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We review an argument of Renardy proving existence and regularity for a subset
of a class of models of non-Newtonian fluids suggested by Oldroyd, including
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1. INTRODUCTION

We consider some model equations proposed for non-Newtonian fluids that
are a subset of the Oldroyd models [15]. This includes the upper-convected and
lower-convected Maxwellian models. Our objective is to extend the existence
proof of Renardy [16] for these equations in various ways. In particular, we show
that a variant of his proof can be the basis for an effective solution algorithm.
The subset of the Oldroyd models that we study involves three parameters, the
fluid kinematic viscosity 1 and two rheological parameters A; and p. We will
refer to this subset as the “three-parameter” subset. An extended version of
these results appeared in [11] and were announced in [10].

1.1. Notation

Let d denote the space dimension. We assume that the fluid domain
D C R? is connected and has a boundary 9D with different degrees of regula-
rity for different results. For simplicity, we assume that the boundary conditions
on the fluid velocity are Dirichlet: u = 0 on 0D, although these can be relaxed
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to allow u = g on 0D provided g - n = 0, where n is the unit outer normal to
0D. We utilize standard Sobolev spaces W; (D) for nonnegative integers s and
1 < ¢ < o0, consisting of functions whose derivatives of order s or less are in the
Lebesgue space Ly (D) [1,4,6]. For vector-valued functions v and matrix-valued
functions T, we will write v € W;(D)d or T € VV;(D)d2 to indicate that each
component of v or T is in W7 (D). For tensor-valued functions of tensor order
larger than 2, we will use analogous notation. The highest order of tensors
considered here is 3, but we develop some identities in Section 9 for general
tensor-valued functions.

We will also write the corresponding norms with the understanding that
the norms for vector-valued and tensor-valued functions are evaluated appro-
priately. More precisely, we define

S
1T oy = S 1Y T 1m0,
m=0
where, for example, |T(x)] is the Frobenius norm of T(z) in the case when T(x)
is a matrix and the Euclidean norm in the case when T(x) is a vector. We give
details about generalizations to arbitrary tensors in Section 9. For simplicity,
we do not use bold face to indicate points in R%.

We collect here our assumptions regarding the regularity of the domain
boundary. We will always assume that D is bounded and 9D is Lipschitz, but
in addition we make the following assumptions. Consider the elliptic equations
(11) v—Av=f inD

Vv-n=0 on dD,
and
—Av=f inD

(1.2)
v=0 on JdD.

We introduce the following condition: suppose that the domain D has the
property that there is a constant C' such that each problem (1.1) and (1.2) has
a unique solution v € H?(D) for all f € Ly(D) satisfying

(1.3) vl a2y < CI f | 2o()-
Similarly, we consider a Stokes system,
—Av+Vp=finD
(1.4) T
V-v=0inD, v =0ondD.

We introduce the following condition: suppose that, for some ¢ > 1, the domain
D has the property that there is a constant C, p such that for all f € L,(D)?
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there is a unique pair v.€ W2(D)? and p € W}(D)/R solving (1.4) such that

(1.5) 1V lwz) + 2 lwi @y < Copll £ |,y for all £ € Ly(D)”.

We assume this holds for all ¢ < gg where g9 > 1. Ultimately, many of the
results will be restricted to the case gy > d, where d is the dimension of D.

We will utilize Sobolev’s inequality, which says that for ¢ > d, functions
in W5H(D) may be viewed as being in C*(D). We will in particular use the
case s = 0 frequently, and we introduce the corresponding Sobolev constant o,
which is the smallest real number such that

(1.6) [V Lo (p) < 0gllv Hqu(D) for all v € qu(D).

We will be interested in the cases d = 2 and d = 3, and our estimates will
always be restricted to the case ¢ < co. The constant o, depends on d and the
domain D, but we will suppress this dependence in what follows.

Another type of Sobolev inequality is

(1.7) 1001 L3y g2y < Tall 0 lzr1(py for all v € HY(D),
provided that ¢ > 2 for d = 2 and ¢ > d for d > 3. Although the constant o,

may be different from the one in (1.6), we will use the same notation for both,
that is, we will assume that o, is the maximum of the two constants.

2. THREE-PARAMETER OLDROYD MODELS

In all (time-independent) models of fluids, the basic equation can be writ-
ten as

(2.1) u-Vu+Vp=V-T+f,

where T is called the extra (also called deviatoric) stress and f represents
externally given data. The models only differ according to the dependence of
the stress on the velocity u.

In the case of a Newtonian fluid

T = n(Vu+ Vu').

Thus, when V-u = 0, it follows that V- T = nAu, and we obtain the well
known Navier-Stokes equations for Newtonian flow, where 7 is the kinematic
viscosity [13].

We now describe the particular family of non-Newtonian models on which
we focus here.

A three parameter subset of the eight parameter model of Oldroyd [15]
for the extra stress takes the form

T+ M- VT +RoT + ToR') — 1 (EoT + ToE) = 27E,
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where the five parameters Ag, g, po, v, and v in [15] are set to zero, and
R = 1(Vu' —Vu) and E = 3(Vu+ Vu').
Note that E' = E, R = -R, R+ E =Vu!, and R — E = —Vu.
We can write the full model in the steady case as
u-Vu+Vp=V.-T+f inD,

(2:2) |
V-u=0inD, u=0 ondD,

(2.3) T+ M(u-VT+RoT + ToR!) — iy (EoT + ToE) = 29E in D.

By combining R and E, formula (2.3) has the equivalent expression

(24) T+ M (u-VT — (Vu)oT — To(Vu')) + (A1 — p1)(EoT + ToE) = 23jE.

There are physical reasons to assume that A\; > 0, but we will allow A\ < 0
as well. The case A1 = 0 and p; = 0 which corresponds to the Navier-Stokes
equations, has not been considered here, but it can be treated similarly and
is essentially trivial by comparison. Therefore, from now on, we assume that

A # 0.

3. ALTERNATIVE FORMULATION

The difficulty with the simple formulation (2.2-2.3) is that there is no ob-
vious smoothing for u, i.e., there is no explicit dissipation in the basic equation
(2.1). In Section 8, we describe a technique proposed by Renardy in [16] that
addresses this issue by making a substitution based on (2.2). Of course, this is
not the only option. Following the work of Fernandez-Cara et al in [5], we de-
velop a modified version of the Renardy formulation that uses a more selective
substitution. This formulation is simplified in several terms and may be more
effective both analytically and numerically. Renardy suggested writing (2.2) as

(3.1) V-T=u-Vu+Vp-f,
and then inserting this expression for V-T into the divergence of (2.3), or
equivalently (2.4). We can use the expression (3.1) for V- T selectively in (2.3)

to get different formulations with different properties. In order to do so, we
need to use some identities, which we now develop.

3.1. Some identities

The reader will find in Section 9 the general definitions of the operators
used here. Let us now compute the divergence of the left-hand side of (2.4).
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We compute the divergence of u- VT as follows:

(V-(u-VT), =D (u-VT),; ;= (u-VTy) ;=Y (xTijn) ;

j j ik
= (wTijns + e Tijw) = -V (V-T)); + > wgjTijne
jk jk

We compute the divergence of ToVu! as follows:

(V- (To(Vu))), =D (To(Vu)),,; = > (Tu(Vu)y) ;= Z (Tikujn)

J jk
—Z Tk, jujke + Tiktjkj) ZTzk,ju]k+ZTszu

- § Tzk’,ju]k— § zg,kuk,] § uk,j i5,k»

provided that V-u = 0. Therefore we have proved the following identity:
(3.2) V-(u:-VT —=To(Vu)) =u-V(V-T),

valid in the sense of distributions for all sufficiently regular functions and ten-
sors. For instance, it holds when the left and right sides of equation (3.2) define
elements of H1(D), e.g., if the components of u and T belong to W] (D) for
q > d; then

(V-(u-VT), ) :—/D(u-VT):Vcbdx
(V(To(Va)'). ) = - [ (To(Vu)): Vs

for all ¢ € H}(D)4. If moreover V-u = 0, then

T D)) = (S (91).0) = g (1) g
(33 ST Y ) = (VT Y uig)

—_/(V.T)-(u-v¢)d$ Vo € Hj(D)".
D

The main point of (3.2) is that the expression on the left, which involves
second derivatives of T, has the property that all such second derivatives can
be written as a first-order derivative of V- T.
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If V-u =0, then we can establish another identity:
(3.4)

V- ((Vu)ov) = Z gw((Vu)ov)g = Z gw(Z(Vu)ka>
¢ ¢

k

9 o
= Z O Zw,kvk = Z Z E)T:g(w’kvw
_ZZ Ug g Vk + U Uk 0) ZZWkaZwaH

= ; M(; Uu)vk +Vu': Vv =vVu': Vv,

3.2. Applying the identities

For example, using (3.2), we get
(35) V-(u:-VT—(Vu)oT —To(Vu)') =u-V(V-T) = V- ((Vu)oT).
Thus the divergence of (2.4) becomes
(3.6) V-T+X\(u-V(V-T)=-V-((Vu)oT))+(A1—p1)V: (EST+TeE) = nAu.

The only troublesome term in (3.6) is u- V (V- T). Although we have bounds
for this term, we cannot show that it is suitably smooth in the relevant spaces
required for a proof of existence. Thus we eliminate it by using (3.1). Inserting
the expression (3.1) for V- T into (3.6) gives

nAu=u-Vu+Vp—f+Au-V(u-Vu+ Vp—f)
-V ((VU)OT) + ()\1 — Ml)v' (EOT + TOE).
Therefore

(3.7) —nAu+u-Vu+Vp+ Au-V(Vp)=f+ \u-Vf
-\ (u -V(u-Vu) -V ((Vu)oT)) — (M = 1)V (EoT + ToE).

Remark 3.1. If we consider an Oldroyd model with additional parame-
ters, other than Ay, u1, and 7, for instance the five-parameter model with Ay
and g9, then the right-hand side of formula (3.7) has an additional term, say
V-T(Vu, A2, u2), where T is some function, which is much more problematic,
since it involves third derivatives of u. This is consistent with the fact that cer-
tain Oldroyd models are asymptotically equivalent to a grade-two model [17].
This is the reason why we focus only on the equation (2.3).
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3.3. Pressure equation

Define an auxiliary pressure function 7 by
(3.8) T=p+ Au- Vp.
Then
(3.9)
V= Vp+ MV(u-Vp) = Vp+ )\1V<Z uip,i)

=Vp+ M\ Z((Vul)pz + uinVi) =Vp+ A\ ((Vu)th +u- V(Vp)) ,

which agrees with (9.6) in this case. Substituting (3.9) in (3.7) yields
(3.10) —nAu+u-Vu+Vr— A (Vu)'Vp=f+ \u-VFf
Y (u V(u-Vu) - V- ((vu)oT)) ~ (M — 1)V- (EoT + ToE).
We can think of (3.8) as determining p from 7. This is exactly the problem

addressed in [12] as described subsequently in Lemma 4.2. Thus the following
result can be proved; for the proof see [12]| or the proof of Lemma 4.2.

LEMMA 3.2. Suppose that 2 < d < 4, ¢ > d, D C R is a bounded,
Lipschitz domain, and u € WL (D)? with V-u =0 in D and u-n =0 on 9D.
Define U = || Vul|,_(p) and suppose that U < [\i|™1. Let p be determined
from 7 via (3.8). Then

1
[P llwim) < WHWHW(}(D)-

3.4. A Navier-Stokes system

Re-phrasing (3.10), we find
(3.11) —nAu+u-Vu+ Vr =F(f,u,p,T),
where F is defined by
(3.12)
F(E,wp,T) =+ \u- VE+ M\ (Va)'Vp—\ <u V(u-Vu) - V- ((Vu)oT))
— (M — )V (EoT + ToE).
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LEMMA 3.3. Suppose that q>d, VGWQQ(D)d, T € qu(D)‘F, fGqu(D)d,
and p € W} (D). Then

(3.13)
| FE v, 2, T) lL,) < £ ll1,m) + ogl Ml |V IIwz ) <|| fllwao) + lpllwpo)
+204| v ”%/VqQ(D) +[|T HW;(D)) + dog| A — | [V lwzo) | T llwe ),
where o4 is the Sobolev constant (1.6).
Proof. We use some relations in Section 9. From (9.7), we have
[v-V(v- V)L, <20Vl Viwy @) v ilwzmp)-
From (9.5), we have
[V-((Vv)oT) |l1,0) < IV Iwzm) | T @) + 1V [lwe )l T llw (p)
| V- (EoT + ToE) |1,p) < 2(I VIlwz) | T llzeem) + 1V lwe )l T llw ()
The remaining terms are simpler. Thus
| FEv,p,T) L 0) <1 llLyo) + A1l [l v ngo(D)(H f Hqu(D) +[lp Hqu(D)
2V oy IV oy + 1T o) + a1 lwaeo) I T o)
+ 2121 — (v lwe ()| T lwi) + v llwzo) I T I 1oo(D))
<N fllz ) +ogl MV lwz o) (1 lwa o) + 2 lwi o) + 204 v H%vg(p)

+ 2| Tllwy(p)) + 4ogl M — sl [V w2 | T lwp o). O

3.5. The new system

We can now state the alternative system. It involves (2.4) to define T
in terms of u, the Navier-Stokes system (3.11), and the pressure transport
equation (3.8):

—nAu+u-Vu+ Vr = F(f,u,p,T)
V-u=0in D and u= 0 on 0D
p+Au-Vp=m
T+ (u- VT —(Vu)oT—To(Vu'))+ (A1 —p1)(EocT+ToE) = 29E,

(3.14)

where F is defined by (3.12) and E = 1(Vu + Vu').
We have the following equivalence theorem. Its proof is not straightfor-
ward and is developed below in several steps.
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THEOREM 3.4. The formulations (2.2)-(2.3) and (3.14) are equivalent.
More precisely, let ¢ > d. Ifue WD), T € qu(D)d2, and p € W, (D)/R
satisfy one of them, then they satisfy the other.

In our derivation of (3.14), we assumed we had a solution of (2.2)—(2.3)
with the stated regularity. Thus we have proved one direction of the equiva-
lence. To prove the other direction, we must deal with the issue that we have
created a new system by differentiation. Thus we need a way to be sure that
we can go back to the original system and still have a solution. To do so, we
will make use of the following result.

LEMMA 3.5. Suppose that v € WqQ(D)d with V-v=0inD and v =0 on
0D, that z € Ly(D)™, and that

(3.15) z+v-Vz =0,
where we interpret v-Vz € H-1(D)™ as in (3.3). Then z = 0.

Proof. The equation (3.15) implies that v - Vz; = —z; € Ly(D) for i =
1,...,m. Thus the uniqueness results in [9] imply z=0. O

Remark. What makes the uniqueness result of Lemma 3.5 so much simpler
than the results of [9] is the extra regularity we are assuming on v. Thus the
product of v € qu(D)d and Vz is well defined in H~1(D)%™, whereas if we
only assume that v € H'(D)? as in [9], such a product is defined only in a
weaker space than H~1(D)%™.

We now return to the proof of Theorem 3.4. Recall that (2.3) and (2.4)
are equivalent algebraic restatements of the last equation in (3.14). So we need

to verify only the first line of (2.2), which is equivalent to (3.1). Let us verify
that (3.1) holds provided that (3.14) holds. Define

(3.16) w=u-Vu+ Vp—fe L,(D)
To prove (3.1), we have to show that V- T = w. With the definition (3.16) of

w, we have
—nAu+w=-nAu+u-Vu+Vp—f
=-nAu+u-Vu+Vr+V(p—-n)-f
=F(f,u,p,T)+V(p—m) —f
=V(p—7)+ A \u-VEf+ )\ (Vu)'Vp
—Ai(u-V(u-Vu) = V- ((Vu)oT)) — (A; — p11)V- (EoT + ToE),

using (3.11) and (3.12). Now using (3.9), which is the gradient of the third
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equation in (3.14), we find

—nAu+w = -\ ((Vu)'Vp+u-V(Vp)) + Au- Vf + X\ (Vu)'Vp
~Ai(u-V(u-Vu) = V- ((Vu)oT)) = (\; — p1)V- (EoT + ToE)
=—-X(u-V(Vp))+ Aju- Vf
~X(u-V(u-Vu) = V- ((Vu)oT)) — (A; — 1)V- (EoT + ToE)
= —\u-Vw+ A\ V- ((Vu)oT) — (A\; — p1)V- (EoT + ToE).

Therefore

(3.17)
nAu=w+ A\u-Vw — \1V-((Vu)oT) + (A1 — u1)V- (EoT + ToE).

Note that (3.6) is just the divergence of the last equation in (3.14), in view of
(3.5). Subtracting (3.17) from (3.6), we find

V- T+Au-V(V-T)=w+ \u-Vw.

By the uniqueness result in Lemma 3.5, we conclude that V- T = w.
This completes the proof of Theorem 3.4. [J

The next three sections are devoted to showing that the system (3.14) has
a solution u € W2(D)?, T € WH(D)¥, and p € W} (D) for ¢ > d. This will
be done in three steps, first establishing regularity of solutions of (2.3) given
smooth u in Section 4. The reversed roles, showing u is smooth given smooth T
is standard Navier-Stokes theory, which we address in Section 5. We then show
how, by an iterative scheme, we can combine the two together in Section 6.

4. REGULARITY FOR T

We now consider the question of determining the regularity of the solution
T of (2.3), or equivalently (2.4), in terms of corresponding regularity of u. We
will later return to the Navier-Stokes type equation (3.11) to close the loop,
deriving regularity of u in terms of T.

The tensor T can be viewed as a type of projection of the symmetric
gradient E of u. For tensor quantities T of any order r > 1, we denote by |T|
the Euclidean norm of T when viewed as a vector of dimension d”. We can
simplify (2.4) by defining v = A\ju, and it becomes

T+ (v-VT = (Vv)oT — To(Vv)) + (1 — p1/A\1)(EoT + ToE) = 2E,
where E = ME = L (Vv 4 Vv?).



11 Oldroyd models without explicit dissipation 411

4.1. Bounds for T in L,

The following result can be derived from [3,12].
LEMMA 4.1. Suppose that 2 < d < 4, i € R, ¢ > 2, D C R? is bounded
and Lipschitz, and v € WL (D), with V-v=01in D, v-n =0 on 0D and
(1 — Co)
4.1 Vv =||Vv < — — where 0 < cg < 1.
@D 19 i) = 1V i) < a1 ;

Then for each g € Lq(D)dQ, there is a unique solution T € Lq(D)d2 of the
equalion

(4.2) T+v- VT +RoT + ToR! — ji(EoT + ToE) = g,
satisfying

1
(4.3) [T, < %H gllL, o)

Here R = (vt = Vv) and E = (Vv + Vvl). Furthermore,

3
(4.4) |v-VT| L, < ;0” gllL,(p)-

The proof of this result will assume ¢ < oo, but once it is proved for
arbitrary ¢ < oo, the case ¢ = co immediately follows by taking limits on both
sides of (4.3) and (4.4) as ¢ — oo.

Proof. The estimate (4.4) follows from (4.3) by using the equation (4.2)
as follows:

|v- VT, < IT L, + |RoT + ToR |1 )

+ @] [ EoT + ToE || (p) + [ 8llL,D)
<N T L,y (L4200 + 2D VY [ 1o)) + 18 |, (D)

1+2(1 [l

(14 1220410,
o

< |9 o) ) 812, 0)

14+co+2(1+|a
= L2 Oy o 8 o

(1+co+2(1+ [a)( - co)

o+ A+ —a) |8l
But
(14 o+ 201+ )L —co) _ 1= i +2(1 — o)1+ |
T Al T T a7
LE2(LH )

S+ =
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Thus we only have to prove the well-posedness of (4.2) and establish the bound
(4.3). Let us make the change of variable

(45) S=-3a(Vv'+Vv)+R=—GE+R=1(1-@)Vvv' - 1(1+a)Vv.
Then

SoT 4 ToS! = (—,&E—i—ﬁ)oT—i—To(—ﬂE—i—ﬁt) = RoT + ToR! —ﬂ(f}oT—l—ToE).
Thus (4.2) becomes

(4.6) T+v-VIT+SoT+ ToS! =g.

To fit into the framework of [12], we view T as a function whose values are
vectors of dimension d?, and we use the Frobenius product “ : ” as the inner-
product on such vectors, with norm |T(z)| = y/T(x) : T(z). In particular, [12,
(4)] and [12, Theorem 3| can be phrased as follows.

LEMMA 4.2. Suppose that 2 < d < 4, ¢ > 2, D C R? is a bounded,
Lipschitz domain, and v € HY (D) with V-v =0 in D and v-n =0 on 9D.
Suppose further that C is an m X m matriz valued function such that for some
constant cy > 0

(C(2)€) & > col€? VE €R™
for almost all x € D. Then for all g € Ly(D)™, there is a unique solution
T € Ly(D)™ to
v-VT +CoT =g,
satisfying

1
(4.7) T |,y < %H gllL,(p)-

We note that the results in [12] were stated for the special case when
the size of the vector m was the same as the dimension of the domain d (i.e.,
m = d), but it can be easily checked that the result holds for vectors of arbitrary
length m > 1. As stated after Lemma 4.1, (4.7) is also valid for ¢ = cc.
Since the mapping
T — SoT + ToS!

is linear, there is a matrix-valued function M such that

(4.8) MoT =SoT + ToS".
Therefore (4.2) takes the form
(4.9) T+ v -VT +MoT =g,

which corresponds to the equation in [12, (2)] with C = I+ M. Thus we need
to show that I+ .M can be bounded below appropriately (that is, it is coercive).
For almost all x € D,

(T(2) + M(x)oT()) : T(x) = [T(2)]? + M(2)oT(x) : T(x)

4.10
10 > |T(2)* — [M(z)oT(z) : T(z)|-
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By the definitions of S and M, we have by the multiplicative property of the
Frobenius norm that, for any tensor U of order 2,

(M(z)oT(z) : Ul = [S(x)oT(z) : U+ T(z)oS(x)" : U|
< |S(x)oT(x) : U| + |T(x)oS(z)" : U|
(4.11) < [S(x)oT(2)| [U| + |T(z)oS(x)"| [U]
< [S(2)[|T(z)| [U] + |T(x)| [S(2)"| [U]
= 2[S(z)| [T(2)] |U].

Recalling the definition of S in (4.5), we have

(4.12) S(= ”Z%K DVV(@) — (1+ 1) V()|
(L=l + 1+ a)|vv(z)|.

Therefore (4.11) and (4.12) imply
(4.13)
[M(2)oT(x) : T(x)] < (|1 = Al + |1+ 4| Vv ()| |T(2)]* < (1 co)T(x)]?,

where ¢ is given by (4.1). Thus (4.10) and (4.13) imply that
(4.14) (T(z) + M(x)oT(x)) : T(x) > co|T(z)|>.

This gives the required coercivity to use the results of [12]. In particular, (4.3)
follows from [12, Theorem 3]. O

Writing v = Aju, and picking i = p1/A1, Lemma 4.1 implies the follo-
wing.

LEMMA 4.3. Suppose that D and q satisfy the conditions of Lemma 4.1
and that u € WL (D)4, with V-u =0 in D and u = 0 on 9D. Define

v=| A+ m|+ | 1 — ]
Suppose

1
U=|vulr,m=llvVullr.m <.

Then there is a unique solution T € Lq(D)d2 to (2.3) such that
[A1l

2n
Ju- VT l,m) } < [

masc {| T 1,0, <V

ulz,(p)

The proof follows from Lemma 4.1, by taking ¢co =1 — vl and g = 2nE
and applying (4.3) and (4.4).
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4.2. Smoothness of T

LEMMA 4.4. Suppose that the conditions of Lemma 4.1 hold, that condition
(1.3) holds, and that g € H'(D)?. Suppose moreover that v € Wf(D)d for some
q > d and

(1—61)
Tl a4l al

where 0 < ¢y < 1. Then the solution T to (4.2) satisfies T € H*(D)*

Proof. We recall that (4.2) is equivalent to (4.6). Following [2], we intro-
duce a regularized problem: find T¢ € HY(D)% such that

(4.16) —€AT  + T+ v - VT + SoT* + T¢0S" =g in D,

(4.15) IVV L) <

where S is defined in (4.5), with natural boundary conditions as in (1.1), that
is,

V(T)ij-n=0 ondD, fori,j=1,...,d.
Multiplying (4.16) by T¢, integrating over D, and integrating by parts, we find

e/ \VTG\de—i—/ |T€\2dx+/(v.VT€):T€dx
D D D

—|—/(SoT€+TEoSt):Tedx:/ g: Tdx.
D D

(4.17)

We have
/(v VT) Tedx—Z/ v - VTE)T de =

since V-v=0in D and v-n = 0 on dD. From (9.14), (4.12), and (4.1), we
have

[ (80T 08 s T da] < 208 1oy I T I

< (U4l + 1= ADI VY oy | TN,
< (1= o) T2, (p)

Applying these estimates to (4.17), we obtain
e [ IVTPasta [ TPdr<| [ i Tode] < gl T e
D D D

1
< TCOH g7,y + z¢0l TNIZ, )

In particular, we obtain

. 1
(4.18) 1T N o0y = Ll 8 lla),
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consistent with (4.3).
To proceed, we want to take the LQ(D)d2 inner-product of the terms on
both sides of (4.16) with —AT€ and integrate by parts. Formally, this gives

e/ ]ATEIde+/ VTEIde—i—/ V(v-VT): VTdz

(4.19) 7P P P

+/V(SOTE—I—Teost):VTde:/Vg:VTedm.
D D

On the one hand, since T¢ € H'(D)*, we infer from (4.16) that —AT¢ €
L2(D)¥ and thus the scalar products leading to (4.19) are well defined. But
on the other hand, integration by parts requires that v - VT be in HI(D)dQ.
This follows from the regularity assumption (1.3). In particular, (9.6) implies
V(v-VT) = VTVv +v-V(VT) = VT Vv + (V2T)ov,

and we see that it is necessary that V2T¢ be integrable to some degree to justify
(4.19). We can expand the corresponding term as follows:

/ V(v-VT) :VTdz = / (VIVv+v-V(VTY)): VIdr
D D

= / (VT oVv): VTdx.
Thus we have the bound ;
(4.20) ‘/DV(V VT : VT dx‘ < IV 2, 0| VY [l -
Next, by (9.12), we have

/ V(SoT¢ + TS : VT“dx

(4.21) P

= / (SoVT* + B(VS, T¢) + ToVS' + B(VT,S")) : VI“dz,
D

where B is a bilinear mapping on tensors defined by (9.10), which here reduces
to
d

(4.22) (BW,U))ijk = > _(W)igUsp; -
(=1
In what follows, we will frequently make use of two estimates. The first is
(1.23) v sy < Nulocoyll 01, 2,
valid provided ¢ > 2. To prove this, we use Holder’s inequality to get

wmmmzéﬁ#mswwmmwhmfwwm@w@ww
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where s = ¢/2 and ' = s/(s — 1) = q/(q¢ — 2). This proves (4.23). The second
inequality, which follows from (4.23) and the Sobolev inequality (1.7), is

| [ @@ de| < uv )0l

(4.24) < Null,mllvllz oy @l o)

q—2
< ogllullL,o)ll v e oyl w Ly,

valid provided ¢ > d for d = 2 or ¢ > d for d > 3.
From (9.13), [B(VV(z),U(z))| < |[VV(2)||U(z)|, so (4.21) and (4.23)
imply

(4.25) ‘/DV(SoT5+T€oSt):VT€d:U <2 VTR, 1S i
+ 2| VT, HTEHL D)HVSHLq

By the Gagliardo-Nirenberg inequality [4,6] and (4.18), there is a constant
cq < oo such that

. cnd e nl—d
(4.26) || T 2 (D) ) < gl VT /q nll T IILz(éq

end 1— d
<+ VT 8 1
0
provided g > d. We need to use the elementary inequality
(4.27) a®pr=? < Ba + (1 - 0)b,

valid for a,b > 0 and 0 < § < 1, which is a consequence of the concavity of the
logarithm function. As a consequence of (4.27), we have

1 1. 1 1
(4.28) AB<L -A"+ —=B" for AAB>0, —+—-=1 (1<r<o0),
T T roor
by choosing r = 1/6, A =a’, and B = b'~?. From (4.26) and (4.27), we have
IT ||L @ SO VT @) + Csll glla),
where 6 > 0 is arbitrary. Thus the estimate (4.25) becomes

(4.29)
[ V(0T + 108 : VT da] < 2 VT I 0y (IS o) + 1 S o)

+2C5[ g | L)l VI (| Loy | VS I 2, ()
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Combining (4.20) and (4.29), and using (4.15) and (4.12), (4.19) becomes
(4.30)
¢ [IaTPar+ [ VTP e < | Vel | VT raco

VT 0y (19V @) + 208 Ieip) + 81 7S ()
+ 2G5 & | o)l VI || Loy) | VS ||y (1)

<11V )| VI llap) + VT Iy o) (1 = 1) + 81 VS 1))
+2Cs| gl o)l VIl ooyl VS I L, (D)

If we choose § > 0 so that 6|| VS |1 py < %c1, then (4.30) implies

¢ /D AT dr + 1oy /D VT dz < || Ve || VI |l uo)

+ CllgllL, | VIl Lyl VS [ 2, (p)-

Dividing by || VT ||, (p), we see that || VT ||, (p) is bounded independently of
e. Using (4.18), we conclude that || T || 1(p) is also bounded independently of e.
d2

(4.31)

Thus there is a subsequence €; such that T converges weakly to T € H(D)
The estimate (4.31) also shows that

6/ AT de < C
D
for some constant C independent of ¢, and thus

| AT [|p,p) < VCe

for all e. Taking the weak limit €; — 0 in (4.16) shows that T e Hl(D)d2 is
a solution to (4.2), and by uniqueness of such solutions, we conclude that the
original solution T must be in H 1(D)dQ. O

4.3. Bounds for VT

LEMMA 4.5. Under the conditions of Lemma 4.4, for each g € qu(D)d,
q > d, there is a unique solution T € W] (D) to (4.2) such that

1— /[ 14+ [
‘ N|+| +:U"Hv2
Co

1
1VT 2,0 < (1 V8 L, + V@l l)-

Recall that we have already obtained a bound for || v- VT || (p) in (4.4).
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Proof. To estimate VT in LI(D)* | we write W = VT. In view of our
previous arguments, if g € H'(D)?, then T € HY(D)¥. Applying V to (4.6),
which is equivalent to (4.2), we see that W € Ly(D)® solves
(4.32) W4v-VW +WoVv+SoW +B(W,S") = Vg —B(VS, T) - ToVS,
where S is defined in (4.5), B is defined in (4.22), and we have used the tensor
identities (9.6) and (9.12). Thus we seek coercivity for the linear map C where

CoW =W + WoVv + SoW + B(W, St).
By analogy with (4.8), we can write C = I+ M where
(4.33) MW = WoVv +SoW + B(W,SH).

However, W is a tensor of order 3, so we view it as a vector of dimension
d3, and we need to recapitulate the previous arguments. Let us introduce the
notation 7, for the set of tensors in d dimensions of order r. We can extend
the concept of the Frobenius product of matrices to 7, because it corresponds
simply to the ¢ inner-product of vectors of dimension d”. Thus (4.10) becomes

(W(2) + M(2)W (2)) : W(z) = [W(2)]* + M(2)W(z) : W(2)
> [W(2)]* = [M(2)W (2) : W(z)].

Here M is simply a linear operator mapping 73 to T3 given by (4.33). This
requires the interpretation that the tensor contractions W +— Wo Vv and
W — SoW, and the map W — B(W, St) give linear operators on T3. Indeed,

SOW zgk - E l]ka
=1

with a similar interpretation derived from (4.22). With the interpretation that
“:” is the usual ¢3 inner-product on vectors of dimension d?3, and that |[W]|
denotes the corresponding norm, (4.11) remains valid in this context, as a
consequence of (9.14):

[S(z)o W (z) : W(x)| < [S(2)][W ().
Similarly, (9.14) implies
(W (2)oVv(z) : W(z)| < [Vv(z)| [W(z)*.
Applying (9.13) with U = St we find
B(W(2),8"(z)) : W(z)| < |B(W(x),8"(2))| [W(z)| < [W(z)]*IS(z)].
Thus the following analog of (4.13) holds:
IM(2)W (@) : W(z)| < (2[S(2)| +[Vv(2)]) [W ()]
< (L4 1= Al + 1+ AD Vv (@) [W(@)]? < (1 - e)|[W(z)[*,
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Therefore

(C(z)oW (2)) : W(z) = [W(2)[ + M(2)W(z) : W(z) > c1| W()[%,
which provides an analog of (4.14). So applying Lemma 4.2 to (4.32) yields
(430 Wil < o[ Ve - BVS,T) - ToVS' 1.
Applying (9.13), we have

IB(VS, T) + ToVS!| < 2|VS||T.

Recall from (4.5) that 28 = (1 — 1)Vv?! — (1 + 1) Vv. Hence

IB(VS(x), T(x)) + T(2)oVS(2)'| < (|1 = | + |1 + )| V?v(2)| |T(x)],
for almost all x € D. Therefore (4.34) becomes, in view of (4.7) applied with

q = 00,

W |z, ) <

A

(I VellL,m) + (11 = Al + 11+ @D Vv (@) |, | Tlpe )

1— |+ 1+ 7

+\ il + 1+ fl
Co

1
C1

IN

1

— |V

o (A e
Recalling that W = VT completes the proof. [

| V2v(@) o)l & o) )

Writing v = Aju, and picking fi = pu1/A1, Lemmas 4.1 and 4.5 combine
to yield the following.

LEMMA 4.6. Suppose that D satisfies the condition (1.3), ¢ > d, and
u € W2(D)?, with V-u =0 in D and u=0 on dD. Define

v =1\ + |+ N — pa]-
Suppose

oL
NS

Then there is a unique solution T € W, (D) to (2.3) such that

(4.35) U=|[Vullp o = [IVulllL.o

(4.36) | T|lL, )+ | VT L, (D)
2n 1 2
< v \Y, .
= (1—Uu><” @ + 1—L{(\)\1\+y)” “”qu))

In particular, if we assume that

(4.37) (Al < Aom, ] < polMl,
and
(4.38) ni

< —0
6o (1 + 5p0)
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then
(4.39) IT |, + | VT |1,y < 40l Vull, o) + 80l Va1, )
Similarly,

Ui
Al lla- VT2, ) < 5 —,IVu | 2,(D)-

Proof. We can choose ¢g =1 — vlf in Lemma 4.1 and pick g = 2nE, and
this shows that

-
1wl
Similarly, we can choose ¢; = 1—(|A1]+v)U < ¢p in Lemma 4.5, and this yields

A1 1
mac {1 T oy 0 VT 0} < 1l 8 o Iz

2n 21/7] 9
19T o) < 1= g VE o)+ et 92 00 B o
2n 2 2V77u 2
<
= 1—(|>\1|+l/) HV u||Lq(D)+ Hv HLq

277 vl 2 277 1 )
=2 <1+ Tl > IVl =2 <1_yu) I V*u|z, D),

where we recall that E = %(Vu + Vu!). Summing these completes the proof
of (4.36).
If (4.37) holds, then

v = w(\l p \ +1- T|> < 2\ (1 + po),
and so
A+ < A (L4201 + p0)) < nro(1+2(1+ po)) = 3nAo(1 + 2p0).
So the assumption (4.38) implies that
1 1
< 7 =
6nXo(1 + 5p0) — 2(|Mi| +v)
and hence Uv < U(|A1| +v) < 1/2. Thus (4.36) implies
1T o) + VT o) < a0 (1 Va0 + 21 V20 1,0))-
which completes the proof of (4.39). O

IN

1
v’

Based on Lemma 4.6, we can think of (2.3) as defining a mapping u — T
such that, for ¢ > d,

(4.40) I (W) llwy o) < Conllu vz

provided ||u||qu(D) < Co, 1 > no, |A1] < Aomo, and |u1| < polA1], where Cy
and C depend only on ¢, D, 19 > 0, A\g < 00, and g < 00.
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5. REGULARITY FOR u

We consider the system
—nAu+u-Vu+Vp="~finD,
V-u=0inD, u=0ondD.

It is well known [14] that, via a variational formulation, (5.1) always has a
solution u € H'(D)? even for f € H~1(D)?, and that all such solutions satisfy

(5.2) lallz ) < Co7 I llg-1(p)-
From (1.5), we have
(5.3) nllallwz) + 112 lwioym < C (1 llym) + 1w VL),

although so far the last term might be infinite. But if u € H'(D)?, then
[u-Vu|p,(p < oo for some ¢ > 1 sufficiently small, and that allows us to
bootstrap with respect to ¢ to conclude that (5.3) holds for the desired value
of g, as follows. By Holder’s inequality, and Sobolev’s inequality, we have, for
1<q<3/2, when d =3,

(5.1)

(5.4) lu-VullL,m) <llullg ,, @)l Vullzzm) < Clulfnm.

2—q
When d = 2, (5.4) can be extended to hold for 1 < ¢ < 2, but with a constant
C =Cy — 00 as g — 2. Define qg = %(6 —d), that is, ¢ = 2 and ¢3 = 3/2,
the limiting Lebesgue indices for the validity of (5.4). With these results, we
easily prove the following lemma.

LEMMA 5.1. Suppose that d = 2 or 3 and define qq = %(6 —d). Suppose
further that £ € H=Y(D)? and that u € H'(D)? solves (5.1) in the sense of
distributions. Suppose finally that (1.5) holds for some q satisfying 1 < q < qq.
Then there is a constant Cyp < 0o such that for all f € Ly(D)*NH~1(D)4, we
have

(53)  allullwzm) +lelwroyr < Cop (I llz,m) + 1721 1E-1(p))

where Cyp remains bounded independently of q for d =3 as ¢ — g3 = 3/2, and
moreover (5.5) holds for ¢ = 3/2 as well for d = 3.

Note that we must assume that £ € L,(D)¢ N H~1(D)? since the assump-
tion f € L,(D)? alone does not imply that f € H~1(D)? for d = 3. The next
lemma gives a preliminary range of ¢ that will be sharpened further on. Now
we use bootstrapping to increase the range of ¢ for which bounds can be proved.

LEMMA 5.2. Suppose that ¢ > 1, that (1.5) holds, that £ € L, (D)%
H=YD)4, and thatu € H'(D)? solves (5.1) in the sense of distributions. Define

(5.6) o= llg-) and fo =T L,mD)
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Then for d = 2,
lulwzior + 12 hwyos < Can( f

(5.7) ) {77_sz1 1<qg<? >
n2fa(fo+n72f2%) 2<qg<oo /)
Ford =3,
(5.8)

nllu ng(D) +[Ip HW[}(D)/]R < Cyp (fq

n2r? 1<q<3/2
021 (fae + 072 f2) 3/2<q<2
* n 2 fo(fo+ 02 f—1(fs2 + 072 f2))) 2<q<3 '

n? <f3 +0 2 (fo+ 02 -1 (S + 77_2f31))>2 3<qg< o0

Proof. Here C' denotes various constants which may be different but are
independent of 7.
Let us begin with the case d = 2. From Lemma 5.1, we have

nllullwz oy + 12 llws ym < C(1E gy + 0721 £ 17-10p))
< C(If Loy + 021 £ 117 1(D)

for 1 < ¢ < 2. By Sobolev’s inequality, we conclude u € W}!(D)? for any
r < 2q/(2 —q), and so we find from (5.2) and (5.9), for any 1 < ¢ < oo, that

(5.9)

la-Valig,m) < ol ullwg o) < Cllullmo)llallwg o)

<O 21 g1y (1 £ oy + 10721 E -1 (p))

since 2¢/(q+ 1) < ¢ for all ¢ > 1. From (5.3) and (5.10), we conclude that, for
any 1 < ¢ < o0,

(5.10)

nllu ||Wg(D) + HPHWl D)/R
< C(I€ oy + 1 20 E =20y (1 E ooy + 121 11 )-

Now suppose d = 3. From Lemma 5.1, we have

nllallws o) + 1P llwy 0w < CUE Ly ) + 0721 1))

By Sobolev’s inequality, we have u € W4 (D)3, with the bound
Ml < Calullz, o) < CUE Ly + 1721 1)
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Therefore Holder’s and Sobolev’s inequalities give
[u-Vulp,m) < lallym)ll Vallym) < Cllullm o)l ullwy o)
<O 21 E g1y (1€ |y o0y + 1721 E 171 (0))-
Thus
nll ey + 12l oy < C (I lo)
1208 20 (1 oy + 12 E 1) )-

Next, Schwarz’s and Sobolev’s inequalities show, using (5.11), that

(5.11)

- Vullym) < lullgo)l Valzom) < Cllullamllullmo
< O 2 2y (I E ooy + 121 E vy (1 g oy + 17 2uf||H ‘o))
and so (5.3) yields

nlallwzo) + 112 lwg o /R<C<Hf|L3 + 2| 1 (”fHLz(D)

0208 g1y (€l ooy + 17201 E H%H(D)))).

Finally, Sobolev’s inequality shows that, for any ¢ < oo,

lu-Vullz,m) < Cllulap < O (r Ellzao) + 1720 -0 (11 ooy

2
2 (1€ + 172 Brsco)) )

and so (5.3) yields, for any ¢ < oo,

nllallwzo) + 2 llwimo)r < C(H £, + 2(” £lrym)

2
+n-2||f||H-1<D)(||f||L2<D>+n-21f\|H-1<D)(rfuLs/Q(D)m-?nfnz1@)))) )

and this completes the proof. [

Although the above result is sufficient for some purposes, it suggests that
the dependence of u and p on f is discontinuous with respect to g. We can
smooth out this dependence in the following.

We need to estimate the nonlinear term in (5.3) for ¢ > g4. By Holder’s
inequality, we have, for any ¢ satisfying 1 < ¢ < oo,

(5.12) - Vullz, ) < Cllullz, ol wllwy @)



424 V. Girault and L. Ridgway Scott 24

where t' = ¢/(t — 1). By the Gagliardo-Nirenberg inequality [6, page 24, Theo-
rem 9.3], we have

(5.13) [ u Hth,q(D) <C|u H?{l(D)H u ||é;29(p)

where 6(t') is determined from
d ., d ) dy . L, d
—1+%—G(t)<—1+§)+(1—0(t))<—2+6)—G(t)(l—l—ﬁ)—i—( 2+5>,

where k = (d/2) — (d/q), so that
1 d d 1 d
5.14 o(t') = (1+4--%)= (1-+).
( ) () 1+k +t’q q 1+k tq
The estimate (5.13) is valid only for 6 €]0, 1[.
For d = 2, we have by Sobolev’s inequality that

lallz,.o < Cllullgp)
for all 1 <t < co. Thus (5.12) and (5.13) imply that

lu-Vulz,m) < Clullyiplu i,

where 6 is given in (5.14), but the constant C' depends on the choice of t.
Applying (4.28), we have for any ¢ > 0,

(5.15) - Vulr,m < (08 ul G + 00— )l ulwzo))-
By taking § = ¢n with an appropriate choice of ¢, we find from (5.3), (5.15),
and (5.2) that

(1+0)/0
Snllwlwz) + 112wy oye < C (I @ + 1 uliR))

14+(1/6
< C(IEllz,o)+n 2N E 1)
Note that 1+ x =2 —(2/q) = 2/¢’. Thus for any € > 0, we can choose
t < oo such that 6 = %q/ — ¢, and we have proved the following.

LEMMA 5.3. Suppose that d = 2, that 2 < q < oo, that (1.5) holds, that
f € Ly(D)?, and that u € H'(D)? solves (5.1) in the sense of distributions.
Then there is a constant C < oo such that

1+(1/6)
(5.16) Sl wlwe) + 2 lhwyym < C(I € ) + 02N E 1),

for any 0 < %q', where ¢ = q/(q — 1),and C depends on 6 and q but is inde-
pendent of £, u, and 0.

The right-hand side of estimate (5.16) is arbitrarily close to
(2
1€ 112y + 0~ V2 55

which interpolates the extremes in (5.7). Now we consider the case d = 3.
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LEMMA 5.4. Let d = 3 and suppose that ¢ > 3/2. Define ¢ = q/(q¢ — 1),
so that ¢ < 3. Define

1
0=——.
1—-4¢'/6
Then there is a constant C' such that, for all v.e W7 (D)3,

(5.17)

(5.18) IV -V Iy < CIV I o1V I3y
The conditions of Lemma 5.4 imply that g <0 <2.

Proof. For the moment, let us consider a general dimension d. By the
Gagliardo-Nirenberg inequality [6, page 24, Theorem 9.3], for s = 0,1 we have
0s —0s
(5.19) lallw, ) < Cllu oyl
where 1 <t < oo, t' =t/(t — 1), and 05(t) is determined from

—s+jt zes(t)<—1+;l)+(1—98(t))(—2+;l> :es(t)(1+m)+<—2+j),

where k = (d/2) — (d/q) as in (5.14), so that
1 d d 1 d
98(75)—93(75’@)—@(2—34‘*—*) = 1+;~;(2_S—%>'
The estimate (5.19) is valid only for 6 €]0,1[. Assuming for the moment that

it is possible to find a value of ¢ such that this holds for 6y(t) and 6 (t'), we
conclude from (5.12) that (5.18) holds for 6 = 6y(t) + 61 (¢'). Since (') = ¢, we

find
0 =6o(t) +01(t) = liﬁ(2—$)+1in(l_z)
1

- 1+/1(3_Z):1—il—/@<3_d+j’)'

Choosing d = 3 yields 0 = (1 + k)~1(3/q’) and @ verifies (5.17).

It remains to prove that, for all ¢ > 3/2, thereis a t such that 0 < 6p(t) < 1
and 0 < 61(t') < 1. Let d = 3 and consider the choice t = 4 for s = 0. (In
Section 5.2, we will see why we cannot have d = 2 and the reasoning behind
the choice t = 4.) In this case

1 3 3 1 9 4 3 6\ 1!
0o(4) = ho(q) := (2 7_7):7@_7):, 7< _,> '
0(4) = ho(q) A i 5/2—3/q\" 4q 575075
Then ho(3/2) = 1, hg is strictly decreasing for ¢ > 6/5, and ho(q) — 4/5 as
q — 00. Thus for 3/2 < ¢ < 00, 4/5 < ho(q) < 1, and thus 4/5 < 6y(4) < 1 as
well.
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Let s = 1. Since t = 4, then ¢’ = 4/3, and
1 3 2 9 6\ 1
B =i = (1322, 9 (0
1(4/3) = M(q) 5/2—3/q( 10) "5 50\ 5
Then h1(3/2) = 1, hy is strictly decreasing for ¢ > 6/5, and hi(q) — 2/5 as
q — oo. Thus for 3/2 < g < o0, 2/5 < hi(q) < 1, and thus 2/5 < 6;(4/3) < 1

as well.
The result now follows from (5.12), with t =4 (and ¢ =4/3). O

The following is an immediate consequence of (5.3) and (5.18):

(5:20) nllwllwzo) + 12 lwpoym < Com (1€ lln,m) + el ol w1 ) )
where 6 is defined in (5.17) and satisfies 6/5 < 6§ < 2. Thus 2 — 6 €]0,4/5].
Applying (4.28) with 1/7' =2—0 (and 1/r =0 —1 €]1/5,1[), we have for any
0>0

_ _ 2—6
(5.21) HuH%l(D)HuHIQ/VqQG(D) = 6| u|| G ) (Ol u lwz ()

_ 1/(60—1
< (0= 12 ullfp )" + @ = 0l v lwap)

By choosing § = ¢n with an appropriate ¢, (5.20) and (5.21) combine to yield

0/(60-1)
Lnllulwz) + 2wy o)z < Cop (1€ 1n,m) + 02/ 540))

_ 0/(6—
< Cyp (£ gy + 02OV £ 1).

Recall that 6 =1/(1 — ¢'/6), so
q 46 0 6
—1=_7 —)t=2 4 7 2
6 6 0—-1) 7 , and 1 ¢
Thus we have proved the following.
LEMMA 5.5. Suppose that d = 3, that 3/2 < q < oo, that (1.5) holds, thal
f € L,(D)%, and that u € H'(D)? solves (5.1) in the sense of distributions. Let

¢ =4q/(¢g—1)€]1,3[. Then
(522) Sl ulwam) + 12 lwioye < Con (1€ o) + 12X NE 17 ),

where Cyp is independent of £, u, and 7.

5.1. Some corollaries

First we give an example that clarifies the meaning of Lemmas 5.3 and
5.5, especially in contrast with Lemma 5.2. Let D =]0,1[* and suppose that

we define f}, via
fr(z) = h_l(sin(acl/h), 0,...,0),
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where x1 is the first coordinate of x. Then ||, [g-1(p) < C1 where Cy is
independent of h, but || £, ||, p) > C2/h where Cy > 0 is also independent of
h. Thus Lemmas 5.3 and 5.5 show that the corresponding solution uy, satisfies
lap qu2(D) < Ch~! with C independent of h, whereas Lemma 5.2 would only

guarantee that || up [lwz(p) < Ch~? with C independent of h with d = 3 and
q > 3.

As a corollary of Lemmas 5.1, 5.2, 5.3, and 5.5, we have the following.

LEMMA 5.6. Suppose that ¢ > 1 for d = 2 and q > 6/5 for d = 3,
that (1.5) holds, M 1is any positive real number, and n > ng > 0. Then for
d =2 and d = 3, there is a constant Cyp n,.m such that for all f € H~1(D)4
satisfying || £ ||g_,(py < M and for allu € HY(D)? solving (5.1) in the sense of
distributions, we have

(5.23) 3nllu lwz) + I llwp )k < Copmomll £llL,m)-
Proof. Since || || g-1py < C| £, (D), we have for s > 0 and ¢t > 1,
0 E -1 (py < Cig "M Y| £ ||,y

Thus (5.23) follows from (5.5), (5.16), and (5.22), except that for d = 2 we
require Lemma 5.2 for the case ¢ =2. 0O

As another corollary of Lemma 5.5, we have the following.

COROLLARY 5.7. Suppose that the conditions of Lemma 5.5 hold with two

data functions 1, f5, and that there are two solutions (uy,m), (uz, ) to (5.1),
that is,

—nAu; +u; - Vu; + Vm; =f; in D

(5.24) , .
V-u;=0inD, u =zondD, fori=12.
Then there is an € > 0 such that, provided max;—12 || £ | -1(p) < en?,

nllur —uz [ grpy + |71 — w2 l[Ly0) < Cpiell f1 — £2 |l5-1(D)

for both d =2 and d = 3.

Proof. The proof is straightforward, see for example [8], but we present it
here for the reader’s convenience. From (5.2), we have, for i = 1,2,

(5.25) i |l oy < Cpllfillg-1(p)-

Now we multiply (5.24) by u; — ug for each i, integrate over D, integrate by
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parts, and then subtract to get
77/ V(u; —up)|?dz + / (u; - Vu; —ug - Vug) - (ug — ug) de
D D
= / (fl — fg) . (U1 — 112) dz
D

< Ch Y — 131 + b / V(w1 — up)? da.
D
Therefore

47 [ 1V = w) do < Chlts £ iy

(5.26) P

+77‘/(u1-Vu1 —ug-Vug) - (u; — ug) dz|.
D

Adding and subtracting, we find from (5.25) and Green’s formula that
(5.27

)
‘/D(ullvul —uy - Vuy) - (u; — up)dz

= ‘ /D((ul —ug)-Vu +uz-V(u —up)) - (u; —ug)de

< lur =z |lp, o)l ([ g1yl w1 — vz (|2,
< Opllur = ua |3y i |11 )

< 07/3/(2%( I || ooy 01— up ”?{1(13)
<Cp 7771(?:15117?; [ £ L1 (p)) [ 1 — 1z qul(p)-
By combining (5.26) and (5.27), we find
b [ 190 =) de < Chl 1o
+ Cg(?;ffg £ | -1m)) 11 = w2 |32y
< Cpllfi = f2 | }-1(py + Cpen’| ur — us |51 ).
Choosing € = (4C5)~1, we find
(5.28) 7 [ 19 =) de < 401 = 1o

To estimate the pressure terms, let V' be the subspace of divergence-free functi-
ons of H} (D)%, and V= its orthogonal in H{ (D)? for the scalar product (Vu, Vv).
We multiply (5.24) by v € V1, integrate over D, integrate by parts, subtract,
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and use the orthogonality of V*, to get

/(m—Wg)V~de——/(f1—fg)-de+/(u1~Vu1—u2-Vu2)~vda;.
D D D

The same argument used in deriving (5.27) gives for the nonlinear term,
)/ (u1 -Vu; —us - VHQ) -vdx’
D

<Cp 7771({1:1% i [l 1)) w1 — w2 | g1 oy |V | 1 (),

and from (5.28), we conclude that

| [[(m =¥ via] < 18~ L ln o)l ¥ o

Then we complete the proof by applying Ladyzhenskaya’s Lemma [7]. O

The equations (3.11), (3.8), and (2.3) provide an alternative formulation
of the 3-parameter Oldroyd model (2.2)-(2.3). Using this formulation, we shall
prove the following in Section 6.

THEOREM b5.8. Suppose that ¢ > d, that (1.3) and (1.5) hold, that the
coefficients A1 and py satisfy

(5.29) Al < Xom, ] < polil,  and  m > 0.

Then there are constants C < oo and C > 0, depending only on q, D, Ag,
o, and ng, such that the 3-parameter Oldroyd system (2.2)—(2.3) has solutions
satisfying

(5.30) nlallwzoy + 1T llwo) + 2 llwioyr < ClE lwp o)
provided that || £ [ly1(p) < C.

Note that this is suboptimal in terms of the relation between the regularity
of f and u, but the term u - Vf in (3.12) appears to require this in the case of
the estimate (5.30).

The parameter A in [16] corresponds to )\1_1 here, and thus the auxiliary
pressure function ¢ in [16] corresponds to )\flw. However, there appears to be

a discrepancy with equations (2.5-6) in [16] with regard to the scaling of the
pressure function q.

5.2. The choice of ¢

We now return to the proof of Lemma 5.4 to understand the choice of ¢
and the restriction d # 2. Define Q = d/q and T = 1/t'. Then
_2-5-QT
C1+id-Q

S
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Thus for d =2 and s =0,
2—-QT
2-Q
and so the inequality (5.19) is not valid. This is the reason why we restrict to
the case d = 3, as we do from now on.
Although we have seen that the choice of t = 4 in (5.19) works, it may be

of interest to see how we arrived at this unique choice. The condition 0 < 05 < 1
translates to

0y =

> 1,

)
0<2—S—QT<§—Q,

which we can write as two inequalities:

Q

1
(5.31) QT <2—-s  and 72@(1—T)<s+§.

Since ¢ > 3/2, Q < 2. Since 1 < t < oo, 0 < T < 1. Thus the first of
the inequalities in (5.31) holds automatically for s = 0. The second of the
inequalities in (5.31) for s = 0 translates to ¢ > 2Q) = 6/q or

6/qg ¢<6

t > to(q) = max{1,6/q} = {1 056

Note that max {to(q) } q>3/2} =ty(3/2) = 4. Thus we can say that (5.19)
holds for all ¢ > to(q) for the case s = 0.

The first of the inequalities in (5.31) for s = 1 is equivalent to QT < 1,
which means ¢ > Q = 3/q, or

3/a ¢<3

t' > t)(q) = max{1,3/q} = )
1(q) = max{1,3/q} {1 >3

Note that max {t}(q) | ¢ > 3/2} = t{(3/2) = 2. The second of the inequalities
in (5.31) for s = 1 translates to ¢t > 2Q = % or

2/q q<2

t>t1(q):max{1,2/q}:{1 .

Note that max {t1(q) | ¢ > 3/2} = t1(3/2) = 4/3. Thus we can say that (5.19)
holds, in the case s = 1, for all t > t1(q) and t' > ¢} (¢q). We need to translate this
to a bound on t' only, and the former inequality can be written 1/t < 1/t1(q)
and hence 1/t =1—1/t > 1 —1/t1(¢q). Thus our conditions on ¢’ for the case
s =1 are

t1(q)

5.32 t'(q) <t and t < ——1—.
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Here the singularity in the denominator in the right-hand inequality in (5.32)
simply translates to t' < oo, so it provides no extra condition. We can make the
constraints (5.32) explicit in the case s = 1 for various ranges of ¢ as follows:

3 2

S<t < —— =m(q) for (3/2)<qg<?2

L <t < g =mla) for (3/2)
3

(5.33) “<t<oofor2<qg<3

q

1 <t <oofor3<q< oo,

where the constraint function v1(¢) = 2/(2 — ¢q). Note that the first line of
(5.33) is the most restrictive of the three and any ¢ € [2,4] satisfies all three
for all 3/2 < ¢ < co. For the case s = 0, the constraints can be made explicit
via

6
0(g) =—<t<oofor3d/2<qg<6
(5.34) n0le) =4 /
1<t <ooforb<g<oo,
where the constraint function vy(q) = 6/q. Note that the critical constraint
functions satisfy v1(3/2) = 4 = 10(3/2). However, v; is strictly increasing on
[3/2,2], and ~yp is strictly decreasing on [3/2,2[. Thus for 3/2 < ¢ < 2,

Y0(q) <4 <7(q).

Thus ¢ = 4 satisfies the constraints (5.33) for all (3/2) < ¢ < oo and ¢t = 4
satisfies the constraints (5.34) for all (3/2) < ¢ < co. Moreover, for all (3/2) <
q < oo, there is an open interval of values of ¢ such that the constraints are
satisfied, and ¢t = 4 is in the interior of this interval.

6. SOLUTION ALGORITHM

In this section, we present the proof of Theorem 5.8. The following algo-
rithm is a modification of the iteration proposed by Renardy to demonstrate

existence. Given u”~ !, T" 1, p"~! we define u®, T, p" as follows. First we
solve
6.1) —pAu" +u” - Vu" + Va" = F(f,u" 1 p" L, ") in D,

V-u"=0 inD, u"=0 ondD
to determine u” and 7", where F was defined in (3.12). Then we solve
(6.2) p"+\u" - Vp" ="
to determine p”. We recall the notation

B = (T + (V) and B = §(— T + (V)
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Finally, we solve

T" + A\ (0" VI" — (Vu")oT" — T"o(Vu")")
+ (A1 — 111)(E"oT" + T"oE") = 2nE"

for T". Recall that (6.3) is equivalent to

T" + M (u" - VI”" + R"oT" + T"o(R™)")
— p1(E"oT" + T"oE"™) = 2nE".

(6.3)

(6.4)

More precisely, we first solve the Navier-Stokes equations (6.1) for u™ € W2 (D)?
and 7" € W] (D). Then we solve the scalar transport equation (6.2) for p" €
W} (D). Finally, we solve either (6.3) or (6.4) for T" € W] (D). We begin
the iteration with u® = 0, p® = 0 and TY = 0.

The following lemma gives bounds on p™ and T™ in terms of u”, collecting
the results of Lemmas 4.6 and 3.2.

LEMMA 6.1. Suppose that D satisfies the condition (1.3) and ¢ > d. As-
sume that (4.37) holds. Let o4 > 0 be the constant in the Sobolev inequality
(1.6).

Then there is a constant & < 0o, depending only on Ao, po, ¢ and D, such

that if
1

Al + A1+ pn| + AL — )’

n
<
IR HWq?(D) > 2%(

there is a unique solution T™ € I/Vql(D)”l2 to (6.3) such that
(6.5) 1T lwa oy < nllu™ [[wz(p)
and a unique solution p™ € W1 (D) to (6.2) such that

(6.6) | p" Hqu(D) <" HW(}(D)‘

6.1. Bounds for the iterates

Let us prove (by induction) that, for some v > 0, the following holds for
n > 0:
(6.7) A lwz oy + 17 s oy < 7

For n = 0, this holds for any v > 0. Suppose that v > 0 has been chosen small
enough so that

n
6.8 < ,
6.8 VS Syl F gl + =g
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where o, is the Sobolev constant in (1.6). In particular, this implies that

1
(Al 4 A+ pa| + (A = pal)
In this case, we can apply Lemma 6.1. Note that (6.7) and (4.37) imply that

(6.9) (A" [lwzp) < Aoy

VU || ) < gl 0™ llwzip) < v0q/n <
2(

Let ¢ > 0 and assume that || f[ly1p) < ¢. In view of (3.13), (5.29), (6.5),
(6.6), and (6.9), we have

| F(E,a" 0", T") [, 0) < 1 l|,(D) +0q(|)‘1| ™ w2y (Il £ llwy )
+61| 7" lwy o) +204 | 0" 2 (p) + onll " lwzep)) + 4611 — pafn] u” II%;(DO
<p+oy (/\07(90 + 67+ 204(7/n)? + 67) + 46 X0[1 — u1/>\1\72)

<p+og (m(so + 267 + 204(7/n)%) + 46X00(1 + uo)v2)

< o(1+ A7) + 200007 (04 (7/m0)* + (36 + 26 110)7)
_ (1+07)90+C/'72+CH 3’

where C' = oy, C' = 2C(36 + 26u0), and C" = 2Co,/nt. By taking ¢ and v
small enough, we can guarantee that

(6.10) | F(E ™, p", T") | g-1(p) < cgp|| F(E, 0", p", T") [[L,p) < 1.
Thus we can apply (5.23) with M =1 to get
0" lwzp) + 17" lwi o) < Copon | F(E ™9™, T) ||, p)
< Cypa (14 C7)p+C7? + C”v?’) <,
provided that ¢ and v are small enough. We thus ensure (by induction) that
nlla" llwzm) + | 7" [lwip) <
for all n. Note that by (6.5) and (6.6), we also have
(6.11) 19" lwy o) + I T [lwa(p) < 67-
We collect the constraints required by v and ¢, with the constants defined
above:
n
< )
7= 2oyl A+ gl + P — par])

1
(1+C’y)4p+0’72+0”73<m1n{ 7}.
¢g0" CqDmo

(6.12)
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The first condition in (6.12) is satisfied if we assume
< 1
7= 2% o1+ 2(1 + 1))

All constraints can be satisfied independently of f provided that || f |1 p) < ¢

6.2. Convergence of the iterates

To prove convergence of the iterates, we use the bounds in Section 6.1.
Thus we assume that the parameters v > 0 and ¢ > 0 have been chosen small
enough so that all of the iterates remain bounded independently of n. More
precisely, we will assume that we have iterates satisfying

n n
nlla" llwzm) + 1 7" [lwp o) <~

(6.13) . . X
IT" [lwroy + 12" W) < 67,

where v has been chosen to satisfy (6.12) and & is given in Lemma 6.1.

To show convergence, we will demonstrate Lipschitz continuity of the
solution operator for (3.11) and also for the mapping T(u), cf. (4.40). Thus we
will assume that we have v; satisfying the bound (6.7). We will apply this in
the specific case where vi = u” and vy = u” L.

The system (2.3) can be written as in (4.9) via

T+ MEF)T +v-VT =n(Vv + Vv') in D,
where v = A\;v and M(¥)T is defined by
(6.14) M@EF@)T = RoT 4+ ToR! — i(EoT + ToE),
where E and R are defined by
E = i\ (Vv4+ Vv = L (Vi+V¥!) and R =1\ (Vvi-Vv) = }(V¥'-V¥)
)i

and ft = p1/A1. We want to show that the mapping v — T = T(v) is Lipschitz

continuous. Let g; = n(Vv; + Vv!) and consider the problems
T, + M(\A/'l)Tl +v;-VT;=g; inD,

for ¢ = 1,2. Define U =Ty — Ty and u = vy —ve. Let G = g1 —go =
n(Vu+ Vu'). Then

U+ M(¥1)U+ ¥ - VU = (I4+ M(91))(Ty — Tg) + vy - V(T — Ty)
=G-u-VTy + (M(\Afg) - M({/l))TQ .
Applying Lemma 4.1 with ¢ = 2 to (6.15), we find

(6.15)
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(6.16) || Ty —T2llz,0) = | Ullop)

< Clou G~ Ai(u- Vo + (M(va) - MV))T) [,
where we can define ¢q via
(6.17) co=1—(11+al+ 1=l V¥l (o)

=1— (A A+l + M = ) Vvl o)

provided that the formula (6.17) yields ¢o > 0. But our assumptions (6.13) and
(6.8) on ~ imply that

(‘)\1+U1’+|A1 ‘)H Vvi HLOO(D (‘)\1+M1|+‘)\1 /ﬂ’)aquvl HW;(D)
< (I + gl + Mo = pal) (vog/n) < 3,

so that ¢y > % Thus we can prove the following lemma.

LEMMA 6.2. Suppose that the conditions of Lemma 4.6 hold for u=v; €
Wg(D), 1 =1,2, so that V-v; = 0 in D and v; = 0 on 0D, and the bound
(4.35) holds for both vi and vao. Let T; solve

T; + M({’l)Tl +v;-VT; =g; inD,

forg; = n(VVZ-—i—(Vvi)t), where M is defined in (6.14) and v; = \1v;, i = 1,2.
Then

(6.18) Ty = T2y <2020+ O T2 [waoyll vi = va [ my(p)
where C = |Ai|og(3 + 2|4l

Proof. Estimates (6.16), (4.23) and (1.7) imply
IT1 = T2y < 2(1 G Loy + Mal(lullL o, )]l T2 lwi(p)
q—2

MW T2 |1.p)))
< 2(2n+ [Mil(oq + ean)ll T2 llwy o)) e

where the constant cps is the smallest real number such that
2
IM@T ||y < emll T lwyoyllullzp) Ya € H(D)Y, T € W, (D)

We estimate cjs as follows. From the definition (6.14), we see that

[ MW)T [[Lyp) <21+ DI T Loyl 0 |1 (D
< 204(L+ [EDI T lwy o) @ HHl(D)
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where o, is the constant in Sobolev’s inequality (1.6) and fi = p11/A1, so we can

be assured that cyr < 204(1 + |]). O
Using (6.13), (6.18) becomes
o1g 1T T2l £200+ Mo+ 2 ) o
= Crlvi = vallm (D),

where & is the constant in (6.5) and (6.11), v is the constant in the bound
(6.13), and

(6.20) Or = 2(20 + Aonoy (3 + 21} (7))-
Thus we conclude that the mapping v + T(v) is Lipschitz continuous H (D) —
Ly(D), but only on bounded sets in W2(D). Moreover, we note that the Lip-
schitz constant C'r is not particularly small in this case.
In a similar way, we can provide a Lipschitz bound for the pressure terms.
Suppose that
pi +Mvi - Vp, = .
Then
p1—p2+Aivi-V(p1 —p2) = m — 2+ Ai(v2 — v1) - Vpo.
Using [9], (4.23), and (1.6), we find
(6.21)
[ p1 = P2 L) < lm1 =72 ||y ) + [Ad] || (V2 = vi) - Vipo ”LQ(D)
<N —=m2 o) + Ml ve = villz,, @l P2 llwiD)
< |l = m2[[Lym) + ol Ml V2 = vi [l m1(p) HP2 lw(p)
< |71 =72 | 2yp) + 0gAond Y| va — vi | g1 (p).-
Next, we estimate
| F(£,v1,p1, T(v1)) — F(£, va, p2, T(v2)) | z-1(p)-
It helps to split
F(E,v,p, T)=Fi(f,v) + MiFa(v,p) — MiF3(v) + M Fa(v) — (A — p1) Fs(v),

where

Fi(f,v)=f+\v-Vf

Fa(v,p) = (Vv)'Vp
F3(v)=v-V(v-Vv)
Fa(v) = V- ((Vv)oT(v))
F5(v) = V- (E(v)oT(v) + T(v)oE(v))
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To begin with, we have the simple estimate
| Fi(f,vi) = Fi(f, v2) -1y < (Ml (vi —v2) - VE [ g
For ¢ € H'(D)? we have by (4.24)
[((vi = v2) - VE,@)[ = [{£, (vi — v2) - V)|

<oyl fllr, o)l vi = ve g o)l @ | (p)
d

(6.22)

Here and below, we are able to derive an estimate for ¢ € H'(D)? even though
we only need it for ¢ € H (D)% When the restriction to the smaller space is
needed for the derivation of the inequality, we will note it. Returning to (6.22),
we see that it implies

| Fi(f,v1) = Fi(f,v2) g1y < oglMl [ £z, o)l vi — v larp

< oglMlellvi—va lgipy < agdong | vi—ve g py = cren | vi—va | m1(py,

where ¢; = o4\ and we recall that ¢ > [[f||; (p) and that A\; satisfies the
bound (5.29).
For the next term, we find

(6.23)  Fao(vi,p1) — Fa(va,p2) = V(vi — v2)'SVp1 — (Vv2)'V(ps — p1).
For ¢ € H}(D)?, we have
{(Vv2)'V(p2 = p1), #)| = [(V(p2 = p1), (VV2)$)| = |(p2 — p1, V-((Vv2)9))]|
= |(p2 = p1,(Vv2)" : V@),
where we have used (3.4) at the last step. Thus
{(Vv2)'V(p2 = p1), #)| < agllp2 = p1 |2yl va w2y | @ Nl 1 ()
using (4.24). Thus (6.21) implies
(6.24) 1 (Vv2)'V (p2 = p1) la-1p) < ogllp2 = p1 |2 | V2 [lwz (o)
<o (H T — 72 || Lo (0) + 0grond || va = vi |1 (py).-
For ¢ € H}(D)?, we also have
[(V(vi = v2)'Vp1, @) = [(Vp1, (V(vi — v2))9)]
< ogllpillwroylvi = ve )l @ 112 (o)
again using (4.24). Thus
(6.25) IV (v1 = v2)' V1 [l g-1(p) < ogll o1 llwa oyl vi = V2 ||y
< 0407|[vi = v gDy

Combining (6.23), (6.24), and (6.25) we obtain

| Fa(vi,p1) = Fa(va,p2) la-1p) < c2y(lm = 72 | pypy + | V2 = Vi 1)) »
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where c3 = o, max{n~!

F3(vi) = F3(vz) = vi-V(vi-Vvi) = vy - V(vz - Vvy)
= (vi—vy) - V(vi-Vvy)—vy-V(ve-Vvy —vy-Vvyp)
= (vi—v2) - V(v1i-Vvi) = vy V((va = v1) - Vvy)
+ vy V(vy-V(vi —v3)).
We estimate the first of these three terms using (4.24):
[((vi = v2)-V(vi-Vv1),@)[ = [{(vi-Vv1),(vi — v2) - V)|
< ogllvi- Vi, vi = Ve llmi o)l @ |z ()

,(Xoyoq +1)}. Moving along, we expand

<ol villoew) I VYL o) | vi = Ve |z oyl @ | 1 ()
< oglvi HI2/Vql(D)H vi = Ve || @ || 1)
Similarly, the second of the three terms is estimated using (4.24) by
[(v2 - V((v2 = v1) - Vva), @) = [((v2 — v1) - Vvg, va - V)|
< ogllva ”%/Vql(D)” vi = Ve llmo) | @ |51 (p)-
Finally, Holder’s and Sobolev’s inequalities give
[(va - V(v1-V(vi = v2)),9)| = [(vi- V(vi—v2),va- V)|
<|[villew I V2 L)l Vi = V2 Il 51 (D) | @ | 2 (D)
< oglvilwyll va lwz oyl vi = va i oyl & | ().
Thus (6.7) implies
1 Fs(v1) = Fs(v2) la-1(p) < og (11 [y ) + I v2 s )
+ v llwe oyl va llwy o) [ vi = va [l (o)
<3029 %||vi — va (o) = esvll vi = va [l ().
where c3 = 303’yn_2. For the next term, we have

(6.26)
Fu(v1) — Fa(va) = V- ((Vvy)oT(v1)) = V- ((Vvy)oT(va))
= V- ((V(vi = v2))oT(v1)) = V- ((Vv2)o(T(v2) — T(v1)).
For the first of these terms, we have, for ¢ € H&(D)d,
[(V-((V(v1 = v2))oT(v1)), )| = {(V(v1 = v2))oT(v1), V)|
(6.27) STV eyl vi = va lm o)l @ [l 1)

< ol T(v1) lwa oyl vi = Ve o) | @ e ()
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Then (6.27) and (6.13) imply

(6.28)
[ V-((V(vi = v2))oT(v1)) |z-1(p) < ogll T(vi) lwrm)ll vi = v [[11(p)

< 04075 vi — va HHl(D)-
For the second of the two terms in (6.26), we have, for ¢ € H} (D)<,

(V- ((Vv2)o(T(v2) — T(v1)), 9)| = [{((Vva)o(T(v2) — ( 1)), Vo)
(6.29) < |[[vellwy )l T(v1) = T(ve) | o) @ |2
< ogllva lwzm) | T(vi) = T(v2) |, p)ll @ HHl(D :

Then (6.29) and (6.19) imply

(6.30)
| V- (Vv2)o(T(v2) = T(vi)) [[m-1(p) < ogll va llwzp)ll T(vi) = T(v2) [2,(p)
< o4(v/n)Cr||v1 = v2 || Ly(D)

where C7p is defined in (6.20). Estimates (6.28) and (6.30) combine to yield

| Fa(vi) = Fa(v2) [ -1(p)
< Uq(V/ﬁ)(CT + 577)” Vi—Va HHl(D) <cayllvi— v ||H1(D)

where ¢4 = anfl(C’T + &17). Last and least, we examine F5. Note first that,
for any ¢ € H} (D)? and T € Ly(D)%,

(V- T,¢0)| = (T, V) < | Tl o0yl @ | 1 (D)5
so that for all T € Ly(D)%,
(6.31) IV-T lz-1p) < T Lop)-

Expanding, we have

F5(v1) — F5(v2) = V- (E(vy)oT(vi) — E(v2)oT(vy))
+ V- (T(v1)oE(v1) — T(v2)oE(vy))
= V- (E(vi — v2)oT(v1) — E(v2)o(T(va) — T(v1)))
+ V- ((T(v1) — T(v2))oE(v1) — T(v2)oE(vy — v1)).
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Thus (6.31) implies
(6.32)
| Fs(vi) = F5(va) -1 0y < (1 E(vi —v2)oT(v1) || 1,p)
+ [[E(v2)o(T(v2) = T(v1)) o0y + | (T(v1) — T(v2))oE(v1) [|L,(p)
+ || T(v2)oE(va — v1) [l 1y(D))

< (H E(vi —v2) lL,0) (1 T(v1) ooy + 1 T(v2) e (0))

1T = T(v2) o) (1BOD) () + | EV2) i) )
< o4 (I B(vi = v2) lam) + 1 T(v1) = T(v2) [l 1)
< ST ITED) lws oy + B s o)-

i=1,2
Applying (6.19) and (6.13) to (6.32), we find
| F5(v1) = F5(va) lag-1(p) < 0g(1 + C7)l| vi — va ||z py2(6m + 1)(v/n)
< syl vi = va [lgi (o)
where c5 = a4(1 + Cr)2(6m + 1)n~*
For any o > 0, we can choose v and ¢ sufficiently small so that
(6.33) || F(f,vi,p1,T1) — F(£,v2,p2, T2) || g1
< anllvi = vallgip) + 71 — 72 || o)) -
Choosing o > 0 appropriately, we find
™t = | gy + |7 =" L)
<i(nfu® —u"! |1y + [ 7" — ! o))
Here we used Corollary 5.7 and (6.10). This proves that the sequence (u”, ")
converges geometrically in H'(D)%x L?(D), and (6.19) and (6.21) prove that the
full sequence (u™,n"™,p™, T") converges geometrically to a limit (u,m,p, T) €
HY(D)4 x L2(D) x L*(D) x L2(D)¥
To show that this gives a solution of the 3-parameter Oldroyd system, we
need to show that the limit satisfies the Navier-Stokes system (3.10). To show

convergence in the Navier-Stokes system, we need to study the convergence of
F(f,u", p", T") to F(f,u,p, T). From (6.33), we conclude that

(6.34) Fro=F{f,u",p", T") - F(f,u,p,T)

strongly in H~(D)? as n — oo. This implies that (3.11) holds via the following
standard variational argument. We can express (3.11) in variational form as

77/vun:Vde_/(un'VV)'undx—/W"V~vdx:<fﬂ7v>
D D D
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for all v € H}(D)?. Given the strong convergence of u” — u in H*(D)? and
7w — 7 in Lo(D), together with (6.34), we conclude that

77/ Vu:Vvdx—/(u~VV)-udx—/WV-vdx:<]:(f,u,p,T),v>
D D D

for all v € H} (D)4, confirming (3.11), and equivalently (3.10).

7. VARIATIONAL FORMULATION
The variational formulation is based on a standard one for Navier-Stokes:

n/ Vu" ! Vvdx—l—/(um’1 - Vu") -Vd:z:—/ "IV v da
D D D

= / F(f,u",p", T") - vdz,
D

where we recall that

F(f,u,p, T) =f+ Au-Vf+ X (Vu)'Vp— A (u-V(u-Vu) — V- ((Vu)oT))
— ()\1 — ul)V- (E(u)oT + ToE(u)).

We develop some identities that are useful for simplifying the terms involving

F. For any tensor function T of arity 2 (that is, a matrix function) and any

vector function v € H} (D)4,

(7.1)

V-T 'vdx:/ Ti','vidx:—/ Ti-vi,-dx:—/T:Vvd:U.
[ R S tygde == |

Note that, if V-u=0in D and v =0 on 0D,
(7.2)

/D (Vu)' - Vp) -vde = /pizjuj’ip’j vide = — /Dg ()i Ui)de.f
=— /D (;uﬂj v + uj Ui,j) pdx
:_/Dzij((v-u),i)wpdx—/D(Nu)t  (Vv)) pda
= —/D (Vu)': (Vv)) pda;

compare with (3.4). Similarly, if V-u = 0 and v = 0 on 9D, for any w €
H'(D)? we have

(7.3) /D(u-Vw)-vdx:—/Dw-(u~Vv)dx.
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Using (7.1), (7.2) and (7.3), we find

/]-"fu",p, ") vde
:/ f.(v—)\lu"-Vv)dx—/\l(/ p"(Vu™)': Vvde
D D
- / (u"-vu") - (u"-Vv)dr + / (Vu"oT") : Vv da:)
D D

+ (A1 — 1) /D(E(u”)oT” + T"oE(u")) : Vvduz.

Thus a variational form for the algorithm (6.1) is as follows. First, knowing
u”, p", and T, we find u"*! € V and 7! € II such that

/Vu”+1 Vvdx—i—/( "H-VU"H)-de—/ "V vde
D

/]:fu,p, )-de:/pf-(v—)\lu”-Vv)d:U
-\ (/Dp”(Vu") :Vvdr — /D(u”~Vu”) ~(u"-Vv)de
+/D(Vu”oT") : VVdm)
+ (A1 — 1) /D(E(un)oT” + T"oE(u")) : Vvdz,

for all v in a suitable space V, where as usual, E(w) = 3(Vw + (Vw)?). We
omit the details for solving for 77"“ in the discrete case, thls will depend on the
particular implementation of the Velomty and pressure spaces. Next, we solve
the transport problem for p"*! via two possible formulations: find p"*! € I
such that

/ anrl(v . )\lunJFl . VU) dr = / 7Tn+11) drx Yv e ﬁ
D D
or

/ (P" + A\ut . Vprthude = / tlyde Vo ell
D D

for a suitable space II. Finally, we solve the transport problem (6.3) or (6.4)
for T"*! in a similar fashion. For example, one option would be

/ T (U - \u™tt . VU) dx—i—/ MUHTH  Ude
D D

= 277/ Eu"™):Udz VYUEe€ e
D
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for a suitable space II, where v = A\;v and M(¥)T is defined by (6.14).

8. RENARDY’S ORIGINAL PROOF
Define the operator T : 92 as follows:
(T : 9%u) ZT]kumk

We compute the divergence of (Vu)oT as follows:

(V-((Vu)oT)), = Z (Vu)oT),; ;

= (Vw)uTy),
jk
=D (wikTiy) ;= Y (wignTej + winTiyz)
jk jk
= (T 82 +Zuszk”f T 82 —&—ZUZ;C(ZT;%])
ik

= (T : 0%u) +ZuszT) (Tzazu)i—i—(Vui)-(V-T).

Therefore
(8.1) V-((Vu)oT) =T : 0%u+ (Vu)o(V-T).
Thus (3.2) and (8.1) imply that
V- (u-VT - To(Vu)' — (Vu)oT) =u -V (V-T) - T: 0*u— (Vu)oV-T
= R(u) (V-T) - T : d%u,
where we define the operator R(u) by
R(u)v=u-Vv— (Vu)ov.
Renardy used (2.1) to replace V- T in the divergence of (2.4) to get
nAu+\T:0%u=u-Vu+Vp—f
+MR(u)(u-Vu+Vp—1£)+ (A — p1)V- (EoT + ToE),
which is equivalent to
—nAu—-\MT:0*u+u-Vu+Vp=f
—MR(u) (u-Vu+Vp —f) — (A\; — p1)V- (EoT + ToE).
Renardy used the modified Stokes operator on the left-hand side of (8.2) as the
basis of his existence proof. For the regularity results, this requires verifying the

appropriate coercivity and regularity results for variable-coefficient, Stokes-like
equations. Details were omitted from [16].

(8.2)
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9. TENSOR CALCULUS

Here we collect some tensor identities from [11].
For T, U € 7T,, we define the contraction T : U via

(9.1) T:U= Y T, iU -
Pyeenyin
Another tensor contraction formula is

d

(9.2) (ToU)iy.ip_1jonjy = ZTil...ir_MUéjg.‘.jT/ ;
—1

where T € 7, and U € T,s, and this defines ToU € T,.;,7_o. We have the
following identities:

(9.3) v-VT = (VT)ov.
d
(9.4) (W:U);= > WiplUj for We T3, U € Ta.
j.k=1
(9.5) V- (ToU)=(VT): U+ To(V-U).

Note that the operator “ o” in To(V-U) denotes an ordinary matrix-vector
product also

(9.6) V(v-VT)=VToVv +v-V(VT) = VToVv + (V2T)ov.
We can combine (9.3) and (9.6) to compute

(9.7) v-V(v:Vv)=V(v Vv)ov = (VvoVv + (V?v)ov)ov.
When T is a scalar-valued function, (9.6) can be written alternatively as
(9.8) V(v-Vf)=VvVf+v-V(VS),

since
(VoVv)e =Y fivin =D (Vv )kif;
J J
Based on the tensor contraction formula (9.2), we compute the derivative
of a product:

d

(9.9) (V(ToU) = ToVU)ir iy ik = O (VTirecir1t6Utia..s
(=1
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but the term on the right-hand side is not an obvious product. Define a bilinear
mapping B : Tr41 X T — Trap—1 by

d
(9'10) (B(Wa U)>i1---ir—1j2---j}/k = Z(W)il---irqﬁkUﬁjQ---jw'
(=1
Then (9.9) becomes
(9.11) V(ToU) = ToVU + B(VT, U).

In particular,

(9.12)  V(SoT + ToS') = SoVT + B(VS, T) + ToVS' + B(VT,S).
From the definition (9.10), we have

(9.13) BW,0))| < [W|[U].

There is a useful inequality involving three tensors. Suppose that T € T
and W,U € 7, where » > 1. Note that ToW € 7, and ToU € 7,. We
can interpret the contraction “:” as the usual ¢35 inner-product on vectors of
dimension d”, and |[W/| as the corresponding norm. Then we claim that

(9.14) IToW : U| < |T||W]|[U],

which is a generalization of (4.11).
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