.13), we have

|B(∇S,T) + T◦∇St| ≤ 2|∇S| |T|.

Recall from (4.5) that 2S = (1− µ̃)∇vt − (1 + µ̃)∇v. Hence

|B(∇S(x),T(x)) + T(x)◦∇S(x)t| ≤ (|1− µ̃|+ |1 + µ̃|)|∇2v(x)| |T(x)|,

for almost all x ∈ D. Therefore (4.34) becomes, in view of (4.7) applied with
q =∞,

‖W ‖Lq(D) ≤
1

c1

(
‖∇g ‖Lq(D) + (|1− µ̃|+ |1 + µ̃|)‖∇2v(x) ‖Lq(D)‖T ‖L∞(D)

)
≤ 1

c1

(
‖∇g ‖Lq(D) +

|1− µ̃|+ |1 + µ̃|
c0

‖∇2v(x) ‖Lq(D)‖g ‖L∞(D)

)
.

Recalling that W = ∇T completes the proof. �

Writing v = λ1u, and picking µ̃ = µ1/λ1, Lemmas 4.1 and 4.5 combine
to yield the following.

Lemma 4.6. Suppose that D satis�es the condition (1.3), q > d, and

u ∈W 2
q (D)d, with ∇·u = 0 in D and u = 0 on ∂D. De�ne

ν = |λ1 + µ1|+ |λ1 − µ1|.

Suppose

(4.35) U = ‖∇u ‖L∞(D) = ‖ |∇u| ‖L∞(D) <
1

|λ1|+ ν
.

Then there is a unique solution T ∈W 1
q (D)d

2
to (2.3) such that

(4.36) ‖T ‖Lq(D) + ‖∇T ‖Lq(D)

≤
( 2η

1− U ν

)(
‖∇u ‖Lq(D) +

1

1− U(|λ1|+ ν)
‖∇2u ‖Lq(D)

)
.

In particular, if we assume that

(4.37) |λ1| ≤ λ0η, |µ1| ≤ µ0|λ1|,

and

(4.38) η U ≤ 1

6λ0(1 + 2
3µ0)

,
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then

(4.39) ‖T ‖Lq(D) + ‖∇T ‖Lq(D) ≤ 4η‖∇u ‖Lq(D) + 8η‖∇2u ‖Lq(D).

Similarly,

|λ1| ‖u · ∇T ‖Lq(D) ≤
6η

1− U ν
‖∇u ‖Lq(D).

Proof. We can choose c0 = 1− νU in Lemma 4.1 and pick g = 2ηE, and
this shows that

max
{
‖T ‖Lq(D),

|λ1|
3
‖u · ∇T ‖Lq(D)

}
≤ 1

1− νU
‖g ‖Lq(D) =

2η

1− νU
‖E ‖Lq(D).

Similarly, we can choose c1 = 1−(|λ1|+ν)U ≤ c0 in Lemma 4.5, and this yields

‖∇T ‖Lq(D) ≤
2η

1− (|λ1|+ ν)U
‖∇E ‖Lq(D) +

2ν η

c0 c1
‖∇2u ‖Lq(D)‖E ‖L∞(D)

≤ 2η

1− (|λ1|+ ν)U
‖∇2u ‖Lq(D) +

2ν η U
c0 c1

‖∇2u ‖Lq(D)

=
2η

c1

(
1 +

ν U
1− νU

)
‖∇2u ‖Lq(D) =

2η

c1

(
1

1− νU

)
‖∇2u ‖Lq(D),

where we recall that E = 1
2(∇u + ∇ut). Summing these completes the proof

of (4.36).
If (4.37) holds, then

ν = |λ1|
(∣∣1 +

µ1
λ1

∣∣+
∣∣1− µ1

λ1

∣∣) ≤ 2|λ1|(1 + µ0),

and so

|λ1|+ ν ≤ |λ1|
(
1 + 2(1 + µ0)

)
≤ η λ0

(
1 + 2(1 + µ0)

)
= 3η λ0(1 + 2

3µ0).

So the assumption (4.38) implies that

U ≤ 1

6ηλ0(1 + 2
3µ0)

≤ 1

2(|λ1|+ ν)
≤ 1

2ν
,

and hence Uν ≤ U(|λ1|+ ν) ≤ 1/2. Thus (4.36) implies

‖T ‖Lq(D) + ‖∇T ‖Lq(D) ≤ 4η
(
‖∇u ‖Lq(D) + 2‖∇2u ‖Lq(D)

)
,

which completes the proof of (4.39). �

Based on Lemma 4.6, we can think of (2.3) as de�ning a mapping u 7→ T
such that, for q > d,

(4.40) ‖T(u) ‖W 1
q (D) ≤ C1η‖u ‖W 2

q (D),

provided ‖u ‖W 2
q (D) ≤ C2, η ≥ η0, |λ1| ≤ λ0η0, and |µ1| ≤ µ0|λ1|, where C1

and C2 depend only on q, D, η0 > 0, λ0 <∞, and µ0 <∞.
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5. REGULARITY FOR u

We consider the system

−η∆u + u · ∇u +∇p = f in D,
∇·u = 0 in D, u = 0 on ∂D.

(5.1)

It is well known [14] that, via a variational formulation, (5.1) always has a
solution u ∈ H1(D)d even for f ∈ H−1(D)d, and that all such solutions satisfy

(5.2) ‖u ‖H1(D) ≤ Cη−1‖ f ‖H−1(D).

From (1.5), we have

(5.3) η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ C
(
‖ f ‖Lq(D) + ‖u · ∇u ‖Lq(D)

)
,

although so far the last term might be in�nite. But if u ∈ H1(D)d, then
‖u · ∇u ‖Lq(D) < ∞ for some q > 1 su�ciently small, and that allows us to
bootstrap with respect to q to conclude that (5.3) holds for the desired value
of q, as follows. By H�older's inequality, and Sobolev's inequality, we have, for
1 < q ≤ 3/2, when d = 3,

(5.4) ‖u · ∇u ‖Lq(D) ≤ ‖u ‖L 2q
2−q

(D)‖∇u ‖L2(D) ≤ C‖u ‖2H1(D).

When d = 2, (5.4) can be extended to hold for 1 < q < 2, but with a constant
C = Cq → ∞ as q → 2. De�ne qd = 1

2(6 − d), that is, q2 = 2 and q3 = 3/2,
the limiting Lebesgue indices for the validity of (5.4). With these results, we
easily prove the following lemma.

Lemma 5.1. Suppose that d = 2 or 3 and de�ne qd = 1
2(6 − d). Suppose

further that f ∈ H−1(D)d and that u ∈ H1(D)d solves (5.1) in the sense of

distributions. Suppose �nally that (1.5) holds for some q satisfying 1 < q < qd.
Then there is a constant Cq,D <∞ such that for all f ∈ Lq(D)d∩H−1(D)d, we
have

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D
(
‖ f ‖Lq(D) + η−2‖ f ‖2H−1(D)

)
,(5.5)

where Cq,D remains bounded independently of q for d = 3 as q → q3 = 3/2, and
moreover (5.5) holds for q = 3/2 as well for d = 3.

Note that we must assume that f ∈ Lq(D)d ∩H−1(D)d since the assump-
tion f ∈ Lq(D)d alone does not imply that f ∈ H−1(D)d for d = 3. The next
lemma gives a preliminary range of q that will be sharpened further on. Now
we use bootstrapping to increase the range of q for which bounds can be proved.

Lemma 5.2. Suppose that q > 1, that (1.5) holds, that f ∈ Lq(D)d ∩
H−1(D)d, and that u ∈ H1(D)d solves (5.1) in the sense of distributions. De�ne

(5.6) f−1 = ‖ f ‖H−1(D) and fq = ‖ f ‖Lq(D).



422 V. Girault and L. Ridgway Scott 22

Then for d = 2,

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D
(
fq

+

{
η−2f2−1 1 < q < 2

η−2f−1
(
f2 + η−2f2−1

)
2 ≤ q <∞

)
.

(5.7)

For d = 3,

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D

(
fq

+


η−2f2−1 1 < q ≤ 3/2

η−2f−1
(
f3/2 + η−2f2−1

)
3/2 < q ≤ 2

η−2f−1
(
f2 + η−2f−1(f3/2 + η−2f2−1)

)
2 < q ≤ 3

η−2
(
f3 + η−2f−1

(
f2 + η−2f−1(f3/2 + η−2f2−1)

))2
3 < q <∞

)
.

(5.8)

Proof. Here C denotes various constants which may be di�erent but are
independent of η.

Let us begin with the case d = 2. From Lemma 5.1, we have

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ C
(
‖ f ‖Lq(D) + η−2‖ f ‖2H−1(D)

)
≤ C

(
‖ f ‖L2(D) + η−2‖ f ‖2H−1(D)

)
,

(5.9)

for 1 < q < 2. By Sobolev's inequality, we conclude u ∈ W 1
r (D)2 for any

r ≤ 2q/(2− q), and so we �nd from (5.2) and (5.9), for any 1 < q <∞, that

‖u · ∇u ‖Lq(D) ≤ ‖u ‖L2q(D)‖u ‖W 1
2q(D) ≤ C‖u ‖H1(D)‖u ‖W 2

2q/(q+1)
(D)

≤ Cη−2‖ f ‖H−1(D)
(
‖ f ‖L2(D) + η−2‖ f ‖2H−1(D)

)
,

(5.10)

since 2q/(q + 1) < q for all q > 1. From (5.3) and (5.10), we conclude that, for
any 1 < q <∞,

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R

≤ C
(
‖ f ‖Lq(D) + η−2‖ f ‖H−1(D)

(
‖ f ‖L2(D) + η−2‖ f ‖2H−1(D)

))
.

Now suppose d = 3. From Lemma 5.1, we have

η‖u ‖W 2
3/2

(D) + ‖ p ‖W 1
3/2

(D)/R ≤ C
(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)
.

By Sobolev's inequality, we have u ∈W 1
3 (D)3, with the bound

η‖u ‖W 1
3 (D) ≤ Cη‖u ‖W 2

3/2
(D) ≤ C

(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)
.
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Therefore H�older's and Sobolev's inequalities give

‖u · ∇u ‖L2(D) ≤ ‖u ‖L6(D)‖∇u ‖L3(D) ≤ C‖u ‖H1(D)‖u ‖W 1
3 (D)

≤ Cη−2‖ f ‖H−1(D)
(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)
.

Thus

η‖u ‖H2(D) + ‖ p ‖H1(D)/R ≤ C
(
‖ f ‖L2(D)

+ η−2‖ f ‖H−1(D)
(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

))
.

(5.11)

Next, Schwarz's and Sobolev's inequalities show, using (5.11), that

‖u · ∇u ‖L3(D) ≤ ‖u ‖L6(D)‖∇u ‖L6(D) ≤ C‖u ‖H1(D)‖u ‖H2(D)

≤ Cη−2‖ f ‖H−1(D)

(
‖ f ‖L2(D) + η−2‖ f ‖H−1(D)

(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

))
,

and so (5.3) yields

η‖u ‖W 2
3 (D) + ‖ p ‖W 1

3 (D)/R ≤ C
(
‖ f ‖L3(D) + η−2‖ f ‖H−1(D)

(
‖ f ‖L2(D)

+ η−2‖ f ‖H−1(D)
(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)))
.

Finally, Sobolev's inequality shows that, for any q <∞,

‖u · ∇u ‖Lq(D) ≤ C‖u ‖
2
W 2

3 (D)
≤ Cη−2

(
‖ f ‖L3(D) + η−2‖ f ‖H−1(D)

(
‖ f ‖L2(D)

+ η−2‖ f ‖H−1(D)
(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)))2

,

and so (5.3) yields, for any q <∞,

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ C

(
‖ f ‖Lq(D) + η−2

(
‖ f ‖L3(D)

+η−2‖ f ‖H−1(D)

(
‖ f ‖L2(D)+η

−2‖ f ‖H−1(D)
(
‖ f ‖L3/2(D)+η

−2‖ f ‖2H−1(D)
)))2

)
,

and this completes the proof. �

Although the above result is su�cient for some purposes, it suggests that
the dependence of u and p on f is discontinuous with respect to q. We can
smooth out this dependence in the following.

We need to estimate the nonlinear term in (5.3) for q > qd. By H�older's
inequality, we have, for any t satisfying 1 < t <∞,

(5.12) ‖u · ∇u ‖Lq(D) ≤ C‖u ‖Lqt(D)‖u ‖W 1
t′q(D)

,
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where t′ = t/(t− 1). By the Gagliardo-Nirenberg inequality [6, page 24, Theo-
rem 9.3], we have

‖u ‖W 1
t′q(D)

≤ C‖u ‖θH1(D)‖u ‖
1−θ
W 2

q (D)
,(5.13)

where θ(t′) is determined from

−1 +
d

t′q
= θ(t′)

(
− 1 +

d

2

)
+ (1− θ(t′))

(
− 2 +

d

q

)
= θ(t′)

(
1 +κ

)
+
(
− 2 +

d

q

)
,

where κ = (d/2)− (d/q), so that

(5.14) θ(t′) =
1

1 + κ

(
1 +

d

t′q
− d

q

)
=

1

1 + κ

(
1− d

tq

)
.

The estimate (5.13) is valid only for θ ∈]0, 1[.
For d = 2, we have by Sobolev's inequality that

‖u ‖Lqt(D) ≤ C‖u ‖H1(D)

for all 1 < t <∞. Thus (5.12) and (5.13) imply that

‖u · ∇u ‖Lq(D) ≤ C‖u ‖
1+θ
H1(D)‖u ‖

1−θ
W 2

q (D)
,

where θ is given in (5.14), but the constant C depends on the choice of t.
Applying (4.28), we have for any δ > 0,

(5.15) ‖u · ∇u ‖Lq(D) ≤ C
(
θδ(θ−1)/θ‖u ‖(1+θ)/θ

H1(D) + δ(1− θ)‖u ‖W 2
q (D)

)
.

By taking δ = cη with an appropriate choice of c, we �nd from (5.3), (5.15),
and (5.2) that

1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ C

(
‖ f ‖Lq(D) + η(θ−1)/θ‖u ‖(1+θ)/θ

H1(D)

)
≤ C

(
‖ f ‖Lq(D) + η−2/θ‖ f ‖1+(1/θ)

H−1(D)

)
.

Note that 1 + κ = 2 − (2/q) = 2/q′. Thus for any ε > 0, we can choose
t <∞ such that θ = 1

2q
′ − ε, and we have proved the following.

Lemma 5.3. Suppose that d = 2, that 2 < q < ∞, that (1.5) holds, that
f ∈ Lq(D)2, and that u ∈ H1(D)2 solves (5.1) in the sense of distributions.

Then there is a constant C <∞ such that

(5.16) 1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ C

(
‖ f ‖Lq(D) + η−2/θ‖ f ‖1+(1/θ)

H−1(D)

)
,

for any θ < 1
2q
′, where q′ = q/(q − 1),and C depends on θ and q but is inde-

pendent of f , u, and η.

The right-hand side of estimate (5.16) is arbitrarily close to

‖ f ‖Lq(D) + η−4(1−1/q)‖ f ‖3−(2/q)
H−1(D) ,

which interpolates the extremes in (5.7). Now we consider the case d = 3.
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Lemma 5.4. Let d = 3 and suppose that q > 3/2. De�ne q′ = q/(q − 1),
so that q′ < 3. De�ne

(5.17) θ =
1

1− q′/6
.

Then there is a constant C such that, for all v ∈W 2
q (D)3,

(5.18) ‖v · ∇v ‖Lq(D) ≤ C‖v ‖
θ
H1(D)‖v ‖

2−θ
W 2

q (D)
.

The conditions of Lemma 5.4 imply that 6
5 < θ < 2.

Proof. For the moment, let us consider a general dimension d. By the
Gagliardo-Nirenberg inequality [6, page 24, Theorem 9.3], for s = 0, 1 we have

‖u ‖W s
qt(D) ≤ C‖u ‖

θs
H1(D)‖u ‖

1−θs
W 2

q (D)
,(5.19)

where 1 < t <∞, t′ = t/(t− 1), and θs(t) is determined from

−s+
d

qt
= θs(t)

(
− 1 +

d

2

)
+ (1− θs(t))

(
− 2 +

d

q

)
= θs(t)

(
1 +κ

)
+
(
− 2 +

d

q

)
,

where κ = (d/2)− (d/q) as in (5.14), so that

θs(t) = θs(t; q) =
1

1 + κ

(
2− s+

d

tq
− d

q

)
=

1

1 + κ

(
2− s− d

t′q

)
.

The estimate (5.19) is valid only for θs ∈]0, 1[. Assuming for the moment that
it is possible to �nd a value of t such that this holds for θ0(t) and θ1(t

′), we
conclude from (5.12) that (5.18) holds for θ = θ0(t) + θ1(t

′). Since (t′)′ = t, we
�nd

θ = θ0(t) + θ1(t
′) =

1

1 + κ

(
2− d

t′q

)
+

1

1 + κ

(
1− d

tq

)
=

1

1 + κ

(
3− d

q

)
=

1

1 + κ

(
3− d+

d

q′

)
.

Choosing d = 3 yields θ = (1 + κ)−1(3/q′) and θ veri�es (5.17).
It remains to prove that, for all q > 3/2, there is a t such that 0 < θ0(t) < 1

and 0 < θ1(t
′) < 1. Let d = 3 and consider the choice t = 4 for s = 0. (In

Section 5.2, we will see why we cannot have d = 2 and the reasoning behind
the choice t = 4.) In this case

θ0(4) = h0(q) :=
1

1 + κ

(
2+

3

4q
− 3

q

)
=

1

5/2− 3/q

(
2− 9

4q

)
=

4

5
+

3

50

(
q− 6

5

)−1
.

Then h0(3/2) = 1, h0 is strictly decreasing for q > 6/5, and h0(q) → 4/5 as
q →∞. Thus for 3/2 < q <∞, 4/5 < h0(q) < 1, and thus 4/5 < θ0(4) < 1 as
well.
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Let s = 1. Since t = 4, then t′ = 4/3, and

θ1(4/3) = h1(q) :=
1

5/2− 3/q

(
1− 3

4q

)
=

2

5
+

9

50

(
q − 6

5

)−1
.

Then h1(3/2) = 1, h1 is strictly decreasing for q > 6/5, and h1(q) → 2/5 as
q → ∞. Thus for 3/2 < q < ∞, 2/5 < h1(q) < 1, and thus 2/5 < θ1(4/3) < 1
as well.

The result now follows from (5.12), with t = 4 (and t′ = 4/3). �

The following is an immediate consequence of (5.3) and (5.18):

(5.20) η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D
(
‖ f ‖Lq(D) + ‖u ‖θH1(D)‖u ‖

2−θ
W 2

q (D)

)
,

where θ is de�ned in (5.17) and satis�es 6/5 < θ < 2. Thus 2 − θ ∈ ]0, 4/5[ .
Applying (4.28) with 1/r′ = 2− θ (and 1/r = θ− 1 ∈ ]1/5, 1[ ), we have for any
δ > 0

(5.21) ‖u ‖θH1(D)‖u ‖
2−θ
W 2

q (D)
= δθ−2‖u ‖θH1(D)

(
δ‖u ‖W 2

q (D)
)2−θ

≤ (θ − 1)
(
δθ−2‖u ‖θH1(D)

)1/(θ−1)
+ (2− θ)δ‖u ‖W 2

q (D).

By choosing δ = cη with an appropriate c, (5.20) and (5.21) combine to yield

1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ Cq,D

(
‖ f ‖Lq(D) + η(θ−2)/(θ−1)‖u ‖θ/(θ−1)

H1(D)

)
≤ Cq,D

(
‖ f ‖Lq(D) + η−2/(θ−1)‖ f ‖θ/(θ−1)

H−1(D)

)
.

Recall that θ = 1/(1− q′/6), so

θ − 1 =
q′

6− q′
, (θ − 1)−1 =

6

q′
− 1 , and

θ

θ − 1
=

6

q′

Thus we have proved the following.

Lemma 5.5. Suppose that d = 3, that 3/2 < q <∞, that (1.5) holds, that
f ∈ Lq(D)d, and that u ∈ H1(D)d solves (5.1) in the sense of distributions. Let

q′ = q/(q − 1) ∈ ]1, 3[ . Then

1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ Cq,D

(
‖ f ‖Lq(D) + η2−(12/q

′)‖ f ‖6/q
′

H−1(D)
)
,(5.22)

where Cq,D is independent of f , u, and η.

5.1. Some corollaries

First we give an example that clari�es the meaning of Lemmas 5.3 and
5.5, especially in contrast with Lemma 5.2. Let D =]0, 1[d and suppose that
we de�ne fh via

fh(x) = h−1
(

sin(x1/h), 0, . . . , 0
)
,
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where x1 is the �rst coordinate of x. Then ‖ fh ‖H−1(D) ≤ C1 where C1 is
independent of h, but ‖ fh ‖Lq(D) ≥ C2/h where C2 > 0 is also independent of
h. Thus Lemmas 5.3 and 5.5 show that the corresponding solution uh satis�es
‖uh ‖W 2

q (D) ≤ Ch
−1 with C independent of h, whereas Lemma 5.2 would only

guarantee that ‖uh ‖W 2
q (D) ≤ Ch−2 with C independent of h with d = 3 and

q > 3.

As a corollary of Lemmas 5.1, 5.2, 5.3, and 5.5, we have the following.

Lemma 5.6. Suppose that q > 1 for d = 2 and q ≥ 6/5 for d = 3,
that (1.5) holds, M is any positive real number, and η ≥ η0 > 0. Then for

d = 2 and d = 3, there is a constant Cq,D,η0,M such that for all f ∈ H−1(D)d

satisfying ‖ f ‖H−1(D) ≤M and for all u ∈ H1(D)d solving (5.1) in the sense of

distributions, we have

(5.23) 1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ Cq,D,η0,M‖ f ‖Lq(D).

Proof. Since ‖ f ‖H−1(D) ≤ C‖ f ‖Lq(D), we have for s ≥ 0 and t ≥ 1,

η−s‖ f ‖tH−1(D) ≤ Cη
−s
0 M t−1‖ f ‖Lq(D).

Thus (5.23) follows from (5.5), (5.16), and (5.22), except that for d = 2 we
require Lemma 5.2 for the case q = 2. �

As another corollary of Lemma 5.5, we have the following.

Corollary 5.7. Suppose that the conditions of Lemma 5.5 hold with two

data functions f1, f2, and that there are two solutions (u1, π1), (u2, π2) to (5.1),
that is,

−η∆ui + ui · ∇ui +∇πi = fi in D
∇·ui = 0 in D, ui = z on ∂D, for i = 1, 2.

(5.24)

Then there is an ε > 0 such that, provided maxi=1,2 ‖ fi ‖H−1(D) ≤ εη2,

η‖u1 − u2 ‖H1(D) + ‖π1 − π2 ‖L2(D) ≤ CD,ε‖ f1 − f2 ‖H−1(D),

for both d = 2 and d = 3.

Proof. The proof is straightforward, see for example [8], but we present it
here for the reader's convenience. From (5.2), we have, for i = 1, 2,

(5.25) η‖ui ‖H1(D) ≤ CD‖ fi ‖H−1(D).

Now we multiply (5.24) by u1 − u2 for each i, integrate over D, integrate by
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parts, and then subtract to get

η

∫
D
|∇(u1 − u2)|2 dx+

∫
D

(u1 · ∇u1 − u2 · ∇u2) · (u1 − u2) dx

=

∫
D

(f1 − f2) · (u1 − u2) dx

≤ C ′Dη−1‖ f1 − f2 ‖2H−1(D) + 1
2η

∫
D
|∇(u1 − u2)|2 dx.

Therefore

1
2η

2

∫
D
|∇(u1 − u2)|2 dx ≤ C ′D‖ f1 − f2 ‖2H−1(D)

+ η
∣∣∣ ∫
D

(u1 · ∇u1 − u2 · ∇u2) · (u1 − u2) dx
∣∣∣.(5.26)

Adding and subtracting, we �nd from (5.25) and Green's formula that

∣∣∣ ∫
D

(u1 · ∇u1 − u2 · ∇u2) · (u1 − u2)dx
∣∣∣

=
∣∣∣ ∫
D

((u1 − u2) · ∇u1 + u2 · ∇(u1 − u2)) · (u1 − u2) dx
∣∣∣

≤ ‖u1 − u2 ‖L4(D)‖u1 ‖H1(D)‖u1 − u2 ‖L4(D)

≤ C ′′D‖u1 − u2 ‖2H1(D)‖u1 ‖H1(D)

≤ C ′′D
(

max
i=1,2

‖ui ‖H1(D)
)
‖u1 − u2 ‖2H1(D)

≤ C ′′′D η−1
(

max
i=1,2

‖ fi ‖H−1(D)
)
‖u1 − u2 ‖2H1(D).

(5.27)

By combining (5.26) and (5.27), we �nd

1
2η

2

∫
D
|∇(u1 − u2)|2 dx ≤ C ′D‖ f1 − f2 ‖2H−1(D)

+ C ′′′D
(

max
i=1,2

‖ fi ‖H−1(D)
)
‖u1 − u2 ‖2H1(D)

≤ C ′D‖ f1 − f2 ‖2H−1(D) + C ′′′D εη
2‖u1 − u2 ‖2H1(D).

Choosing ε = (4C ′′′D )−1, we �nd

(5.28) η2
∫
D
|∇(u1 − u2)|2 dx ≤ 4C ′D‖ f1 − f2 ‖2H−1(D).

To estimate the pressure terms, let V be the subspace of divergence-free functi-
ons ofH1

0 (D)d, and V ⊥ its orthogonal inH1
0 (D)d for the scalar product (∇u,∇v).

We multiply (5.24) by v ∈ V ⊥, integrate over D, integrate by parts, subtract,
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and use the orthogonality of V ⊥, to get∫
D

(π1 − π2)∇·v dx = −
∫
D

(f1 − f2) · v dx+

∫
D

(u1 · ∇u1 − u2 · ∇u2) · v dx.

The same argument used in deriving (5.27) gives for the nonlinear term,∣∣∣ ∫
D

(
u1 · ∇u1 − u2 · ∇u2

)
· v dx

∣∣∣
≤ C ′′′D η−1

(
max
i=1,2

‖ fi ‖H−1(D)
)
‖u1 − u2 ‖H1(D)‖v ‖H1(D),

and from (5.28), we conclude that∣∣∣ ∫
D

(π1 − π2)∇·v dx
∣∣∣ ≤ C(4)

D ‖ f1 − f2 ‖H−1(D)‖v ‖H1(D).

Then we complete the proof by applying Ladyzhenskaya's Lemma [7]. �

The equations (3.11), (3.8), and (2.3) provide an alternative formulation
of the 3-parameter Oldroyd model (2.2)�(2.3). Using this formulation, we shall
prove the following in Section 6.

Theorem 5.8. Suppose that q > d, that (1.3) and (1.5) hold, that the

coe�cients λ1 and µ1 satisfy

(5.29) |λ1| ≤ λ0η, |µ1| ≤ µ0|λ1|, and η ≥ η0.
Then there are constants C < ∞ and C̃ > 0, depending only on q, D, λ0,
µ0, and η0, such that the 3-parameter Oldroyd system (2.2)�(2.3) has solutions
satisfying

(5.30) η‖u ‖W 2
q (D) + ‖T ‖W 1

q (D) + ‖ p ‖W 1
q (D)/R ≤ C‖ f ‖W 1

q (D),

provided that ‖ f ‖W 1
q (D) ≤ C̃.

Note that this is suboptimal in terms of the relation between the regularity
of f and u, but the term u · ∇f in (3.12) appears to require this in the case of
the estimate (5.30).

The parameter λ in [16] corresponds to λ−11 here, and thus the auxiliary
pressure function q in [16] corresponds to λ−11 π. However, there appears to be
a discrepancy with equations (2.5-6) in [16] with regard to the scaling of the
pressure function q.

5.2. The choice of t

We now return to the proof of Lemma 5.4 to understand the choice of t
and the restriction d 6= 2. De�ne Q = d/q and T = 1/t′. Then

θs =
2− s−QT
1 + 1

2d−Q
.
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Thus for d = 2 and s = 0,

θ0 =
2−QT
2−Q

> 1,

and so the inequality (5.19) is not valid. This is the reason why we restrict to
the case d = 3, as we do from now on.

Although we have seen that the choice of t = 4 in (5.19) works, it may be
of interest to see how we arrived at this unique choice. The condition 0 < θs < 1
translates to

0 < 2− s−QT <
5

2
−Q,

which we can write as two inequalities:

(5.31) QT < 2− s and
Q

t
= Q(1− T ) < s+

1

2
.

Since q > 3/2, Q < 2. Since 1 < t < ∞, 0 < T < 1. Thus the �rst of
the inequalities in (5.31) holds automatically for s = 0. The second of the
inequalities in (5.31) for s = 0 translates to t > 2Q = 6/q or

t > t0(q) = max{1, 6/q} =

{
6/q q ≤ 6

1 q ≥ 6
.

Note that max
{
t0(q)

∣∣ q > 3/2
}

= t0(3/2) = 4. Thus we can say that (5.19)
holds for all t > t0(q) for the case s = 0.

The �rst of the inequalities in (5.31) for s = 1 is equivalent to QT < 1,
which means t′ > Q = 3/q, or

t′ > t′1(q) = max{1, 3/q} =

{
3/q q ≤ 3

1 q ≥ 3
.

Note that max
{
t′1(q)

∣∣ q > 3/2
}

= t′1(3/2) = 2. The second of the inequalities
in (5.31) for s = 1 translates to t > 2

3Q = 2
q or

t > t1(q) = max{1, 2/q} =

{
2/q q ≤ 2

1 q ≥ 2
.

Note that max
{
t1(q)

∣∣ q > 3/2
}

= t1(3/2) = 4/3. Thus we can say that (5.19)
holds, in the case s = 1, for all t > t1(q) and t

′ > t′1(q). We need to translate this
to a bound on t′ only, and the former inequality can be written 1/t < 1/t1(q)
and hence 1/t′ = 1− 1/t > 1− 1/t1(q). Thus our conditions on t

′ for the case
s = 1 are

(5.32) t′1(q) < t′ and t′ <
t1(q)

t1(q)− 1
.
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Here the singularity in the denominator in the right-hand inequality in (5.32)
simply translates to t′ <∞, so it provides no extra condition. We can make the
constraints (5.32) explicit in the case s = 1 for various ranges of q as follows:

3

q
< t′ <

2

2− q
= γ1(q) for (3/2) < q < 2

3

q
< t′ <∞ for 2 ≤ q ≤ 3

1 < t′ <∞ for 3 < q <∞,

(5.33)

where the constraint function γ1(q) = 2/(2 − q). Note that the �rst line of
(5.33) is the most restrictive of the three and any t′ ∈ [2, 4] satis�es all three
for all 3/2 < q < ∞. For the case s = 0, the constraints can be made explicit
via

γ0(q) =
6

q
< t <∞ for 3/2 < q ≤ 6

1 < t <∞ for 6 < q <∞,
(5.34)

where the constraint function γ0(q) = 6/q. Note that the critical constraint
functions satisfy γ1(3/2) = 4 = γ0(3/2). However, γ1 is strictly increasing on
[3/2, 2[, and γ0 is strictly decreasing on [3/2, 2[. Thus for 3/2 < q < 2,

γ0(q) < 4 < γ1(q).

Thus t′ = 4 satis�es the constraints (5.33) for all (3/2) < q < ∞ and t = 4
satis�es the constraints (5.34) for all (3/2) < q <∞. Moreover, for all (3/2) <
q < ∞, there is an open interval of values of t such that the constraints are
satis�ed, and t = 4 is in the interior of this interval.

6. SOLUTION ALGORITHM

In this section, we present the proof of Theorem 5.8. The following algo-
rithm is a modi�cation of the iteration proposed by Renardy to demonstrate
existence. Given un−1, Tn−1, pn−1, we de�ne un, Tn, pn as follows. First we
solve

−η∆un + un · ∇un +∇πn = F(f ,un−1, pn−1,Tn−1) in D,
∇·un = 0 in D, un = 0 on ∂D

(6.1)

to determine un and πn, where F was de�ned in (3.12). Then we solve

(6.2) pn + λ1u
n · ∇pn = πn

to determine pn. We recall the notation

En = 1
2

(
∇un + (∇un)t

)
and Rn = 1

2

(
−∇un + (∇un)t

)
.
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Finally, we solve

Tn + λ1
(
un · ∇Tn − (∇un)◦Tn −Tn◦(∇un)t

)
+ (λ1 − µ1)(En◦Tn + Tn◦En) = 2ηEn

(6.3)

for Tn. Recall that (6.3) is equivalent to

Tn + λ1(u
n · ∇Tn + Rn◦Tn + Tn◦(Rn)t)

− µ1(En◦Tn + Tn◦En) = 2ηEn.
(6.4)

More precisely, we �rst solve the Navier-Stokes equations (6.1) for un ∈W 2
q (D)d

and πn ∈ W 1
q (D). Then we solve the scalar transport equation (6.2) for pn ∈

W 1
q (D). Finally, we solve either (6.3) or (6.4) for Tn ∈ W 1

q (D)d
2
. We begin

the iteration with u0 = 0, p0 = 0 and T0 = 0.

The following lemma gives bounds on pn and Tn in terms of un, collecting
the results of Lemmas 4.6 and 3.2.

Lemma 6.1. Suppose that D satis�es the condition (1.3) and q > d. As-

sume that (4.37) holds. Let σq > 0 be the constant in the Sobolev inequality

(1.6).

Then there is a constant σ̂ <∞, depending only on λ0, µ0, q and D, such
that if

‖un ‖W 2
q (D) ≤

1

2σq(|λ1|+ |λ1 + µ1|+ |λ1 − µ1|)
,

there is a unique solution Tn ∈W 1
q (D)d

2
to (6.3) such that

(6.5) ‖Tn ‖W 1
q (D) ≤ σ̂η‖u

n ‖W 2
q (D)

and a unique solution pn ∈W 1
q (D) to (6.2) such that

(6.6) ‖ pn ‖W 1
q (D) ≤ σ̂‖π

n ‖W 1
q (D).

6.1. Bounds for the iterates

Let us prove (by induction) that, for some γ > 0, the following holds for
n ≥ 0:

(6.7) η‖un ‖W 2
q (D) + ‖πn ‖W 1

q (D) ≤ γ.

For n = 0, this holds for any γ > 0. Suppose that γ > 0 has been chosen small
enough so that

(6.8) γ ≤ η

2σq(|λ1|+ |λ1 + µ1|+ |λ1 − µ1|)
,
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where σq is the Sobolev constant in (1.6). In particular, this implies that

‖∇un ‖L∞(D) ≤ σq‖un ‖W 2
q (D) ≤ γσq/η ≤

1

2(|λ1|+ |λ1 + µ1|+ |λ1 − µ1|)
.

In this case, we can apply Lemma 6.1. Note that (6.7) and (4.37) imply that

(6.9) |λ1| ‖un ‖W 2
q (D) ≤ λ0γ.

Let ϕ > 0 and assume that ‖ f ‖W 1
q (D) ≤ ϕ. In view of (3.13), (5.29), (6.5),

(6.6), and (6.9), we have

‖F(f ,un, pn,Tn) ‖Lq(D) ≤ ‖ f ‖Lq(D) + σq

(
|λ1| ‖un ‖W 2

q (D)
(
‖ f ‖W 1

q (D)

+ σ̂‖πn ‖W 1
q (D)+2σq‖un ‖2W 2

q (D) + σ̂η‖un ‖W 2
q (D)

)
+ 4σ̂|λ1 − µ1|η‖un ‖2W 2

q (D)

)
≤ ϕ+ σq

(
λ0γ

(
ϕ+ σ̂γ + 2σq(γ/η)2 + σ̂γ

)
+ 4σ̂λ0|1− µ1/λ1|γ2

)
≤ ϕ+ σq

(
λ0γ

(
ϕ+ 2σ̂γ + 2σq(γ/η)2

)
+ 4σ̂λ0(1 + µ0)γ

2
)

≤ ϕ(1 + σqλ0γ) + 2σqλ0γ
(
σq(γ/η0)

2 + (3σ̂ + 2σ̂µ0)γ
)

=
(
1 + Cγ

)
ϕ+ C ′γ2 + C ′′γ3,

where C = σqλ0, C
′ = 2C(3σ̂+ 2σ̂µ0), and C

′′ = 2Cσq/η
2
0. By taking ϕ and γ

small enough, we can guarantee that

(6.10) ‖F(f ,un, pn,Tn) ‖H−1(D) ≤ cq,D‖F(f ,un, pn,Tn) ‖Lq(D) ≤ 1.

Thus we can apply (5.23) with M = 1 to get

η‖un+1 ‖W 2
q (D) + ‖πn+1 ‖W 1

q (D) ≤ Cq,D,η0,1‖F(f ,un, pn,Tn) ‖Lq(D)

≤ Cq,D,η0,1
((

1 + Cγ
)
ϕ+ C ′γ2 + C ′′γ3

)
≤ γ,

provided that ϕ and γ are small enough. We thus ensure (by induction) that

η‖un ‖W 2
q (D) + ‖πn ‖W 1

q (D) ≤ γ

for all n. Note that by (6.5) and (6.6), we also have

(6.11) ‖ pn ‖W 1
q (D) + ‖Tn ‖W 1

q (D) ≤ σ̂γ.

We collect the constraints required by γ and ϕ, with the constants de�ned
above:

γ ≤ η

2σq(|λ1|+ |λ1 + µ1|+ |λ1 − µ1|)
,

(
1 + Cγ

)
ϕ+ C ′γ2 + C ′′γ3 ≤ min

{
1

cq,D
,

γ

Cq,D,η0,1

}
.

(6.12)
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The �rst condition in (6.12) is satis�ed if we assume

γ ≤ 1

2σqλ0(1 + 2(1 + µ0))
.

All constraints can be satis�ed independently of f provided that ‖ f ‖W 1
q (D) ≤ ϕ.

6.2. Convergence of the iterates

To prove convergence of the iterates, we use the bounds in Section 6.1.
Thus we assume that the parameters γ > 0 and ϕ > 0 have been chosen small
enough so that all of the iterates remain bounded independently of n. More
precisely, we will assume that we have iterates satisfying

η‖un ‖W 2
q (D) + ‖πn ‖W 1

q (D) ≤ γ

‖Tn ‖W 1
q (D) + ‖ pn ‖W 1

q (D) ≤ σ̂γ,
(6.13)

where γ has been chosen to satisfy (6.12) and σ̂ is given in Lemma 6.1.
To show convergence, we will demonstrate Lipschitz continuity of the

solution operator for (3.11) and also for the mapping T(u), cf. (4.40). Thus we
will assume that we have vi satisfying the bound (6.7). We will apply this in
the speci�c case where v1 = un and v2 = un−1.

The system (2.3) can be written as in (4.9) via

T +M(v̂)T + v̂ · ∇T = η(∇v +∇vt) in D,

where v̂ = λ1v andM(v̂)T is de�ned by

(6.14) M(v̂)T = R̃◦T + T◦R̃t − µ̃(Ẽ◦T + T◦Ẽ),

where Ẽ and R̃ are de�ned by

Ẽ = 1
2λ1(∇v+∇vt) = 1

2(∇v̂+∇v̂t) and R̃ = 1
2λ1(∇v

t−∇v) = 1
2(∇v̂t−∇v̂)

and µ̃ = µ1/λ1. We want to show that the mapping v 7→ T = T(v) is Lipschitz
continuous. Let gi = η(∇vi +∇vti) and consider the problems

Ti +M(v̂i)Ti + v̂i · ∇Ti = gi in D,

for i = 1, 2. De�ne U = T1 − T2 and u = v1 − v2. Let G = g1 − g2 =
η(∇u +∇ut). Then

U +M(v̂1)U + v̂1 · ∇U =
(
I +M(v̂1)

)
(T1 −T2) + v̂1 · ∇(T1 −T2)

= G− û · ∇T2 +
(
M(v̂2)−M(v̂1)

)
T2 .

(6.15)

Applying Lemma 4.1 with q = 2 to (6.15), we �nd
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(6.16) ‖T1 −T2 ‖L2(D) = ‖U ‖L2(D)

≤ 1

c0

∥∥G− λ1(u · ∇T2 +
(
M(v2)−M(v1)

)
T2

) ∥∥
L2(D),

where we can de�ne c0 via

(6.17) c0 = 1−
(
|1 + µ̃|+ |1− µ̃|

)
‖∇v̂1 ‖L∞(D)

= 1−
(
|λ1 + µ1|+ |λ1 − µ1|

)
‖∇v1 ‖L∞(D),

provided that the formula (6.17) yields c0 > 0. But our assumptions (6.13) and
(6.8) on γ imply that(
|λ1 + µ1|+ |λ1 − µ1|

)
‖∇v1 ‖L∞(D) ≤

(
|λ1 + µ1|+ |λ1 − µ1|

)
σq‖∇v1 ‖W 2

q (D)

≤
(
|λ1 + µ1|+ |λ1 − µ1|

)
(γσq/η) ≤ 1

2 ,

so that c0 ≥ 1
2 . Thus we can prove the following lemma.

Lemma 6.2. Suppose that the conditions of Lemma 4.6 hold for u = vi ∈
W 2
q (D), i = 1, 2, so that ∇·vi = 0 in D and vi = 0 on ∂D, and the bound

(4.35) holds for both v1 and v2. Let Ti solve

Ti +M(v̂i)Ti + v̂i · ∇Ti = gi in D,

for gi = η
(
∇vi+(∇vi)t

)
, whereM is de�ned in (6.14) and v̂i = λ1vi, i = 1, 2.

Then

(6.18) ‖T1 −T2 ‖L2(D) ≤ 2(2η + C)‖T2 ‖W 1
q (D)‖v1 − v2 ‖H1(D),

where C = |λ1|σq(3 + 2|µ̃|.

Proof. Estimates (6.16), (4.23) and (1.7) imply

‖T1 −T2 ‖L2(D) ≤ 2
(
‖G ‖L2(D) + |λ1|

(
‖u ‖L 2q

q−2
(D)‖T2 ‖W 1

q (D)

+ ‖M(u)T2 ‖L2(D)
))

≤ 2
(
2η + |λ1|(σq + cM )‖T2 ‖W 1

q (D)
)
‖u ‖H1(D),

where the constant cM is the smallest real number such that

‖M(u)T ‖L2(D) ≤ cM‖T ‖W 1
q (D)‖u ‖H1(D) ∀u ∈ H1(D)d, T ∈W 1

q (D)d
2
.

We estimate cM as follows. From the de�nition (6.14), we see that

‖M(u)T ‖L2(D) ≤ 2(1 + |µ̃|)‖T ‖L∞(D)‖u ‖H1(D)

≤ 2σq(1 + |µ̃|)‖T ‖W 1
q (D)‖u ‖H1(D),
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where σq is the constant in Sobolev's inequality (1.6) and µ̃ = µ1/λ1, so we can
be assured that cM ≤ 2σq(1 + |µ̃|). �

Using (6.13), (6.18) becomes

‖T1 −T2 ‖L2(D) ≤ 2
(
2η + |λ1|σq(3 + 2|µ̃|)(σ̂γ)

)
‖u ‖H1(D)

= CT ‖v1 − v2 ‖H1(D),
(6.19)

where σ̂ is the constant in (6.5) and (6.11), γ is the constant in the bound
(6.13), and

(6.20) CT = 2
(
2η + λ0ησq(3 + 2|µ̃|)(σ̂γ)

)
.

Thus we conclude that the mapping v 7→ T(v) is Lipschitz continuousH1(D)→
L2(D), but only on bounded sets in W 2

q (D). Moreover, we note that the Lip-
schitz constant CT is not particularly small in this case.

In a similar way, we can provide a Lipschitz bound for the pressure terms.
Suppose that

pi + λ1vi · ∇pi = πi.
Then

p1 − p2 + λ1v1 · ∇(p1 − p2) = π1 − π2 + λ1(v2 − v1) · ∇p2.
Using [9], (4.23), and (1.6), we �nd

‖ p1 − p2 ‖L2(D) ≤ ‖π1 − π2 ‖L2(D) + |λ1| ‖ (v2 − v1) · ∇p2 ‖L2(D)

≤ ‖π1 − π2 ‖L2(D) + |λ1| ‖v2 − v1 ‖L2q/(q−2)(D)‖ p2 ‖W 1
q (D)

≤ ‖π1 − π2 ‖L2(D) + σq|λ1| ‖v2 − v1 ‖H1(D)‖ p2 ‖W 1
q (D)

≤ ‖π1 − π2 ‖L2(D) + σqλ0ησ̂γ‖v2 − v1 ‖H1(D).

(6.21)

Next, we estimate

‖F(f ,v1, p1,T(v1))−F(f ,v2, p2,T(v2)) ‖H−1(D).

It helps to split

F(f ,v, p,T) = F1(f ,v) + λ1F2(v, p)− λ1F3(v) + λ1F4(v)− (λ1 − µ1)F5(v),

where

F1(f ,v) = f + λ1v · ∇f
F2(v, p) = (∇v)t∇p
F3(v) = v · ∇(v · ∇v)

F4(v) = ∇· ((∇v)◦T(v))

F5(v) = ∇· (E(v)◦T(v) + T(v)◦E(v))

and E(v) = 1
2(∇v +∇vt).
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To begin with, we have the simple estimate

‖F1(f ,v1)−F1(f ,v2) ‖H−1(D) ≤ |λ1| ‖ (v1 − v2) · ∇f ‖H−1(D).

For φ ∈ H1(D)d we have by (4.24)

|〈(v1 − v2) · ∇f ,φ〉| = |〈f , (v1 − v2) · ∇φ〉|
≤ σq‖ f ‖Lq(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).

(6.22)

Here and below, we are able to derive an estimate for φ ∈ H1(D)d even though
we only need it for φ ∈ H1

0 (D)d. When the restriction to the smaller space is
needed for the derivation of the inequality, we will note it. Returning to (6.22),
we see that it implies

‖F1(f ,v1)−F1(f ,v2) ‖H−1(D) ≤ σq|λ1| ‖ f ‖Lq(D)‖v1 − v2 ‖H1(D)

≤ σq|λ1|ϕ ‖v1−v2 ‖H1(D) ≤ σqλ0ηϕ ‖v1−v2 ‖H1(D) = c1ϕη ‖v1−v2 ‖H1(D),

where c1 = σqλ0 and we recall that ϕ ≥ ‖ f ‖Lq(D) and that λ1 satis�es the
bound (5.29).

For the next term, we �nd

(6.23) F2(v1, p1)−F2(v2, p2) = ∇(v1 − v2)
tS∇p1 − (∇v2)

t∇(p2 − p1).
For φ ∈ H1

0 (D)d, we have

|〈(∇v2)
t∇(p2 − p1),φ〉| = |〈∇(p2 − p1), (∇v2)φ〉| = |〈p2 − p1,∇·

(
(∇v2)φ

)
〉|

= |〈p2 − p1, (∇v2)
t : ∇φ〉|,

where we have used (3.4) at the last step. Thus

|〈(∇v2)
t∇(p2 − p1),φ〉| ≤ σq‖ p2 − p1 ‖L2(D)‖v2 ‖W 2

q (D)‖φ ‖H1(D),

using (4.24). Thus (6.21) implies

‖ (∇v2)
t∇(p2 − p1) ‖H−1(D) ≤ σq‖ p2 − p1 ‖L2(D)‖v2 ‖W 2

q (D)

≤ σqγη−1
(
‖π1 − π2 ‖L2(D) + σqλ0ησ̂γ‖v2 − v1 ‖H1(D)

)
.

(6.24)

For φ ∈ H1
0 (D)d, we also have

|〈∇(v1 − v2)
t∇p1,φ〉| = |〈∇p1, (∇(v1 − v2))φ〉|

≤ σq‖ p1 ‖W 1
q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D),

again using (4.24). Thus

‖∇(v1 − v2)
t∇p1 ‖H−1(D) ≤ σq‖ p1 ‖W 1

q (D)‖v1 − v2 ‖H1(D)

≤ σqσ̂γ‖v1 − v2 ‖H1(D).
(6.25)

Combining (6.23), (6.24), and (6.25) we obtain

‖F2(v1, p1)−F2(v2, p2) ‖H−1(D) ≤ c2γ
(
‖π1 − π2 ‖L2(D) + ‖v2 − v1 ‖H1(D)

)
,
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where c2 = σq max{η−1, σ̂(λ0γσq + 1)}. Moving along, we expand

F3(v1)−F3(v2) = v1 · ∇(v1 · ∇v1)− v2 · ∇(v2 · ∇v2)

= (v1 − v2) · ∇(v1 · ∇v1)− v2 · ∇(v2 · ∇v2 − v1 · ∇v1)

= (v1 − v2) · ∇(v1 · ∇v1)− v2 · ∇((v2 − v1) · ∇v2)

+ v2 · ∇(v1 · ∇(v1 − v2)).

We estimate the �rst of these three terms using (4.24):

|〈(v1 − v2)·∇(v1 · ∇v1),φ〉| = |〈(v1 · ∇v1), (v1 − v2) · ∇φ〉|
≤ σq‖v1 · ∇v1 ‖Lq(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D)

≤ σq‖v1 ‖L∞(D)‖∇v1 ‖Lq(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D)

≤ σ2q‖v1 ‖2W 1
q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).

Similarly, the second of the three terms is estimated using (4.24) by

|〈v2 · ∇((v2 − v1) · ∇v2),φ〉| = |〈(v2 − v1) · ∇v2,v2 · ∇φ〉|
≤ σ2q‖v2 ‖2W 1

q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).

Finally, H�older's and Sobolev's inequalities give

|〈v2 · ∇(v1 · ∇(v1 − v2)),φ〉| = |〈v1 · ∇(v1 − v2),v2 · ∇φ〉|
≤ ‖v1 ‖L∞(D)‖v2 ‖L∞(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D)

≤ σ2q‖v1 ‖W 1
q (D)‖v2 ‖W 1

q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).

Thus (6.7) implies

‖F3(v1)−F3(v2) ‖H−1(D) ≤ σ2q
(
‖v1 ‖2W 1

q (D) + ‖v2 ‖2W 1
q (D)

+ ‖v1 ‖W 1
q (D)‖v2 ‖W 1

q (D)
)
‖v1 − v2 ‖H1(D)

≤ 3σ2qγ
2η−2‖v1 − v2 ‖H1(D) = c3γ‖v1 − v2 ‖H1(D),

where c3 = 3σ2qγη
−2. For the next term, we have

F4(v1)−F4(v2) = ∇· ((∇v1)◦T(v1))−∇· ((∇v2)◦T(v2))

= ∇· ((∇(v1 − v2))◦T(v1))−∇· ((∇v2)◦(T(v2)−T(v1)).

(6.26)

For the �rst of these terms, we have, for φ ∈ H1
0 (D)d,

|〈∇· ((∇(v1 − v2))◦T(v1)),φ〉| = |〈(∇(v1 − v2))◦T(v1),∇φ〉|
≤ ‖T(v1) ‖L∞(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D)

≤ σq‖T(v1) ‖W 1
q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).

(6.27)
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Then (6.27) and (6.13) imply

‖∇· ((∇(v1 − v2))◦T(v1)) ‖H−1(D) ≤ σq‖T(v1) ‖W 1
q (D)‖v1 − v2 ‖H1(D)

≤ σqσ̂γS‖v1 − v2 ‖H1(D).

(6.28)

For the second of the two terms in (6.26), we have, for φ ∈ H1
0 (D)d,

|〈∇· ((∇v2)◦(T(v2)−T(v1)),φ〉| = |〈(∇v2)◦(T(v2)−T(v1)),∇φ〉|
≤ ‖v2 ‖W 1

∞(D)‖T(v1)−T(v2) ‖L2(D)‖φ ‖H1(D)

≤ σq‖v2 ‖W 2
q (D)‖T(v1)−T(v2) ‖L2(D)‖φ ‖H1(D).

(6.29)

Then (6.29) and (6.19) imply

‖∇· (∇v2)◦(T(v2)−T(v1)) ‖H−1(D) ≤ σq‖v2 ‖W 2
q (D)‖T(v1)−T(v2) ‖L2(D)

≤ σq(γ/η)CT ‖v1 − v2 ‖L2(D),

(6.30)

where CT is de�ned in (6.20). Estimates (6.28) and (6.30) combine to yield

‖F4(v1)−F4(v2) ‖H−1(D)

≤ σq(γ/η)
(
CT + σ̂η

)
‖v1 − v2 ‖H1(D) ≤ c4γ‖v1 − v2 ‖H1(D),

where c4 = σqη
−1(CT + σ̂η

)
. Last and least, we examine F5. Note �rst that,

for any φ ∈ H1
0 (D)d and T ∈ L2(D)d

2
,

|〈∇·T,φ〉| = |〈T,∇φ〉| ≤ ‖T ‖L2(D)‖φ ‖H1(D),

so that for all T ∈ L2(D)d
2
,

(6.31) ‖∇·T ‖H−1(D) ≤ ‖T ‖L2(D).

Expanding, we have

F5(v1)−F5(v2) = ∇·
(
E(v1)◦T(v1)−E(v2)◦T(v2)

)
+∇·

(
T(v1)◦E(v1)−T(v2)◦E(v2)

)
= ∇·

(
E(v1 − v2)◦T(v1)−E(v2)◦(T(v2)−T(v1))

)
+∇·

(
(T(v1)−T(v2))◦E(v1)−T(v2)◦E(v2 − v1)

)
.
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Thus (6.31) implies

‖F5(v1)−F5(v2) ‖H−1(D) ≤
(
‖E(v1 − v2)◦T(v1) ‖L2(D)

+ ‖E(v2)◦(T(v2)−T(v1)) ‖L2(D) + ‖ (T(v1)−T(v2))◦E(v1) ‖L2(D)

+ ‖T(v2)◦E(v2 − v1) ‖L2(D)
)

≤
(
‖E(v1 − v2) ‖L2(D)

(
‖T(v1) ‖L∞(D) + ‖T(v2) ‖L∞(D)

)
+ ‖T(v1)−T(v2) ‖L2(D)

(
‖E(v1) ‖L∞(D) + ‖E(v2) ‖L∞(D)

))
≤ σq

(
‖E(v1 − v2) ‖L2(D) + ‖T(v1)−T(v2) ‖L2(D)

)
×
∑
i=1,2

(
‖T(vi) ‖W 1

q (D) + ‖E(vi) ‖W 1
q (D)

)
.

(6.32)

Applying (6.19) and (6.13) to (6.32), we �nd

‖F5(v1)−F5(v2) ‖H−1(D) ≤ σq(1 + CT )‖v1 − v2 ‖H1(D)2(σ̂η + 1)(γ/η)

≤ c5γ‖v1 − v2 ‖H1(D),

where c5 = σq(1 + CT )2(σ̂η + 1)η−1.
For any α > 0, we can choose γ and ϕ su�ciently small so that

(6.33) ‖F(f ,v1, p1,T1)−F(f ,v2, p2,T2) ‖H−1(D)

≤ α
(
η‖v1 − v2 ‖H1(D) + ‖π1 − π2 ‖L2(D)

)
.

Choosing α > 0 appropriately, we �nd

η‖un+1 − un ‖H1(D) + ‖πn+1 − πn ‖L2(D)

≤ 1
2

(
η‖un − un−1 ‖H1(D) + ‖πn − πn−1 ‖L2(D)

)
.

Here we used Corollary 5.7 and (6.10). This proves that the sequence (un, πn)
converges geometrically inH1(D)d×L2(D), and (6.19) and (6.21) prove that the
full sequence (un, πn, pn,Tn) converges geometrically to a limit (u, π, p,T) ∈
H1(D)d × L2(D)× L2(D)× L2(D)d

2
.

To show that this gives a solution of the 3-parameter Oldroyd system, we
need to show that the limit satis�es the Navier-Stokes system (3.10). To show
convergence in the Navier-Stokes system, we need to study the convergence of
F(f ,un, pn,Tn) to F(f ,u, p,T). From (6.33), we conclude that

(6.34) Fn := F(f ,un, pn,Tn)→ F(f ,u, p,T)

strongly in H−1(D)d as n→∞. This implies that (3.11) holds via the following
standard variational argument. We can express (3.11) in variational form as

η

∫
D
∇un : ∇v dx−

∫
D

(un · ∇v) · un dx−
∫
D
πn∇·v dx =

〈
Fn,v

〉
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for all v ∈ H1
0 (D)d. Given the strong convergence of un → u in H1(D)d and

πn → π in L2(D), together with (6.34), we conclude that

η

∫
D
∇u : ∇v dx−

∫
D

(u · ∇v) · u dx−
∫
D
π∇·v dx =

〈
F(f ,u, p,T),v

〉
for all v ∈ H1

0 (D)d, con�rming (3.11), and equivalently (3.10).

7. VARIATIONAL FORMULATION

The variational formulation is based on a standard one for Navier-Stokes:

η

∫
D
∇un+1 : ∇v dx+

∫
D

(un+1 · ∇un+1) · v dx−
∫
D
πn+1∇·v dx

=

∫
D
F(f ,un, pn,Tn) · v dx,

where we recall that

F(f ,u, p,T) = f + λ1u · ∇f + λ1(∇u)t∇p− λ1
(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E(u)◦T + T◦E(u)).

We develop some identities that are useful for simplifying the terms involving
F . For any tensor function T of arity 2 (that is, a matrix function) and any
vector function v ∈ H1

0 (D)d,
(7.1)∫
D

(∇·T) · v dx =

∫
D

∑
ij

Tij,j vi dx = −
∫
D

∑
ij

Tij vi,j dx = −
∫
D
T : ∇v dx.

Note that, if ∇·u = 0 in D and v = 0 on ∂D,

∫
D

(
(∇u)t · ∇p

)
· v dx =

∫
D

∑
ij

uj,i p,j vi dx = −
∫
D

∑
ij

(
uj,i vi

)
,j
p dx

= −
∫
D

(∑
ij

uj,ij vi + uj,i vi,j

)
p dx

= −
∫
D

∑
i

((∇ · u),i)vi p dx−
∫
D

(
(∇u)t : (∇v)

)
p dx

= −
∫
D

(
(∇u)t : (∇v)

)
p dx ;

(7.2)

compare with (3.4). Similarly, if ∇·u = 0 and v = 0 on ∂D, for any w ∈
H1(D)d we have

(7.3)

∫
D

(u · ∇w) · v dx = −
∫
D
w · (u · ∇v) dx.
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Using (7.1), (7.2) and (7.3), we �nd∫
D
F(f ,un,pn,Tn) · v dx

=

∫
D
f · (v − λ1un · ∇v) dx− λ1

(∫
D
pn(∇un)t : ∇v dx

−
∫
D

(un · ∇un) · (un · ∇v) dx+

∫
D

(∇un◦Tn) : ∇v dx
)

+ (λ1 − µ1)
∫
D

(E(un)◦Tn + Tn◦E(un)) : ∇v dx.

(7.4)

Thus a variational form for the algorithm (6.1) is as follows. First, knowing
un, pn, and Tn, we �nd un+1 ∈ V and πn+1 ∈ Π such that

η

∫
D
∇un+1 : ∇v dx+

∫
D

(un+1 · ∇un+1) · v dx−
∫
D
πn+1∇·v dx

=

∫
D
F(f ,un, pn,Tn) · v dx =

∫
D
f · (v − λ1un · ∇v) dx

− λ1
(∫
D
pn(∇un)t : ∇v dx−

∫
D

(un · ∇un) · (un · ∇v) dx

+

∫
D

(∇un◦Tn) : ∇v dx
)

+ (λ1 − µ1)
∫
D

(E(un)◦Tn + Tn◦E(un)) : ∇v dx,

for all v in a suitable space V , where as usual, E(w) = 1
2

(
∇w + (∇w)t

)
. We

omit the details for solving for πn+1; in the discrete case, this will depend on the
particular implementation of the velocity and pressure spaces. Next, we solve
the transport problem for pn+1 via two possible formulations: �nd pn+1 ∈ Π̂
such that ∫

D
pn+1(v − λ1un+1 · ∇v) dx =

∫
D
πn+1v dx ∀v ∈ Π̂

or∫
D

(pn+1 + λ1u
n+1 · ∇pn+1)v dx =

∫
D
πn+1v dx ∀v ∈ Π̂

for a suitable space Π̂. Finally, we solve the transport problem (6.3) or (6.4)
for Tn+1 in a similar fashion. For example, one option would be∫

D
Tn+1 : (U− λ1un+1 · ∇U) dx+

∫
D
M(un+1)Tn+1 : U dx

= 2η

∫
D
E(un+1) : U dx ∀U ∈ Π̃d2



43 Oldroyd models without explicit dissipation 443

for a suitable space Π̃, where v̂ = λ1v andM(v̂)T is de�ned by (6.14).

8. RENARDY'S ORIGINAL PROOF

De�ne the operator T : ∂2 as follows:(
T : ∂2u

)
i

=
∑
jk

Tjkui,jk.

We compute the divergence of (∇u)◦T as follows:

(∇· ((∇u)◦T))i =
∑
j

((∇u)◦T)ij,j

=
∑
jk

((∇u)ikTkj),j

=
∑
jk

(ui,kTkj),j =
∑
jk

(
ui,jkTkj + ui,kTkj,j

)
=
(
T : ∂2u

)
i
+
∑
jk

ui,kTkj,j =
(
T : ∂2u

)
i
+
∑
k

ui,k

(∑
j

Tkj,j

)
=
(
T : ∂2u

)
i
+
∑
k

ui,k
(
∇·T

)
k

=
(
T : ∂2u

)
i
+ (∇ui) · (∇·T).

Therefore

(8.1) ∇· ((∇u)◦T) = T : ∂2u + (∇u)◦(∇·T).

Thus (3.2) and (8.1) imply that

∇·
(
u · ∇T−T◦(∇u)t − (∇u)◦T

)
= u · ∇ (∇·T)−T : ∂2u− (∇u)◦∇·T
= R(u) (∇·T)−T : ∂2u,

where we de�ne the operator R(u) by

R(u)v = u · ∇v − (∇u)◦v.
Renardy used (2.1) to replace ∇·T in the divergence of (2.4) to get

η∆u + λ1T : ∂2u = u · ∇u +∇p− f

+ λ1R(u) (u · ∇u +∇p− f) + (λ1 − µ1)∇· (E◦T + T◦E),

which is equivalent to

−η∆u− λ1T : ∂2u + u · ∇u +∇p = f

− λ1R(u) (u · ∇u +∇p− f)− (λ1 − µ1)∇· (E◦T + T◦E).
(8.2)

Renardy used the modi�ed Stokes operator on the left-hand side of (8.2) as the
basis of his existence proof. For the regularity results, this requires verifying the
appropriate coercivity and regularity results for variable-coe�cient, Stokes-like
equations. Details were omitted from [16].
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9. TENSOR CALCULUS

Here we collect some tensor identities from [11].

For T,U ∈ Tr, we de�ne the contraction T : U via

(9.1) T : U =
∑
i1,...,ir

Ti1,...,irUi1,...,ir .

Another tensor contraction formula is

(9.2) (T◦U)i1...ir−1j2...jr′ =
d∑
`=1

Ti1...ir−1`U`j2...jr′ ,

where T ∈ Tr and U ∈ Tr′ , and this de�nes T◦U ∈ Tr+r′−2. We have the
following identities:

(9.3) v · ∇T = (∇T)◦v.

(9.4) (W : U)i =
d∑

j,k=1

WijkUjk for W ∈ T3, U ∈ T2.

(9.5) ∇· (T◦U) = (∇T) : U + T◦(∇·U).

Note that the operator � ◦ � in T◦ (∇·U) denotes an ordinary matrix-vector
product also

(9.6) ∇(v · ∇T) = ∇T◦∇v + v · ∇(∇T) = ∇T◦∇v + (∇2T)◦v.

We can combine (9.3) and (9.6) to compute

(9.7) v · ∇(v · ∇v) = ∇(v · ∇v)◦v =
(
∇v◦∇v + (∇2v)◦v

)
◦v.

When T is a scalar-valued function, (9.6) can be written alternatively as

(9.8) ∇(v · ∇f) = ∇vt∇f + v · ∇(∇f),

since

(∇f ◦∇v)k =
∑
j

f,jvj,k =
∑
j

(∇vt)k,jfj .

Based on the tensor contraction formula (9.2), we compute the derivative
of a product:

(9.9) (∇(T◦U)−T◦∇U)i1...ir−1j2...jr′k =

d∑
`=1

(∇T)i1...ir−1`kU`j2...jr′ ,
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but the term on the right-hand side is not an obvious product. De�ne a bilinear
mapping B : Tr+1 × Tr′ → Tr+r′−1 by

(9.10) (B(W,U))i1...ir−1j2...jr′k =

d∑
`=1

(W)i1...ir−1`kU`j2...jr′ .

Then (9.9) becomes

(9.11) ∇(T◦U) = T◦∇U + B(∇T,U).

In particular,

(9.12) ∇(S◦T + T◦St) = S◦∇T + B(∇S,T) + T◦∇St + B(∇T,St).

From the de�nition (9.10), we have

(9.13) |B(W,U))| ≤ |W| |U|.

There is a useful inequality involving three tensors. Suppose that T ∈ T2
and W,U ∈ Tr where r ≥ 1. Note that T◦W ∈ Tr and T◦U ∈ Tr. We
can interpret the contraction � : � as the usual `2 inner-product on vectors of
dimension d r, and |W| as the corresponding norm. Then we claim that

(9.14) |T◦W : U| ≤ |T| |W| |U|,

which is a generalization of (4.11).
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