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We illustrate the crucial importance of the Hardy type inequalities in the study
of function spaces, especially of fractional regularity. Immediate applications in-
clude Sobolev and Morrey type embeddings, and properties of the superposition
operator f +— ® o f. Another fundamental consequence is the trace theory of
weighted Sobolev spaces. In turn, weighted Sobolev spaces are useful in the re-
gularity theory of the superposition operators. More involved applications, that
we present in the final section, are related to Sobolev spaces of maps with values
into manifolds.
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1. INTRODUCTION

Fractional regularity function spaces, in particular Sobolev spaces W?#?P
with non integer s, have attracted considerable interest in the latest years, for
example in connection with fractional processes and operators. Typical and
classical questions related to these spaces are their embeddings, the properties
of the superposition operators f — ®o f, or the possibility of giving a meaning
to the pullback f%w when w is an alternate object, e.g. a form.

One of our purposes is to present a user-friendly introduction to fractional
Sobolev spaces and their analysis. This text is an elementary and, to a signifi-
cant extent, self-contained presentation of these topics. The main thread is the
effectiveness of the Hardy type inequalities in the study of the aforementioned
properties. Fractional Sobolev spaces are at the intersection of two important
classes of function spaces: Besov spaces and Triebel-Lizorkin spaces; see e.g.
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448 Petru Mironescu 2

Triebel [57, Chapters 2—4] for an overview of the theory of these function spa-
ces. In order to establish the properties of these general classes, one usually
has to use relatively advanced tools in analysis (linear or nonlinear interpola-
tion theory, Littlewood-Paley theory, etc.). As we will see below, completely
elementary arguments, many of them based on Hardy type inequalities, suffice
in the case of fractional Sobolev spaces. (Number of these proofs can be adap-
ted to Besov spaces, but I took the party of not working with these spaces in
this text.) This is not the first relatively elementary introduction to fractional
Sobolev spaces; see e.g. Leoni [33, Chapter 14| or Di Nezza, Palatucci and
Valdinoci [22]. However, we think that the systematic use of the Hardy type
inequalities provides the basis for a unified approach that may be of interest
even to the expert reader.

The results in Sections 2, 3 and in the first part of Section 5 are well-
known since the 60’s. Few proofs in these sections are either classical or possibly
known to experts, but we also present a significant number of new proofs. We
gave references whenever we were aware of the use of similar arguments in the
literature. In the other sections, we present more recent results, some of them
with new proofs.

In order to keep the reading as smooth as possible, a final appendix gathers
some calculations which, though essential in the proofs, are not in line with the
main type of arguments we present here.

This text is not a survey of the subject; the references list is very limited.
The interested reader may google the keywords and find the huge literature
existing on these topics.

Notation

1. All the functions we consider in R"™ are implicitly assumed to be Borel
measurable.

2. zVy:=max{z,y}, v Ay = min{z,y}. (Warning: “A” will also be used
for the exterior product vector of vectors in R?, see item 19. below.)

3. When = € R”, |z| stands for the (standard) Euclidean norm of x. The
standard scalar product is denoted (z,y), z,y € R™.

4. B,(z) is the Euclidean open ball of center z € R™ and radius r > 0.

5. When p: R" — R and € > 0, we set p:(x) := e "p(x/c), Vo € R™.

6. A standard mollifier is a function p € C°(R™) with p > 0 and [, p = 1.
We often assume in addition that supp p C B(0).

7. |A] is the Lebesgue measure of a Borel set A C R,

. ][ f stands for the average of f on A. Typically, A C R", and then
A

co
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10.

11.

12.

13.

14.

15.

16.
17.
18.
19.

7[f dx_|A|/f =) dz-

. Almost everywhere (a.e.) for some function f is understood with respect

to the Lebesgue (or Hausdorfl) measure of the underlying space.
When f : R" - R, Mf(z) is the (standard uncentered) maximal function
of f at x, i.e.,

Mf(x) :=sup {][ |f(y)|dy; B ball in R" such that = € B} )
B

When f is defined on (0,00) C R, we consider only balls (=intervals)
contained in (0, 00).

“—” stands for continuous embeddings of Banach spaces X and Y: X —
Y indicates that X is continuously embedded into Y.

In many estimates, it is crucial to indicate the dependence of constants
on various parameters. The notation we use is explained in Remark 2.
We use several notation for partial derivatives of a function f. The “ab-
stract” one is 0%f, with o € N*. (We denote |a| := a1 + -+ + a;, the
total number of derivatives). In concrete cases, we rather write 0;0s f for
the second order partial derivative, once with respect to x1, once with
respect to x9, etc.

If Q C R™ is an open set, m > 1 is an integer and 1 < p < oo, we let

W™P(Q) == {f € LP(Q); 0°f € LP(Q), Vo € N" with |a| < m},
WP(Q) == {f € L (Q); 9°f € L (Q), Va € N" with |a| < m}.

For f € W "P(Q), we let |[D™u| := Z |0%ul.

loc
acN"™
|a|=m

We set err’t} :=R" x (0,00) and R :=R" x [0, 00).
[s]| denotes the smallest integer k > s.

S* is the unit Euclidean sphere in R*¥*1,

a A b stands for the vector product of vectors a,b € R?:

(al, ag) A (bl, bz) = a1 by —as by € R.
More generally, if @ € R? and b € R™ x R™, we set

(al,ag) A (bl,bg) = a1 by —ag by € R™.
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2. HARDY INEQUALITIES
2.1. Integer order inequalities

The “standard” Hardy inequality asserts that for every 1 < p < oo and
every f € WHP((0,00)) such that f(0) = 0 we have

(2.1) /OOO |f(;))|p de < <pfl>p/ooolf’(x)\pdx.

If we set, with f as above, g := |f’| : (0,00) — [0, 00], then (2.1) follows
from

(2.2) /OOO o (/Oxg(u) du)p dz < (pflf/ooo(g(u))p du.

In turn, (2.2) is a member of the following family of estimates, commonly
referred to as the “Hardy inequalities”; see e.g. Hardy, Littlewood and Pélya [29,
Section 9.9].

LEMMA 1. Let 1 < ¢ < 00, 0 < r < o0 and let g be a nonnegative
measurable function on (0,00). Then we have “Hardy’s inequality at 0”

(2.3) /OOO a1 (/Om g(u) du>q dw < (g)q /OOO w T (g(w)) du

and “Hardy’s inequality at oo”

(2.4) /OOO 21 (/:o g(u) du)q do < (;’)q/ooo W1 (g (u)) du.

Let us recall, following Stein and Weiss [53, Lemma 3.14, pp. 196-197], a
proof of the above inequalities.

Proof. We rely on Jensen + Fubini. More specifically, for £ > 0 the
measure (i, := u"/97" du/Cy, with Cy := (¢/r)z"/9, is a probability on (0, z).
Jensen’s inequality applied on (0, x) to the convex function ®(s) := s9, s > 0,
and to the probability measure p, yields

([ stwan) = cor ([ atwu=rran,)

(2.5) < (€, /0 (9w ut T gy

= (@) [ gy
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Multiplying (2.5) by ="~!, integrating over o and using Fubini’s theorem,
we find that the left-hand side of (2.3) does not exceed

q 1/ / —-1- T/qu (u>)quq—r+r/q—1 du

:(;) |ty ta,

and therefore (2.3) holds.
In order to obtain (2.4), we proceed as above, starting from the probability
measure v, :=u /91 du/D, on (z,00), with D, := (¢/r)z~"/4. O

Remark 1. Far-reaching extensions of Lemma 1 yield necessary and sulffi-
cient conditions for the validity of estimates of the form

2o [ ([ o) auw <o ([Tt du<u>)w,

for 1 < p,q < o0, g : (0,00) — [0,00) and v, u Radon measures on (0, 00),
as well as the value of the best constant C' in (2.6). See the exposition of
this subject by Maz’ya [36, Sections 1.3.2-1.3.3], and the historical comments
there [36, p. 63].

2.2. Three basic fractional order inequalities

The above Hardy inequalities involve f and its derivative f’. Fractional
order versions of these inequalities involve f and the average rate of change
(f(z) = f(y)/(x —y) (in place of f'(x)). We present here three basic lemmas,
that we will interpret later in terms of fractional Sobolev spaces W*P.

LeEMMA 2 (Fractional Hardy inequality). Let 1 < p < 00, 0 < X\ < o0,
A#1, and f:(0,00) = R.

Assume that

2.7) /OOO PO 4 < oo

A

Then, for some finite constant C' = C,, , we have

(2.8) /0 ‘f(;\)‘ dxﬁC/O /0 ‘f’%)__yﬁiy/\)‘ dxdy.

In particular, (2.7)-(2.8) hold when f € CX([0,00)) and 0 < X < 1,
respectively when f € C°([0,00)), f(0)=0and 1 <A <p+ 1.
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Remark 2. In the above and in what follows, C' denotes a generic finite
positive constant independent of f or other relevant objects, whose value may
change with different occurrences. If we want to specify what C depends on,
we use subscript indices; e.g., in the above C' = (), ) indicates that C' depends
on p and A (but not on f).

We also write “A < B” instead of “A < C B”, provided the constant C
does not depend on f or other relevant objects. The notation “A ~ B” indicates
that A < B < A.

The proof of Lemma 2 we present below is inspired by [14, Proof of
Lemma F.2|. It only uses the triangle inequality!

Proof. We have
(2.9) [f(@)P < 27 f(y) P+ 2074 f () = F(y) P

We divide (2.9) by ax'™, and integrate over z > 0 and az < y < 2a .
Here, the constant o > 0 will be chosen later. Using Fubini’s theorem, we find

that
< f(@)P 201 (2A — Dot < fy)P
/0 Y dx < / y/\ dy

L2 ) - S
(2.10) / /a 1“ e
’ 1 A

2 / e,

() = fy)”
o / / \w—yll“ e

2;071 |:U _ y‘1+)\

Coupyi=— sup

PiA 1+
(e T

(211) 0<azr<y<2ox

Here,

or—1
== (1-a|Vv]2a -1 < .
«

2p—l 2)\ -1 A—1
We now pick a such that ( Ja

. Since A # 1, this is pos-

, respectively sufficiently

HI\D\H

<
sible provided « > 0 is: sufficiently large when \ <
small when A > 1. For such «, (2.10) yields

|f(z)[? L [~|fy)lP | f(x) = fy)?
/0 2 x§2/0 y> dy+Ca7p,A/0/0 PR

and thus (2.8) holds with C :=2C,, », thanks to the assumption (2.7). 0O
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Remark 3. Let us note that when A > 1 we may choose o < 1/2 This im-

P
plies that, when we estimate, by the above procedure, the integral ‘f( )’
) — p
in terms of an integral involving the quotient W (where this time a
T—Yy

is finite), it suffices to consider, in (2.9), only values of y in the interval (0, a).
Therefore, the proof of Lemma 2 (but not its statement) leads to the following
version of Lemma 2.

COROLLARY 1. Let 1 < p< oo, 1 <A< o00,0<a<o0,and f:(0,a)
— R.

Assume that

(2.12) /Oa PO 1 < .

A

Then, for some finite constant C = C,, \ (independent of a!), we have

(2.13) /Oa ‘fg)p dz < C/Oa /Oa |f|(§)_y‘|’;(+yg|p dzdy.

LEMMA 3 (Hardy implies Morrey). Let 1 <p < oo, 1 <A< p+1 and let
I C R be an interval. Assume that f: I — R satisfies

(2.14) /I/Idedy < 0.

Then f equals a.e. some continuous function g.
Assuming that f itself is continuous, we have, for every a,b € I such that
a <b,

b () — P
215) 170~ f@P < Cuu-a [ wdxdy.

Proof. Assume first that f is smooth on [a,b]. By Corollary 1, we have

(2.16) /f @ —a) ’pd < Gy, // |f]a:— ’H/\‘pd:rdy,

and similarly

|f(x) = fO) / / [f(z) = f(y)”
2.1 <
(2.17) / b_ " dr < Gy ‘x_y‘w dzdy.
Let J := ((2a +b)/3, ( +2b)/3). When z € J, we have

FO) = F@P o (1)~ F@P | |f() — fO)P
b—ap = ( b-ap  (b—a) )

@) - F@P @) — fO)
§2p1< @_ap T (b_n)p >

(2.18)
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Using (2.16)-(2.18), we find that
[f(b) = fla)]” _ / £ (b) = f(a)”

(b—a)r1 T b-a)>
@)~ f@P | |f() — FO)P
<CP’/< (o )A MR )d"’“’

()~ Tl
<O [ [ T

whence (2.15) for smooth f.
We next remove the smoothness assumption. We note that (2.14) implies

that
_ P
de< oo for some y € 1,
’:L‘*y|1+’\

so that f € L (I). Fix some compact interval K C I and set g := dist(K
0I)/2. Consider a standard mollifier p € C2°((—1,1)) and set, for 0 < ¢ < &,
fe(z) := f*pe(x), Vo € K. Then f. is smooth in K. By the first part of the
proof, for every a,b € K such that a < b we have

(219)  [L(0) = fo@)]P < Cpa(b— a) 1/ / f€$_ "’}H D drdy.
We claim that

[fe(@) — fe(m)IP /l’+€/l’+6 [f(z) — f()P
(2.2 dzdy < —d dy.
0 / / Iw—yll“ |z -yt
Indeed, let, for g : (A, B) — R,

(2.21) Abg(z) == g(x +h) —g(z), Yh € (0,B— A), Vo € (A, B —h).
Then

Bg( )P B-A || AL}
g(z y)| hINLe((A,B—h))
(2.22) / / ‘x_ ‘m dady _2/ A a.

Next, we have

Ay fe(z) = A, < _8 =) pe(y) dy> (z) = _E Ajf(x —y) pe(y) dy,

and thus, for 0 < h < b — a, we have

1AL fell Lo ((a,b—h)) S/ IALFC = 9l Lr((ap—h)) Pe(y) dy

€
= | AL po(ayb—n- d
(2.23) /5” wLe((@-yb-n-y) Pe(y) dy

€
S/ IALF Lo ((a—eb—nte)) P(y) dy
—€

:”A}LfHL?’((afs,bchrs))-
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We obtain (2.20) from (2.22) and (2.23).

We conclude as follows. From (2.19) and (2.20), we have |f.(b) — fz(a)| <
C(b—a)®, with a :== (A—1)/p > 0 and C independent of a,b,e. We find that f.
satisfies a uniform Holder estimate on K, and thus converges when € — 0, up
to a subsequence and an additive constant, to some Hélder continuous function
g. Since, on the other hand, we have f. — f in L} (I) as ¢ — 0, we find that
f = g a.e. Assuming that f = g, we obtain (2.15) by passing to the limits in
(2.19) and using (2.20). O

LeEMMA 4 (Hardy implies Sobolev). Let 1 < p < oo, 0 < A < 1, and
f:(0,00) = R. Let ¢ :=p/(1 = )) € (p,00).
Assume that

(2.24) /OOO @ 42 < oo,

A

Then
>0 [ f(x) = fy)IP a
(2.25) /0 f(@)|7dz < Oy » ( /O /O M@@) .

The proof we present below relies on a decomposition method that goes
back to Hedberg [30], and has been widely used since then. This kind of
technique is consubstantial with the interpolation theory.

Proof. We may assume that the right-hand side of (2.25) is finite. Set
0 . P 00
(2.26) G(z) ::/ Mdy and M ::/ G(z)dz.
0 0

|z — y[t+A
We will establish the following point estimate
(2.27) |f(z)] < CpaM>PG(x) NP v > 0,

which clearly implies (2.25).
We may assume that z satisfies G(z) < oo. We first prove that we have

(2.28) /Oo (yf(_yl; dy < oo
and thus (by Lemma 2)
(2.29) /OO (yf(_y;; dy < Cpa M.

Indeed, let us note that, by (2.24), we have

> f)Pr
/:(:+1 (y— 37)’\ dy < co.
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z+1 _ P
On the other hand, if G(x) < oo then / W dy < o0, and
thus for any such x we have ’

/m+1 Mdy <ot /m—i-l (|f(:c) - f)P N |f(z)P ) 4y < oo

(y —a)* (y—a)t  (y—a)
here, we use the assumption A < 1.
Therefore, (2.28) and (2.29) hold for any x such that G(z) < oo, as
claimed.
Let € > 0 and set

xr+e T+e
f-() ::f Fly)dy = 1/ (o) dy, Y > 0.9 > 0.

3

On the one hand, we have (using (2.29))

rp <= ([ 1w dy)p <o ([T (y‘f%dy>

(2.30) <P /:’L‘E (’yf(_ng; " </:+a dy>p—1

T+e p
Scp,)\s)\l/ ‘f(y)’ N dy < C ’)\E)\il M.
T (y - ‘T)

Similarly, we have
0= <= ([ 15 - s dy)p
crmnn ([ )Y

- (y — gp)(H‘)‘)/P

§€1+A_p /:Jra Wdy (/x*x—i—a dy>p_1
<e*G(x).

By (2.30) and (2.31), we find that

xr+e

(2.31)

(2.32) F@)] < Gy (X0 MMP 4 M0(Ga)) V).

We next “optimize” (2.32) by choosing ¢ := M /G(z) and obtain (2.27). O

2.3. Further developments

Fact 1. In the previous section, one can clearly work in R instead of (0, 00).
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Fact 2. The extensions of the results in the previous section to R™ with
arbitrary n > 1 are obtained starting from the following version of Lemma 2.

LEMMA 5. Let 1 <p<oo, 0 < A<o0, A#mn, and f: R" — R.
Assume that

(2.33) / @)l dz < o0

|t

Then, for some finite constant C = Cy, ), we have

|f ()P //|f y)IP
. <
(2:34) / wp SO e \nﬂ dady.

In order to prove (2.34), one divides (2.9) by |2|"** and integrates over x €
" and y € By |3)/2(3ax/2), for appropriate a < 1 (when A > n), respectively
a>1 (when X <n).

Fact 3. When A > n, we may replace in (2.34) R™ with suitable subsets
of R™; this is similar to Remark 3 and Corollary 1. More specifically, fix some
constants £ > 0 and ap < 1/2. Assume that Q@ C R” is a set such that for
every x € {2 and 0 < a < 9 we have

(2.35) |Bo|a)/2(3ax/2) NQ| > ka™, Vo e, V0 <a<ap.

Then we may reproduce the proof of (2.34) (explained above) and obtain
the following local version of Lemma 5.

LEMMA 6. Let Q C R™ satisfy (2.35) for some constants k > 0 and «yp.
Let1<p<ooand A >n. Let f:Q — R. Assume that

f(z)P
(2.36) ) | |Ecx/)\| dz < oo.

Then, for some finite constant C = Cp x n koo, We have

|f (@)[” [f(z) = f)P
(2.37) PR deC’/Q/Qdedy.

Q

In particular, if Q 4s a ball having 0 on its boundary, then we may choose
k and og independent of Q, and thus (2.37) holds with a constant C = Cp » .

Fact 4. By straightforward adaptations of the proofs of Lemmas 3 and 4,
and using Lemma 6 in a ball, we obtain the following

LEMMA 7. Let 1 <p < oo andn < X\ < oo be such that A < p+1. Assume
that f : R™ — R satisfies

(2.38) /n /n W dzdy < oo.
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Then f equals a.e. some continuous function g.
Assume that f itself is continuous. For every a,b € R", let ¢ := (a+b)/2
and r :=|a —b|/2. Then

) 1)~ < G- [ [ DL g,

More generally, let p and X as above and let 0 C R be an open set. If
f:Q — R satisfies

(2.40) /Q/Q |f‘(;)__y‘i(f>\)|p dady < oo,

then f equals a.e. some continuous function g. B
Assuming f continuous, let a,b € Q be such that B,(c) C Q (with ¢ and
r as above). Then (2.39) holds.

The higher dimensional analogue of Lemma 4 is

LEMMA 8. Let 1 < p < oo, 0 < A< mn, and f: R* - R. Let q :=

(np)/(n — A) € (p,00).
Assume that

(2.41) / @)l dz < oo.

|t

Then
(2.42) / f(@)?de < Cyrm (/ / W@@) "

Fact 5. Let A > p. Assuming that ¢ is a smooth function on an interval
I C R and that x is a point in I, we have (by Taylor’s formula at x)

_ P
/IW dy = oo possibly unless ¢'(z) = 0,

and therefore, for smooth g, we have

— p
(2.43) //w dzdy = oo unless ¢ is constant.
rJi |z =yl

Comparing (2.43) (with g := f.) with (2.20), we obtain the following
result, stated below in dimension n; this was obtained with different arguments
in [5] (see Corollaries 4 and 5 there).

LEMMA 9. Let 1 <p< oo and p < A< oo. Let f:R"™ — R satisfy

_ p
[ e,
o Jor T =Yl

Then f is constant a.e.
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Therefore, although Lemmas 2 and 3 (respectively 5 and 7) are stated
for larger ranges of A\, we may always assume that A\ < p, for otherwise the
hypotheses of the lemmas are fulfilled only by f = 0. For example, in Lemma
7 the relevant range isn < p < oo and n < A < p.

Fact 6. Let A\, p and ¢ be as in Lemma 4. Assume that we know in
advance that f € L9. Then it is possible to obtain (2.25) without using Hardy’s
inequality. I know the beautiful argument below from Brezis [8]; it holds in any
dimension, but I present it only in R.

LEMMA 10 ([8]). Let 1 <p < oo, 0 < A< 1, and f: (0,00) — R. Lel

q:=p/(1=A) € (p,00).
Assume that f € L9((0,00)). Then

(2.44) /OOO |f(2)]9dz < Cpx </OOO /Ooo dedy) "

Proof. Let G(x) be asin (2.26) and set N := || ||« < co. We will establish
the following point estimate

(2.45) |f(z)] < 2N G(2)3 NP va >0,

which implies (2.44).
With f. as in the proof of Lemma 4, we have

. T+e 1 r+te 1/q

< e < g7 1/4 q

nag M@= [l < ([T i)
By (2.31) and (2.46), we find that

(2.47) |f(z)] < ePVPN 4 MNP(G()) P

Choosing € := NP/G(x) in (2.47), we obtain (2.45). O

Fact 7. In Lemmas 2 and 5, we have assumed that A # n. If we are in
the range A\ < p (for otherwise these results are empty, by Lemma 9), then the
condition A # n is necessary for the validity of Lemmas 2 and 5. In order to
prove this fact e.g. when n = 1 (and thus 1 < p < o0) we will construct a
family (f%)o<e<1 such that

o0 OO | fE __ f€ p
(2.48) / / () = () dedy < C, Ve € (0,1),
o Jo lz—y

’ 2

and

(2.49) /Ooo @ 4y o0 as e = 0.

T
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The existence of such a family implies that the conclusion of Lemma 2
does not hold when A =1 and 1 < p < o0.

In order to define f¢, we start from a (fixed) function f € C'([0,00)) such
that f(z) =1 on [0,1] and f(x) =0 when x > 2. We then set

if0<a<
fe(z) = @/, 1 —x—s,vo<a<1.
f(z), ifx>e

Since f is Lipschitz and bounded, we have

/ / ‘f 2 dd <// 2da:dy
= VP gray = K
!a:—y!2 xdy == K < o0.

Using the fact that f© = f on [e, oo), we find that
(2.51)

/ [T L0 gy, g [ [T UL,
§K+/() /25 mdxdy

€ e _ P
o [ [ g,
0

2 —y|?

2e
// L= y/€|ddy—C'<oo

here, we use the convergence and the scale invariance of the last three integrals
n (2.51). It follows that (2.48) holds.
On the other hand, by monotone convergence we find that

5 P p
b [ g, U,
e—0 X 0 x
so that (2.49) holds.

Fact 8. The method presented in the proof of Lemma 2 allows to obtain
a weak form of the standard Hardy inequality, more specifically the existence,
for 1 < p < oo, of some C), such that for every f € WP((0,00)) satisfying
f(0) =0 we have

(2.52) /O @) )| da <c/ | ()P da.

This time, we use, in addition to the triangle inequality, the Hardy-
Littlewood maximal function theorem, asserting that for 1 < p < oo and
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g € LP((0,00)) the (uncentered) maximal function Mg of g satisfies
(2.53) IMgllze < Cpllglre-

(The idea of the use of the maximal inequalities in similar contexts goes back
to Hedberg [30].)

In order to obtain (2.52), we let 0 < a < 1 to be determined later and
start from

@ <2V f(0z)P + 2| f(ax) — fla)P
(2.54) <o f(ax) P + 2 ( [ 17w dy)
<2P Y f(ax)|P +2P71 (1 — )P 2P (Mf’(a?))p.

Dividing (2.54) by 2P and integrating over z, we find that

e [T s < gapt [T gy o ap g,

xP yP

If we let o < 1/2 in (2.55) and use (2.53) with g := f’, we obtain (2.52),
at least when f € C2°([0,00)). The general case follows from the density of
C2°([0, 00)) into Wy((0, 00)).

Fact 9. We present here a variant of (2.52). Let I C R be an open interval
and let f € WYP(I). Assume that f vanishes at each finite endpoint of I. Then

(2.56) /1 M dr < G, /I F(@)]P da.

Indeed, if I = R there is nothing to prove. If I is a half-line, then (2.56)
is equivalent to (2.52). Finally, assume that I = (a,b), with a,b € R. Arguing
as in Remark 3, the proof of (2.52) (but not the inequality (2.52) itself) leads
to

b
(2.57) / @)l dx<0/|f )P da,

(2.58) /b F@P 4 < cp/a I (2)|P da.

We obtain (2.56) using (2.57), (2.58) and the fact that

dist(z,01) = (x —a) A (b—x), YV € (a,b).
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3. FRACTIONAL SOBOLEV SPACES
3.1. One dimensional spaces and embeddings

As in Section 2, we first focus on the one dimensional setting. When
0<s<l,1<p<ooand f:R— R, the W*P-semi-norm of f is

— P 1/p
(3.1) |flwer = [flwse®) = (/R ; w dxdy) .

Similarly, we set, for every open interval I C R,
_ F@) = FP 0

One then defines
(3.3) WSP(R) :={f:R—=R; f € LP(R) and |f|ws»r < 00},
equipped with the “natural” norm
(3.4) 1 yew = ILF 10 + 1f Byen
the definition of W*P(I) is similar.

W#P(R) is a “fractional Sobolev” or Slobodeskii space.

We now interpret the results in Section 2.2 in terms of fractional Sobolev
spaces.

LEMMA 11. Let 0 < s <1 and 1 < p < 0o be such that sp < 1. Then

+ WP 4 < €y £yens ¥ f € WP (R
(3.5) r |z|*P T < s,p|f’Ws,p, fe (R).
Proof. Let f € W#®P(R). Since |f|ws» < 00, for a.e. z € R we have
|f(x) = f(2)]P
(36) B de < 0.

Set A :={z € R; (3.6) holds}. We note that A is dense in R (since it is a
full measure set). By the proof of (2.28) and the fact that f € LP(R), we have

p
(3.7) /de<oo, v
R |T — 2|
By Lemma 2 and Fact 1, we obtain
f(x)[P
. /RM) dz < Cop ‘fPI';VS»p: Vz e A.

Consider now a sequence (z) C A such that z — 0. Applying (3.8) with
z = z, letting k — oo and using Fatou’s lemma, we find that (3.5) holds. [

From Lemmas 4 and 11 and Fact 1, we derive the following
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COROLLARY 2. Let 0 < s < 1 and 1 < p < 0o be such that sp < 1. Set
q:=p/(1—sp) € (p,00). Then WP(R) — L1(R). More specifically, we have

(3.9) [fllLe < Csplflwse, ¥V f e WP(R).

By Lemma 9, our next result is equivalent to Lemma 3.

COROLLARY 3. Let 0 < s < 1 and 1 < p < oo be such that sp > 1.
Assume that f : I — R satisfies |flwspy < 00. Then f equals a.e. some
continuous function g.

Assuming that f itself is continuous, we have, for every a,b € I such that
a <b,

(3.10) FB) = F@P < Corlb— ) By

3.2. Higher dimensional spaces and embeddings

WhenO0<s<1l,1<p<ooand f:R"” — R, the W#%P-semi-norm of f is

|p 1/p
‘f|W§p - |f‘W"p(R </7z/n |.I— |n+sp d dy)
f(z+h) — f@)P i
()

Similarly, we set, for every open set €2 having “some smoothness” (e.g.
bounded Lipschitz domain, or a convex set)

_ 1/p
(3.12) Fliwene = </Q QW@@) .

One then defines
(3.13) WP =W*SP(R") :={f:R" - R; f € LP(R") and |f|ws»r < o0},

(3.11)

equipped with

(3.14) 1A Wyse = AT + 1 By
the definition of WP () is similar.

Remark 4. A warning. One can use (3.12) to define W*P(Q) for any .
The drawback of this is that the definition will coincide with other reasonable
possible definitions of W*P(Q) only when  is sufficiently smooth (in particular
bounded Lipschitz, or convex). We will not discuss this point here. However,
we call the attention of the reader to the fact that whenever we consider the
semi-norm | [yys.p(q), we implicitly assume that either Q is R" (and then we
simply write | |wsw»), or © is bounded Lipschitz, or convex.
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As in Section 3.1, we obtain the following.

LEMMA 12. Let 0 < s <1 and 1 < p < 0o be such that sp < n. Then

(3.15) [ 4 < oty ¥ € WO R,

| [P

COROLLARY 4. Let 0 < s < 1 and 1 < p < oo be such that sp < n. Set
q = (np)/(n —sp) € (p,00). Then WP(R"™) — LI(R™). More specifically, we
have

(3.16) [fllze < Csplflwsw, ¥V f € WH(R").

COROLLARY 5. Let 0 < s < 1 and 1 < p < oo be such that sp > n.
Assume that f : Q0 — R satisfies |f|ysp) < 0o. Then f equals a.e. some
continuous function g.

Assuming that f itself is continuous, set, for a,b € Q, ¢:= (a+0)/2 and
=|a —b|/2. If B.(c) C £, then

(3.17) 1£(0) = f(@)” < Coa(d = ) "1 f e, (-

3.3. An elementary embedding

One should see W*P? as a space of functions “having up to s derivatives in
LP”. With this interpretation in mind, it is reasonable to expect the validity of
the following result.

LEMMA 13. Let 0 < 51 < s9 <1 and 1 < p < oo. Then we have
(3.18) Wl’p(R”) — W3P(R") — WP(R") — LP(R").

Proof. The last embedding is clear. The embedding W*52P — WP fol-

lows from
p (x+h) = fl@)P
|f|W~‘1 P /h<1 /71 |h|n+81p dadh

fl@+n) = f@)P
dzdh
/h>1/" |h[ntsip
of [ Metn gy,
|h|<1 JRn ||t s2p

B f
+or / L7 < |0y + 1112

h|>1 |R[H5P
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Finally, we prove that WP < W#2P_If f € WP, then
1FC+B) = fllo = [1rC+emisy)|

= / Vf(-+th) hdt
0

Lp
1

S/O IVf(- 4 th)| L dt|h]

=V fllrr |h],V h € R™.

(3.19)

Using (3.19), we find that

fl@+h) — f(@)P
T yssm / / dxdh
‘ ’W2 Ih<1 n ‘h‘n—i—sgp
/ / flath) = f@P o
Ih|>1 JRe ‘h‘n—i—szp
p
S/ wdh
hj<1  |h[7Hs2P

B Iz
Lop 1/h [y dzdh < |IVEIE, + 1F12,

h>1 [R["Fo1P

This completes the proof of Lemma 13. g

3.4. Homogeneous spaces

Sobolev spaces are often used in connection with optimal Sobolev and
Morrey embeddings. In this perspective, it is convenient to consider larger
spaces, that contain the original Sobolev ones, and satisfy the same embedding
properties. In order to motivate what follows, let us briefly recall what happens
in the context of Sobolev spaces WP = WLP(R™). When p > n, we see that
the Morrey estimate
(320)  |f(2) — fW)| < Cle =y P |V |, Vf €W, Va,y € R
involves only ||V f| r», and an inspection of its proof shows that the estimate
holds for f in the larger space {f : R" = R; |V f||zr < co}. (Strictly speaking,
in (3.20) we have to replace f by its continuous representative.)

When p = n, there is no “optimal embedding” to look at.
When 1 < p < n, the optimal Sobolev embedding

(321) ||f||L(np)/(n—p) S C ||vf”LP, Vf S Wl’p,

does not hold solely under the assumption V f € LP. Indeed, it suffices to see
that f = 1 does not satisfy (3.21). However, the conclusion (3.21) holds if we
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require that “f is small at infinity” in an appropriate sense. There are several
possible definitions of the smallness, and they all yield the same “homogeneous
space” WP = WLlp(R").

LEMMA 14. Let 1 < p <n and let g := (np)/(n — p). Set
(3.22) X := the closure of C;°(R™) equipped with the norm f— ||V f||L»,

(3.23) Xy = {f :R" = R; Vf € LP(R") and / @) de < oo} ;

no fzfP
(3.24) Xg={f :R" 5 R; Vf e LP(R") and f € L},

R—o0

(3.25) Xy {f R" - R; Vf € LP(R") and hm f:O}.
Br(0)

Then X1 = X9 = X3 = X4. Moreover, if we endow X, j =1,...,4, with
its “natural” norm
|f (@) ?

P T A R
91, = IV A1y + 17 s 191, 3= IV,

then these norms are equivalent. In particular, each X is complete.

dz,

We denote WP one of the spaces Xj,j=1,...,4, with its natural norm.

Proof. When f € C°(R"), we have
flrw)=—[ftw)]i=e = —/ [Vf(tw)] -wdt, Vr>0,YVwe S
and thus

(3.26) Frw)] S/Oo]Vf(tw)]dt,Vr>O,VweS”1.

Using (3.26) and Hardy’s inequality at infinity (2.4) (with r := n — p,
q:=p and g( ) ]Vf(uw |), we find that

n—1 P _ P
S/Snl/o r" TV f(rw)l?P drds, /Rn|Vf(1:)| dz.

We find that (3.27) holds for every f € X1, and thus X; < X5 with norm
equivalence.

If f e LYR™), then limpg_q0 fBR(O) f =0, by Hélder’s inequality applied
to f in Bgr(0). We find that X3 < X4. By a similar argument, we have
X2 — X4.

(3.27)
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Assume now that f € Xy. Since Vf € LP, we have f € L] (R™). Set
fBR(o)f Since fB f fr) = 0, we have, by the local Sobolev
embeddlng,

q/p
(3.28) / If(x)—leqdéUSC/ Vi@)Pdz) .
Br(0) Br(0))

Note that C = (), does not depend on R, by the scale invariance of
(3.28). Letting R — oo in (3.28) and using Fatou’s lemma, we find that f € X3
and that Xy — X3.

In order to complete the proof of the lemma, it suffices to prove that
X3 — Xj. Let f € X3. Let p € C°(R™) be a standard mollifier; thus p > 0
and [p. p=1. Set fe := f* p.. Then

[felle = 1f * pelle < W fllzellpellir = I fllzv
and similarly ||V fc|pr < ||V £ e

Consider now some 1 € C2°(R") such that ¢ = 1in B(0,1) and supp ¢ C
B(0,2). Set
(3.29) V¥ (x) :=(ex) and g :=° fo = ° (f * pe).

Then g. € C°(R™). We claim that g. — f in X3 as ¢ — 0. (This implies
that f € X; and that X3 < Xj.) Indeed, on the one hand we have f. — f in
L9 as € — 0, and therefore, by dominated convergence,

1f = gellea < (1 =4%) fllza + 197 (f = fe)llza
SN =) fllea + If = fellpe = 0 as e — 0.

On the other, using the fact that Vf. — Vf in LP as ¢ — 0 and that

g, ifl/e < x| <2/e,

0, otherwise

)

IVY©(2)] S {

we obtain, via Hélder’s inequality, that
IVf = Vel < (1 =4%) Ve + |95 (Vf = Vfo)llr + 1fe VY&l
SN =) Villee + IV = Vielloe + el fell oo (g1 /< 2] <2/e})
S =) Ville + IV = Viellre + [ fell Laqije<iz)<2/ep)
—0ase—0.

This final estimate completes the proof of the lemma. [

By analogy with the case of WP we define the homogeneous space
WP = W*P(R") as one of the spaces Xj, 5 =1,...,4, below, with its na-
tural norm.



468 Petru Mironescu 22

LEMMA 15. Let 0 < s < 1 and 1 < p < 0o be such that sp < n and let
(np)/(n — sp). Set

q:=
(3.30) X := the closure of CZ°(R™) equipped with the norm f v |f|wsnp,

(3.31) Xy = {f 'R = R [ flwer < 00 and / EAC] oo},

n |CC|Sp
(3.32) Xs:={f:R" > R; |flwsr < o0 and f € LI},
(3.33) Xy =R f:R" 5 R; |flwsr < 0 and lim f=05%.
R—o0 BR(O)

Then X1 = Xo = X3 = X4. Moreover, if we endow Xj, j = 1,...,4, with
its “natural” norm

p
18, = s 1515, = 1T+ [

rn [P
1 1%, = [fRyen + 1F1Tas 11, = [fByons

then these norms are equivalent. In particular, each X; is complete.

Proof. The embedding X; < X9 with equivalence of norms follows from
Lemma 5. The embedding X <— X3 and the estimate

1fllxs S 1l < [ fllx20 Y f € Xa,
are established via Lemma 8.
The embedding X35 — X4 follows from Hélder’s inequality.
In order to establish the embedding X4 — X3, we rely on the following
result, whose proof is postponed to the appendix.

LEMMA 16. Let 0 < s <1, 1 <p< oo and R> 0. Let

Vi = {f : Br(0) = R; | flwsr(Br(0)) < o0 and ][ f= 0}'
Br(0)

Then there exists an extension operator Pr on Ygr such that:
1. Prf € WSP(R™), ¥V f € Yg.
2. Prf=f on BR(O), VfeYr.
3. |Prflwse < Cspulflwsr(sro), VI € Yr.
(The main point in the above result is that the constant in item 3 does not
depend on R.)
Granted Lemma 16, we proceed as follows. Let f € X4. Let us note that
feL? (R") (since |f|ws»r < 00). Set

loc

(3.3 fr = ]é o
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so that f — fr € Ygr. Applying Lemma 16 to f — fr and Corollary 2 to
Pr(f — fr), we find that

(3.35) 1f = frRllaBr(oy) < IPR(f = fR)|Le < C'[flwse.

Letting R — oo in (3.35), we find that f € X3 and that Xy — X3.

Finally, let f € X3. Let, as in the proof of Lemma 14, g. := 9° f.. As
there, in order to find that X3 < X; and to complete the proof of the lemma,
it suffices to prove that g. — f in X3 as € — 0. The fact that g. — f in L9
follows as in the proof of Lemma 14. It remains to prove that |ge — flws» — 0
as € — 0. This is the content of Lemma 17 below, whose proof is postponed to
the appendix. [0

LEMMA 17. Let 0 < s < 1 and 1 < p < oo be such that sp < n. Set
q := (np)/(n — sp). Let f : R™ — R be such that |flwsr < 0o and f € LY.
Define g- as in (3.29). Then |g: — flws» — 0 as e — 0.

~ Remark 5. Augusto Ponce [48] suggested to me another possible definition
of W*P as follows. If f “vanishes at infinity”, then for every 6 > 0 the set
{z € R™; |f(z)| > 0} has finite measure. It is thus natural to consider the
space

X5 :={f :R" = R; |flwsr < o0 and [{z € R"; |f(x)| >} < 00, V& > 0},

with the semi-norm || f|[%. = [f[{ye.p-

If0<s<1land1<p<ooaresuch that sp < n, then X5 = X;. Indeed,
if f € Xy then f € L? and thus f € X5, by Markov’s inequality. Conversely,
let f € X5. We want to prove that f € X;. In view of Lemma 15, this amounts
to fr — 0 as R — oo, where fr is as in (3.34). We argue by contradiction an
assume that |fr,| > 20 > 0 along a sequence R, — oco. By (3.35), we have
If = frllLa(Br(o)) < C = Cf, and thus for every t > 0 and R > 0 we have
(using Markov’s inequality)

q
(3.36) [ € Ba(0): 1) — frl < 1} > B(0)] — "
We apply (3.36) with ¢t = 6 and R = Ry. We find that

{z € Br,(0); |f(z)| > 6} = {x € Br,(0); |f(x) = fr,| < 4}
> |Br,(0)] — % — 00 as k — 00,
and therefore [{x € R"™; |f(x)| > 6}| = oco. This contradiction completes the
proof of the equality X5 = X;.
An inspection of the above proof is the the analogous equality “ X5 = X;”
still holds for s = 1.

(3.37)

For more advanced considerations on homogeneous spaces and their rea-
lizations, see e.g. Bourdaud [1].
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3.5. Slicing (I)

It will often be more convenient to work in R with functions of one variable
instead of working in R™. This is possible thanks to a “Fubini type” property
stated below. Such a property is reminiscent of the fact that, if f € LP(R?), then
fora.e. y € Rwehave f(-,y) € LP(R). For simplicity, we state our next result in
R™, but analogous ones hold in sufficiently smooth open sets 2 C R". Given x €

"and j € {1,...,n}, we use the notation Z; := (21,...,2;-1,%j41,...,%n) €
R,

LEMMA 18. Let 0 < s <1 and 1 < p < oo. Then for every f : R” - R
we have

(338) 1By NZ/RH @1y ity ity 0) oy 455
iy

The proof of the lemma is presented in the appendix.

Remark 6. Other forms of slicing are possible. Instead of fixing (n — 1)
variables and considering functions of one variable, one may fix (n—k) variables
and consider functions of k variables. Then the analogue of (3.38) holds. This
can be established by copying the proof of Lemma 18. See also Section 3.7.

3.6. Higher order spaces

There are several possible reasonable definitions of higher order fractional
Sobolev spaces WP, Consider for example some s € (1,2) and write s = 1+0
with 0 < o < 1. A first possible definition of W*P(R) is

(3.39) WP = WSP(R) :={f :R = R; f € W' and f' € WP}

Another possibility consists of defining W*P via adapted higher order
average rates of change. Recalling that when 0 < s < 1 spaces are defined via
the first order rates (f(x)—f(y))/(z—vy), one may consider seconder order rates.
It is actually more convenient to use, instead of rates of change, slightly different
quantities. We consider the first order variation A} f(z) := f(z + h) — f(x),
and then the second order variation given by

AL f(x) = AR(ALS) (@) = f(z +2h) = 2f(x + h) + f(=).
Higher order variations are defined by induction: we let
AM Ah 0---0 A111 .
\—,_/

M times
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For 1 < s < 2, one may try the following alternative to (3.39).

WP = WP (R) := {f R — R; f € L and

/ / |h’n+sp dxdh<oo}.

It turns out that the definitions (3.39) and (3.40) lead to the same space
and to equivalent “natural” norms. The situation is similar in higher dimensions
and for higher order derivatives. For simplicity, we justify the equality of spaces
and the equivalence of norms only when n =1 and 1 < s < 2, but with more
work arguments can be adapted to the general case. We refer the interested
reader to [57, Section 2.6.1] for a comprehensive list of equivalent definitions of
W#P with non-integer s. Since we want to keep this text of reasonable length,
in the next sections we will take for granted the equivalence of some of these
characterizations.

It will be useful later to have at least one definition of W*P(R™). We
adopt the following one. Let s > 0 be a non-integer and let 1 < p < co. Let
M > s be an integer, and define

A]V[f
(341) ‘f‘gvg,p ’f’W?p ]R" . / /n |h’n+5p dxdh

Strictly speaking, this semi-norm depends not only on s, p and n, but also
on M. However, in order to keep notation simple we omit the dependence on
M. We let

WP = WSP(R"™) .= {f : R" > R; f € L” and |f|ws»r < 00},
equipped with the “natural” norm

(3.42) £ 1By == 115 + 1 f o

Spaces on sufficiently smooth domains 2 are defined similarly. The double
integral in  and A is performed over the set

{(z,h) € A x R"™; [z, + Mh] C Q}.

Let us note that the standard space WP with 0 < s < 1 corresponds to
the choice M = 1. Incidentally, our above discussion reveals that we could have
defined W*P with 0 < s < 1 via higher order variations. In order to illustrate
this, we present in the appendix a proof of the equality of the spaces W*P(R)
with 0 < s < 1, defined in one dimension via first, respectively second order
variations; see Lemma 38.

We next justify the equivalence of the definitions (3.39) and (3.40). Our
result in this direction is the following.

(3.40)
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LEMMA 19. Let 1 <s<2and 1 <p<oo. Letoc:=s—1€ (0,1). Set
Zy={f:R—=>R; fe Ll and |flwsr < o0},
Zy:={f:R=R; feW" and (f)ysr := |f|wor < 00},
equipped respectively with the norms
1A%, = IS + [f Ryess
11, = IS + (e
Then Zy = Zy, with equivalence of norms.

In the above, | |ws» is the semi-norm given by (3.41) with n = 1 and
M = 2. We define WP = W*P(R) as one of the spaces Z;, Z» with its norm.
The main ingredient in the proof of Lemma 19 is the following.

LEMMA 20. Let 1 < s <2 and 1 <p < oo. Let o :=s—1¢€ (0,1). Let
f € CY(R). Then we have

(3.43) [flwse S (Flwsr.
Assuming that (f)ws» < 00, we also have
(3.44) (FYwse S| flwse.

Proof. The proof relies only on a Hardy type inequality!
Step 1. Proof of (3.43). Let us note the identity

h
(3.45) A2 f(z—h) = / [z +) - f(x — 1) dt.
0
Using (3.45) and the Hardy inequality at 0 (2.3), we find that
|AGf(z = h)[P |ffl@+t) = flla=t)F
(3.46) / \h‘Hsp dh / ‘t‘l-i-op dt, Vo € R.

Integrating (3.46) over z, we obtain (3.43).
Step 2. Proof of (3.44). This time we start from the identity

r+2¢e x+e
(3.47) A2f(z) = / () dt — / (8 dt.

+e

Let k be a large integer to be chosen later. Using (3.47), we find that

k—1
(348) 3 AZf(w+je) = /
i=0 g

z+(k+1)e

f'(t)dt — / o f(t)dt.

+ke
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Identity (3.48) is equivalent to

f'(z + ke) — Z A%f(z + je)
(3.49) - i/og(f’(:c+ks+t) — ['(x + ke)) dt

o1 [t - e

Taking absolute values in (3.49), we find that

k—
' (z + ke) — Z  + je)
=0
(3.50) + |i_| /e(f'(w + ke +t)— fl(z + ke)) dt'
1 € /
+ L[ rwa

If we raise (3.50) to the pth power, divide by |¢|'T9P  integrate over x and
¢ and perform in the left-hand side integral the change of variable h := ke, we
find that

<f>€1/&p Scs,p,k: f|€[/syp

3.51
( ) +Cs,pkgp//’5‘1sp
RJR

We now apply in (3.51) the Hardy inequality (2.3) to the integral in e
(with = fixed) and find that

(3.52) (Fwsr < Copae |y + Cop k™77 (f) -

Finally, if we choose k sufficiently large then Cs , k=7 < 1/2. For such k,
(3.52) combined with the assumption (f)ws»r < co yields (3.44). O

p
dxde.

[ 0 - s

0

Proof of Lemma 19. Let us note that we have Z; — LP, j = 1,2, and
thus it suffices to prove the norm equivalence for f : R = R, f € LP.

Step 1. Norm equivalence for f*p.. Set f. := fx*p., where p is a standard
mollifier. We will prove that [|fc||z, & [|f:]|z (with constants independent of
e). Indeed, on the one hand (3.43) implies that || fe|lz, < | fellz,-

For the opposite inequality, we claim that f. € Z5, and thus (f:)ws»r < c0.
(This implies the validity of (3.44) for f. and completes Step 1.) We actually
claim that

(3.53) (f)™ e LP. ¥m e N,
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and

(3.54) 1(f) ™ yew < 00, Ym eN, Vit € (0,1).
Indeed, (3.53) follows from

(335)  [1(£2) ™ lze = I * (p2) ™ lle < I Fllze 1) ™11 < Compell Fll -
Estimate (3.55) yields

s, =[] )

h
/ (J)™HD( 4 ) dr

0 Lp
<[ANF) " D e < Crpelh] 1f o
Using (3.55) and (3.56), we find that

Al f m) |
(m)p ‘ €
’(fs) Wtp — /h|<1/ |h|1+tp dl‘dh
‘Al fa m) )|
dzdh
/h|>1/ || 1P

dh dh
<Cmpel I / [T /
SCrmpell flizw ( h<1 ||t (1=t)p + h[>1 |h|1+tp

<CrmpellfILp

(3.56)

whence (3.54).

Step 2. A control for ||f'||». Assuming f € Ct, we will control ||f||» in
terms of (f)ws» and || f||zr. The starting point is the identity

1
@) = f@+1) - f(z) - /O e+ 1) — f()t,

which implies, in conjunction with Hélder’s inequality, that

1
(3.57) 1 Nz < 211f ]l +/0 1A fllze dt S N fllze + (s

Step 8. € — 0. Assume first that f € Z5. Using the identity A} (f’ x
pe) = (A}f) * pe, we find that [[A}(f' * pe)llee < ||A}f|Ize, and therefore
(fe)wsr < (fYwsr. Using Step 1, we obtain

(3.58) |felwswe S| flwse, Ve > 0.

We next argue as follows. Since f € LP, we have f. — fin LP as e — 0
and thus, for fixed h, we have ||A? f.| » — [|AZ f||Lr as € — 0. Combining this
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with Fatou’s lemma and letting ¢ — 0 in the uniform estimate (3.58), we find
that

(3.59) Flwes < Tinf | f-lwer S (Fwes, Vf € 2,

and in particular that Zy — 7.
For the opposite inequality, let f € Z;. We will prove that

(3.60) fler?
and
(3.61) (fywsr < Copl|flwsw.

The key fact is the following variant of Lemma 17 (or, more precisely, of
estimate (7.20) established during its proof), whose proof is postponed to the
appendix.

LEMMA 21. Let f € Z1. Assume that p is an even mollifier. Then we
have | f: — flws» — 0 as e — 0.

Granted Lemma 21, we proceed as follows. Consider a sequence ; ~\, 0
such that

(362) ’f€0|Ws’p <2 |f|WS‘p and |f€j - ij71|W5*p < 2_] ‘f|W5’p7 Vj=1,

(3.63) I feollze < 201 fllpe and | fe; = fe, i lloe < 277 || fllze, V5> 1.
Combining Step 1 with (3.62), we find that
(3'64) <f€0>WS’p + Z<f5j - f5j71>WS‘p N ‘f|W”’
j>1
From (3.57), (3.62), (3.64) and Step 1, we obtain
(3.65) 1Cfeo) e + D W (Fey = fegma) Nee S I fllwes.
j>1

Since, on the other hand, we have f = f., + 2j>1(f5j — fe;_1) in LP, we
find from (3.65) that f' = (fs,) + Y51 (fe; — fe; )" € LP and that || f||» S
Il fllws». This is a quantitative form of (3.60).

Finally, arguing as for (3.58), we have

(366) <f5>Ws,p ,S |f5’Ws,p < |f|Wsyp, Ve > 0.
Since now we know that f’ € LP, we may rewrite (3.66) as
(367) |f, * pE‘WUJ) S ‘f|Ws,p, Ve > 0.

We now let e — 0 in (3.67) (using f'xp. — f’ in LP as e — 0 and Fatou’s
lemma, as in the proof of (3.59)), and obtain (3.61).
Granted Lemma 21, the proof of Lemma 19 is complete. [
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3.7. Slicing (II)

We discuss here the extension of Lemma 18 to higher order spaces WP,
possibly with integer s. The first remark is that in general, Lemma 18 does not
hold for large s. Indeed, a famous construction due to Ornstein [47] exhibits a
compactly supported function f = f(z,y) : R? — R such that f, 0101 f, 0202f €
L' but 0,0of ¢ L'. Thus for this f we have

—IIwalezié/llf Moz dx+/\|f Dl gy dy < oo.

There exists however a form of slicing which holds for all regularity expo-
nents s > 0, integer or not; see e.g. [4, formula (D.3)]. This is explained in our
next result, whose proof is postponed to the appendix.

If f R” — R and w € S*!, let w' denote the hyperplane orthogonal to

w, i.e., wt = {x € R"; (z,w) = 0}, and consider the partial functions f? given
by
(3.68) f2(t) = flz+tw), Vwe S L, Vo ewt, YVt e R
LEMMA 22, Let s > 0 and 1 < p < oco. Then
B Wl [ [ 1 eagey dado, VIR S R
When s is not an integer, we also have
w

(Strictly speaking, the mtegral in x € wJ-
dimensional Hausdorff measure on w=.)

is with respect to the (n — 1)-

4. SUPERPOSITION OPERATORS
4.1. Overview

For ® = ®(t) : R - Rand f : R" —» R, we set Tof := ®Po f. Ty
is a “superposition” or “Nemitzkii” operator. We discuss here the following
question. Given some function space X, which is the regularity (common to
all f) of Tef with f € X7 A related question is the following: given this time
two function spaces, X and Y, which are the functions ® such that T f € Y,
V f € X7 These are natural questions when dealing e.g., with nonlinear partial
differential equations or nonlinear nonlocal equations.

One could consider more general ®’s, depending not only on ¢, but also
on the space variable x, but already the case of an “autonomous” @ is difficult
and not completely understood, even in the case where Y = X.
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There exists an important literature on the subject. The interested reader
may consult the monograph of Runst and Sickel [49, Chapter 5| for a detailed
account of the results available in the mid 90’s, and the vivid partial description
by Bourdaud and Sickel [3] of the more recent developments. We focus in what
follows on several results in whose proofs the Hardy type inequalities play a
crucial role.

Before proceeding, and in order to warn the reader that life in Sobolev
spaces is more complicated than the one in spaces of continuous functions, let
us state without proof some relevant results in this context.

1. The first one is merely an exercise. If ® : R — R is Lipschitz with
®(0) =0, and if 0 < s < 1 and 1 < p < oo, then Tp maps continuously
W#P(R™) into W*P(R™).

2. It is slightly more difficult to see that, under the same assumptions on
®, Ty also maps WLIP(R™) into WHP(R™). Tt turns out (but this is a delicate
result due to Marcus and Mizel [35]) that, for such ®, T is continuous from
WLP(R™) into itself.

3. The above results suggest that if ® is sufficiently smooth (smoothness
depending on s), then T maps W*P(R") into W*P(R"™). However, the fol-
lowing result, due to Dahlberg [17], ruins such expectations. Let n > 3 and
1 < p < n/2. If Ty maps W?P into itself, then ®(t) = ct, Vt € R, for some
constant c. (The converse clearly holds, also.)

4. Assume that n > 2 and that p > n/2 (this assumption on p goes in
the opposite direction with respect to Dahlberg’s result). If ® € C?(R) and
®(0) = 0, then Tp maps W?2P into itself. We will come back to this (and more)
in Section 5.2.

The above suggest that, when ¥ = X = W?#P the interesting range is
s > 1, and that for such s additional conditions may be necessary either on f,
or on the triple (s,p,n), even if ® is sufficiently smooth.

4.2. Mapping properties of f +— |f]

The following beautiful result is due to Bourdaud and Meyer [2].

THEOREM 1. Let 1 <p < oo and 1 <s <1+ 1/p. Then f — |f| maps
WP(R™) into itself.

A preliminary result, before proceeding to the proof of the theorem.

LEMMA 23. Let f € W,oH(R™). Then |f| € Wio  (R™) and

oc

(4.1) 9| f| = (sen f)O;f, ¥i=1,...,n.
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In one dimension, this result was essentially known to de la Vallée Pous-
sin [18]. In a more general form, it is proved in Serrin and Varberg [51]. The
n-dimensional version appears e.g. in Gilbarg and Trudinger [27, Lemma 7.6].
One can pass from one dimension to n dimensions via a standard slicing argu-
ment in WP (see e.g. Ziemer [59, Theorem 2.1.4]), and thus the heart of the
matter is the validity of (4.1) in one dimension. We give in the appendix a very
simple proof of this equality.

For more complicated ®’s, the chain rule for ® o f is more delicate to
establish. The chain rule and its higher-order analogue, the Faa di Bruno
formula, play an essential role in the study of the superposition operators; see
e.g. Dinca and Isaia [19-21].

The proof below of Theorem 1 is a variant of the one in [2].

Proof of Theorem 1. Write s = 1 4+ o, with 0 < o < 1/p. Tt will be
convenient to use on W*P the following norm, suggested by Lemma 18 and
equivalent to the usual ones:

(s =11 IV T
(42) —i—Z/ |6 f Tlyeoey Tjo1y"y Tjgly---, T )ng( )dfj

(The equivalence of norms is obtained by combining Lemma 18 with [56, Section
2.3.8, Theorem, pp. 58-59].)

In view of Lemma 23 and of (4.2), in order to obtain the conclusion of
the theorem it suffices to obtain the estimate

(4.3) gl lwerm) S 19 lwerm), Y9 € WHP(R).
To summarize up to now we have reduced the proof of the theorem to
the one of (4.3), which is equlvalent to
|(sgng(z)) g'(x) — (sgng(y) 9’ (W) dudy
]a:— |+op
(4.4)

g//wolxdy, Vg € WHP(R).
rJr |z —y[ttor

Clearly, whenever g(z)g(y) > 0, the integrands on both sides of (4.4)
coincide. On the other hand, if g(z) = g(y) = 0 then the integrand on the
left-hand side vanishes. Therefore, it suffices to consider only couples (z,y)

such that
9(x) g(y) < 0 and (g(x),g(y)) # (0,0).
For such a couple (z,y), we use the estimate
|

|(sgng(z)) g'(x) — (sgng(y)) g'(y

)
(4.5) < |(sgng(x)) ¢'(x)| + |seng(y)) g’ (v)]-
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In view of (4.5) and by symmetry, in order to obtain (4.4) it thus suffices
to establish the estimate

dxdy

/x)>0 /g(y)<0 |$—y|1+"p

< Md dy, Vg € W*P(R)
S Jrfe Ty ST .

Set U := {z; g(x) > 0} and write U as a disjoint union of open intervals,
U =U;l;. If x € I; for some j, then

4.7 / ! d </ 1 dy Csp
. ———dy < - __ Tsp
D f o lr = Y= ey Y S (st oL)

In view of (4.7), in order to prove (4.6) it suffices to establish the estimate

lg' (x)[? // l9'(z) — ' (y)|?
08 T an = O [, e

I;

(4.6)

When I is unbounded, (4.8) follows from the fractional Hardy inequality
(3.5) applied to ¢’ in W?P(I;) (recall that op < 1).

When I = (a;, b;) is bounded, we start by noting that g(a;) = ¢g(b;) =0,
and thus [, ¢ I t) dt = 0. We may now apply Lemma 16 and obtain the existence
of some h € W"’p( ) such that h = ¢’ on I; and

(4.9) |hlwor®) S 19 Tweor(r))-

Applying the fractional Hardy inequality (3.5) to h and using (4.9), we
find that

@ W@P [ d@r
/b- e 0 S ), e /1 b —a)

J

p p
o L vy N Co
R |z —a;|7P R |7 — bj|7P
/ A P
5// g’ () i(y)\ dudy.
1; JI; |z — y|ttop

Therefore, (4.8) holds. This completes the proof of the theorem. [

4.3. Mapping properties of f — |f|?, 0<a <1

Let ®(t) := |t|*, Vi € R, where 0 < a < 1. Since ® is even, concave on
[0,00) and ®(0) = 0, we have

[@(t) — @(7)[ = |@(|¢]) = (|7)] < D(J¢] = |7]),
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and thus
(4.10) [®(t) — @(N)|* < [®(t] = [7D)* = |lt] = |7]| < |t = 7], VE, 7 €R.
Let 0 < s <1 and let f € W*P(R"). In view of (4.10), we have

(4.11) B(f(x)) — ©(f()IP* < [ f(z) — fFy)I, Yo,y € R™,
and therefore
(4.12) A2 e < | floans ¥ F € WS,

Using (4.12), we easily find that Tp maps W*P into WP/¢ V0 < s < 1,
Vi<p<oo, VO<a<l.

When s = 1, the analogous conclusion does not follow from (4.11). This
case is covered by the following result [41].

THEOREM 2. Let 0 < a <1 and 1 < p < co. Then f — |f|* maps WP
into Wep/a,

Remark 7. The conclusion of the theorem is wrong when p =1 [41].

On the other hand, it is not known what happens in W*P with s > 1.
The following conjecture seems plausible. Let 1 <p <oo,1 <s<1+1/pand
let 0 < a < 1. Then f — |f|* maps WP into WesP/e,

We present below a variant of the proof of Theorem 2 in [41].

Proof of Theorem 2 More generally, we consider an increasing concave
homeomphism & : — [0, M) and seek for an inequality of the form

/n/ (19( |f|x) |n+;(,‘f( DD .

< / Vi@)Pde, V€ WPERR),
R’VL

(4.13)

We will determine an appropriate increasing function ¥ : [0, M) — [0, c0)
(depending on the nonlinearity ®) such that (4.13) holds and such that, in the
special case where ®(t) = t°, we have W(t) = C'tP/®. Assuming that (4.13)
holds for these particular ® and ¥, we find that

AP e S IV IR, Y f € WHPR™),

and this easily implies that

1
A1 e S 1 f € WHPRT),
and leads to the conclusion of the theorem.
It will be more instructive not to give the formula defining ¥ from the
beginning, but to derive it from a series of calculations. Let us note that a
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necessary condition for the validity of (4.13) is ¥(0) = 0. Indeed, if ¥(0) # 0,
then (4.13) with f = 0 is wrong.

Step 1. Slicing. Assume that we are able to prove (4.13) in dimension
one. If we apply this estimate to fZ (defined in (3.68)), integrate over w € S*~!
and z € w' and use the equivalences (7.42) and (7.44), we obtain that (4.13)
holds in R™.

Therefore, from now on we work in one dimension.

Step 2. Replacing f by |f|. Clearly, the left-hand side of (4.13) does not
change if we replace f by |f|. Nor does the right-hand side, by Lemma 4.1. We
may thus assume, in what follows, that f € WYP(R; [0, 00)).

Step 3. Use of a Hardy type inequality. Let f € W1P(R;[0,00)). As-
suming ®, ¥ sufficiently smooth in order to ensure the validity of the next
calculations, we have

V(@(f(z) — 2(f(W)])
/ / |z — y!”p dady

(@) - 3(Fw)))
(4.14) ) 2/ /f(y)<f | — gt e
| ) —(@(f (@) — B0 I
- 2/ /f(y)<f z — y|I+P dydz

a e V(2(f(z)) — 2(t))
=2 /]R/O P /f(y)<t PR

Consider now, for 0 < t < M, the open set U; := {z € R; f(x) > t}.
We decompose, for each fixed t, Uy = UI;;, with I;; mutually disjoint open
intervals. Note that U; has finite measure (by Markov’s inequality) and thus
each I;; has finite length. By (4.14), we have

(115) /R/‘If(@(f’iw)_) _Pigf(y)))dxdy
_2/ o'(t /U/ . |$_))|11pq)(t)) dydadt
/ Z / / |x_)y)‘;p@(t)) dydadt
/ Z / /R . |x_y)|;p<1>(t)> dydzdt
< /0 @’(t)zj: /1 ,giﬁ(ﬁ)&; j]](f)) dadt.
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We next intend to apply the Hardy inequality (2.56) to the inner integral
ijt ...dz in (4.15). For that purpose, we write

(4.16) V((f(x) — @(t) = [(W(D(f(x) — (1) /PP = [gi()]P.
gt(x)
We note that, at the endpoints of I;;, we have f(x) = t. Therefore, if we
assume that ¥'(0) = 0, then g; vanishes at the endpoints of I;;. We are thus
in position to apply (2.56) and find that

[ [ M) 80D g,
R JR |z — y[1FP

M
iy 5[ VOX [ ler@pas

:/ &'t /|gt )P dadt = // ()P dtdz.

We next note that

(90)' () =(W)P7H(@(f () — B(1)) O"(@(f(2)) — (1))
x O (f(x)) f'(x).

Inserting (4.18) into (4.17), we obtaln

[ [ et |x_ |1+§ DD 414,

/K P (f @) | ()P da,

where we have set, for A > 0,

(4.18)

(4.19)

A
(420)  K(A):= / @ (6)(F) P (D(A) — B(1)) |27 (B(A) - (1)) dt.

Step 4. Choice of U. In order to obtain (4.13) from (4.19)-(4.20), we seek
for ¥ such that

(4.21) K(A) (®')P(A)=C € (0,00), VA > 0.
We next manipulate (4.21) in order to derive the expression of W. Set
£:=®1:[0,M) — [0,00), so that ¢ is convex and increasing. If we perform,

in the integral defining K(A), the change of variable 7 := ®(t) and we set
B := ®(A), then

B
K(A) = / (W) P(B — 1) [V"P(B — 1) dr
(4.22) 0

B
= [ @y ) ar
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Since on the other hand we have ®'(A4) = 1/¢'(B), we find, using (4.22),
that (4.21) is equivalent to

(4.23) /()B(\I’/)l_p(T) |U"|P(7)dr = C (¢')P(B), Y0 < B < M.

We may now differentiate (4.23) with respect to B and find that
(4.24) ()'P(B) 9" P(B) = C (€)' 1(B) £"(B).

Assuming that W is convex, we obtain from (4.24) that
(4.25)  [(W)VPV(B) = C(¥)/PH(B) " (B) = C(¢)VP(B) (€)' (B).

Using (4.25) and the assumption ¥/(0) = 0, we determine (¥/)'/?  and
thus ¥/. We next find ¥ from the formula ¥’ and the necessary condition
U(0) = 0. We end up with the fact that, up to a multiplicative constant, we
have

(4.26)  W(t) = /0 t ( /0 1 ()Pl () dT>p dr, V0 <t < M.

In the special case where ®(t) = t%, we have £(t) = t1/%, and it is easy to
see that W(t) = C tP/°.

Step 5. A generalization of Theorem 2. It remains to give sufficient
conditions on ® in order to justify a posteriori the above formal calculations.
The bottom line is that the definition (4.26) has to make sense. In order to
achieve this, we assume that ® is continuous concave with ®(0) = 0, that
® is increasing (and thus a homeomorphism onto its image [0, M)), and we
require that its reciprocal £ : [0, M) — [0,00) is twice differentiable and that
¢ e L ([0,M)). We thus guess the following extension of Theorem 2 (which

loc

slightly generalizes [41, Theorem 1.3]).

THEOREM 3. Let @ : [0,00) — [0, M) be an increasing concave homeomor-
phism. Let € :== ®~1: [0, M) — [0,00). Assume that & is twice differentiable
and that £" € Ll ([0, M)). Set

loc

427) W) = /O t < /0 L ()Pl () d7->p dr, Y0 <t < M.

Then

/ / (S @)~ U @DD 40,
. . |x_y|n+p

(4.28)
< / V()P dzr, ¥V f € WHR"),
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Step 6. Proof of Theorem 3. As explained above, it suffices to prove the
validity of (4.28) for n =1 and f € WHP(R; [0, 0)).

From the assumptions of Theorem 3, we have ¢ increasing and concave,
and thus

(4.29) 0<¢(r) <€), Vo< T <t< M.
On the other hand, since ¢’ is differentiable and its derivative is locally
summable, we have

(4.30) gty =¢(r)+ /t ' (r)ydr, VO< 7 <t < M;

see e.g., Natanson [45, Chapter IX, § 7, Theorem 1|. In particular, we have
(4.31) ¢ e Cl(jo, M)).
Using (4.29), (4.30) and Holder’s inequality, we find that

[ e

T1

([ ([ o)

< (7“2 — Tl)l_l/pf/(rz), Y0 <rp<rg < M.
Estimate (4.32) implies that

(4.33)  [0,M) 37 F(r):= / T[g'(T)]l—l/P[g"(T)]l/P dr is continuous.

0
From (4.27) and (4.33), we obtain that
(4.34) ¥ e CY([0,M)), ¥(0) =0, ¥'(0)=0

and

(4.35)  W(t)=F"(t) = (/0 [5’(7)]1_1/p[£”(7)]1/pdT) , Vi € [0, M).

On the other hand, since ¢ is an increasing differentiable homeomorphism,
we have £'(t) > 0 for a.e. t € [0, M). Combining this with (4.29), we find that
g'(t) >0,Vte (0,M), and thus (using also (4.31))

(4.36) ® € C'((0,00)) and ®'(t) >0, Vt > 0.
The validity of (4.34) and (4.36) implies the one of (4.14).
We next note that

[ ()P ()P
<(1-1/p&(r)+Q1/p)&"(7)
<(A-1/p) &)+ 1/p)&"(7), VO< T <t <M,
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and thus the integrand defining F' in (4.33) is locally summable. From Lebes-
gue’s differentiation theorem (see e.g. [45, Chapter IX, § 4, Theorem 2]|), we
find that

(4.37) F' = [¢)'7YP[e") VP ae. and in the distributions sense.

On the other hand, (4.35) implies that the function g; defined in (4.16) is
given by
(4.38) ge(x) = F(®(f(x)) — (t)), VO <t < f(x).

Using (4.36), (4.37), (4.38) and the chain rule in VVZIOC1 (see e.g. [51, Theo-

rem 2|), we find that for every fixed ¢ > 0 we have, a.e. and in the distributions
sense,

(4.39) (9)' (z) = F'(®(f(2)) — (1)) ' (f(2)) f'(2).
From (4.17), (4.37) and (4.39), we obtain the validity of (4.19), with

A
(4.40) K(A) = /0 o' (t) (F)P(D(A) — d(t)) dt.

In order to complete the proof, it remains to establish (4.21) for this K.
The change of variable 7 := ®(¢t) in (4.40) leads, as in (4.22), to

B(A)
(1.41) k)= [ @i
0
On the other hand, the chain rule in VV&X} yields
(4.42) [(EYP) =p()P1¢" a.e. and in the distributions sense.

Since ¢’ is locally bounded and &” is locally summable, we find from (4.41)
and (4.42) that

(4.43) K(A) = C(€)P(B(A)), YA > 0.

Identity (4.21) follows from (4.43) and the fact that ® and £ are reciprocal
to each other.
The proof of Theorem 3 (and, in particular, of Theorem 2) is complete. [

Remark 8. Step 6 is significantly simpler if we weaken the assumptions on
¢ in Theorem 3 to & € C?; see [41, proof of Theorem 1.3].
5. TRACE THEORY OF WEIGHTED SOBOLEV SPACES
5.1. Overview

In order to establish further properties of the superposition operators T,
it will be convenient to rely on a new tool: the trace theory of (weighted)
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Sobolev spaces. A striking fact is that this theory is essentially a consequence
of the Hardy type inequalities, so that we have the following rough scheme

Hardy inequalities = traces of weighted spaces = properties of T

(and more).

The general philosophy of the trace theory is that a function in a half-space
having some Sobolev regularity has a “trace” (“restriction”) on the boundary of
the half-space. Usually, this trace is defined by density, starting from smooth
functions. We will work only with continuous (and even better) functions, and
in this setting we will dispose of an equivalent but more tractable approach to
the notion of trace.

First, some notation and the appropriate definition.

1. We set R :=R" x (0,00) and R} :=R" x [0, 00).

2. A generic point in these sets will be denoted (x,t) or (x,¢), with x in
R™ and t, e in (0, 00) or [0, 00).

3. Let F': ]Ritkl — R be a continuous function. We say that f: R" - R
is the trace of F' (implicitly understood: on R™ ~ R™ x {0}) if

(5.1) lim F(z,e) = f(z) for a.e. z € R™.
e—0

If (5.1) holds, then f is a.e. uniquely defined by (5.1), and we write f = tr F.
4. Here is a fundamental example. Let p € C(R™) be a standard
mollifier. Let f € L} _(R™). Set

loc
(5.2) Fi(z,e) == f*p:(z), Vo € R", Ve > 0.

(Strictly speaking, Fy depends not only on f, but also on p, but in practice p
will be fixed independently of f and we omit this dependence.)

It is a standard exercise that Fy is smooth in errﬁl. A more delicate result
is that we have f = tr Fy. Equivalently, if f € L} _(R") and p is a standard
mollifier, then we have
(5.3) lim f % pc(x) = f(x) for a.e. x € R™;

e—0
see e.g. Stein [52, formula (16), p. 23, and Chapter I, Section § 8.16] when
f € LP for some p, but the arguments there hold also for f € Llloc.

We may now state (temporarily without proof) two basic results in the

trace theory of Sobolev spaces, due to Gagliardo [25].

THEOREM 4 (Direct trace theorem). Let 1 < p < oo. Let F € C* (Rfﬁt})
and f:R™ — R be such that f =tr F. Then

(5.4) ‘f‘wl—l/pﬁp(Rn) S Cp’n HVFHLP(R?—J,:}).
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THEOREM 5 (Inverse trace theorem). Let f € L} (R™). Let Fy be as in
(5.2). Then

(55) ||vaHLp(Ritl) S Cp,n ’f|W171/p,p(Rn).

Let us give an application of the above results to the study of 7. Alt-
hough this trivial application could have been obtained directly and with little
effort, its proof via Theorems 4 and 5 is instructive since it suggests a sound
strategy that will be useful in more difficult problems. Assume that we want
to estimate |To fly1-1/pp for some (at least C1) ® and some f € Li (R™).

Consider Fy as in (5.2). Then trTg(Fy) = To f. By Theorem 4, we ha\l/(g
(5.6) To flwi-1oe S VITa(Fy)|lLr-

Assume now that & is Lipschitz. Then
(5.7) \VTs(Fy)| S |VFy| ae.

(this can be obtained e.g. from the chain rule).

From (5.5), (5.6) and (5.7), we obtain that |To f|y1-1/e0 < |flwi=1/pe-

Let us pause and summarize the above strategy of proof. In order to esti-
mate Ty f in W1=1/PP we first estimate | VT (Ff)||z». The direct theorem then
yields an estimate of Tp f in W'=1/PP_ Assume next that | VT (F})| e is con-
trolled by ||V Fy||z». Then the inverse theorem allows to estimate || V1o (Fy)| 1
in terms of | f|y1-1/p». Combining the two, we estimate [T f|yy1-1/p,p in terms
|flwi-1/pp. The interesting point is that we estimate fractional semi-norms
via calculations which involve LP norms of derivatives — and in general it is
easier to deal with integer derivatives instead of fractional ones. (The idea of
increasing the space dimension in order to establish mapping properties of T
appears already in [10].)

If we want to attack less academic problems, then we have to have at our
disposal function spaces of integer Sobolev type having as traces W*P maps for
arbitrary non-integer s, and not only for s = 1 — 1/p. This can be achieved,
but the price to pay is that we have to deal with weighted Sobolev spaces.

The theory of weighted Sobolev spaces has been established in the 60’s.
The results we present below are a light version of this theory, sufficient for
our purposes. They are included in more general results due to Uspenskii [58].
Before stating them, let us recall that when s > 0 is non-integer and 1 < p < oo,
we have defined in (3.41) a semi-norm | |ws» adapted to the space W*P(R™).
This semi-norm depends not only on s, p and n, but also on an integer M > s
that will explicitly be mentioned in the next statements.

Given M, set

Moy :={(3,0); B€N" and |B] = M} U{(0,...,0,M)} c N**1,

n times
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When M = 1, we have M; = {a € N"*1; |a| = 1}. On the other hand,
when M > 2, My is clearly a strict subset of {a € N**1; |a| = M}.

THEOREM 6 (Direct trace theorem (I)). Let s > 0 be non-integer and let
1 <p<oo. Let M be an integer such that M > s+ 1/p. Let F € CM(R?_:T)
and f : R™ — R be such that f =tr F. Then

(5.8) [ Byen@ny < Cspn Y / /n (M=s)p=119% B (1, £) [P darde.

aeEMs

Note the technical assumption M > s+ 1/p, which is stronger than the
natural assumption M > s required to in order to define | |yys». As explained
in the next result, we may recover the condition M > s if we adopt a more
restrictive notion of trace.

THEOREM 7 (Direct trace theorem (II)). Let s > 0 be non-integer and let
1 <p<oo. Let M be an integer such that M > s. Let F € CM(RT;:) and
f:R™ = R be such that lim._,o F(-,€) = f in L}, (R"). Then

69 s < Conn X [ [ 000 (o, )P doc.

aEM s
In particular, (5.9) holds for F € C’M(Ritkl) N C’(RTFI),

THEOREM 8 (Inverse trace theorem). Let s > 0 be non-integer and let
1 <p<oo. Let M be an integer such that M > s. Let f € WSP(R"). Let Fy
be as in (5.2). Then

Gy Y / / I By, 2) P e < o |7 sy

Nn+1
\Otl M

When 0 < s <1 and f € L}, (R™), we have the stronger conclusion

(5.11) > / / (M=9)p=11 g0 Fr (1, £) [P dazde < Cspn By -
6Nn+1 "
la|l=M
Remark 9. Theorems 4 and 5 are special cases of Theorems 6 and 8 (with
l<p<oo,s=1-1/pand M =1).

Remark 10. Estimate (5.10) still holds true — and this is a relatively dif-
ficult result — when f € LP and we replace F; by the harmonic extension
of f, given by the Poisson formula. For this and similar results, see [58], Tai-

bleson [54,55] and the more modern treatment in [43]; see also Leoni [34, Section
18.7).
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We present below proofs of Theorems 6 and 7 which follow essentially [36,
pp. 512-513] and [43, proof of Theorem 1.3].

Proof of Theorem 6. This result is a consequence of Theorem 7. In order
to justify this assertion, assume that we have established (5.8) for every M > s
and every F € C’M(R’}r). Then we claim that, under the stronger assumption
M > s+1/p, we have (5.8) for every F € C’M(R’}rﬁl). Indeed, we let § > 0 and
we apply (5.8) to (z,e) — F(x,e+ J). We find that

(512) [F(,6)fys < Copn 3 / / (e — )M [0 Fa, &) P dadle.
) n

acNntl
loe|=M

Letting 6 — 0 in (5.12), we obtain (5.8) (using the definition of the trace
and Fatou’s lemma on the left-hand side, respectively the assumption (M —s)p—
1 > 0 and the monotone convergence theorem on the right-hand side). [

Proof of Theorem 7. Step 1. Proof of (5.9) for F € CM(RT'I). This is
the main step of the proof, and it consists (again!) of an application of a Hardy
type inequality.

For such F', have f(z) = F(z,0). The proof of (5.9) relies on the following
elementary lemma, whose proof is postponed to the appendix.

LEMMA 24. Let M > 0 be an integer. We set

Dy F(z,6)| = ) [0°F(x,e)|,Vz €R", Ve > 0.
aeEM s

Let h € R™ and set r := |h|. Then for every x € R™ we have

M M
AN f )| SrM ) / tM=Y Dy F(z + th, jr)|dt
j=1"9
(5.13) Mo
+7“MZ/ tM=Y Dy F(x + jh, tr)] dt.
j=0"0

Granted Lemma 24, we proceed to the proof of the theorem. Set g(e) :=
D F (- €)l|Lp(mn). Integrating (5.13) in z, we obtain (with r := |h|)

M M
VA L ogamy S 7S gGir) + /0 g (1) dt
(5.14) =

M U Mr M-—1
~r Zg(jr)+/ M1g8) dt.
j=1 0
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In view of (3.41) and (5.14), in order to establish (5.9) it suffices to prove that

515) [ I GG dh < Copany [ < gl de

and
P

(5.16) / ) ( /0 M|h|tM_19(t)dt> Wdﬁg /0°°5<M—8>P—1 lg(e)]P de.

Passing to spherical coordinates and performing on the left-hand side of
(5.15) the change of variable ¢ := j |h|, we see that the two integrals in (5.15)
are proportional, and thus (5.15) holds.

Also in spherical coordinates, (5.16) amounts to

%) 1 Me p o)
(5.17) /0 W( /0 tM_lg(t)dt> de < /O SM=3)p=1 [ ()P e

In turn, after the change of variable 0 := M ¢ on the left-hand side, (5.17)
follows from Hardy’s inequality at 0 (2.3) applied with r ~ sp, ¢ ~ p and
g(u) ~ M1 g(e).

Granted Lemma, 24, the proof of Step 1 is complete.

Step 2. Proof of (5.9) in the general case. Let n € C°(R™) be a standard
mollifier. Let, for § > 0,

Fs(z,e) = / F(z —y,e)ns(y)dy, Vo € R", Ve > 0.

Then clearly

n

0“Fs(x,e) = / (0“F(xz —y,¢))ns(y)dy, Va € N*TL vz € R" Ve > 0,

and thus
(5.18) 10°F5 (-, )l zo(rny < [10%F (-, €)|l o@ny, Voo € N"T Ve 6> 0.
We find that
Z / / eM=s=1152 Fs (1. €)|P dwde
0 n
(.19) M
< Z / / eM=)p=1|190 (2, ) |P dade, V6 > 0.
aEM]u 0 "

On the other hand, we have
lim Fs(-,e) = f*ns in Ly, (R™),
e\0

and thus Fs extends by continuity to RTFI by setting Fy(x,0) := f *ns(x).



45 The role of the Hardy type inequalities in the theory of function spaces 491

We next note that the proof of (5.9), and in particular, the proof of
Lemma 24, still work if we weaken the assumption F' € CM(R"™) to F ¢
CM(]RT;}) N C(Rf‘fl). (Indeed, for such F we estimate AM F(z,7), 7 > 0, as
n (5.13), then we let 7 — 0, and we recover the conclusion of Lemma 24.)

This observation implies that (5.9) holds for Fs. Using this remark, (5.9)
and (5.18), we find that

‘f*ﬁa\ww Rr) Z / / (M=s)p=11 5 Fs (2, ) |P dazde

aGMM

Z/ / eM=3)p=1190F (&) |P dde.

aGMM

(5.20)

We obtain (5.9) from (5.3), which implies that f*ns; — f a.e. as d — 0,
Fatou’s lemma, and (5.20). O

Remark 11. In the proof of Theorem 7, we did not use the assumption
M > s! However, when M < s the theorem is of limited interest. Indeed, if
F e CMRYE N OM(R™) with M < s and if the right-hand side of (5.9) is
finite, then f is a polynomial of degree < M — 1, and thus |f|ws» = 0. This
follows by combining the proof of (5.9) (which holds, as we have noticed, also
for M < s) with [43, Proposition 5.1]. Thus, when M < s, the information
conveyed by (5.8) is merely | f|ws» = 0.

We now turn to the proof of Theorem 8. Its main ingredients are three
simple results, Lemmas 25, 26 and 27 below.

LEMMA 25. Let £ € L>®°(R") be such that supp& C Bi(0) and [p, & = 0.
Let 0 <s<1land1<p<oo. Given fe L} (R"), set G(z,e) := f*&(x),
Ve e R", Ve > 0. Then we have

(5.21) /0 g1 /n |Gf($,€)|p dzde < Cs,p7n,£|f|€[/87p(R”)‘

Proof. We have

(5.22) |Gy(x,e)| ="

/|< flx—y)&(y/e)dy

= E_n

[ e = senewre

<o / ALf(2)] dy.
ly|<e
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Using (5.22) and Hélder’s inequality, we find that
/ 5_5p_1/ |G f(z,€)P dade
0 R™

. P

< / gspnp—l / / AL f(x)|dy | dxde
0 R ly|<e

s[ et [ ] sy
0 n Jly|l<e

—/ / / gspmnl ]A;f(x)]pdadyd:c
m IRy

e / /R =7 AL f ()P dyda = C [ yn,
whence (5.21). O

LEMMA 26. Let p € C°(R™), f € L} (R™) and Fy be given by (5.2). For
every a € N"T1\ {0}, there exists some & = €% € CX(R™) (depending on n, «
and p) such that:

1. supp & C supp p,

2. fRnf =0,

3. 0°Fy(v,e) =1l fx & (x), Vo €R", Ve > 0.

Proof. The proof is by induction, based on the following calculations.
If a € R and n € CX(R"), set H(x,e) :==e~ f xn(x).

When 5 =1,...,n, we have

oytite.e) =0y (< [ JwnlGe - wye)ay)

(5.23) =g ot - Fy) (Om)((z —y)/e) dy

= fx (05m)e-
When j =n+ 1 and thus 9,41 = 885’ we have
—a—n— = LTk —
OnsrH,e) === [ fly) ST @)~ y)/e) dy
n kzl
(5.24) .
—(a+n)e . fy)n((z —y)/e)dy

= — % fx(an+div(zn))e..
On the other hand, we clearly have

(5.25) 8;¢ =0 and / dive=0,Vj=1,...,n, V(€ CR").
Rn” n
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The existence of ¢ satisfying 1-3 follows easily by induction on |«/|, using
(5.23)-(5.25). O

When f has additional differentiability properties, we may improve the
conclusion of Lemma 26 as follows.

LEMMA 27. Let m € N, m > 1. Assume that f € T/VZZLCl(R") Let p €
C>(R") and let Fy be given by (5.2). Let o € N™™! be such that |a| > m.
Then there exist (*5 € C®(R™), VB € N* with |3| = m (depending on n, a,
B, p) such that:

1. supp (*# C suppp,

2. Jgn (P =0
and
(5.26)  O°Fy(z,e) = 1™ 3" (9°f) x (¢*F)e(x), V2 €R”, Ve > 0.

BeN™
|8]=m

Proof. By (5.23) and (5.24), for j = 1,...,n+ 1, we have

n

(5.27) 0iFy(r.e) = =f % 3 (Ohya)-(),

k=1

for appropriate 1 € Co°(R™) such that supp;; C suppp. Using the fact
that (1/¢) (Okjk)e = Ok[(¥)k)e), we find from (5.27) that

n

(5.28) 0jFf(z,e) = > (Onf) * (Vjr)e ().

k=1
Starting from (5.28) and repeating the above argument, we find (by in-
duction on the length |y| < m) that for every v € N** with |y| < m we
have

(5.29) D Fy(x,e) = Z (86f) * (1y,8)e(2)
BEN™
181=I

for some appropriate 1., 3 € C2°(R"™) such that supp . g C supp p.
We obtain properties 1, 2 and (5.27) from (5.29) and Lemma 26. O

Proof of Theorem 8. Step 1. Proof of (5.11). Without loss of generality,
we may assume that the mollifier p defining F in (5.2) satisfies supp p C By (0).
If « € Nt is such that |a| = M, we write 0°Ff(z,e) = e M f x .(z), as in
Lemma 26. Using Lemma 25, we find that

/0 s(Ms)pl/ If)aFf(x,s)de:ds:/O 58"1/’ |f *&(x,e)|P dede

S| s
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i.e., (5.11) holds.

Step 2. Proof of (5.10). In view of Step 1, we may assume that s > 1. We
write s = m+ o, with m € N, m > 1, and 0 < 0 < 1. We choose on W*P(R™)
the norm

(D yer = I+ (Dfyens with (Dpes = D 107 o

BEN"
|Bl=m

When 1 < s < 2 and n = 1, we have proved that this norm is equivalent to the
standard one, given by (3.41)-(3.42); see Lemma 19. The same holds for any
s, pand M > s. However, we will not need the full strength of this assertion,
but only the weaker property

(5.30) (Hwew S fllwsr,

for which we refer the reader to |56, Section 2.3.8, Theorem, pp. 58-59|. In
view of (5.30), in order to complete Step 2 it suffices to establish the estimate

CENDY /O / =110 Fy (1, )P dade < Crpn 3 10° Fllyon

aeNntl BEN™
la|=M |Bl=m

By Lemmas 27 and 25, we have

> / / eM=9p=1 150 P (2 €)|P daxde
0 n

O(EN"+1
|lal=M

SIS /0 ) / (@7 f) + (¢ )e(@)|P dade

aeNntL BeN"

la|=M |B|l=m

S NP Byen = (Flyen
BEN™
|B]=m

and thus (5.31) holds. O

5.2. Two applications to superposition operators

We continue here the discussion initiated at the end of Section 4.1. We let
s > 1 and seek for conditions ensuring that if f € W*P(R"), then Tg f € W*P.
We have noticed there that, even for smooth ®, the conclusion Tef € W*P
may require additional conditions either on f, or on the triple (s,p,n).

We present here two main results in this direction, together with a con-
sequence. (The interested reader may find in [43, Section 6] more applications
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of the trace theory of weighted Sobolev spaces to the study of the mapping
properties of Tg.) It turns out that these results hold also (but they are less
interesting) for s < 1. They are equally true for integer s.

First, a notation. If s is real number, [s] denotes the smallest integer
k> s.

THEOREM 9. Let s > 0 and 1 < p < co. Let M := [s]. Let ® € CM(R)
be such that ®(0) = 0. Then Ty maps WP N L>®(R"™) into itself.

COROLLARY 6. Let s > 0 and 1 < p < oo be such that sp > n. Let
M := [s]. Let ® € CM(R) be such that ®(0) = 0. Then Ty maps W5P(R")
wnto itself.

THEOREM 10. Let s > 0 and 1 < p < oo be such that sp =n. Let M :=
[s]. Let ® € CM(R) be such that ®(0) = 0 and ®U) € L™, Vj =1,..., M.
Then Te maps WP (R™) into itself.

When s is an integer, Theorem 9 is due to Moser [44]. Its proof relies
on the Gagliardo-Nirenberg inequalities that we will recall below. The need
of such inequalities in this context is obvious from the proof. When s is not
an integer, there are two standard proofs of Theorem 9. The first one uses
the para-differential calculus and an ingenious identity due to Meyer [38]. The
second one is elementary, but relies on a tedious identity which is quite difficult
both to check and guess; see Escobedo [23]. We will see below that when we
prove this result using the theory of weighted Sobolev spaces, we only need an
obvious Gagliardo-Nirenberg type inequality!

We start with some important results that we will use in the proof. First,
let us recall the following fundamental interpolation inequality, due to Gagliardo
[26] and Nirenberg [46].

LEMMA 28 (Gagliardo-Nirenberg inequalities). Let 0 < m; < m < mg

be integers, and 1 < p1,pa < co. Define the number 6 € (0,1) by m = (1 —
1 1-6

O)mi + 0mg and let 1 < p < oo be given by — = —— + —. Then, for some
p b1 b2

C = Ci yma,mp1,pa2,ns We have

(5.32) ID™ul[Le < C | D™ ullzs) [|ID™ulfes . Yu € CP(R™).
In the above, we use the compact notation

(5.33) D™l =Y [07ul.

aeN"™
lor|=m

When m = 0 (respectively m = 1), we write |u| instead of | D%u| (respecti-
vely |Vu| instead of |Dul).
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We now present an interpolation inequality, of Gagliardo-Nirenberg type,
involving fractional Sobolev spaces; see [12] for the comprehensive list of the
Gagliardo-Nirenberg type inequalities valid in the full scale of Sobolev spaces.

LEMMA 29. Let 0 < t < s < 0o be non-integers, and let 1 < p < oo. Let
q := sp/t € (p,o0) and 0 = t/s € (0,1). Then we have WP N L>°(R") C
WH4(R™). More specfically, with C = Cs 4 ., we have

(5.34) 1 lwea < CUFven IFIIZ,Y £ € WP 0 L¥(R").

Proof. Let M > s be an integer, and let | |ws.», | |yt be the semi-norms
defined via M as in (3.41). We consider on W*® and W4 the norms given by
(3.42). Using the inequalities

12 IFP AL and (A F17 S 1AV FIPIFIESY,
we immediately obtain (5.34). O
We next state and establish two special cases of the Sobolev embeddings.

LEMMA 30. Let s > 0 and 1 < p < oo be such that sp > n. Then
WHEP(R™) — L.

Proof. When s is an integer, see e.g. Brezis |9, Corollary 9.13].

Assume next that 0 < s < 1. By Corollary 5, we have

(5.35) lf(y) — f(@)| S |flwse, VfeWSP(R"), Ve e R", Vy € By(z).

On the other hand, for every z € R" there exists some y € Bj(z) such
that

(5.36) 1) S e i@y < 1f] e

From (5.35) and (5.36), we obtain that |f(z)| < || f|lws», and thus WP —
L.

Finally, assume that s > 1 is non-integer. Write s = m + o, with m € N,
m>1and 0 <o < 1. We consider on W*? the norm ((f))}s,» := | D™ f|, +
D™ f%0p. Let 0 < ¢’ < 0. By Lemma 13, we have W™FoP — Jym+o'p,
Therefore, by lowering o if necessary, we may assume that sp > n and op # n.

Applying repeatedly Lemma, 13, we find that WP — WP, Thus, if
op > n then WP — WP — [0

On the other hand, if op < n, then, by Corollary 4 applied to D™ f, we
find that WP — W™ with q := (np)/(n—op). It is easy to see that mq > n,
and thus WP — W4e —y [0

The proof of Lemma 30 is complete. O

LEMMA 31. Let s > 1 and 1 < p < oo be such that sp=mn. Let 1 <k <s
be an integer. Then WSP(R™) — Wkn/k,
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Proof. When s is an integer, see [9, Corollary 9.13].

Assume that s is non-integer and write as above s = m + 0. In view
of [9, Corollary 9.13], it suffices to obtain the conclusion when k& = m. In that
case, the conclusion follows from Corollary 4 applied to D™ f. 0O

In the proofs of the main results announced in this section, we will consider
only relatively small values of s (we take s < 2). Although this limitation is not
important for the validity of the arguments, the reason is the following. We will
have to estimate D™ (®o f), with m := [s]. In order to calculate D™ (®o f), we
rely on the Faa di Bruno’s formula for the higher order derivatives of composite
functions. This formula becomes cumbersome when m > 3. Since, apart
from this complexification of the calculations, the arguments are similar for all
s > 1, we took the party of limiting the arguments to 1 < s < 2. We refer the
interested reader to [43, Section 6] for full proofs of the above results (using
slightly different arguments). In what follows, the case where s < 1 is much
easier; it was briefly discusses at the beginning of the Section 4.1, and is left to
the reader.

Proof of Theorem 9 when 1 < s < 2. Step 1. Proof when s = 2. Let
p >n/2. Let f € C*°(R"). Consider a number r > || f||z~. On the one hand
we clearly have |Tg f| < sup{|®'(¢)|; |¢t| < r}|f|, and thus

(5.37) 1T fllze < sup{|®(t)]; [¢] < r} || fllze-
On the other hand, we have the pointwise inequality
(5:38)  [D*Tof| < sup{|®'(t)]; |t] < r} [D*f| + sup{|®"(t)]; [t| <} [V f]*.

Using the Gagliardo-Nirenberg inequality (5.32) with mq := 0, mgy := 2,
m =1, p; := 0o and py := p, as well as (5.38), we find that

1D*To fllze Ssup{|®' (1) [¢] < r} | D*£|ze
+sup{[®"(B)]; [t| < 7} r[|D?f| o

Using again the Gagliardo-Nirenberg inequalities, this time in conjunction
with (5.37) and (5.39), we find that

IVTs fllze Ssup{|® ()]; [t < r} £ 1 D2 FI 1
(5.40) +sup{|®(1)]; [t] < r}/2 sup{|®"(1)]; |t] <}/
1/2 1/2
x V2| P 1D FI

(5.39)

Consider now some f € WP N L and set r := || f| 1. Set fo := f * pe,
where p is a standard mollifier. Note that ||fz||zee < ||f||zee, Ve > 0. We may
thus apply (5.37), (5.39) and (5.40) to f. and obtain uniform LP bounds for
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DiTgf., j = 0,1,2. By Fatou’s lemma, we find that DTsf € LP, j =0,1,2,
and thus Te f € W2P (and clearly Tpf € L)

Step 2. Proof when 1 < s < 2. Let f € WP N L>. Let Fy be as in (5.2).
Since f € LP, we have Fy(-,e) — fin LP as ¢ — 0. On the other hand, we
have |Fr| < || f|/ze, and thus

|To Fy(-e) — To fllr <sup{|®'(t)]; [t| < [[fllzeo} 1 Ff(- ) = fllze
—0ase—0.

Therefore, the function Te Fy has trace Ty f in the stronger sense of Theo-
rem 7. In view of Theorem 7 it follows that, in order to prove that T f € WP,
it suffices to prove that

(5.41) Tsf € LP,
(5.42) I:= / / =P DTy Fy(x, ) |P dwde < oc.
0 n

(5.41) being clear, we proceed to the proof of (5.42). As in Step 1, using
the fact that || Fy|/ze < |||z, we obtain

I SCf/ / 6(2*S)p*1|D2Ff(m,€)|p dzde

(5.43) 0 JR"

+ Cf/ / 8(2*5)p*1]VFf(x,5)]2p dade.
O n

In view of (5.43), of Theorem 8 (applied twice) and of Lemma 29, we have
I<Cy e+ Cy [ [ P9 (a2 P dade
0o Jre
(5.44) :Cf HfH;gVSP + Cf / / 6(1_8/2) (2p)_1’VFf(:E, 6)|2p dzde
0 n

2
<Cr 1 fsw + Crllfperze < Crllf s
This completes the proof of Theorem 9 when 1 < s <2. O

Proof of Corollary 6. We combine Theorem 9 with Lemma 30. O

Proof of Theorem 10. By Lemma 31, we have W5P < WP 0 WhHep,
Therefore, Theorem 10 is a special case of Theorem 11 stated and proved in
the next section. [

5.3. Superposition operators in WP N W1sp

Let us take a closer look at the proof of Theorem 9 when s = 2. It relies
on the following ingredients.
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1. ®(f) e LP.

2. ®'(f)D*f € LP.

3. ®"(f)|Vf? € Lr.

Let us now make the following assumptions on ®: ® € C2%, ®(0) = 0,
®U) is bounded, j = 1,2. Then item 1 above holds if f € LP. Item 2 holds
if f € W2P. Finally, item 3 holds if Vf € L?. By the Gagliardo-Nirenberg
inequalities (5.32), the third requirement is satisfied if f € W*PNL>®. However,
if we replace the assumption f € W2PNL™ by the weaker assumptions f € WP
and Vf € L?P, we still obtain the conclusion of Theorem 10 (with s = 2). These
considerations and Lemma 31 suggest the following improvement of Theorems
9 and 10.

THEOREM 11. Let s > 1 and 1 < p < oo. Let M := [s]. Let ® € CM(R)
be such that ®(0) =0 and ®9) € L>® Vj=1,...,M. Set

X ={f e W (R"); Vf € L°P}.
Then Ty maps X into itself.

This result was initially obtained in [12], with a proof using Fefferman-
Stein type vector-valued maximal inequalities [24] and Littlewood-Paley theory.
A more elementary proof, using fractional maximal inequalities, was found by
Maz’ya and Shaposhnikova [37]. We present below a very natural proof, using
trace theory. It relies only on the maximal function theorem in LP, p > 1, and
on the following simple observation.

LEMMA 32. Let g € L} (R™) and n € CZ(R™). Then
(5.45) lg *ne(z)] < Cy Mg(x), Vo € R", Ve > 0.
Proof. Let R > 0 be such that suppn C Br(0). Then

g% e >|<sup|n|/ l9(4)] dy

_¢, sup\nl][ vl dy < Mg(a),

whence (5.45). O

The interested reader may find a useful generalization of (5.45) in [52,
Chapter 1I, Section 2.1, formula (16), p. 54].

Proof of Theorem 11 when 1 < s < 2. The case where s = 2 has been
discussed at the beginning of this section. We may thus assume that 1 < s < 2.
Let f € W*5P be such that Vf € L*P. We have

| To f| < |2 |f] and VT f] < |||~ [V ],
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so that f € LP and Vf € LP N L°P.

Write s = 1 4+ o, with 0 < ¢ < 1. In view of the above, in order to
complete the proof of the theorem we have to prove that VI f € WP, We fix
some 1 < j < n, and prove that g := 0;Taf = ®'(f) 0;f € WoP. Let f — Fy
be the operator defined in (5.2). Set

G(x,¢) = =Fg (5 (v,¢) 0jFy(z,¢)

(5.46)
=Fgi(f)(x,€) Fo,p(w,¢), Vz € R", Ve > 0.

We let to the reader the proof of the fact that lim._,oG(-,¢) = g in LP,
and thus that g is the trace of G in the strong sense of Theorem 7. Note also
that 1 —o = 2—s. From these observations and Theorem 7, we find that, when
1 < s < 2, the conclusion of Theorem 11 amounts to

(5.47) / / =P 11y Q(z, ¢)|P dade < oco.
0 n
By (5.46) and the assumption that ® € L*, we have
(5.48) VG| < |D?*Fy| + |V Fyr ()| [V Fy.

The heart of the proof consists of estimating |V Fg/(p)| in two different
ways. On the one hand, since @' is bounded, we have ®’(f) € L™ and therefore,
by Lemma 26 item 3, we have

m | =

, Ve e R" Ve > 0.

On the other hand, using successively (5.26) with |a| = 1, the fact that
®” is bounded and Lemma 32, we obtain

VEn(@al s Y D107+ ()el)]
(5.50) "R (et

M|V f|(z), Ve e R", Ve > 0.
Similarly, we have
(5.51) |\VF¢(x,e)| S MIVf|(x), Vo € R", Ve > 0.

Combining (5.48)—(5.51) , we find that

1
sy V@IS IDE e ok (2A MA@

x M|V fl(x), Ve € R", Ve > 0.
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Using (5.52), Theorem 8 and the maximal function theorem, we obtain

/ / -1 |Gz, o) P dwde
5/ / g(2=s)p—1 |D*F(z,¢)|P dede
0 n

o] p
—I-/O /n€(2—s)p—1 (i /\M!Vf\(x)) (M|V f|(z))P dzde
:/ / g(@=s)p-1 |D*Fy(z,¢)|P dade
0 n

1/ M|V () )
+ / / @=L (M|V f|(z))* dedx
nJ0O

+/ / eZ=IP=L P (M|V f|(2))P dedz
"1/ MIV fi(2)

%/0 / R |D2Ff($7€)’pdxd5+/ngn (MIVf](2))” da
S ISew + IV £ -

This yields (5.47) and completes the proof of Theorem 11 when 1 < s
<2. O

Remark 12. Theorem 11 is, in some sense, optimal. Indeed, assume
that f € W*P and that, for every ® as in Theorem 11, we have Tgf €
WeP, In particular, by taking ® =id, we find that f € W?*P. Similarly,
we have sin f, (cos f — 1) € W*P. Since sin f, (cos f — 1) € L, we find from
the general form of the Gagliardo-Nirenberg inequalities (see e.g. [12]) that
sin f, (cos f — 1) € WP, Using the chain rule for composite functions, we
obtain cos f Vf,sin f Vf € L*P, and thus |V f| = |(cos f,sin f) Vf| € L*P. We
have thus obtained that the assumptions on f in Theorem 11 are essentially
necessary.

6. MAPS WITH VALUES INTO MANIFOLDS
6.1. Overview

Let ¥ be a smooth r-dimensional manifold and let w be a smooth k-form
on X. If f: R® — ¥ is sufficiently smooth (say, f € C* for some £ > 1), then
we may define the pullback ffw of w by f, which is a k-form of class C*~! on
R™. More specifically, if (y!,...,y") is a system of local coordinates on ¥ and
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if we write, near f(a) with a € R™,

1<iy <. <ip<r

then near a we have

w = Z iy, (f(2) dfiy Ao N dfs,

1<ir<...<ip<r

(with (fi(z),..., f-(z)) the coordinates of f(x) in the coordinate system (y!,
)

The question we address here is the possibility of defining ffw when f
has less regularity, say f is not even C'. This is already an issue when we
assume that f € VVllof (R™). In that case, ffw is well-defined a.e. as a k-form
with measurable coefficients. This form is a useful analytical object (a form

distribution, or current) only when its coefficients are in L} . Since clearly the

coefficients are in Lfo/ck(R"), we find that f%w is a current when p > k. However,
we will see below that in some situations it is possible to define ffw when f
has a regularity below I/Vllock

A thorough discussion about these topics would require a considerable
amount of auxiliary results. Therefore, we will focus on some results in this
direction that require little additional technology, and refer the interested reader
to a series of articles dealing with the case where ¥ = S" and w is the canonical
volume form on S” (or the Jacobian in R"*1): Jerrard and Soner [31,32], Hang
and Lin [28], Brezis and Nguyen [15], and also [6,7,40].

The arguments we present below rely on two types of ingredients: “null
Lagrangians” (or “cancellation phenomena”) and the trace theory. In order
to make clear the role of each ingredient, we start with continuous (or, more
generally, VMO) maps, for which the null Lagrangians play a key role. We
next turn to the W#*P setting, which requires combining both tools. While the
questions discussed in Section 6.2 are rather simple and could have been tackled
by other methods, the approach we use to answer them will prove to be useful
in the more complicated situations investigated in Sections 6.3 and 6.4, and
even beyond.

6.2. Winding number (I)

We discuss here the possibility of defining through a convenient integral
formula the winding number of maps f : S' — S!. This turns out to be possible
when f is continuous (and even slightly less than continuous). We mention that
it is possible to extend this approach to higher dimensions, and define the degree
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of continuous maps f : S™ — S” via an integral formula similar to (6.18) below
(see [39]).

Since at some point we would like to address this question in the context
of Sobolev maps and we want to avoid working with Sobolev spaces of maps
defined on manifolds, we rather consider maps f : R — S!. In order to further
simplify the discussion, we make the following assumption:

(6.1) f=1for x| > R= Ry.

Assume temporarily that f is continuous. Identifying f with a complex-
valued function, we may write f = €', with ¢ continuous and ¢ constant on
(=00, —R] and on [R, o0). In addition, ¢(—R), ¢(R) € 27Z (since f(£R) = 1).
Therefore, the “winding number” (or “index”; or “degree”)

_ P(R) = p(=R)
(6.2) deg f := —

is an integer, and one can prove that this integer does not depend on the choice
of R as in (6.1) or on the specific continuous lifting ¢.

Let us recall the following standard property of the degree:
(6.3) if f, g satisfy (6.1) and if |f — g| < 2, then deg f = degg.

Assume next that f is smoother, say f € C'. Then ¢ € C*, and thus we
have ' =1¢’ . We claim that

1
6.4 = — ff=fAf.
(64) d= I =fN]

In the second equality in (6.4), we have identified f with an R2-valued
map, and we let (a1, az) A (b1,b2) := agby — a1by. In order to justify (6.4), we
note that

1 _
ﬁf’z—sz'Zf/\f'—l(f1f{+f2fé) =fArh
the latter equality follows from the fact that

fufi+ gy =SSP =0,
Let f satisfy

(6.5) feC'(R;S" and f(z) =1,V|z| > R = Ry.
Combining (6.2) and (6.4), we recover the Cauchy formula
1
(6.6) deg f = / fAf,Vfasin (6.5).
2w R

The connection between this formula and the pullback of forms is the

following. Let ) 1
w:=— (ztdz? — 2?dat) = — db
27 2
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denote the canonical volume form on St. Then
1 1
g, — I A !
Therefore, (6.6) reads

(6.7) deg f = /R fw = (fw, 1),

the latter quantity being the duality bracket between the compactly supported
distribution ffw and the smooth test function 1.

Starting from (6.7), one may address the question of the existence of the
distribution ffw when f is less than C'. We do not follow this route, for which
we refer the reader to [15]. We consider instead the more modest task of finding
an analogue of (6.7) valid when f is merely continuous. For this purpose we
let u = (u1,u) : RT, — R? w := Fy, with Fy as in (5.2). Although f is
St-valued, u is merely R2-valued, and not S'-valued (unless f = 1). We let Ju
denote the Jacobian of u,

Ju = d1u A Oou = Vui A Vus.
The following formula goes back to Poincaré.

LEMMA 33. Let f € C%(R;S') satisfy (6.5). Then

1
(6.8) deg f = / Ju.
™ Ri,*
Proof. By Lemma 27 (with m := 2), u extends to a map in C?(R2). On
the other hand, the assumption (6.5), Lemma 26 and Lemma 27 (with m := 1)
lead to

0 if >R
(6.9) Ve, z0)| < 4 b w1l 2 Btz

IA(1/(x2)%), if |z1] < R+ o

In view of (6.9), we have
(6.10) / |l < oo,
RQ
+,%

(6.11) lim |Vu|dl = 0.

r=oe ot (o)
Here,
CH(0) := {z = (z1,22) € R?; 29 > 0 and |z| = r}.
Since u € C?, the following two identities hold in Ri:
(6.12) Ju = 01 (ug oug) — da(uyg drusg),
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(6.13) Ju = Oo(ug Ouy) — 01 (ug dauy).
Combining (6.12) and (6.13), we find that

(6.14) Ju = =[01(u A Oau) — Oa(u A O1u)).

N =~

Let Q, :=R3 , N B,(0), r > 0, and let v denote the unit outward normal
to 0Q,.. Note that, on (—r,r), we have v = (0, —1). Using successively (6.10),
(6.14), (6.11) and (6.6), we find that

1/ Ju . lim Ju = S lim [01(u A Oou) — Da(u A Oru)]
R

s T r—oo Jo 27 r—o0 Q.

1
=— lim (V1 (u A Dou) — vo(u A O1u)]
27'[' T—00 8Qr

r

_ 6 lim [1(u A Dou) — vo(u A Oru)]

27 r—o0 _r

1 r 1 (B
=— lim u/\@luz/ u A OLu
2m r—oo J_, 2 J_g

1 [ .
27r/Rf/\f = deg f.

This completes the proof of Lemma 33. [

It will be convenient later to have a variant of Lemma 33, Lemma 34
below, whose proof, very similar to the one of Lemma 33, is left to the reader.

LEMMA 34. Let f € C*(R;S!) satisfy f(z) =1 for |x| > R = Ry. Lel
w € C?(R2;R?) be any extension of f to R% such that

(6.15) /R Jw| < 0o

2
=+ %
and
(6.16) lim |Vw|dl = 0.
Then
1
(6.17) deg f = / Jw.
T Ri,*

Our next task, consisting of extending (6.17) to maps f which are merely
continuous, is more subtle. Indeed, Lemma 34 asserts that, when f is smooth,
deg f can be calculated via any smooth extension w of f that has sufficient
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decay at infinity. In the case of a continuous f, one has to take care not only
of the decay at infinity, but also of the behavior of w near R.

We let II : R? — R? be an “approximate projection” onto S!, i.e., a map
satisfying

1. II € C*.

2. U(z) = z/|x| € S' when |z| > 1/2.

Thus II is the radial projection onto S' except near the origin, where it is
modified in order to obtain a smooth function.

LEMMA 35. Let f € C(R;S') satisfy (6.1). Let u:= Fy (as in (5.2)) and
set w :=Il(u). Then

1
(6.18) deg f = / Jw.
R?

™

The proof of the lemma relies on a cancellation phenomenon described
below.

Proof. In view of (6.1), f is uniformly continuous. Therefore, there exists
some £g > 0 such that

(6.19) lu(z,e) — f(x)] <1/2, Ve e R,V0 < e < &p.

In view of (6.19) and of the fact that |f| = 1, we find that
(6.20) lu(z,e)] > 1/2, Vo e R,V0 < e < .

In turn, (6.20) implies that
(6.21) lw(z,e)| =1, Vz € R,V0 < e < g,

(6.22) lw(z,e) — f(z)] <1/2, Ve € R,V0 < e < gp.

Now comes the crucial observation. We claim that the Jacobian of a
smooth map g : © — S', with Q C R?, vanishes. Indeed, differentiating the
identity |g|?> = 1, we find that g - 919 = 0 and g - 2¢g = 0. This implies that
the vectors d1g and Osg are both orthogonal to g, thus parallel. In conclusion,
Jg =019 N 29 = 0, as claimed.

Using this observation and (6.21), we obtain the fundamental cancellation
property
(6.23) Jw(z,e) =0, Vx € R,V0 < & < &p.

On the other hand, the assumption (6.1) and Lemma 26 yield
0, if |z1] > R+ 29

(6.24) Vu(zy, z2)] S {(1/(@)2), g < Rt
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Combining (6.23) and (6.24), we find that

(6.25) / Jw| < oo,
R? ,

(6.26) lim |IVw|dl = 0.
"0 (0)4+{(0,20)}
Using the cancellation property (6.23) and applying Lemma 34 in R x
(€0, 00), we find that

1 1
(6.27) / Jw = / Jw = deg(w(+,€p)).
™ R?’_’* T JRx (e,00)
Combining (6.3), (6.22) and (6.27), we obtain (6.18). O

Remark 13. We briefly explain here the possibility of defining deg f when
f is slightly less than continuous. In this context, a natural class of maps is
the class VMO of functions of “vanishing mean oscillations” (introduced by
Sarason [50]), and defined on R as follows.

VMO (R) := {f cL (R ;1_13(1)82%][ ][ f(z)| dydz = O}

We adopt the same notation as in Lemma 35. One may prove (see e.g.
Brezis and Nirenberg [16, formula (7)]) that if f : R — S! satisfies f € VMO,
then u := Fy satisfies
(6.28) lim sup ||u(z,€)| — 1] =0,

e—=0 2R
or, equivalently, that |u(-,e)| — 1 uniformly as e — 0. Assume in addition that
f(xz) =1 for |z| > R = Ry. Repeating the proof of Lemma 35, we obtain that
there exists some £g such that

1
(6.29) / Jw =degw(-,¢e), V0 < e < ep.
™ JR2 .

At this stage, we have the non-trivial information that the left-hand side of

1
(6.29) is an integer. But we cannot continue and claim that — / Jw = deg f.
R2

Indeed, we have not defined deg f! However, we may take this equahty as the
definition of deg f. It is not difficult to see that this definition coincides with
the one in [16]. To summarize, maps in VMO (R;S!) satisfying f(z) = 1 for
|z| > R = Ry have a well-defined degree. This degree can be calculated via the
integral formula

1
(6.30) deg f = — Jw.
™ R%—,*
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6.3. Winding number (II)

We return here to the Sobolev context and investigate the existence of
deg f when f : R — S' has some Sobolev regularity. More specifically, we
assume that

(6.31) f(x)=1for || > R= Ry and f —1€ W*P(R).

When sp > 1 or s = p = 1, f is continuous and thus it has a degree.
When sp < 1, there is no reasonable definition of degree [39]. The “critical”
case is the one of the spaces W1/PP_ with 1 < p < oo. It turns out that these
spaces are embedded into VMO (see e.g. [16, § 1.2, Example 2|), and thus,
as explained in Remark 13, we may define deg f, which is given by formula
(6.30). We address here the question of an estimate for deg f. The answer
is provided by the following result, originally established in [6] with a slightly
different argument.

LEMMA 36. Let 1 < p < oo. Let f : R — S! satisfy f(x) = 1 for
|z| > R= Ry and f —1 € WY/PP. Then

(6.32) [deg f1 < Cy 117 1
Proof. Let, for x € R,
(6.33) d(z) := inf{e > 0; |u(z,e)| < 1/2}.
By (6.28), we know that d(z) > 0. Consider the open set
(6.34) U:={(z,e);z eR,0<e<d(z)}.
By the proof of (6.23), we have
(6.35) Jw =0 in U.

On the other hand, Lemma 26 implies that

C
(6.36) | Jw(z, g)\< ,Vf:R—>ShVzeR, Ve >0.
Combining (6.30), (6. 35) and (6.36), we obtain

1
6.37 deg f S/ Jw <// dadmw/dx_
(6.37) | | e | Jwl i) 2 @)

We complete the proof of Lemma 36 combining (6.37) with Lemma 37 below
(with s =1/p). O

LEMMA 37. Let 0 < s < 1 and let f : R — S' be such that f —1 € W*P.
Let d(x) be as in (6.33). Then

(6.38) /R [d(xl)]p Az < [
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Proof. In view of (5.3) and of Theorem 8, for a.e. x € R we have

(6.39) lim u(x,e) = f(x)
e—0
and
(6.40) / e0=9P=1 17y (z, €)P de < oco.
0

Let x satisfy (6.39)-(6.40). Since (6.39) holds, we have either d(z) = oo,
or d(z) < oo and then |u(z,d(z))] = 1/2. Assume that d(z) < oco. Using
Holder’s inequality when p > 1 (and a trivial argument when p = 1) we find
that

(1/2)P = [Ju(z, d(z))| = [f(@)[|P < Ju(z,d(2)) = f(2)]P

d(z) p
< / 0 de
0

gu(:c,s)
d(z)
< Cy,p [d(2)]” / =91 |7y (g, £)[P de
0

(6.41)

< Cpld(2)]? / e1=P=1 19y (x, )P de.
0
Consequently, we have
1 oo
(6.42) @) < Cs,p/ e1=P=1|7y(z, )P de, for ae. z € R.
0

We obtain (6.38) by combining (6.42) with Theorem 8. [J

6.4. Factorization

We first summarize what we have achieved in Sections 6.2 and 6.3. We
have an integral formula for deg f when f is continuous, or merely VMO. If, in
addition, f has some Sobolev regularity, then we also have an estimate of deg f.
In terms of pullback of forms, we gave a meaning to (fw, 1) for f € VMO and
we also have an estimate of this quantity when f € WY/PP,

It is much more difficult to give a robust meaning to ffw when f: R™ —
S'. It is beyond the scope of this presentation to explain in detail how can
this be achieved (and we refer to [13, Chapter 8] for the complete proofs).
However, we will explain the definition of ffw and the main ingredient used in
the definition. Assume first that f = €'?, with smooth . Then (see the proof
of (6.4)) we have
(6.43) flw

1
= —dop.
27Ts0
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Similarly, if f,g : R™ — S' are sufficiently smooth, then
(6.44) (f 9w = frw + ghw.

Another easy observation is that
1
(6.45) ffw = Z—f A df is well-defined when Vf € L.
m

Put together, the three above observations lead to the following reasonable
definition. If

(6.46) f =gh, where g =€ and Vh € L',
then we define

1 1
(6.47) ffw:= —dp+ —hAdh.

2 27

It is possible to follow this route and give a robust meaning to ffw when
f—1€ W?*P with sp > 1. The main ingredient is the “factorization” theorem,
asserting the possibility of decomposing f as in (6.46). More specifically, we
have the following result, valid in any dimension [13, Chapter §|.

THEOREM 12. Assume thatn >1,s > 0and1 <p < co. Let f : R* — S!
be such that f —1 € WP gnd

(6.48) f(x) =1 for |x| > R = Ry.

Then we may write f = e h, where o € W3P(R";R) and h — 1 €
WepL(R™; R?).

In particular, when sp > 1, Theorem 12 allows to define

1 1
(6.49) fAdf = ffw:= —dp+ —h Adh,
2 2

the result being a 1-form with coefficients in Ws=1P 4 Wsp—L1,

The proof of Theorem 12 is too long to be given here. Let us simply
mention that it relies heavily on the trace theory of weighed Sobolev spaces
and on cancellation phenomena. It is simpler when sp < 1, and in this specific
case we refer the reader to [42].

APPENDIX. SOME DETAILED CALCULATIONS

Proof of Lemma 16. By scaling, it suffices to prove the lemma when
R=1.

We start with a useful preliminary observation. By the mean value theo-
rem, there exists some y € B1(0) such that

|f(@) = fy)P
—d < .p
/]31(0) |z — y|ntsp oo a0
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For any such y, we have

B I VO LA, Nl%m”gﬂ@ﬂg} & S om0

We now recall the following elementary inequality. Let p be a measure on
the set A such that 0 < p(A) < oo. Then
<2||f = cllpreay, Vf € LP(A),VeeR.

- ][ Jdu
A LP(A)

Using (7.1), (7.2) (with A := B1(0) and p the Lebesgue measure), and
the assumption fB 0/ =0,V f €Y, we obtain
(7.3) 1 fllzr(Br0)) S [flwsr(Bi(0)), ¥ f €Y.

For z € R" such that |z| > 1, let 2% := z/|z|? € B1(0). Fix some
1 € C(B3(0)) such that v =1 in B1(0). Let f € Y7. We set

(7.2)

e JSf@), iflxl <1 s
(7.4) f(x) = {f(a:*), i 1| > 1 and Py f = f*.

Noting that
P f(z) = Pf(y) =0if [z] > 2 and [y > 2
and that

(7.5)  |Puf(2) = Puf(y)l <15 (@) [(@) — @)l + [ W)L (2) = ()],
we find that

) Pyl
(7.6) |P1f’Wsp S |W5p (B2(0)) / /n y|n+sp dydz.
On the other hand, since » € C°(R"), it is easy to see that

(7.7) /nwx)_w(y)‘pdyg(?:cw, VaeR"

o — gl
Combining (7.6) and (7.7), we find that
(7.38) P By S 1 Breniiaion + 17 B o

Next, using the definition of f* and performing in By(0)\ B1(0) the change
of variable z — x*, we find that

(7.9) If e (Ba(o)) S 11l 2e () (0))-
By (7.8), (7.9) and (7.3), we obtain

(710) |P1f|WSP ~ |f |Wep 32(0) + |f’€[/s,p(Bl(0))7
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and thus the conclusion of the lemma amounts to

(7.11) [ W (B2 (0)) S | lwsr(By(0))-
In turn, (7.11) is obtained as follows. We have

|f ‘Wsp(BQ N|f|Wsp (B1(0))
* _ * p
+/ / |f(z") fiy” dydz
(7.12) Ba(0)\B1(0) J Bo(0\B1(0) 1T — Y|P
_ *\|P
+/ / |f (=) f(f)’ dydz.
B1(0) J Ba(o)\Bi(0)  |T —y["TEP

Using the change of variable z* — 2z and y* — y and noting that

2" —y*| = o —yl, Ya,y € B2(0) \ Bi(0),

and
|z —y"| & |x —yl, Vo € Bi(0), Vy € B2(0) \ Bi(0),
we obtain (7.11) from (7.12).
The proof of Lemma 16 is complete. [

Proof of Lemma 17. We will use repeatedly the following straightforward
consequences of Hélder’s inequality. If 0 < a < oo, then for some C' = Cy ., <
oo we have

U O 4 < € R 118 gy ¥ R = R
R™\ B, r(0) |$’"+5p r

Similarly, we have, with C' = C,}, < 00,

(7.14) /B P OB U0

Using the fact that ¢ € C2°(R™), we find that the function £ : R” — R,

|z —y|rteP
satisfies
1 if |[x] <1
7.15 < _
o H= {x| ), i o] 21
Set n° := 1 — ¢°. Combining (7.15) with the fact that

W (@) =P . [ @) - )P,
J = [ du = e e



67 The role of the Hardy type inequalities in the theory of function spaces 513

[V (x) =y (y)[P . [n°(z) —n°(y)[?
L. 2 — gl w= [ oy Y
(7.16) < {55”, if |[x] <1/e

we obtain

e~ |z~ () if x| > 1/e

For the convenience of the reader, we split the remaining part of the proof
into three steps. Clearly, these steps lead to the conclusion of the lemma.
Step 1. We have

(7.17) [ f — flwse — 0 ase — 0.
Indeed, noting that

V() fz) = flz) =n°(2) f(z) = 0if 2] < 1/e,
we find that

W = Fen < / ‘fx‘ph?( x) —n(y) dydz
|z|>1/e JR™ |

€T — |n+sp

|P
dydz.
/x|>1/s/" |x_y|n+sp

Using successively (7.16) and (7.13), we find that

(7.18)

’P
/I:c>1/s /n !x — yyn+sp dydz - 0ase — 0.

The first step is complete.
Step 2. We have

(7.20) |fe — flwse = 0 ase — 0.

(7.19)

With no loss of generality, we assume that supp p C B1(0). Set H. :=
fe — f. Then (7.20) amounts to

|He(2) — He(y)l?
6'_/n/n |:z:— s 47y

H( h)
// | x—i’_hnﬂp @) dxdh — 0ase — 0.

(7.21)

In order to estimate I, we start by noting that

\He(z + h) — He(x)| 5/|< [fleth—y)—fleth) —fe—y+ /@],

ETL
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Using this observation, we estimate the integrand in (7.21) as follows.
1. If || < e, we use

]H(m—i—h) ( ’</||< |f(x+h_y)_f(x_y)’dy

677/

|f(z) = flz+ 1)
+ /|y|<8 dy.

En

2. If |h| > &, we write

[f(z) = f(z —y)|
" /y|<5 -

Thus
I Se™ (K + Ko+ Ks+ Ky) = " (K1 e+ Kop + Kz e + Ka ),

where

Ky = /Rn /MQ (/y|<£!f($+h—y)—f(x—y)!dy>p\h|‘(”+s”)dhdx,
K> _/n/h|<g (/N (x+h) - f(x )\dy) IA[~) dhda,
Ky=/>/#%(AMJﬂx+h—w—f@+hwm>ﬂm (v4) e,
sz/;%¢¥<ékJﬂmw»—ﬂwm@pw<M%de

We will prove that e K; — 0 ase — 0, j = 1,...,4. The only
ingredient we use in the proof is the straightforward fact that

p
(7.22) lim/ / flety) = . F@P yde =0
e=0 Jpn ly|<e ‘y’n P

We start with Ky. Noting that

p
(/lrﬂw+m—f@n®>::cwmﬂx+m—fuw,
y|<e

we find that

h)
e Ky, =0C flz+h) - f2)l” dh —0ase— 0.
n Jihj<e |h|tsp
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For K1, Holder’s inequality implies that

</| |f<x+h—y>—f<x—y>|dy>
y|<e

(7.23)
< 1) / Flath—y) - fla—y)Pdy,
ly|<e

and thus

— — — p
n Jlhl<e J|y|<e € ‘h| P

For fixed y and h, the change of variable x — y = z leads to

h) p
e ™K, </ / [f(z+h) " 1)l dhdz — 0 as e — 0.
R’ J|hj<e \h\" P

We next estimate K3; the calculation for Ky is similar and will be omitted.
Inequality (7.23) implies that

—_ ) — P
n J|n>e Jlyl<e |h|ntsp

In the above integral, we fix y and h and make the change of variable
x + h = z. Next we integrate in h and find that

— — p
E—n’p K3 5/ / ’f(z gi)_,'_s f(Z)’ dde
n y|<€ gnTep

_ P
/ / |y|n+spf(Z)| dydz — 0 as e — 0.
nJlyl<e

The second step is complete.
Step 3. We have

(7.24) |V (f — f)lwse» — 0 as e — 0.
Set L. := f. — f, so that
(7.25) |Le|lws» — 0 and || Lg||pe — 0 as € — 0.

In order to prove (7.24), we start from the straightforward estimate

120) 107 Leffs S el + [ Lop [ U g,

o oyl

Combining (7.26) with (7.13), (7.14) and (7.16), we obtain (7.24).
The third step is complete. [

Proof of Lemma 18. Let f : R™ — R. Let 2,y € R™. Set

Li=g, 2= (y1,22,...,Tp), 22 = (Y1,Y2, T3 - X))y ey 2 =y
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Then
(7.27) f@) = FWIF < Y1) = FEHIP
j=1
Dividing (7.27) by |z — y|""*P and integrating over x and y, we find that
[f(z7) — f(zZ7HP
(7.28) Vi NZ/H/H |$_ |n+sp dzdy.
Next, we note that
(7.29) / S d dz;_1dy, dy, = ¢
' ot =y e ST G S T i

for some finite constant C. Inserting (7.29) into (7.28), we find that “<” holds
n (3.38).

For the reverse inequality, we fix some j, say j = 1. For x1 # y1 € R, set
t:=(x1+v1)/2, X = (t,z2,...,2p) and r := |z1 — y1|/4. We start from the
inequality
‘f(xla$27 o ,fEn) - f(y17.’1327 cee ’xn)|p S_;‘f(xh'TZa CIEaR 7xn) - f(z)|p

+ |f(y1,x2, s 7xn) - f(z)’p

We divide (7.30) by |21 — y1|*"'**" and integrate over x € R”, y; € R

and z € B,(X). We find that

(7.31) /nl lf(,zo,... 2 )%,Sp( )dfl < /n |f(x) — f(2)|P F(x, z) dadz,
with

(7.30)

1

F = ———— dy;.
((L‘ Z) €B(X ’wl U1 ’n+1+sp Y1

Using the fact that, whenever z E B.(X), we have |z —z| < (3/4) |z1—y1],
we find that F(z,2) < |:1: — z|~(*+sP)_ Inserting this into (7.31), we find that

“>” holds in (3.38) for j = 1. The calculation for other values of j is similar
and will be omitted. [

LEMMA 38. Let 0 < s <1l and1<p<oo. Let

Al p
(7.32) 7y := {f R - R; e LP, \f\wsp:_/ |h{(f)dxdh<oo},
rJr |P[ITEP

(7.33) Zg-{f R—R; fell, (ffiysy = // |h]1+3p d:cdh<oo},
equipped respectively with the norms

1Az, = 11 + 1 By
1Az, == 11 + (Y-

Then Zy = Zsa, with equivalence of norms.
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Proof. As explained in the proof of Lemma 19, it suffices to establish the
semi-norm equivalence |fz|wsr & (fz)ws»r, which in turn amounts to establis-
hing the semi-norm equivalence

(734) |g|Ws,p ~ <g>Ws,p, Vg€ ZyNZs.

The identity A2 g(z) = A} g(z+h)—A} g(z) leads to || A2 g||» < 2| A} gl e,
which in turn implies the inequality ||g]|z, < 2|/g]|z, and the embedding Z; —
Zs.

In order to obtain the opposite inequality

(7.35) lglwsr SAGIwsw, Vg € Z1 N Za,

~

we let £ > 2 be a large integer to be fixed later. We have the identity

ZJ AZg(x+ (j —Ve) = k Alg(z + (k — 1)e) — Afy_y).9(n),

and thus

1 1 k—1
(7.36) |Alg(z+ (k—1)e)| < E‘A%k—l)sg(x)’ +2 j1AZg(z + (j — 1))l
1

]:

If we raise (7.36) to the pth power, divide by |e|'T*P, integrate over x
and ¢ and perform in the first right-hand side integral the change of variable
h:= (k —1)e, we find that

(737) 91ys0 < Cop k™7 19y + Cop (9o
Let k satisfy Cs, k=079 < 1/2. If we apply (7.37) with such &k and use
the fact that |g|lws» < oo, we obtain (7.35). O

Proof of Lemma 21. The argument is similar to the one in Step 2 in the
proof of Lemma 17. We take advantage of the compact notation for variations
and present a shorter argument. With no loss of generality, we may assume
that supp p C [—1,1].

Let h,7,x € R. Then we have the identity
(7.38) AZf(z+7)+ A2f(z — 1) — 2A2 ()
| = A2f(x —7+2h) + Alf(x — ) = 207 f (@ — 7 + D).

Multiplying (7.38) by p-(7), integrating over sup p. C [—¢,¢] and taking
into account the fact that p. is even, we find that

207 (f- = f)

(7.39) :/[Azf(‘7_+2h)+A3f(.7-)ZAEf(.TJrh)]Ps(T)dT.
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Using the fact that |p:| < 1/, we obtain from (7.39) that

1
2 _ » < = 2 v
(7.40) 850 = Dl S [ 1821

On the other hand, we clearly have

1ALl = [[(ARF) * pell o < 1ARF ]| o lloello = | ARF ]

and thus

(7.41) IAZ(fe = DI < 20127 f Iz

Using (7.40) when |h| > ¢ and (7.41) when || < € and Hélder’s inequality,
we find that

p
1 —1—s
|fe = flwsr S (/ HAiflledT> || 717 dh
€Y J|n|>e |T|<e
1A fII7»
+/ dh
hj<e  [P[1FP
g 122 118
Ae PP / A2 f|p» dT +/ R LP gh
(Tléé ’ R e

L ARSI
< —1l-sp 2 pP H H=pJllLr
~€ \/7—|<5 HATfHLP dr +/| ’h‘l-l—sp dh

IARfI7
< " dh — 0 as e — 0.
/h|<€ ’h‘l-i—sp

The proof of Lemma 21 is complete. [

Proof of Lemma 22. As explained in the proof of Lemma 19, it suffices to
establish, for smooth f : R™ — R the following semi-norm equivalences:

(7.42) D™ fII5 / / ff” m)H dzdw, Vm € N,

(7.43) | flyss = /S 1 /L | f&yse dedw, Vs > 0 non-integer, V.M > s.
n— w

Estimate (7.43) is actually an identity, up to a multiplicative constant.
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Indeed, we have

AV fy)l?
/ / / AL f WP 4 s,
§n—1 n ’7’|1+5p
p
/ / //'A J@ AW 1 irdads,
sn—1 JL |T’1+Sp
M x p
/ / / A7 5] dtdrdzds,,
Sn—1 JL ‘T|1+sp
:2/8 . /J_ |f£ il.;VSvp dzdsy,

whence (7.43). In the above, we first expressed h in spherical coordinates (with
r € R), next we performed the change of variables y = z + tw, r € wt, t € R,
whose Jacobian is 1.

We now turn to the proof of (7.42). We let to the reader the easy case
where m = 0 and we assume that m > 1. The starting point of the proof is the
following observation. If A is a symmetric m-linear form on R", and if

Alw,...,w) =0, Ywe S" 1,
———

m times

then A = 0. This is a consequence of the polarization formula for symmetric
forms. It follows that

A = ([ 1A, dsw)l/p,

is a norm on the space of symmetric m-linear form on R™.
Applying the above to A := D™ f(x), x € R", we find that

1D 1, [ (D" )y

= [ LD e )y,

_/Sn_l /WL/R\Dmf(x+tw)(w,...,w)\pdtdxdsw
[ L[] s,

[ [l v,

O

whence (7.42).
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Remark 14. The proof of (7.43) yields the following more general identity.
If g: R" x R" — [0,00) and a € R, then

g(x,y)
Y] qad
/n/n @ — y[re 7Y
1
:/ / //g<x+tw’x+7w)dtdrdajdsw.
2 sn—1 JoL JRJR ‘t_7—|1+04

Proof of Lemma 28 whenn=1. Let f € I/Vlicl(]R) We will prove that
(7.45) "= (sen f) f' € Lige-

Since f is continuous, the conclusion is clear if f does not vanish. We may
thus assume that f vanishes at some point, say f(0) = 0. Then (7.45) amounts
to

(7.46) (@) = /0 “(sgn f() F(t)dt, Ve € R.

(7.44)

We prove e.g. (7.46) when = > 0. Assume first that f(z) = 0. Let
U :={y € (0,x); f(y) # 0}. We write the open set U as a disjoint union
U = U,l;, with each I; = (aj,b;) an open interval. Since f has constant sign
on I; and we have f(a;) = f(b;) =0, we find that

[ sy r@ya= [ Foa= (1) - f(a) =0, Vi.

I;

Therefore,
/ (sen () (1) dt = | e o) 10 e
0 U
=ij /Ij(sgnf(t))f (tydt =0 = f(x),

as desired.

When f(z) # 0, set z := sup{y € [0,z); f(y) = 0}. Then sgnf =
sgn f(x) on (z,z) and f(z) = 0. By the previous calculation, we have [; (sgn f(£)) f(
0. On the other hand, we clearly have

[ e f0) 5@t =sgn s(o) [ 0= (s f(2) 5@ = 170

so that (7.46) holds. O
Proof of Lemma 24. Step 1. An identity. We claim that, for z,h € R"
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and M > 0 we have, with r := |h|:

M
A =3 (M) val, Fa o)

(7.47) ,

=S <M ) (—1)7 1AM F(x, jr).

=1 N
In order to prove (7.47), we start from the identity

f(x):§<M>( 1) F(z, jr) +Z( > 17+ F(x, jr), Vo € R™

=0 N/
As a consequence,

M
A =3 (4 )0 s

k=0
M

_ 0<M> Mkz<> 1) F(x + kh, jr)

k=

+§j(]‘§) Mkz() 11 ( + kh, jr)

k=0
0

) (ka>( DAY, F(a + kh,0) Z( ) LY AMF(x, jr).

k=
(In the second term of the last equality, we have inverted the sums over M and
j.) Therefore, (7.47) holds, as claimed.
Step 2. From the identity (7.47) to the estimate (5.13)
In view of (7.47) and of the desired estimate (5.13), it suffices to establish the
estimate (7.48) below. O

LEMMA 39. Let M > 0 be an integer. Let X := (x,¢) € R’}fl and let
= (h,t) € R™! be such that [X,X + MH] C R, Assume that cither
h=0ort=0. Then we have

M
(7.48) IAMF(X)| < H]M/ tM Dy F(X +tH)|dt.
0
Proof. Set G(t) := F(X +tH), t € [0, M]. Then clearly
AMF(X) = AMG(0) and |GM) (1) < +M | Dy F(X + tH)).

Therefore, it suffices to prove that

M
(7.49) IAMG0) < / M1 G ()] dt.
0
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In turn, estimate (7.49) is obtained as follows. Let x1 := 1|_; o and, for
j > 2, set
Xj = X1*X1* - *X1.

VT
7 times

By a straightforward induction on j, the distributional derivative X(j b
is bounded, and x;(t) = 0 when ¢t > 0 or when ¢t < —j. This leads to the
inequality

(7.50) ()| < C;9 7 Vi >1, Vi > 0.
On the other hand, by a straightforward induction on M, we have

(7.51) AYG0) = G™M) « (0 / G () xnr (—t) dt.
We obtain (7.49) from (7.50) and (7.51).
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