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We illustrate the crucial importance of the Hardy type inequalities in the study
of function spaces, especially of fractional regularity. Immediate applications in-
clude Sobolev and Morrey type embeddings, and properties of the superposition
operator f 7→ Φ ◦ f . Another fundamental consequence is the trace theory of
weighted Sobolev spaces. In turn, weighted Sobolev spaces are useful in the re-
gularity theory of the superposition operators. More involved applications, that
we present in the �nal section, are related to Sobolev spaces of maps with values
into manifolds.
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1. INTRODUCTION

Fractional regularity function spaces, in particular Sobolev spaces W s,p

with non integer s, have attracted considerable interest in the latest years, for
example in connection with fractional processes and operators. Typical and
classical questions related to these spaces are their embeddings, the properties
of the superposition operators f 7→ Φ◦f , or the possibility of giving a meaning
to the pullback f ]ω when ω is an alternate object, e.g. a form.

One of our purposes is to present a user-friendly introduction to fractional
Sobolev spaces and their analysis. This text is an elementary and, to a signi�-
cant extent, self-contained presentation of these topics. The main thread is the
e�ectiveness of the Hardy type inequalities in the study of the aforementioned
properties. Fractional Sobolev spaces are at the intersection of two important
classes of function spaces: Besov spaces and Triebel-Lizorkin spaces; see e.g.
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Triebel [57, Chapters 2�4] for an overview of the theory of these function spa-
ces. In order to establish the properties of these general classes, one usually
has to use relatively advanced tools in analysis (linear or nonlinear interpola-
tion theory, Littlewood-Paley theory, etc.). As we will see below, completely
elementary arguments, many of them based on Hardy type inequalities, su�ce
in the case of fractional Sobolev spaces. (Number of these proofs can be adap-
ted to Besov spaces, but I took the party of not working with these spaces in
this text.) This is not the �rst relatively elementary introduction to fractional
Sobolev spaces; see e.g. Leoni [33, Chapter 14] or Di Nezza, Palatucci and
Valdinoci [22]. However, we think that the systematic use of the Hardy type
inequalities provides the basis for a uni�ed approach that may be of interest
even to the expert reader.

The results in Sections 2, 3 and in the �rst part of Section 5 are well-
known since the 60's. Few proofs in these sections are either classical or possibly
known to experts, but we also present a signi�cant number of new proofs. We
gave references whenever we were aware of the use of similar arguments in the
literature. In the other sections, we present more recent results, some of them
with new proofs.

In order to keep the reading as smooth as possible, a �nal appendix gathers
some calculations which, though essential in the proofs, are not in line with the
main type of arguments we present here.

This text is not a survey of the subject; the references list is very limited.
The interested reader may google the keywords and �nd the huge literature
existing on these topics.

Notation

1. All the functions we consider in Rn are implicitly assumed to be Borel
measurable.

2. x ∨ y := max{x, y}, x ∧ y := min{x, y}. (Warning: �∧� will also be used
for the exterior product vector of vectors in R2, see item 19. below.)

3. When x ∈ Rn, |x| stands for the (standard) Euclidean norm of x. The
standard scalar product is denoted 〈x, y〉, x, y ∈ Rn.

4. Br(x) is the Euclidean open ball of center x ∈ Rn and radius r > 0.

5. When ρ : Rn → R and ε > 0, we set ρε(x) := ε−nρ(x/ε), ∀x ∈ Rn.
6. A standard molli�er is a function ρ ∈ C∞c (Rn) with ρ ≥ 0 and

´
Rn ρ = 1.

We often assume in addition that supp ρ ⊂ B1(0).

7. |A| is the Lebesgue measure of a Borel set A ⊂ Rn.

8.

 
A
f stands for the average of f on A. Typically, A ⊂ Rn, and then
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A
f(x) dx :=

1

|A|

ˆ
A
f(x) dx.

9. Almost everywhere (a.e.) for some function f is understood with respect
to the Lebesgue (or Hausdor�) measure of the underlying space.

10. When f : Rn → R,Mf(x) is the (standard uncentered) maximal function
of f at x, i.e.,

Mf(x) := sup

{ 
B
|f(y)| dy; B ball in Rn such that x ∈ B

}
.

When f is de�ned on (0,∞) ⊂ R, we consider only balls (=intervals)
contained in (0,∞).

11. �↪→� stands for continuous embeddings of Banach spaces X and Y : X ↪→
Y indicates that X is continuously embedded into Y .

12. In many estimates, it is crucial to indicate the dependence of constants
on various parameters. The notation we use is explained in Remark 2.

13. We use several notation for partial derivatives of a function f . The �ab-
stract� one is ∂αf , with α ∈ Nn. (We denote |α| := α1 + · · · + αn the
total number of derivatives). In concrete cases, we rather write ∂1∂2f for
the second order partial derivative, once with respect to x1, once with
respect to x2, etc.

14. If Ω ⊂ Rn is an open set, m ≥ 1 is an integer and 1 ≤ p <∞, we let

Wm,p(Ω) := {f ∈ Lp(Ω); ∂αf ∈ Lp(Ω), ∀α ∈ Nn with |α| ≤ m},
Wm,p
loc (Ω) := {f ∈ Lploc(Ω); ∂αf ∈ Lploc(Ω), ∀α ∈ Nn with |α| ≤ m}.

15. For f ∈Wm,p
loc (Ω), we let |Dmu| :=

∑
α∈Nn
|α|=m

|∂αu|.

16. We set Rn+1
+,∗ := Rn × (0,∞) and Rn+1

+ := Rn × [0,∞).

17. dse denotes the smallest integer k ≥ s.
18. Sk is the unit Euclidean sphere in Rk+1.

19. a ∧ b stands for the vector product of vectors a, b ∈ R2:

(a1, a2) ∧ (b1, b2) := a1 b2 − a2 b1 ∈ R.

More generally, if a ∈ R2 and b ∈ Rm × Rm, we set

(a1, a2) ∧ (b1, b2) := a1 b2 − a2 b1 ∈ Rm.
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2. HARDY INEQUALITIES

2.1. Integer order inequalities

The �standard� Hardy inequality asserts that for every 1 < p < ∞ and
every f ∈W 1,p((0,∞)) such that f(0) = 0 we have

(2.1)

ˆ ∞
0

|f(x)|p

xp
dx ≤

(
p

p− 1

)p ˆ ∞
0
|f ′(x)|p dx.

If we set, with f as above, g := |f ′| : (0,∞) → [0,∞], then (2.1) follows
from

(2.2)

ˆ ∞
0

x−p
(ˆ x

0
g(u) du

)p
dx ≤

(
p

p− 1

)p ˆ ∞
0

(g(u))p du.

In turn, (2.2) is a member of the following family of estimates, commonly
referred to as the �Hardy inequalities�; see e.g. Hardy, Littlewood and P�olya [29,
Section 9.9].

Lemma 1. Let 1 ≤ q < ∞, 0 < r < ∞ and let g be a nonnegative

measurable function on (0,∞). Then we have �Hardy's inequality at 0�

(2.3)

ˆ ∞
0

x−r−1

(ˆ x

0
g(u) du

)q
dx ≤

(q
r

)q ˆ ∞
0

u−r+q−1(g(u))q du

and �Hardy's inequality at ∞�

(2.4)

ˆ ∞
0

xr−1

(ˆ ∞
x

g(u) du

)q
dx ≤

(q
r

)q ˆ ∞
0

ur+q−1(g(u))qdu.

Let us recall, following Stein and Weiss [53, Lemma 3.14, pp. 196�197], a
proof of the above inequalities.

Proof. We rely on Jensen + Fubini. More speci�cally, for x > 0 the
measure µx := ur/q−1 du/Cx, with Cx := (q/r)xr/q, is a probability on (0, x).
Jensen's inequality applied on (0, x) to the convex function Φ(s) := sq, s ≥ 0,
and to the probability measure µx yields

(2.5)

(ˆ x

0
g(u) du

)q
= (Cx)q

(ˆ x

0
g(u)u1−r/q dµx

)q
≤ (Cx)q

ˆ x

0
(g(u))q uq−r dµx

= (Cx)q−1

ˆ x

0
(g(u))q uq−r+r/q−1 du.
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Multiplying (2.5) by x−r−1, integrating over x and using Fubini's theorem,
we �nd that the left-hand side of (2.3) does not exceed(q

r

)q−1
ˆ ∞

0

ˆ ∞
u

x−1−r/q dx (g(u))q uq−r+r/q−1 du

=
(q
r

)q ˆ ∞
0

(g(u))q u−r+q−1 du,

and therefore (2.3) holds.

In order to obtain (2.4), we proceed as above, starting from the probability
measure νx := u−r/q−1 du/Dx on (x,∞), with Dx := (q/r)x−r/q. �

Remark 1. Far-reaching extensions of Lemma 1 yield necessary and su�-
cient conditions for the validity of estimates of the form

(2.6)

ˆ ∞
0

(ˆ x

0
g(u) du

)q
dµ(x) ≤ C

(ˆ ∞
0

(g(u))p dν(u)

)q/p
,

for 1 ≤ p, q < ∞, g : (0,∞) → [0,∞) and ν, µ Radon measures on (0,∞),
as well as the value of the best constant C in (2.6). See the exposition of
this subject by Maz'ya [36, Sections 1.3.2�1.3.3], and the historical comments
there [36, p. 63].

2.2. Three basic fractional order inequalities

The above Hardy inequalities involve f and its derivative f ′. Fractional
order versions of these inequalities involve f and the average rate of change
(f(x)− f(y)/(x− y) (in place of f ′(x)). We present here three basic lemmas,
that we will interpret later in terms of fractional Sobolev spaces W s,p.

Lemma 2 (Fractional Hardy inequality). Let 1 ≤ p < ∞, 0 < λ < ∞,

λ 6= 1, and f : (0,∞)→ R.
Assume that

(2.7)

ˆ ∞
0

|f(x)|p

xλ
dx <∞.

Then, for some �nite constant C = Cp,λ, we have

(2.8)

ˆ ∞
0

|f(x)|p

xλ
dx ≤ C

ˆ ∞
0

ˆ ∞
0

|f(x)− f(y)|p

|x− y|1+λ
dxdy.

In particular, (2.7)�(2.8) hold when f ∈ C∞c ([0,∞)) and 0 < λ < 1,
respectively when f ∈ C∞c ([0,∞)), f(0) = 0 and 1 < λ < p+ 1.
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Remark 2. In the above and in what follows, C denotes a generic �nite

positive constant independent of f or other relevant objects, whose value may
change with di�erent occurrences. If we want to specify what C depends on,
we use subscript indices; e.g., in the above C = Cp,λ indicates that C depends
on p and λ (but not on f).

We also write �A . B� instead of �A ≤ C B�, provided the constant C
does not depend on f or other relevant objects. The notation �A ≈ B� indicates
that A . B . A.

The proof of Lemma 2 we present below is inspired by [14, Proof of
Lemma F.2]. It only uses the triangle inequality!

Proof. We have

(2.9) |f(x)|p ≤ 2p−1|f(y)|p + 2p−1|f(x)− f(y)|p.

We divide (2.9) by αx1+λ, and integrate over x > 0 and αx < y < 2αx.
Here, the constant α > 0 will be chosen later. Using Fubini's theorem, we �nd
that

(2.10)

ˆ ∞
0

|f(x)|p

xλ
dx ≤2p−1 (2λ − 1)αλ−1

λ

ˆ ∞
0

|f(y)|p

yλ
dy

+
2p−1

α

ˆ ∞
0

ˆ 2αx

αx

|f(x)− f(y)|p

x1+λ
dydx

≤2p−1 (2λ − 1)αλ−1

λ

ˆ ∞
0

|f(y)|p

yλ
dy

+ Cα,p,λ

ˆ ∞
0

ˆ ∞
0

|f(x)− f(y)|p

|x− y|1+λ
dxdy.

Here,

(2.11)

Cα,p,λ :=
2p−1

α
sup

0<αx<y<2αx

|x− y|1+λ

x1+λ

=
2p−1

α
(|1− α| ∨ |2α− 1|)1+λ <∞.

We now pick α such that
2p−1 (2λ − 1)αλ−1

λ
≤ 1

2
. Since λ 6= 1, this is pos-

sible provided α > 0 is: su�ciently large when λ < 1, respectively su�ciently
small when λ > 1. For such α, (2.10) yieldsˆ ∞

0

|f(x)|p

xλ
dx ≤ 1

2

ˆ ∞
0

|f(y)|p

yλ
dy + Cα,p,λ

ˆ ∞
0

ˆ ∞
0

|f(x)− f(y)|p

|x− y|1+λ
dxdy,

and thus (2.8) holds with C := 2Cα,p,λ, thanks to the assumption (2.7). �
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Remark 3. Let us note that when λ > 1 we may choose α < 1/2. This im-

plies that, when we estimate, by the above procedure, the integral

ˆ a

0

|f(x)|p

xλ
dx

in terms of an integral involving the quotient
|f(x)− f(y)|p

|x− y|1+λ
(where this time a

is �nite), it su�ces to consider, in (2.9), only values of y in the interval (0, a).
Therefore, the proof of Lemma 2 (but not its statement) leads to the following
version of Lemma 2.

Corollary 1. Let 1 ≤ p < ∞, 1 < λ < ∞, 0 < a ≤ ∞, and f : (0, a)
→ R.

Assume that

(2.12)

ˆ a

0

|f(x)|p

xλ
dx <∞.

Then, for some �nite constant C = Cp,λ (independent of a!), we have

(2.13)

ˆ a

0

|f(x)|p

xλ
dx ≤ C

ˆ a

0

ˆ a

0

|f(x)− f(y)|p

|x− y|1+λ
dxdy.

Lemma 3 (Hardy implies Morrey). Let 1 ≤ p <∞, 1 < λ < p+ 1 and let

I ⊂ R be an interval. Assume that f : I → R satis�es

(2.14)

ˆ
I

ˆ
I

|f(x)− f(y)|p

|x− y|1+λ
dxdy <∞.

Then f equals a.e. some continuous function g.
Assuming that f itself is continuous, we have, for every a, b ∈ I such that

a < b,

(2.15) |f(b)− f(a)|p ≤ Cp,λ(b− a)λ−1

ˆ b

a

ˆ b

a

|f(x)− f(y)|p

|x− y|1+λ
dxdy.

Proof. Assume �rst that f is smooth on [a, b]. By Corollary 1, we have

(2.16)

ˆ b

a

|f(x)− f(a)|p

(x− a)λ
dx ≤ Cp,λ

ˆ b

a

ˆ b

a

|f(x)− f(y)|p

|x− y|1+λ
dxdy,

and similarly

(2.17)

ˆ b

a

|f(x)− f(b)|p

(b− x)λ
dx ≤ Cp,λ

ˆ b

a

ˆ b

a

|f(x)− f(y)|p

|x− y|1+λ
dxdy.

Let J := ((2a+ b)/3, (a+ 2b)/3). When x ∈ J , we have

(2.18)

|f(b)− f(a)|p

(b− a)λ
≤2p−1

(
|f(x)− f(a)|p

(b− a)λ
+
|f(x)− f(b)|p

(b− a)λ

)
≤2p−1

(
|f(x)− f(a)|p

(x− a)λ
+
|f(x)− f(b)|p

(b− x)λ

)
.



454 Petru Mironescu 8

Using (2.16)�(2.18), we �nd that

|f(b)− f(a)|p

(b− a)λ−1
=3

ˆ
J

|f(b)− f(a)|p

(b− a)λ
dx

≤Cp,λ
ˆ
J

(
|f(x)− f(a)|p

(x− a)λ
+
|f(x)− f(b)|p

(b− x)λ

)
dx

≤Cp,λ
ˆ b

a

ˆ b

a

|f(x)− f(y)|p

|x− y|1+λ
dxdy,

whence (2.15) for smooth f .
We next remove the smoothness assumption. We note that (2.14) implies

that ˆ
I

|f(x)− f(y)|p

|x− y|1+λ
dx <∞ for some y ∈ I,

so that f ∈ Lploc(I). Fix some compact interval K ⊂ I and set ε0 := dist(K,
∂I)/2. Consider a standard molli�er ρ ∈ C∞c ((−1, 1)) and set, for 0 < ε < ε0,
fε(x) := f ∗ ρε(x), ∀x ∈ K. Then fε is smooth in K. By the �rst part of the
proof, for every a, b ∈ K such that a < b we have

(2.19) |fε(b)− fε(a)|p ≤ Cp,λ(b− a)λ−1

ˆ b

a

ˆ b

a

|fε(x)− fε(y)|p

|x− y|1+λ
dxdy.

We claim that

(2.20)

ˆ b

a

ˆ b

a

|fε(x)− fε(y)|p

|x− y|1+λ
dxdy ≤

ˆ b+ε

a−ε

ˆ b+ε

a−ε

|f(x)− f(y)|p

|x− y|1+λ
dxdy.

Indeed, let, for g : (A,B)→ R,
(2.21) ∆1

hg(x) := g(x+ h)− g(x), ∀h ∈ (0, B −A), ∀x ∈ (A,B − h).

Then

(2.22)

ˆ B

A

ˆ B

A

|g(x)− g(y)|p

|x− y|1+λ
dxdy = 2

ˆ B−A

0

‖∆1
hg‖

p
Lp((A,B−h))

h1+λ
dh.

Next, we have

∆1
hfε(x) = ∆1

h

(ˆ ε

−ε
f(· − y) ρε(y) dy

)
(x) =

ˆ ε

−ε
∆1
hf(x− y) ρε(y) dy,

and thus, for 0 < h < b− a, we have

(2.23)

‖∆1
hfε‖Lp((a,b−h)) ≤

ˆ ε

−ε
‖∆1

hf(· − y)‖Lp((a,b−h)) ρε(y) dy

=

ˆ ε

−ε
‖∆1

hf‖Lp((a−y,b−h−y)) ρε(y) dy

≤
ˆ ε

−ε
‖∆1

hf‖Lp((a−ε,b−h+ε)) ρε(y) dy

=‖∆1
hf‖Lp((a−ε,b−h+ε)).
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We obtain (2.20) from (2.22) and (2.23).

We conclude as follows. From (2.19) and (2.20), we have |fε(b)− fε(a)| ≤
C(b−a)α, with α := (λ−1)/p > 0 and C independent of a, b, ε. We �nd that fε
satis�es a uniform H�older estimate on K, and thus converges when ε → 0, up
to a subsequence and an additive constant, to some H�older continuous function
g. Since, on the other hand, we have fε → f in Lploc(I) as ε→ 0, we �nd that
f = g a.e. Assuming that f = g, we obtain (2.15) by passing to the limits in
(2.19) and using (2.20). �

Lemma 4 (Hardy implies Sobolev). Let 1 ≤ p < ∞, 0 < λ < 1, and

f : (0,∞)→ R. Let q := p/(1− λ) ∈ (p,∞).

Assume that

(2.24)

ˆ ∞
0

|f(x)|p

xλ
dx <∞.

Then

(2.25)

ˆ ∞
0
|f(x)|q dx ≤ Cp,λ

(ˆ ∞
0

ˆ ∞
0

|f(x)− f(y)|p

|x− y|1+λ
dxdy

)q/p
.

The proof we present below relies on a decomposition method that goes
back to Hedberg [30], and has been widely used since then. This kind of
technique is consubstantial with the interpolation theory.

Proof. We may assume that the right-hand side of (2.25) is �nite. Set

(2.26) G(x) :=

ˆ ∞
0

|f(x)− f(y)|p

|x− y|1+λ
dy and M :=

ˆ ∞
0

G(x) dx.

We will establish the following point estimate

(2.27) |f(x)| ≤ Cp,λMλ/pG(x)(1−λ)/p, ∀x > 0,

which clearly implies (2.25).

We may assume that x satis�es G(x) <∞. We �rst prove that we have

(2.28)

ˆ ∞
x

|f(y)|p

(y − x)λ
dy <∞

and thus (by Lemma 2)

(2.29)

ˆ ∞
x

|f(y)|p

(y − x)λ
dy ≤ Cp,λM.

Indeed, let us note that, by (2.24), we haveˆ ∞
x+1

|f(y)|p

(y − x)λ
dy <∞.
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On the other hand, if G(x) < ∞ then

ˆ x+1

x

|f(x)− f(y)|p

(y − x)1+λ
dy < ∞, and

thus for any such x we haveˆ x+1

x

|f(y)|p

(y − x)λ
dy ≤ 2p−1

ˆ x+1

x

(
|f(x)− f(y)|p

(y − x)1+λ
+
|f(x)|p

(y − x)λ

)
dy <∞;

here, we use the assumption λ < 1.

Therefore, (2.28) and (2.29) hold for any x such that G(x) < ∞, as
claimed.

Let ε > 0 and set

fε(x) :=

 x+ε

x
f(y) dy =

1

ε

ˆ x+ε

x
f(y) dy, ∀x > 0,∀ ε > 0.

On the one hand, we have (using (2.29))

(2.30)

|fε(x)|p ≤ε−p
(ˆ x+ε

x
|f(y)| dy

)p
≤ ελ−p

(ˆ x+ε

x

|f(y)|
(y − x)λ/p

dy

)p
≤ελ−p

ˆ x+ε

x

|f(y)|p

(y − x)λ
dy

(ˆ x+ε

x
dy

)p−1

≤Cp,λελ−1

ˆ x+ε

x

|f(y)|p

(y − x)λ
dy ≤ Cp,λελ−1M.

Similarly, we have

(2.31)

|f(x)− fε(x)|p ≤ε−p
(ˆ x+ε

x
|f(x)− f(y)| dy

)p
≤ε1+λ−p

(ˆ x+ε

x

|f(x)− f(y)|
(y − x)(1+λ)/p

dy

)p
≤ε1+λ−p

ˆ x+ε

x

|f(x)− f(y)|p

(y − x)1+λ
dy

(ˆ x+ε

x
dy

)p−1

≤ελG(x).

By (2.30) and (2.31), we �nd that

(2.32) |f(x)| ≤ Cp,λ
(
ε(λ−1)/pM1/p + ελ/p(G(x))1/p

)
.

We next �optimize� (2.32) by choosing ε :=M/G(x) and obtain (2.27). �

2.3. Further developments

Fact 1. In the previous section, one can clearly work in R instead of (0,∞).
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Fact 2. The extensions of the results in the previous section to Rn with
arbitrary n ≥ 1 are obtained starting from the following version of Lemma 2.

Lemma 5. Let 1 ≤ p <∞, 0 < λ <∞, λ 6= n, and f : Rn → R.
Assume that

(2.33)

ˆ
Rn

|f(x)|p

|x|λ
dx <∞.

Then, for some �nite constant C = Cp,λ,n, we have

(2.34)

ˆ
Rn

|f(x)|p

|x|λ
dx ≤ C

ˆ
Rn

ˆ
Rn

|f(x)− f(y)|p

|x− y|n+λ
dxdy.

In order to prove (2.34), one divides (2.9) by |x|n+λ and integrates over x ∈
Rn and y ∈ Bα |x|/2(3αx/2), for appropriate α� 1 (when λ > n), respectively
α� 1 (when λ < n).

Fact 3. When λ > n, we may replace in (2.34) Rn with suitable subsets
of Rn; this is similar to Remark 3 and Corollary 1. More speci�cally, �x some
constants k > 0 and α0 < 1/2. Assume that Ω ⊂ Rn is a set such that for
every x ∈ Ω and 0 < α < α0 we have

(2.35) |Bα |x|/2(3αx/2) ∩ Ω| ≥ k αn, ∀x ∈ Ω, ∀ 0 < α < α0.

Then we may reproduce the proof of (2.34) (explained above) and obtain
the following local version of Lemma 5.

Lemma 6. Let Ω ⊂ Rn satisfy (2.35) for some constants k > 0 and α0.

Let 1 ≤ p <∞ and λ > n. Let f : Ω→ R. Assume that

(2.36)

ˆ
Ω

|f(x)|p

|x|λ
dx <∞.

Then, for some �nite constant C = Cp,λ,n,k,α0, we have

(2.37)

ˆ
Ω

|f(x)|p

|x|λ
dx ≤ C

ˆ
Ω

ˆ
Ω

|f(x)− f(y)|p

|x− y|n+λ
dxdy.

In particular, if Ω is a ball having 0 on its boundary, then we may choose

k and α0 independent of Ω, and thus (2.37) holds with a constant C = Cp,λ,n.

Fact 4. By straightforward adaptations of the proofs of Lemmas 3 and 4,
and using Lemma 6 in a ball, we obtain the following

Lemma 7. Let 1 ≤ p <∞ and n < λ <∞ be such that λ < p+1. Assume

that f : Rn → R satis�es

(2.38)

ˆ
Rn

ˆ
Rn

|f(x)− f(y)|p

|x− y|n+λ
dxdy <∞.
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Then f equals a.e. some continuous function g.
Assume that f itself is continuous. For every a, b ∈ Rn, let c := (a+ b)/2

and r := |a− b|/2. Then

(2.39) |f(b)− f(a)|p ≤ Cp,λ,n(b− a)λ−n
ˆ
Br(c)

ˆ
Br(c)

|f(x)− f(y)|p

|x− y|n+λ
dxdy.

More generally, let p and λ as above and let Ω ⊂ R be an open set. If

f : Ω→ R satis�es

(2.40)

ˆ
Ω

ˆ
Ω

|f(x)− f(y)|p

|x− y|n+λ
dxdy <∞,

then f equals a.e. some continuous function g.
Assuming f continuous, let a, b ∈ Ω be such that Br(c) ⊂ Ω (with c and

r as above). Then (2.39) holds.

The higher dimensional analogue of Lemma 4 is

Lemma 8. Let 1 ≤ p < ∞, 0 < λ < n, and f : Rn → R. Let q :=
(np)/(n− λ) ∈ (p,∞).

Assume that

(2.41)

ˆ
Rn

|f(x)|p

|x|λ
dx <∞.

Then

(2.42)

ˆ
Rn
|f(x)|q dx ≤ Cp,λ,n

(ˆ
Rn

ˆ
Rn

|f(x)− f(y)|p

|x− y|n+λ
dxdy

)q/p
.

Fact 5. Let λ ≥ p. Assuming that g is a smooth function on an interval
I ⊂ R and that x is a point in I, we have (by Taylor's formula at x)ˆ

I

|g(x)− g(y)|p

|x− y|1+λ
dy =∞ possibly unless g′(x) = 0,

and therefore, for smooth g, we have

(2.43)

ˆ
I

ˆ
I

|g(x)− g(y)|p

|x− y|1+λ
dxdy =∞ unless g is constant.

Comparing (2.43) (with g := fε) with (2.20), we obtain the following
result, stated below in dimension n; this was obtained with di�erent arguments
in [5] (see Corollaries 4 and 5 there).

Lemma 9. Let 1 ≤ p <∞ and p ≤ λ <∞. Let f : Rn → R satisfyˆ
(0,1)n

ˆ
(0,1)n

|f(x)− f(y)|p

|x− y|n+λ
dxdy <∞.

Then f is constant a.e.
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Therefore, although Lemmas 2 and 3 (respectively 5 and 7) are stated
for larger ranges of λ, we may always assume that λ < p, for otherwise the
hypotheses of the lemmas are ful�lled only by f ≡ 0. For example, in Lemma
7 the relevant range is n < p <∞ and n < λ < p.

Fact 6. Let λ, p and q be as in Lemma 4. Assume that we know in
advance that f ∈ Lq. Then it is possible to obtain (2.25) without using Hardy's
inequality. I know the beautiful argument below from Brezis [8]; it holds in any
dimension, but I present it only in R.

Lemma 10 ([8]). Let 1 ≤ p < ∞, 0 < λ < 1, and f : (0,∞) → R. Let

q := p/(1− λ) ∈ (p,∞).
Assume that f ∈ Lq((0,∞)). Then

(2.44)

ˆ ∞
0
|f(x)|q dx ≤ Cp,λ

(ˆ ∞
0

ˆ ∞
0

|f(x)− f(y)|p

|x− y|1+λ
dxdy

)q/p
.

Proof. LetG(x) be as in (2.26) and setN := ‖f‖Lq <∞. We will establish
the following point estimate

(2.45) |f(x)| ≤ 2NλG(x)(1−λ)/p, ∀x > 0,

which implies (2.44).
With fε as in the proof of Lemma 4, we have

(2.46)
|fε(x)| ≤ ε−1

ˆ x+ε

x
|f(y)| dy ≤ ε−1/q

(ˆ x+ε

x
|f(y)|q dy

)1/q

≤ ε(λ−1)/pN.

By (2.31) and (2.46), we �nd that

(2.47) |f(x)| ≤ ε(λ−1)/pN + ελ/p(G(x))1/p.

Choosing ε := Np/G(x) in (2.47), we obtain (2.45). �

Fact 7. In Lemmas 2 and 5, we have assumed that λ 6= n. If we are in
the range λ < p (for otherwise these results are empty, by Lemma 9), then the
condition λ 6= n is necessary for the validity of Lemmas 2 and 5. In order to
prove this fact e.g. when n = 1 (and thus 1 < p < ∞) we will construct a
family (f ε)0<ε<1 such that

(2.48)

ˆ ∞
0

ˆ ∞
0

|f ε(x)− f ε(y)|p

|x− y|2
dxdy ≤ C, ∀ ε ∈ (0, 1),

and

(2.49)

ˆ ∞
0

|f ε(x)|p

x
dx→∞ as ε→ 0.
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The existence of such a family implies that the conclusion of Lemma 2
does not hold when λ = 1 and 1 < p <∞.

In order to de�ne f ε, we start from a (�xed) function f ∈ C1([0,∞)) such
that f(x) ≡ 1 on [0, 1] and f(x) ≡ 0 when x ≥ 2. We then set

f ε(x) :=

{
x/ε, if 0 ≤ x ≤ ε
f(x), if x > ε

, ∀ 0 < ε < 1.

Since f is Lipschitz and bounded, we have

(2.50)

ˆ ∞
0

ˆ ∞
0

|f(x)− f(y)|p

|x− y|2
dxdy .

ˆ 2

0

ˆ ∞
3

1

|x− y|2
dxdy

+

ˆ 2

0

ˆ 3

0

|x− y|p

|x− y|2
dxdy := K <∞.

Using the fact that f ε = f on [ε,∞), we �nd that
(2.51)ˆ ∞

0

ˆ ∞
0

|f ε(x)− f ε(y)|p

|x− y|2
dxdy .K +

ˆ ε

0

ˆ ∞
0

|f ε(x)− f ε(y)|p

|x− y|2
dxdy

.K +

ˆ ε

0

ˆ ∞
2ε

1

|y − x|2
dxdy

+

ˆ ε

0

ˆ ε

0

|x/ε− y/ε|p

|x− y|2
dxdy

+

ˆ ε

0

ˆ 2ε

ε

|1− y/ε|p

|x− y|2
dxdy := C <∞;

here, we use the convergence and the scale invariance of the last three integrals
in (2.51). It follows that (2.48) holds.

On the other hand, by monotone convergence we �nd that

lim
ε→0

ˆ ∞
0

|f ε(x)|p

x
dx =

ˆ ∞
0

|f(x)|p

x
dx =∞,

so that (2.49) holds.

Fact 8. The method presented in the proof of Lemma 2 allows to obtain
a weak form of the standard Hardy inequality, more speci�cally the existence,
for 1 < p < ∞, of some Cp such that for every f ∈ W 1,p((0,∞)) satisfying
f(0) = 0 we have

(2.52)

ˆ ∞
0

|f(x)|p

xp
dx ≤ Cp

ˆ ∞
0
|f ′(x)|p dx.

This time, we use, in addition to the triangle inequality, the Hardy-
Littlewood maximal function theorem, asserting that for 1 < p < ∞ and
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g ∈ Lp((0,∞)) the (uncentered) maximal functionMg of g satis�es

(2.53) ‖Mg‖Lp ≤ Cp ‖g‖Lp .

(The idea of the use of the maximal inequalities in similar contexts goes back
to Hedberg [30].)

In order to obtain (2.52), we let 0 < α < 1 to be determined later and
start from

(2.54)

|f(x)|p ≤2p−1|f(αx)|p + 2p−1|f(αx)− f(x)|p

≤2p−1|f(αx)|p + 2p−1

(ˆ x

αx
|f ′(y)| dy

)p
≤2p−1|f(αx)|p + 2p−1 (1− α)p xp

(
Mf ′(x)

)p
.

Dividing (2.54) by xp and integrating over x, we �nd that

(2.55)

ˆ ∞
0

|f(x)|p

xp
dx ≤ (2α)p−1

ˆ ∞
0

|f(y)|p

yp
dy + 2p−1 (1− α)p ‖Mf ′‖pLp .

If we let α < 1/2 in (2.55) and use (2.53) with g := f ′, we obtain (2.52),
at least when f ∈ C∞c ([0,∞)). The general case follows from the density of
C∞c ([0,∞)) into W 1,p

0 ((0,∞)).

Fact 9. We present here a variant of (2.52). Let I ⊂ R be an open interval
and let f ∈W 1,p(I). Assume that f vanishes at each �nite endpoint of I. Then

(2.56)

ˆ
I

|f(x)|p

[dist(x, ∂I)]p
dx ≤ Cp

ˆ
I
|f ′(x)|p dx.

Indeed, if I = R there is nothing to prove. If I is a half-line, then (2.56)
is equivalent to (2.52). Finally, assume that I = (a, b), with a, b ∈ R. Arguing
as in Remark 3, the proof of (2.52) (but not the inequality (2.52) itself) leads
to

ˆ b

a

|f(x)|p

(x− a)p
dx ≤ Cp

ˆ b

a
|f ′(x)|p dx,(2.57)

ˆ b

a

|f(x)|p

(b− x)p
dx ≤ Cp

ˆ b

a
|f ′(x)|p dx.(2.58)

We obtain (2.56) using (2.57), (2.58) and the fact that

dist(x, ∂I) = (x− a) ∧ (b− x), ∀x ∈ (a, b).
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3. FRACTIONAL SOBOLEV SPACES

3.1. One dimensional spaces and embeddings

As in Section 2, we �rst focus on the one dimensional setting. When
0 < s < 1, 1 ≤ p <∞ and f : R→ R, the W s,p-semi-norm of f is

(3.1) |f |W s,p = |f |W s,p(R) :=

(ˆ
R

ˆ
R

|f(x)− f(y)|p

|x− y|1+sp
dxdy

)1/p

.

Similarly, we set, for every open interval I ⊂ R,

(3.2) |f |W s,p(I) :=

(ˆ
I

ˆ
I

|f(x)− f(y)|p

|x− y|1+sp
dxdy

)1/p

.

One then de�nes

(3.3) W s,p(R) := {f : R→ R; f ∈ Lp(R) and |f |W s,p <∞},
equipped with the �natural� norm

(3.4) ‖f‖pW s,p := ‖f‖pLp + |f |pW s,p ;

the de�nition of W s,p(I) is similar.
W s,p(R) is a �fractional Sobolev� or Slobodeskii space.
We now interpret the results in Section 2.2 in terms of fractional Sobolev

spaces.

Lemma 11. Let 0 < s < 1 and 1 ≤ p <∞ be such that sp < 1. Then

(3.5)

ˆ
R

|f(x)|p

|x|sp
dx ≤ Cs,p |f |pW s,p , ∀ f ∈W s,p(R).

Proof. Let f ∈ W s,p(R). Since |f |W s,p <∞, for a.e. z ∈ R we have

(3.6)

ˆ
R

|f(x)− f(z)|p

|x− z|1+sp
dx <∞.

Set A := {z ∈ R; (3.6) holds}. We note that A is dense in R (since it is a
full measure set). By the proof of (2.28) and the fact that f ∈ Lp(R), we have

(3.7)

ˆ
R

|f(x)|p

|x− z|sp
dx <∞, ∀ z ∈ A.

By Lemma 2 and Fact 1, we obtain

(3.8)

ˆ
R

|f(x)|p

|x− z|sp
dx ≤ Cs,p |f |pW s,p , ∀ z ∈ A.

Consider now a sequence (zk) ⊂ A such that zk → 0. Applying (3.8) with
z = zk, letting k →∞ and using Fatou's lemma, we �nd that (3.5) holds. �

From Lemmas 4 and 11 and Fact 1, we derive the following
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Corollary 2. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < 1. Set

q := p/(1− sp) ∈ (p,∞). Then W s,p(R) ↪→ Lq(R). More speci�cally, we have

(3.9) ‖f‖Lq ≤ Cs,p|f |W s,p , ∀ f ∈W s,p(R).

By Lemma 9, our next result is equivalent to Lemma 3.

Corollary 3. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp > 1.
Assume that f : I → R satis�es |f |W s,p(I) < ∞. Then f equals a.e. some

continuous function g.
Assuming that f itself is continuous, we have, for every a, b ∈ I such that

a < b,

(3.10) |f(b)− f(a)|p ≤ Cp,λ(b− a)λ−1|f |pW s,p((a,b)).

3.2. Higher dimensional spaces and embeddings

When 0 < s < 1, 1 ≤ p <∞ and f : Rn → R, the W s,p-semi-norm of f is

(3.11)

|f |W s,p = |f |W s,p(R) :=

(ˆ
Rn

ˆ
Rn

|f(x)− f(y)|p

|x− y|n+sp
dxdy

)1/p

=

(ˆ
Rn

ˆ
Rn

|f(x+ h)− f(x)|p

|h|n+sp
dxdh

)1/p

.

Similarly, we set, for every open set Ω having �some smoothness� (e.g.
bounded Lipschitz domain, or a convex set)

(3.12) |f |W s,p(Ω) :=

(ˆ
Ω

ˆ
Ω

|f(x)− f(y)|p

|x− y|n+sp
dxdy

)1/p

.

One then de�nes

(3.13) W s,p = W s,p(Rn) := {f : Rn → R; f ∈ Lp(Rn) and |f |W s,p <∞},

equipped with

(3.14) ‖f‖pW s,p := ‖f‖pLp + |f |pW s,p ;

the de�nition of W s,p(Ω) is similar.

Remark 4. A warning. One can use (3.12) to de�ne W s,p(Ω) for any Ω.
The drawback of this is that the de�nition will coincide with other reasonable
possible de�nitions ofW s,p(Ω) only when Ω is su�ciently smooth (in particular
bounded Lipschitz, or convex). We will not discuss this point here. However,
we call the attention of the reader to the fact that whenever we consider the
semi-norm | |W s,p(Ω), we implicitly assume that either Ω is Rn (and then we
simply write | |W s,p), or Ω is bounded Lipschitz, or convex.
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As in Section 3.1, we obtain the following.

Lemma 12. Let 0 < s < 1 and 1 ≤ p <∞ be such that sp < n. Then

(3.15)

ˆ
Rn

|f(x)|p

|x|sp
dx ≤ Cs,p |f |pW s,p , ∀ f ∈W s,p(Rn).

Corollary 4. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < n. Set

q := (np)/(n− sp) ∈ (p,∞). Then W s,p(Rn) ↪→ Lq(Rn). More speci�cally, we

have

(3.16) ‖f‖Lq ≤ Cs,p|f |W s,p , ∀ f ∈W s,p(Rn).

Corollary 5. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp > n.
Assume that f : Ω → R satis�es |f |W s,p(Ω) < ∞. Then f equals a.e. some

continuous function g.

Assuming that f itself is continuous, set, for a, b ∈ Ω, c := (a+ b)/2 and

r := |a− b|/2. If Br(c) ⊂ Ω, then

(3.17) |f(b)− f(a)|p ≤ Cp,λ(b− a)λ−n|f |pW s,p(Br(c))
.

3.3. An elementary embedding

One should see W s,p as a space of functions �having up to s derivatives in
Lp�. With this interpretation in mind, it is reasonable to expect the validity of
the following result.

Lemma 13. Let 0 < s1 < s2 < 1 and 1 ≤ p <∞. Then we have

(3.18) W 1,p(Rn) ↪→W s2,p(Rn) ↪→W s1,p(Rn) ↪→ Lp(Rn).

Proof. The last embedding is clear. The embedding W s2,p ↪→ W s1,p fol-
lows from

|f |pW s1,p =

ˆ
|h|<1

ˆ
Rn

|f(x+ h)− f(x)|p

|h|n+s1p
dxdh

+

ˆ
|h|≥1

ˆ
Rn

|f(x+ h)− f(x)|p

|h|n+s1p
dxdh

≤
ˆ
|h|<1

ˆ
Rn

|f(x+ h)− f(x)|p

|h|n+s2p
dxdh

+ 2p−1

ˆ
|h|≥1

‖f‖pLp
|h|n+s1p

dh . |f |pW s2,p + ‖f‖pLp .
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Finally, we prove that W 1,p ↪→W s2,p. If f ∈W 1,p, then

(3.19)

‖f(·+ h)− f‖Lp =
∥∥∥[f(·+ t h)]t=1

t=0

∥∥∥
Lp

=

∥∥∥∥ˆ 1

0
∇f(·+ t h) · h dt

∥∥∥∥
Lp

≤
ˆ 1

0
‖∇f(·+ t h)‖Lp dt |h|

=‖∇f‖Lp |h|,∀h ∈ Rn.
Using (3.19), we �nd that

|f |pW s2,p =

ˆ
|h|<1

ˆ
Rn

|f(x+ h)− f(x)|p

|h|n+s2p
dxdh

+

ˆ
|h|≥1

ˆ
Rn

|f(x+ h)− f(x)|p

|h|n+s2p
dxdh

≤
ˆ
|h|<1

‖∇f‖pLp |h|p

|h|n+s2p
dh

+ 2p−1

ˆ
|h|≥1

‖f‖pLp
|h|n+s1p

dxdh . ‖∇f‖pLp + ‖f‖pLp .

This completes the proof of Lemma 13. �

3.4. Homogeneous spaces

Sobolev spaces are often used in connection with optimal Sobolev and
Morrey embeddings. In this perspective, it is convenient to consider larger
spaces, that contain the original Sobolev ones, and satisfy the same embedding
properties. In order to motivate what follows, let us brie�y recall what happens
in the context of Sobolev spaces W 1,p = W 1,p(Rn). When p > n, we see that
the Morrey estimate

(3.20) |f(x)− f(y)| ≤ C |x− y|1−n/p ‖∇f‖Lp , ∀ f ∈W 1,p, ∀x, y ∈ Rn

involves only ‖∇f‖Lp , and an inspection of its proof shows that the estimate
holds for f in the larger space {f : Rn → R; ‖∇f‖Lp <∞}. (Strictly speaking,
in (3.20) we have to replace f by its continuous representative.)

When p = n, there is no �optimal embedding� to look at.
When 1 ≤ p < n, the optimal Sobolev embedding

(3.21) ‖f‖L(np)/(n−p) ≤ C ‖∇f‖Lp , ∀ f ∈W 1,p,

does not hold solely under the assumption ∇f ∈ Lp. Indeed, it su�ces to see
that f ≡ 1 does not satisfy (3.21). However, the conclusion (3.21) holds if we
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require that �f is small at in�nity� in an appropriate sense. There are several
possible de�nitions of the smallness, and they all yield the same �homogeneous
space� Ẇ 1,p = Ẇ 1,p(Rn).

Lemma 14. Let 1 ≤ p < n and let q := (np)/(n− p). Set

X1 := the closure of C∞c (Rn) equipped with the norm f 7→ ‖∇f‖Lp ,(3.22)

X2 :=

{
f : Rn → R; ∇f ∈ Lp(Rn) and

ˆ
Rn

|f(x)|p

|x|p
dx <∞

}
,(3.23)

X3 := {f : Rn → R; ∇f ∈ Lp(Rn) and f ∈ Lq} ,(3.24)

X4 :=

{
f : Rn → R; ∇f ∈ Lp(Rn) and lim

R→∞

 
BR(0)

f = 0

}
.(3.25)

Then X1 = X2 = X3 = X4. Moreover, if we endow Xj, j = 1, . . . , 4, with
its �natural� norm

‖f‖pX1
:= ‖∇f‖pLp , ‖f‖

p
X2

:= ‖∇f‖pLp +

ˆ
Rn

|f(x)|p

|x|p
dx,

‖f‖pX3
:= ‖∇f‖pLp + ‖f‖pLq , ‖f‖

p
X4

:= ‖∇f‖pLp ,

then these norms are equivalent. In particular, each Xj is complete.

We denote Ẇ 1,p one of the spaces Xj , j = 1, . . . , 4, with its natural norm.

Proof. When f ∈ C∞c (Rn), we have

f(r ω) = − [f(t ω)]t=∞t=r = −
ˆ ∞
r

[∇f(t ω)] · ω dt, ∀ r > 0, ∀ω ∈ Sn−1,

and thus

(3.26) |f(r ω)| ≤
ˆ ∞
r
|∇f(t ω)| dt,∀ r > 0, ∀ω ∈ Sn−1.

Using (3.26) and Hardy's inequality at in�nity (2.4) (with r := n − p,
q := p and g(u) := |∇f(uω)|), we �nd that

(3.27)

ˆ
Rn

|f(x)|p

|x|p
dx =

ˆ
Sn−1

ˆ ∞
0

rn−p−1|f(r ω)|p drdsω

.
ˆ
Sn−1

ˆ ∞
0

rn−1|∇f(r ω)|p drdsω =

ˆ
Rn
|∇f(x)|p dx.

We �nd that (3.27) holds for every f ∈ X1, and thus X1 ↪→ X2 with norm
equivalence.

If f ∈ Lq(Rn), then limR→∞
ffl
BR(0) f = 0, by H�older's inequality applied

to f in BR(0). We �nd that X3 ↪→ X4. By a similar argument, we have
X2 ↪→ X4.
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Assume now that f ∈ X4. Since ∇f ∈ Lp, we have f ∈ Lqloc(R
n). Set

fR :=
ffl
BR(0) f . Since

´
BR(0)(f − fR) = 0, we have, by the local Sobolev

embedding,

(3.28)

ˆ
BR(0)

|f(x)− fR|q dx ≤ C

(ˆ
BR(0))

|∇f(x)|p dx

)q/p
.

Note that C = Cp,n does not depend on R, by the scale invariance of
(3.28). Letting R→∞ in (3.28) and using Fatou's lemma, we �nd that f ∈ X3

and that X4 ↪→ X3.
In order to complete the proof of the lemma, it su�ces to prove that

X3 ↪→ X1. Let f ∈ X3. Let ρ ∈ C∞c (Rn) be a standard molli�er; thus ρ ≥ 0
and

´
Rn ρ = 1. Set fε := f ∗ ρε. Then

‖fε‖Lp = ‖f ∗ ρε‖Lp ≤ ‖f‖Lp‖ρε‖L1 = ‖f‖Lp

and similarly ‖∇fε‖Lp ≤ ‖∇f‖Lp .
Consider now some ψ ∈ C∞c (Rn) such that ψ = 1 in B(0, 1) and supp ψ ⊂

B(0, 2). Set

(3.29) ψε(x) := ψ(εx) and gε := ψε fε = ψε (f ∗ ρε).

Then gε ∈ C∞c (Rn). We claim that gε → f in X3 as ε→ 0. (This implies
that f ∈ X1 and that X3 ↪→ X1.) Indeed, on the one hand we have fε → f in
Lq as ε→ 0, and therefore, by dominated convergence,

‖f − gε‖Lq ≤ ‖(1− ψε) f‖Lq + ‖ψε (f − fε)‖Lq
. ‖(1− ψε) f‖Lq + ‖f − fε‖Lq → 0 as ε→ 0.

On the other, using the fact that ∇fε → ∇f in Lp as ε→ 0 and that

|∇ψε(x)| .

{
ε, if 1/ε < |x| < 2/ε,

0, otherwise
,

we obtain, via H�older's inequality, that

‖∇f −∇gε‖Lp ≤ ‖(1− ψε)∇f‖Lp + ‖ψε (∇f −∇fε)‖Lp + ‖fε∇ψε‖Lp
. ‖(1− ψε)∇f‖Lp + ‖∇f −∇fε‖Lp + ε‖fε‖Lp({1/ε<|x|<2/ε})

. ‖(1− ψε)∇f‖Lp + ‖∇f −∇fε‖Lp + ‖fε‖Lq({1/ε<|x|<2/ε})

→ 0 as ε→ 0.

This �nal estimate completes the proof of the lemma. �

By analogy with the case of Ẇ 1,p, we de�ne the homogeneous space
Ẇ s,p = Ẇ s,p(Rn) as one of the spaces Xj , j = 1, . . . , 4, below, with its na-
tural norm.
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Lemma 15. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < n and let

q := (np)/(n− sp). Set

X1 := the closure of C∞c (Rn) equipped with the norm f 7→ |f |W s,p ,(3.30)

X2 :=

{
f : Rn → R; |f |W s,p <∞ and

ˆ
Rn

|f(x)|p

|x|sp
dx <∞

}
,(3.31)

X3 := {f : Rn → R; |f |W s,p <∞ and f ∈ Lq} ,(3.32)

X4 :=

{
f : Rn → R; |f |W s,p <∞ and lim

R→∞

 
BR(0)

f = 0

}
.(3.33)

Then X1 = X2 = X3 = X4. Moreover, if we endow Xj, j = 1, . . . , 4, with
its �natural� norm

‖f‖pX1
:= |f |pW s,p , ‖f‖pX2

:= |f |pW s,p +

ˆ
Rn

|f(x)|p

|x|p
dx,

‖f‖pX3
:= |f |pW s,p + ‖f‖pLq , ‖f‖

p
X4

:= |f |pW s,p ,

then these norms are equivalent. In particular, each Xj is complete.

Proof. The embedding X1 ↪→ X2 with equivalence of norms follows from
Lemma 5. The embedding X2 ↪→ X3 and the estimate

‖f‖X3 . ‖f‖X1 ≤ ‖f‖X2 , ∀ f ∈ X2,

are established via Lemma 8.
The embedding X3 ↪→ X4 follows from H�older's inequality.
In order to establish the embedding X4 ↪→ X3, we rely on the following

result, whose proof is postponed to the appendix.

Lemma 16. Let 0 < s < 1, 1 ≤ p <∞ and R > 0. Let

YR :=

{
f : BR(0)→ R; |f |W s,p(BR(0)) <∞ and

 
BR(0)

f = 0

}
.

Then there exists an extension operator PR on YR such that:

1. PRf ∈W s,p(Rn), ∀ f ∈ YR.
2. PRf = f on BR(0), ∀ f ∈ YR.
3. |PRf |W s,p ≤ Cs,p,n |f |W s,p(BR(0)), ∀ f ∈ YR.

(The main point in the above result is that the constant in item 3 does not
depend on R.)

Granted Lemma 16, we proceed as follows. Let f ∈ X4. Let us note that
f ∈ Lploc(R

n) (since |f |W s,p <∞). Set

(3.34) fR :=

 
BR(0)

f,
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so that f − fR ∈ YR. Applying Lemma 16 to f − fR and Corollary 2 to
PR(f − fR), we �nd that

(3.35) ‖f − fR‖Lq(BR(0)) ≤ ‖PR(f − fR)‖Lq ≤ C |f |W s,p .

Letting R→∞ in (3.35), we �nd that f ∈ X3 and that X4 ↪→ X3.
Finally, let f ∈ X3. Let, as in the proof of Lemma 14, gε := ψε fε. As

there, in order to �nd that X3 ↪→ X1 and to complete the proof of the lemma,
it su�ces to prove that gε → f in X3 as ε → 0. The fact that gε → f in Lq

follows as in the proof of Lemma 14. It remains to prove that |gε − f |W s,p → 0
as ε→ 0. This is the content of Lemma 17 below, whose proof is postponed to
the appendix. �

Lemma 17. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < n. Set

q := (np)/(n − sp). Let f : Rn → R be such that |f |W s,p < ∞ and f ∈ Lq.
De�ne gε as in (3.29). Then |gε − f |W s,p → 0 as ε→ 0.

Remark 5. Augusto Ponce [48] suggested to me another possible de�nition
of Ẇ s,p as follows. If f �vanishes at in�nity�, then for every δ > 0 the set
{x ∈ Rn; |f(x)| > δ} has �nite measure. It is thus natural to consider the
space

X5 := {f : Rn → R; |f |W s,p <∞ and |{x ∈ Rn; |f(x)| > δ}| <∞, ∀ δ > 0},
with the semi-norm ‖f‖pX5

:= |f |pW s,p .
If 0 < s < 1 and 1 ≤ p <∞ are such that sp < n, then X5 = X1. Indeed,

if f ∈ X1 then f ∈ Lq and thus f ∈ X5, by Markov's inequality. Conversely,
let f ∈ X5. We want to prove that f ∈ X1. In view of Lemma 15, this amounts
to fR → 0 as R →∞, where fR is as in (3.34). We argue by contradiction an
assume that |fRk | ≥ 2δ > 0 along a sequence Rk → ∞. By (3.35), we have
‖f − fR‖Lq(BR(0)) ≤ C = Cf , and thus for every t > 0 and R > 0 we have
(using Markov's inequality)

(3.36) |{x ∈ BR(0); |f(x)− fR| ≤ t}| ≥ |BR(0)| − Cq

tq
.

We apply (3.36) with t = δ and R = Rk. We �nd that

(3.37)
|{x ∈ BRk(0); |f(x)| > δ}| ≥ |{x ∈ BRk(0); |f(x)− fRk | ≤ δ}|

≥ |BRk(0)| − Cq

δq
→∞ as k →∞,

and therefore |{x ∈ Rn; |f(x)| > δ}| = ∞. This contradiction completes the
proof of the equality X5 = X1.

An inspection of the above proof is the the analogous equality �X5 = X1�
still holds for s = 1.

For more advanced considerations on homogeneous spaces and their rea-
lizations, see e.g. Bourdaud [1].
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3.5. Slicing (I)

It will often be more convenient to work in R with functions of one variable
instead of working in Rn. This is possible thanks to a �Fubini type� property
stated below. Such a property is reminiscent of the fact that, if f ∈ Lp(R2), then
for a.e. y ∈ R we have f(·, y) ∈ Lp(R). For simplicity, we state our next result in
Rn, but analogous ones hold in su�ciently smooth open sets Ω ⊂ Rn. Given x ∈
Rn and j ∈ {1, . . . , n}, we use the notation x̂j := (x1, . . . , xj−1, xj+1, . . . , xn) ∈
Rn−1.

Lemma 18. Let 0 < s < 1 and 1 ≤ p < ∞. Then for every f : Rn → R
we have

(3.38) |f |pW s,p(Rn) ≈
n∑
j=1

ˆ
Rn−1

|f(x1, . . . , xj−1, ·, xj+1, . . . , xn)|pW s,p(R) dx̂j .

The proof of the lemma is presented in the appendix.

Remark 6. Other forms of slicing are possible. Instead of �xing (n − 1)
variables and considering functions of one variable, one may �x (n−k) variables
and consider functions of k variables. Then the analogue of (3.38) holds. This
can be established by copying the proof of Lemma 18. See also Section 3.7.

3.6. Higher order spaces

There are several possible reasonable de�nitions of higher order fractional
Sobolev spaces W s,p. Consider for example some s ∈ (1, 2) and write s = 1 +σ
with 0 < σ < 1. A �rst possible de�nition of W s,p(R) is

(3.39) W s,p = W s,p(R) := {f : R→ R; f ∈W 1,p and f ′ ∈W σ,p}.

Another possibility consists of de�ning W s,p via adapted higher order
average rates of change. Recalling that when 0 < s < 1 spaces are de�ned via
the �rst order rates (f(x)−f(y))/(x−y), one may consider seconder order rates.
It is actually more convenient to use, instead of rates of change, slightly di�erent
quantities. We consider the �rst order variation ∆1

hf(x) := f(x + h) − f(x),
and then the second order variation given by

∆2
hf(x) := ∆1

h(∆1
hf)(x) = f(x+ 2h)− 2f(x+ h) + f(x).

Higher order variations are de�ned by induction: we let

∆M
h := ∆1

h ◦ · · · ◦∆1
h︸ ︷︷ ︸

M times

.
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For 1 < s < 2, one may try the following alternative to (3.39).

(3.40)

W s,p = W s,p(R) :=

{
f : R→ R; f ∈ Lp and

ˆ
Rn

ˆ
Rn

|∆2
hf(x)|p

|h|n+sp
dxdh <∞

}
.

It turns out that the de�nitions (3.39) and (3.40) lead to the same space
and to equivalent �natural� norms. The situation is similar in higher dimensions
and for higher order derivatives. For simplicity, we justify the equality of spaces
and the equivalence of norms only when n = 1 and 1 < s < 2, but with more
work arguments can be adapted to the general case. We refer the interested
reader to [57, Section 2.6.1] for a comprehensive list of equivalent de�nitions of
W s,p with non-integer s. Since we want to keep this text of reasonable length,
in the next sections we will take for granted the equivalence of some of these
characterizations.

It will be useful later to have at least one de�nition of W s,p(Rn). We
adopt the following one. Let s > 0 be a non-integer and let 1 ≤ p < ∞. Let
M > s be an integer, and de�ne

(3.41) |f |pW s,p = |f |pW s,p(Rn) :=

ˆ
Rn

ˆ
Rn

|∆M
h f(x)|p

|h|n+sp
dxdh.

Strictly speaking, this semi-norm depends not only on s, p and n, but also
on M . However, in order to keep notation simple we omit the dependence on
M . We let

W s,p = W s,p(Rn) := {f : Rn → R; f ∈ Lp and |f |W s,p <∞},
equipped with the �natural� norm

(3.42) ‖f‖pW s,p := ‖f‖pLp + |f |pW s,p .

Spaces on su�ciently smooth domains Ω are de�ned similarly. The double
integral in x and h is performed over the set

{(x, h) ∈ Ω× Rn; [x, x+Mh] ⊂ Ω}.
Let us note that the standard space W s,p with 0 < s < 1 corresponds to

the choiceM = 1. Incidentally, our above discussion reveals that we could have
de�ned W s,p with 0 < s < 1 via higher order variations. In order to illustrate
this, we present in the appendix a proof of the equality of the spaces W s,p(R)
with 0 < s < 1, de�ned in one dimension via �rst, respectively second order
variations; see Lemma 38.

We next justify the equivalence of the de�nitions (3.39) and (3.40). Our
result in this direction is the following.
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Lemma 19. Let 1 < s < 2 and 1 ≤ p <∞. Let σ := s− 1 ∈ (0, 1). Set

Z1 := {f : R→ R; f ∈ Lp and |f |W s,p <∞},
Z2 := {f : R→ R; f ∈W 1,p and 〈f〉W s,p := |f ′|Wσ,p <∞},

equipped respectively with the norms

‖f‖pZ1
:= ‖f‖pLp + |f |pW s,p ,

‖f‖pZ2
:= ‖f‖pLp + 〈f〉pW s,p .

Then Z1 = Z2, with equivalence of norms.

In the above, | |W s,p is the semi-norm given by (3.41) with n = 1 and
M = 2. We de�ne W s,p = W s,p(R) as one of the spaces Z1, Z2 with its norm.

The main ingredient in the proof of Lemma 19 is the following.

Lemma 20. Let 1 < s < 2 and 1 ≤ p < ∞. Let σ := s − 1 ∈ (0, 1). Let

f ∈ C1(R). Then we have

(3.43) |f |W s,p . 〈f〉W s,p .

Assuming that 〈f〉W s,p <∞, we also have

(3.44) 〈f〉W s,p . |f |W s,p .

Proof. The proof relies only on a Hardy type inequality!

Step 1. Proof of (3.43). Let us note the identity

(3.45) ∆2
hf(x− h) =

ˆ h

0
[f ′(x+ t)− f ′(x− t)] dt.

Using (3.45) and the Hardy inequality at 0 (2.3), we �nd that

(3.46)

ˆ
R

|∆2
hf(x− h)|p

|h|1+sp
dh .

ˆ
R

|f ′(x+ t)− f ′(x− t)|p

|t|1+σp
dt, ∀x ∈ R.

Integrating (3.46) over x, we obtain (3.43).

Step 2. Proof of (3.44). This time we start from the identity

(3.47) ∆2
εf(x) =

ˆ x+2ε

x+ε
f ′(t) dt−

ˆ x+ε

x
f ′(t) dt.

Let k be a large integer to be chosen later. Using (3.47), we �nd that

(3.48)
k−1∑
j=0

∆2
εf(x+ jε) =

ˆ x+(k+1)ε

x+kε
f ′(t) dt−

ˆ x+ε

x
f ′(t) dt.
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Identity (3.48) is equivalent to

(3.49)

f ′(x+ kε)− f ′(x) =
1

ε

k−1∑
j=0

∆2
εf(x+ jε)

− 1

ε

ˆ ε

0
(f ′(x+ kε+ t)− f ′(x+ kε)) dt

+
1

ε

ˆ ε

0
(f ′(x+ t)− f ′(x)) dt.

Taking absolute values in (3.49), we �nd that

(3.50)

|f ′(x+ kε)− f ′(x)| ≤ 1

|ε|

k−1∑
j=0

|∆2
εf(x+ jε)|

+
1

|ε|

∣∣∣∣ˆ ε

0
(f ′(x+ kε+ t)− f ′(x+ kε)) dt

∣∣∣∣
+

1

|ε|

∣∣∣∣ˆ ε

0
(f ′(x+ t)− f ′(x)) dt

∣∣∣∣ .
If we raise (3.50) to the pth power, divide by |ε|1+σp, integrate over x and

ε and perform in the left-hand side integral the change of variable h := kε, we
�nd that

(3.51)

〈f〉pW s,p ≤Cs,p,k |f |pW s,p

+ Cs,p k
−σp

ˆ
R

ˆ
R
|ε|−1−sp

∣∣∣∣ˆ ε

0
(f ′(x+ t)− f ′(x)) dt

∣∣∣∣p dxdε.
We now apply in (3.51) the Hardy inequality (2.3) to the integral in ε

(with x �xed) and �nd that

(3.52) 〈f〉pW s,p ≤ Cs,p,k |f |pW s,p + Cs,p k
−σp 〈f〉pW s,p .

Finally, if we choose k su�ciently large then Cs,p k
−σp < 1/2. For such k,

(3.52) combined with the assumption 〈f〉W s,p <∞ yields (3.44). �

Proof of Lemma 19. Let us note that we have Zj ↪→ Lp, j = 1, 2, and
thus it su�ces to prove the norm equivalence for f : R→ R, f ∈ Lp.

Step 1. Norm equivalence for f ∗ρε. Set fε := f ∗ρε, where ρ is a standard
molli�er. We will prove that ‖fε‖Z1 ≈ ‖fε‖Z2 (with constants independent of
ε). Indeed, on the one hand (3.43) implies that ‖fε‖Z1 . ‖fε‖Z2 .

For the opposite inequality, we claim that fε ∈ Z2, and thus 〈fε〉W s,p <∞.
(This implies the validity of (3.44) for fε and completes Step 1.) We actually
claim that

(fε)
(m) ∈ Lp, ∀m ∈ N,(3.53)
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and

|(fε)(m)|W t,p <∞, ∀m ∈ N, ∀ t ∈ (0, 1).(3.54)

Indeed, (3.53) follows from

(3.55) ‖(fε)(m)‖Lp = ‖f ∗ (ρε)
(m)‖Lp ≤ ‖f‖Lp ‖(ρε)(m)‖L1 ≤ Cm,p,ε‖f‖Lp .

Estimate (3.55) yields

(3.56)

∥∥∥∆1
h[(fε)

(m)]
∥∥∥
Lp

=

∥∥∥∥[(fε)(m)(·+ τ)
]τ=h

τ=0

∥∥∥∥
Lp

=

∥∥∥∥ˆ h

0
(fε)

(m+1)(·+ τ) dτ

∥∥∥∥
Lp

≤ |h| ‖(fε)(m+1)‖Lp ≤ Cm,p,ε|h| ‖f‖Lp .

Using (3.55) and (3.56), we �nd that

|(fε)(m)|pW t,p =

ˆ
|h|<1

ˆ
R

∣∣∆1
h[(fε)

(m)](x)
∣∣p

|h|1+tp
dxdh

+

ˆ
|h|≥1

ˆ
R

∣∣∆1
h[(fε)

(m)](x)
∣∣p

|h|1+tp
dxdh

≤Cm,p,ε‖f‖pLp

(ˆ
|h|≤1

dh

|h|1−(1−t)p +

ˆ
|h|>1

dh

|h|1+tp

)
≤Cm,p,ε‖f‖pLp ,

whence (3.54).
Step 2. A control for ‖f ′‖Lp . Assuming f ∈ C1, we will control ‖f ′‖Lp in

terms of 〈f〉W s,p and ‖f‖Lp . The starting point is the identity

f ′(x) = f(x+ 1)− f(x)−
ˆ 1

0
[f ′(x+ t)− f(x)] dt,

which implies, in conjunction with H�older's inequality, that

(3.57) ‖f ′‖Lp ≤ 2 ‖f‖Lp +

ˆ 1

0
‖∆1

t f
′‖Lp dt . ‖f‖Lp + 〈f〉W s,p .

Step 3. ε → 0. Assume �rst that f ∈ Z2. Using the identity ∆1
h(f ′ ∗

ρε) = (∆1
hf
′) ∗ ρε, we �nd that ‖∆1

h(f ′ ∗ ρε)‖Lp ≤ ‖∆1
hf
′‖Lp , and therefore

〈fε〉W s,p ≤ 〈f〉W s,p . Using Step 1, we obtain

(3.58) |fε|W s,p . |f |W s,p , ∀ ε > 0.

We next argue as follows. Since f ∈ Lp, we have fε → f in Lp as ε → 0
and thus, for �xed h, we have ‖∆2

hfε‖Lp → ‖∆2
hf‖Lp as ε→ 0. Combining this
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with Fatou's lemma and letting ε → 0 in the uniform estimate (3.58), we �nd
that

(3.59) |f |W s,p ≤ lim inf
ε→0

|fε|W s,p . 〈f〉W s,p , ∀ f ∈ Z2,

and in particular that Z2 ↪→ Z1.
For the opposite inequality, let f ∈ Z1. We will prove that

f ′ ∈ Lp(3.60)

and

〈f〉W s,p ≤ Cs,p|f |W s,p .(3.61)

The key fact is the following variant of Lemma 17 (or, more precisely, of
estimate (7.20) established during its proof), whose proof is postponed to the
appendix.

Lemma 21. Let f ∈ Z1. Assume that ρ is an even molli�er. Then we

have |fε − f |W s,p → 0 as ε→ 0.

Granted Lemma 21, we proceed as follows. Consider a sequence εj ↘ 0
such that

|fε0 |W s,p ≤ 2 |f |W s,p and |fεj − fεj−1 |W s,p ≤ 2−j |f |W s,p , ∀ j ≥ 1,(3.62)

‖fε0‖Lp ≤ 2 ‖f‖Lp and ‖fεj − fεj−1‖Lp ≤ 2−j ‖f‖Lp , ∀ j ≥ 1.(3.63)

Combining Step 1 with (3.62), we �nd that

(3.64) 〈fε0〉W s,p +
∑
j≥1

〈fεj − fεj−1〉W s,p . |f |W s,p .

From (3.57), (3.62), (3.64) and Step 1, we obtain

(3.65) ‖(fε0)′‖Lp +
∑
j≥1

‖(fεj − fεj−1)′‖Lp . ‖f‖W s,p .

Since, on the other hand, we have f = fε0 +
∑

j≥1(fεj − fεj−1) in Lp, we
�nd from (3.65) that f ′ = (fε0)′ +

∑
j≥1(fεj − fεj−1)′ ∈ Lp and that ‖f ′‖Lp .

‖f‖W s,p . This is a quantitative form of (3.60).
Finally, arguing as for (3.58), we have

(3.66) 〈fε〉W s,p . |fε|W s,p ≤ |f |W s,p , ∀ ε > 0.

Since now we know that f ′ ∈ Lp, we may rewrite (3.66) as

(3.67) |f ′ ∗ ρε|Wσ,p . |f |W s,p , ∀ ε > 0.

We now let ε→ 0 in (3.67) (using f ′ ∗ρε → f ′ in Lp as ε→ 0 and Fatou's
lemma, as in the proof of (3.59)), and obtain (3.61).

Granted Lemma 21, the proof of Lemma 19 is complete. �
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3.7. Slicing (II)

We discuss here the extension of Lemma 18 to higher order spaces W s,p,
possibly with integer s. The �rst remark is that in general, Lemma 18 does not
hold for large s. Indeed, a famous construction due to Ornstein [47] exhibits a
compactly supported function f = f(x, y) : R2 → R such that f, ∂1∂1f, ∂2∂2f ∈
L1 but ∂1∂2f 6∈ L1. Thus for this f we have

∞ = ‖f‖W 2,1(R2) 6.
ˆ
R
‖f(x, ·)‖W 2,1(R) dx+

ˆ
R
‖f(·, y)‖W 2,1(R) dy <∞.

There exists however a form of slicing which holds for all regularity expo-
nents s > 0, integer or not; see e.g. [4, formula (D.3)]. This is explained in our
next result, whose proof is postponed to the appendix.

If f : Rn → R and ω ∈ Sn−1, let ω⊥ denote the hyperplane orthogonal to
ω, i.e., ω⊥ := {x ∈ Rn; 〈x, ω〉 = 0}, and consider the partial functions fxω given
by

(3.68) fxω(t) := f(x+ t ω), ∀ω ∈ Sn−1, ∀x ∈ ω⊥, ∀ t ∈ R.
Lemma 22. Let s ≥ 0 and 1 ≤ p <∞. Then

(3.69) ‖f‖pW s,p(Rn) ≈
ˆ
Sn−1

ˆ
ω⊥
‖fxω‖

p
W s,p(R) dxdω, ∀ f : Rn → R.

When s is not an integer, we also have

(3.70) |f |pW s,p(Rn) ≈
ˆ
Sn−1

ˆ
ω⊥
|fxω |

p
W s,p(R) dxdω, ∀ f : Rn → R.

(Strictly speaking, the integral in x ∈ ω⊥ is with respect to the (n − 1)-
dimensional Hausdor� measure on ω⊥.)

4. SUPERPOSITION OPERATORS

4.1. Overview

For Φ = Φ(t) : R → R and f : Rn → R, we set TΦf := Φ ◦ f . TΦ

is a �superposition� or �Nemitzkii� operator. We discuss here the following
question. Given some function space X, which is the regularity (common to
all f) of TΦf with f ∈ X? A related question is the following: given this time
two function spaces, X and Y , which are the functions Φ such that TΦf ∈ Y ,
∀ f ∈ X? These are natural questions when dealing e.g., with nonlinear partial
di�erential equations or nonlinear nonlocal equations.

One could consider more general Φ's, depending not only on t, but also
on the space variable x, but already the case of an �autonomous� Φ is di�cult
and not completely understood, even in the case where Y = X.
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There exists an important literature on the subject. The interested reader
may consult the monograph of Runst and Sickel [49, Chapter 5] for a detailed
account of the results available in the mid 90's, and the vivid partial description
by Bourdaud and Sickel [3] of the more recent developments. We focus in what
follows on several results in whose proofs the Hardy type inequalities play a
crucial role.

Before proceeding, and in order to warn the reader that life in Sobolev
spaces is more complicated than the one in spaces of continuous functions, let
us state without proof some relevant results in this context.

1. The �rst one is merely an exercise. If Φ : R → R is Lipschitz with
Φ(0) = 0, and if 0 < s < 1 and 1 ≤ p < ∞, then TΦ maps continuously
W s,p(Rn) into W s,p(Rn).

2. It is slightly more di�cult to see that, under the same assumptions on
Φ, TΦ also maps W 1,p(Rn) into W 1,p(Rn). It turns out (but this is a delicate
result due to Marcus and Mizel [35]) that, for such Φ, TΦ is continuous from
W 1,p(Rn) into itself.

3. The above results suggest that if Φ is su�ciently smooth (smoothness
depending on s), then TΦ maps W s,p(Rn) into W s,p(Rn). However, the fol-
lowing result, due to Dahlberg [17], ruins such expectations. Let n ≥ 3 and
1 < p < n/2. If TΦ maps W 2,p into itself, then Φ(t) = c t, ∀ t ∈ R, for some
constant c. (The converse clearly holds, also.)

4. Assume that n ≥ 2 and that p > n/2 (this assumption on p goes in
the opposite direction with respect to Dahlberg's result). If Φ ∈ C2(R) and
Φ(0) = 0, then TΦ maps W 2,p into itself. We will come back to this (and more)
in Section 5.2.

The above suggest that, when Y = X = W s,p, the interesting range is
s > 1, and that for such s additional conditions may be necessary either on f ,
or on the triple (s, p, n), even if Φ is su�ciently smooth.

4.2. Mapping properties of f 7→ |f |

The following beautiful result is due to Bourdaud and Meyer [2].

Theorem 1. Let 1 ≤ p < ∞ and 1 < s < 1 + 1/p. Then f 7→ |f | maps

W s,p(Rn) into itself.

A preliminary result, before proceeding to the proof of the theorem.

Lemma 23. Let f ∈W 1,1
loc (Rn). Then |f | ∈W 1,1

loc (Rn) and

(4.1) ∂j |f | = (sgn f) ∂jf, ∀ j = 1, . . . , n.
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In one dimension, this result was essentially known to de la Vall�ee Pous-
sin [18]. In a more general form, it is proved in Serrin and Varberg [51]. The
n-dimensional version appears e.g. in Gilbarg and Trudinger [27, Lemma 7.6].
One can pass from one dimension to n dimensions via a standard slicing argu-
ment in W 1,p (see e.g. Ziemer [59, Theorem 2.1.4]), and thus the heart of the
matter is the validity of (4.1) in one dimension. We give in the appendix a very
simple proof of this equality.

For more complicated Φ's, the chain rule for Φ ◦ f is more delicate to
establish. The chain rule and its higher-order analogue, the Fa�a di Bruno
formula, play an essential role in the study of the superposition operators; see
e.g. Dinc�a and Isaia [19�21].

The proof below of Theorem 1 is a variant of the one in [2].

Proof of Theorem 1. Write s = 1 + σ, with 0 < σ < 1/p. It will be
convenient to use on W s,p the following norm, suggested by Lemma 18 and
equivalent to the usual ones:

(4.2)

〈〈f〉〉pW s,p :=‖f‖pLp + ‖∇f‖pLp

+

n∑
j=1

ˆ
Rn−1

|∂jf(x1, . . . , xj−1, ·, xj+1, . . . , xn)|pWσ,p(R) dx̂j .

(The equivalence of norms is obtained by combining Lemma 18 with [56, Section
2.3.8, Theorem, pp. 58-59].)

In view of Lemma 23 and of (4.2), in order to obtain the conclusion of
the theorem it su�ces to obtain the estimate

(4.3) ||g|′|Wσ,p(R) . |g′|Wσ,p(R), ∀ g ∈W s,p(R).

To summarize, up to now we have reduced the proof of the theorem to
the one of (4.3), which is equivalent to

(4.4)

ˆ
R

ˆ
R

|(sgn g(x)) g′(x)− (sgn g(y)) g′(y)|p

|x− y|1+σp
dxdy

.
ˆ
R

ˆ
R

|g′(x)− g′(y)|p

|x− y|1+σp
dxdy, ∀ g ∈W s,p(R).

Clearly, whenever g(x) g(y) > 0, the integrands on both sides of (4.4)
coincide. On the other hand, if g(x) = g(y) = 0 then the integrand on the
left-hand side vanishes. Therefore, it su�ces to consider only couples (x, y)
such that

g(x) g(y) ≤ 0 and (g(x), g(y)) 6= (0, 0).
For such a couple (x, y), we use the estimate

(4.5)
|(sgn g(x)) g′(x)− (sgn g(y)) g′(y)|
≤ |(sgn g(x)) g′(x)|+ | sgn g(y)) g′(y)|.
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In view of (4.5) and by symmetry, in order to obtain (4.4) it thus su�ces
to establish the estimate

(4.6)

ˆ
g(x)>0

ˆ
g(y)≤0

|g′(x)|p

|x− y|1+σp
dxdy

.
ˆ
R

ˆ
R

|g′(x)− g′(y)|p

|x− y|1+σp
dxdy, ∀ g ∈W s,p(R).

Set U := {x; g(x) > 0} and write U as a disjoint union of open intervals,
U = ∪jIj . If x ∈ Ij for some j, then

(4.7)

ˆ
g(y)≤0

1

|x− y|1+σp
dy ≤

ˆ
y 6∈Ij

1

|x− y|1+σp
dy ≤ Cs,p

[dist(x, ∂Ij)]σp
.

In view of (4.7), in order to prove (4.6) it su�ces to establish the estimate

(4.8)

ˆ
Ij

|g′(x)|p

[dist(x, ∂Ij)]σp
dx ≤ Cs,p

ˆ
Ij

ˆ
Ij

|g′(x)− g′(y)|p

|x− y|1+σp
dxdy.

When Ij is unbounded, (4.8) follows from the fractional Hardy inequality
(3.5) applied to g′ in W σ,p(Ij) (recall that σ p < 1).

When Ij = (aj , bj) is bounded, we start by noting that g(aj) = g(bj) = 0,
and thus

´
Ij
g′(t) dt = 0. We may now apply Lemma 16 and obtain the existence

of some h ∈W σ,p(R) such that h = g′ on Ij and

(4.9) |h|Wσ,p(R) . |g′|Wσ,p(Ij).

Applying the fractional Hardy inequality (3.5) to h and using (4.9), we
�nd thatˆ

Ij

|g′(x)|p

[dist(x, ∂Ij)]σp
dx .

ˆ
Ij

|g′(x)|p

(x− aj)σp
dx+

ˆ
Ij

|g′(x)|p

(bj − x)σp
dx

≤
ˆ
R

|h(x)|p

|x− aj |σp
dx+

ˆ
R

|h(x)|p

|x− bj |σp
dx

.
ˆ
Ij

ˆ
Ij

|g′(x)− g′(y)|p

|x− y|1+σp
dxdy.

Therefore, (4.8) holds. This completes the proof of the theorem. �

4.3. Mapping properties of f 7→ |f |a, 0 < a < 1

Let Φ(t) := |t|a, ∀ t ∈ R, where 0 < a < 1. Since Φ is even, concave on
[0,∞) and Φ(0) = 0, we have

|Φ(t)− Φ(τ)| = |Φ(|t|)− Φ(|τ |)| ≤ Φ(|t| − |τ |),
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and thus

(4.10) |Φ(t)− Φ(τ)|1/a ≤ [Φ(|t| − |τ |)]1/a = ||t| − |τ || ≤ |t− τ |, ∀ t, τ ∈ R.

Let 0 < s < 1 and let f ∈W s,p(Rn). In view of (4.10), we have

(4.11) |Φ(f(x))− Φ(f(y))|p/a ≤ |f(x)− f(y)|p, ∀x, y ∈ Rn,

and therefore

(4.12) ||f |a|p/a
Was,p/a ≤ |f |

p
W s,p , ∀ f ∈W s,p.

Using (4.12), we easily �nd that TΦ maps W s,p into W as,p/a, ∀ 0 < s < 1,
∀ 1 ≤ p <∞, ∀ 0 < a < 1.

When s = 1, the analogous conclusion does not follow from (4.11). This
case is covered by the following result [41].

Theorem 2. Let 0 < a < 1 and 1 < p < ∞. Then f 7→ |f |a maps W 1,p

into W a,p/a.

Remark 7. The conclusion of the theorem is wrong when p = 1 [41].
On the other hand, it is not known what happens in W s,p with s > 1.

The following conjecture seems plausible. Let 1 ≤ p <∞, 1 < s < 1 + 1/p and
let 0 < a < 1. Then f 7→ |f |a maps W s,p into W as,p/a.

We present below a variant of the proof of Theorem 2 in [41].

Proof of Theorem 2. More generally, we consider an increasing concave
homeomphism Φ : [0,∞)→ [0,M) and seek for an inequality of the form

(4.13)

ˆ
Rn

ˆ
Rn

Ψ(|Φ(|f(x)|)− Φ(|f(y)|)|)
|x− y|n+p

dxdy

.
ˆ
Rn
|∇f(x)|p dx, ∀ f ∈W 1,p(Rn).

We will determine an appropriate increasing function Ψ : [0,M)→ [0,∞)
(depending on the nonlinearity Φ) such that (4.13) holds and such that, in the
special case where Φ(t) = ta, we have Ψ(t) = C tp/a. Assuming that (4.13)
holds for these particular Φ and Ψ, we �nd that

||f |a|p/a
Was,p/a . ‖∇f‖

p
Lp ,∀ f ∈W

1,p(Rn),

and this easily implies that

‖|f |a‖p/a
Was,p/a . ‖f‖

p
W 1,p , ∀ f ∈W 1,p(Rn),

and leads to the conclusion of the theorem.
It will be more instructive not to give the formula de�ning Ψ from the

beginning, but to derive it from a series of calculations. Let us note that a
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necessary condition for the validity of (4.13) is Ψ(0) = 0. Indeed, if Ψ(0) 6= 0,
then (4.13) with f ≡ 0 is wrong.

Step 1. Slicing. Assume that we are able to prove (4.13) in dimension
one. If we apply this estimate to fxω (de�ned in (3.68)), integrate over ω ∈ Sn−1

and x ∈ ω⊥ and use the equivalences (7.42) and (7.44), we obtain that (4.13)
holds in Rn.

Therefore, from now on we work in one dimension.
Step 2. Replacing f by |f |. Clearly, the left-hand side of (4.13) does not

change if we replace f by |f |. Nor does the right-hand side, by Lemma 4.1. We
may thus assume, in what follows, that f ∈W 1,p(R; [0,∞)).

Step 3. Use of a Hardy type inequality. Let f ∈ W 1,p(R; [0,∞)). As-
suming Φ, Ψ su�ciently smooth in order to ensure the validity of the next
calculations, we have

(4.14)

ˆ
R

ˆ
R

Ψ(|Φ(f(x))− Φ(f(y))|)
|x− y|1+p

dxdy

= 2

ˆ
R

ˆ
f(y)<f(x)

Ψ(Φ(f(x))− Φ(f(y)))

|x− y|1+p
dydx

= 2

ˆ
R

ˆ
f(y)<f(x)

[−Ψ(Φ(f(x))− Φ(t))]
t=f(x)
t=f(y)

|x− y|1+p
dydx

= 2

ˆ
R

ˆ f(x)

0
Φ′(t)

ˆ
f(y)<t

Ψ′(Φ(f(x))− Φ(t))

|x− y|1+p
dydtdx.

Consider now, for 0 < t < M , the open set Ut := {x ∈ R; f(x) > t}.
We decompose, for each �xed t, Ut = ∪Ij,t, with Ij,t mutually disjoint open
intervals. Note that Ut has �nite measure (by Markov's inequality) and thus
each Ij,t has �nite length. By (4.14), we have

(4.15)

ˆ
R

ˆ
R

Ψ(|Φ(f(x))− Φ(f(y))|)
|x− y|1+p

dxdy

= 2

ˆ M

0
Φ′(t)

ˆ
Ut

ˆ
f(y)<t

Ψ′(Φ(f(x))− Φ(t))

|x− y|1+p
dydxdt

= 2

ˆ M

0
Φ′(t)

∑
j

ˆ
Ij,t

ˆ
f(y)<t

Ψ′(Φ(f(x))− Φ(t))

|x− y|1+p
dydxdt

≤ 2

ˆ M

0
Φ′(t)

∑
j

ˆ
Ij,t

ˆ
R\Ij,t

Ψ′(Φ(f(x))− Φ(t))

|x− y|1+p
dydxdt

.
ˆ M

0
Φ′(t)

∑
j

ˆ
Ij,t

Ψ′(Φ(f(x))− Φ(t))

[dist(x, ∂Ij,t)]p
dxdt.
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We next intend to apply the Hardy inequality (2.56) to the inner integral´
Ij,t

. . . dx in (4.15). For that purpose, we write

(4.16) Ψ′(Φ(f(x))− Φ(t)) = [(Ψ′(Φ(f(x))− Φ(t)))1/p︸ ︷︷ ︸
gt(x)

]p = [gt(x)]p.

We note that, at the endpoints of Ij,t, we have f(x) = t. Therefore, if we
assume that Ψ′(0) = 0, then gt vanishes at the endpoints of Ij,t. We are thus
in position to apply (2.56) and �nd that

(4.17)

ˆ
R

ˆ
R

Ψ(|Φ(f(x))− Φ(f(y))|)
|x− y|1+p

dxdy

.
ˆ M

0
Φ′(t)

∑
j

ˆ
Ij,t

|(gt)′(x)|p dxdt

=

ˆ M

0
Φ′(t)

ˆ
Ut

|(gt)′(x)|p dxdt =

ˆ
R

ˆ f(x)

0
Φ′(t)|(gt)′(x)|p dtdx.

We next note that

(4.18)
(gt)

′(x) =(Ψ′)1/p−1(Φ(f(x))− Φ(t)) Ψ′′(Φ(f(x))− Φ(t))

× Φ′(f(x)) f ′(x).

Inserting (4.18) into (4.17), we obtain

(4.19)

ˆ
R

ˆ
R

Ψ(|Φ(f(x))− Φ(f(y))|)
|x− y|1+p

dxdy

.
ˆ
R
K(f(x)) (Φ′)p(f(x)) |f ′(x)|p dx,

where we have set, for A > 0,

(4.20) K(A) :=

ˆ A

0
Φ′(t)(Ψ′)1−p(Φ(A)− Φ(t)) |Ψ′′|p(Φ(A)− Φ(t)) dt.

Step 4. Choice of Ψ. In order to obtain (4.13) from (4.19)�(4.20), we seek
for Ψ such that

(4.21) K(A) (Φ′)p(A) = C ∈ (0,∞), ∀A > 0.

We next manipulate (4.21) in order to derive the expression of Ψ. Set
ξ := Φ−1 : [0,M) → [0,∞), so that ξ is convex and increasing. If we perform,
in the integral de�ning K(A), the change of variable τ := Φ(t) and we set
B := Φ(A), then

(4.22)

K(A) =

ˆ B

0
(Ψ′)1−p(B − τ) |Ψ′′|p(B − τ) dτ

=

ˆ B

0
(Ψ′)1−p(τ) |Ψ′′|p(τ) dτ.
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Since on the other hand we have Φ′(A) = 1/ξ′(B), we �nd, using (4.22),
that (4.21) is equivalent to

(4.23)

ˆ B

0
(Ψ′)1−p(τ) |Ψ′′|p(τ) dτ = C (ξ′)p(B), ∀ 0 < B < M.

We may now di�erentiate (4.23) with respect to B and �nd that

(4.24) (Ψ′)1−p(B) |Ψ′′|p(B) = C (ξ′)p−1(B) ξ′′(B).

Assuming that Ψ is convex, we obtain from (4.24) that

(4.25) [(Ψ′)1/p]′(B) = C (Ψ′)1/p−1(B) Ψ′′(B) = C (ξ′)1−1/p(B) (ξ′′)1/p(B).

Using (4.25) and the assumption Ψ′(0) = 0, we determine (Ψ′)1/p, and
thus Ψ′. We next �nd Ψ from the formula Ψ′ and the necessary condition
Ψ(0) = 0. We end up with the fact that, up to a multiplicative constant, we
have

(4.26) Ψ(t) =

ˆ t

0

(ˆ r

0
[ξ′(τ)]1−1/p[ξ′′(τ)]1/p dτ

)p
dr, ∀ 0 ≤ t < M.

In the special case where Φ(t) = ta, we have ξ(t) = t1/a, and it is easy to
see that Ψ(t) = C tp/a.

Step 5. A generalization of Theorem 2. It remains to give su�cient
conditions on Φ in order to justify a posteriori the above formal calculations.
The bottom line is that the de�nition (4.26) has to make sense. In order to
achieve this, we assume that Φ is continuous concave with Φ(0) = 0, that
Φ is increasing (and thus a homeomorphism onto its image [0,M)), and we
require that its reciprocal ξ : [0,M) → [0,∞) is twice di�erentiable and that
ξ′′ ∈ L1

loc([0,M)). We thus guess the following extension of Theorem 2 (which
slightly generalizes [41, Theorem 1.3]).

Theorem 3. Let Φ : [0,∞)→ [0,M) be an increasing concave homeomor-

phism. Let ξ := Φ−1 : [0,M) → [0,∞). Assume that ξ is twice di�erentiable

and that ξ′′ ∈ L1
loc([0,M)). Set

(4.27) Ψ(t) =

ˆ t

0

(ˆ r

0
[ξ′(τ)]1−1/p[ξ′′(τ)]1/p dτ

)p
dr, ∀ 0 ≤ t < M.

Then

(4.28)

ˆ
Rn

ˆ
Rn

Ψ(|Φ(|f(x)|)− Φ(|f(y)|)|)
|x− y|n+p

dxdy

.
ˆ
Rn
|∇f(x)|p dx, ∀ f ∈W 1,p(Rn).
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Step 6. Proof of Theorem 3. As explained above, it su�ces to prove the
validity of (4.28) for n = 1 and f ∈W 1,p(R; [0,∞)).

From the assumptions of Theorem 3, we have ξ increasing and concave,
and thus

(4.29) 0 ≤ ξ′(τ) ≤ ξ′(t), ∀ 0 ≤ τ ≤ t < M.

On the other hand, since ξ′ is di�erentiable and its derivative is locally
summable, we have

(4.30) ξ′(t) = ξ′(τ) +

ˆ t

τ
ξ′′(r) dr, ∀ 0 ≤ τ ≤ t < M ;

see e.g., Natanson [45, Chapter IX, § 7, Theorem 1]. In particular, we have

(4.31) ξ ∈ C1([0,M)).

Using (4.29), (4.30) and H�older's inequality, we �nd that

(4.32)

ˆ r2

r1

[ξ′(τ)]1−1/p[ξ′′(τ)]1/p dτ

≤
(ˆ r2

r1

ξ′(τ) dτ

)1−1/p(ˆ r2

r1

ξ′′(τ) dτ

)1/p

≤ (r2 − r1)1−1/p ξ′(r2), ∀ 0 ≤ r1 < r2 < M.

Estimate (4.32) implies that

(4.33) [0,M) 3 r 7→ F (r) :=

ˆ r

0
[ξ′(τ)]1−1/p[ξ′′(τ)]1/p dτ is continuous.

From (4.27) and (4.33), we obtain that

(4.34) Ψ ∈ C1([0,M)), Ψ(0) = 0, Ψ′(0) = 0

and

(4.35) Ψ′(t) = F p(t) =

(ˆ t

0
[ξ′(τ)]1−1/p[ξ′′(τ)]1/p dτ

)p
, ∀ t ∈ [0,M).

On the other hand, since ξ is an increasing di�erentiable homeomorphism,
we have ξ′(t) > 0 for a.e. t ∈ [0,M). Combining this with (4.29), we �nd that
ξ′(t) > 0, ∀ t ∈ (0,M), and thus (using also (4.31))

(4.36) Φ ∈ C1((0,∞)) and Φ′(t) > 0, ∀ t > 0.

The validity of (4.34) and (4.36) implies the one of (4.14).
We next note that

[ξ′(τ)]1−1/p[ξ′′(τ)]1/p

≤ (1− 1/p) ξ′(τ) + (1/p) ξ′′(τ)

≤ (1− 1/p) ξ′(t) + (1/p) ξ′′(τ), ∀ 0 ≤ τ < t < M,
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and thus the integrand de�ning F in (4.33) is locally summable. From Lebes-
gue's di�erentiation theorem (see e.g. [45, Chapter IX, § 4, Theorem 2]), we
�nd that

(4.37) F ′ = [ξ′]1−1/p[ξ′′]1/p a.e. and in the distributions sense.

On the other hand, (4.35) implies that the function gt de�ned in (4.16) is
given by

(4.38) gt(x) = F (Φ(f(x))− Φ(t)), ∀ 0 < t < f(x).

Using (4.36), (4.37), (4.38) and the chain rule in W 1,1
loc (see e.g. [51, Theo-

rem 2]), we �nd that for every �xed t > 0 we have, a.e. and in the distributions
sense,

(4.39) (gt)
′(x) = F ′(Φ(f(x))− Φ(t)) Φ′(f(x)) f ′(x).

From (4.17), (4.37) and (4.39), we obtain the validity of (4.19), with

(4.40) K(A) :=

ˆ A

0
Φ′(t) (F ′)p(Φ(A)− Φ(t)) dt.

In order to complete the proof, it remains to establish (4.21) for this K.
The change of variable τ := Φ(t) in (4.40) leads, as in (4.22), to

(4.41) K(A) =

ˆ Φ(A)

0
(ξ′)p−1(τ) ξ′′(τ) dτ.

On the other hand, the chain rule in W 1,1
loc yields

(4.42) [(ξ′)p]′ = p (ξ′)p−1 ξ′′ a.e. and in the distributions sense.

Since ξ′ is locally bounded and ξ′′ is locally summable, we �nd from (4.41)
and (4.42) that

(4.43) K(A) = C (ξ′)p(Φ(A)), ∀A > 0.

Identity (4.21) follows from (4.43) and the fact that Φ and ξ are reciprocal
to each other.

The proof of Theorem 3 (and, in particular, of Theorem 2) is complete. �

Remark 8. Step 6 is signi�cantly simpler if we weaken the assumptions on
ξ in Theorem 3 to ξ ∈ C2; see [41, proof of Theorem 1.3].

5. TRACE THEORY OF WEIGHTED SOBOLEV SPACES

5.1. Overview

In order to establish further properties of the superposition operators TΦ,
it will be convenient to rely on a new tool: the trace theory of (weighted)
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Sobolev spaces. A striking fact is that this theory is essentially a consequence
of the Hardy type inequalities, so that we have the following rough scheme

Hardy inequalities =⇒ traces of weighted spaces =⇒ properties of TΦ

(and more).

The general philosophy of the trace theory is that a function in a half-space
having some Sobolev regularity has a �trace� (�restriction�) on the boundary of
the half-space. Usually, this trace is de�ned by density, starting from smooth
functions. We will work only with continuous (and even better) functions, and
in this setting we will dispose of an equivalent but more tractable approach to
the notion of trace.

First, some notation and the appropriate de�nition.

1. We set Rn+1
+,∗ := Rn × (0,∞) and Rn+1

+ := Rn × [0,∞).

2. A generic point in these sets will be denoted (x, t) or (x, ε), with x in
Rn and t, ε in (0,∞) or [0,∞).

3. Let F : Rn+1
+,∗ → R be a continuous function. We say that f : Rn → R

is the trace of F (implicitly understood: on Rn ∼ Rn × {0}) if

(5.1) lim
ε→0

F (x, ε) = f(x) for a.e. x ∈ Rn.

If (5.1) holds, then f is a.e. uniquely de�ned by (5.1), and we write f = trF .

4. Here is a fundamental example. Let ρ ∈ C∞c (Rn) be a standard
molli�er. Let f ∈ L1

loc(Rn). Set

(5.2) Ff (x, ε) := f ∗ ρε(x), ∀x ∈ Rn, ∀ ε > 0.

(Strictly speaking, Ff depends not only on f , but also on ρ, but in practice ρ
will be �xed independently of f and we omit this dependence.)

It is a standard exercise that Ff is smooth in Rn+1
+,∗ . A more delicate result

is that we have f = trFf . Equivalently, if f ∈ L1
loc(Rn) and ρ is a standard

molli�er, then we have

(5.3) lim
ε→0

f ∗ ρε(x) = f(x) for a.e. x ∈ Rn;

see e.g. Stein [52, formula (16), p. 23, and Chapter I, Section § 8.16] when
f ∈ Lp for some p, but the arguments there hold also for f ∈ L1

loc.

We may now state (temporarily without proof) two basic results in the
trace theory of Sobolev spaces, due to Gagliardo [25].

Theorem 4 (Direct trace theorem). Let 1 < p < ∞. Let F ∈ C1(Rn+1
+,∗ )

and f : Rn → R be such that f = trF . Then

(5.4) |f |W 1−1/p,p(Rn) ≤ Cp,n ‖∇F‖Lp(Rn+1
+,∗ ).
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Theorem 5 (Inverse trace theorem). Let f ∈ L1
loc(Rn). Let Ff be as in

(5.2). Then

(5.5) ‖∇Ff‖Lp(Rn+1
+,∗ ) ≤ Cp,n |f |W 1−1/p,p(Rn).

Let us give an application of the above results to the study of TΦ. Alt-
hough this trivial application could have been obtained directly and with little
e�ort, its proof via Theorems 4 and 5 is instructive since it suggests a sound
strategy that will be useful in more di�cult problems. Assume that we want
to estimate |TΦf |W 1−1/p,p for some (at least C1) Φ and some f ∈ L1

loc(Rn).
Consider Ff as in (5.2). Then trTΦ(Ff ) = TΦf . By Theorem 4, we have

(5.6) |TΦf |W 1−1/p,p . ‖∇TΦ(Ff )‖Lp .
Assume now that Φ is Lipschitz. Then

(5.7) |∇TΦ(Ff )| . |∇Ff | a.e.
(this can be obtained e.g. from the chain rule).

From (5.5), (5.6) and (5.7), we obtain that |TΦf |W 1−1/p,p . |f |W 1−1/p,p .
Let us pause and summarize the above strategy of proof. In order to esti-

mate TΦf inW 1−1/p,p, we �rst estimate ‖∇TΦ(Ff )‖Lp . The direct theorem then
yields an estimate of TΦf in W 1−1/p,p. Assume next that ‖∇TΦ(Ff )‖Lp is con-
trolled by ‖∇Ff‖Lp . Then the inverse theorem allows to estimate ‖∇TΦ(Ff )‖Lp
in terms of |f |W 1−1/p,p . Combining the two, we estimate |TΦf |W 1−1/p,p in terms
|f |W 1−1/p,p . The interesting point is that we estimate fractional semi-norms
via calculations which involve Lp norms of derivatives � and in general it is
easier to deal with integer derivatives instead of fractional ones. (The idea of
increasing the space dimension in order to establish mapping properties of TΦ

appears already in [10].)
If we want to attack less academic problems, then we have to have at our

disposal function spaces of integer Sobolev type having as tracesW s,p maps for
arbitrary non-integer s, and not only for s = 1 − 1/p. This can be achieved,
but the price to pay is that we have to deal with weighted Sobolev spaces.

The theory of weighted Sobolev spaces has been established in the 60's.
The results we present below are a light version of this theory, su�cient for
our purposes. They are included in more general results due to Uspenski�� [58].
Before stating them, let us recall that when s > 0 is non-integer and 1 ≤ p <∞,
we have de�ned in (3.41) a semi-norm | |W s,p adapted to the space W s,p(Rn).
This semi-norm depends not only on s, p and n, but also on an integer M > s
that will explicitly be mentioned in the next statements.

Given M , set

MM := {(β, 0); β ∈ Nn and |β| = M} ∪ {(0, . . . , 0︸ ︷︷ ︸
n times

,M)} ⊂ Nn+1.
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When M = 1, we have M1 = {α ∈ Nn+1; |α| = 1}. On the other hand,
when M ≥ 2,MM is clearly a strict subset of {α ∈ Nn+1; |α| = M}.

Theorem 6 (Direct trace theorem (I)). Let s > 0 be non-integer and let

1 ≤ p < ∞. Let M be an integer such that M ≥ s + 1/p. Let F ∈ CM (Rn+1
+,∗ )

and f : Rn → R be such that f = trF . Then

(5.8) |f |pW s,p(Rn) ≤ Cs,p,n
∑

α∈MM

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αF (x, ε)|p dxdε.

Note the technical assumption M ≥ s + 1/p, which is stronger than the
natural assumption M > s required to in order to de�ne | |W s,p . As explained
in the next result, we may recover the condition M > s if we adopt a more
restrictive notion of trace.

Theorem 7 (Direct trace theorem (II)). Let s > 0 be non-integer and let

1 ≤ p < ∞. Let M be an integer such that M > s. Let F ∈ CM (Rn+1
+,∗ ) and

f : Rn → R be such that limε→0 F (·, ε) = f in L1
loc(Rn). Then

(5.9) |f |pW s,p(Rn) ≤ Cs,p,n
∑

α∈MM

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αF (x, ε)|p dxdε.

In particular, (5.9) holds for F ∈ CM (Rn+1
+,∗ ) ∩ C(Rn+1

+ ).

Theorem 8 (Inverse trace theorem). Let s > 0 be non-integer and let

1 ≤ p <∞. Let M be an integer such that M > s. Let f ∈ W s,p(Rn). Let Ff
be as in (5.2). Then

(5.10)
∑

α∈Nn+1

|α|=M

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αFf (x, ε)|p dxdε ≤ Cs,p,n ‖f‖pW s,p(Rn).

When 0 < s < 1 and f ∈ L1
loc(Rn), we have the stronger conclusion

(5.11)
∑

α∈Nn+1

|α|=M

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αFf (x, ε)|p dxdε ≤ Cs,p,n |f |pW s,p(Rn).

Remark 9. Theorems 4 and 5 are special cases of Theorems 6 and 8 (with
1 < p <∞, s = 1− 1/p and M = 1).

Remark 10. Estimate (5.10) still holds true � and this is a relatively dif-
�cult result � when f ∈ Lp and we replace Ff by the harmonic extension
of f , given by the Poisson formula. For this and similar results, see [58], Tai-
bleson [54,55] and the more modern treatment in [43]; see also Leoni [34, Section
18.7].
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We present below proofs of Theorems 6 and 7 which follow essentially [36,
pp. 512�513] and [43, proof of Theorem 1.3].

Proof of Theorem 6. This result is a consequence of Theorem 7. In order
to justify this assertion, assume that we have established (5.8) for every M > s
and every F ∈ CM (Rn+). Then we claim that, under the stronger assumption
M ≥ s+ 1/p, we have (5.8) for every F ∈ CM (Rn+1

+,∗ ). Indeed, we let δ > 0 and
we apply (5.8) to (x, ε) 7→ F (x, ε+ δ). We �nd that

(5.12) |F (·, δ)|pW s,p ≤ Cs,p,n
∑

α∈Nn+1

|α|=M

ˆ ∞
δ

ˆ
Rn

(ε− δ)(M−s)p−1|∂αF (x, ε)|p dxdε.

Letting δ → 0 in (5.12), we obtain (5.8) (using the de�nition of the trace
and Fatou's lemma on the left-hand side, respectively the assumption (M−s)p−
1 ≥ 0 and the monotone convergence theorem on the right-hand side). �

Proof of Theorem 7. Step 1. Proof of (5.9) for F ∈ CM (Rn+1
+ ). This is

the main step of the proof, and it consists (again!) of an application of a Hardy
type inequality.

For such F , have f(x) = F (x, 0). The proof of (5.9) relies on the following
elementary lemma, whose proof is postponed to the appendix.

Lemma 24. Let M > 0 be an integer. We set

|DMF (x, ε)| :=
∑

α∈MM

|∂αF (x, ε)|,∀x ∈ Rn, ∀ ε ≥ 0.

Let h ∈ Rn and set r := |h|. Then for every x ∈ Rn we have

(5.13)

|∆M
h f(x)| .rM

M∑
j=1

ˆ M

0
tM−1|DMF (x+ th, jr)| dt

+ rM
M∑
j=0

ˆ M

0
tM−1|DMF (x+ jh, tr)| dt.

Granted Lemma 24, we proceed to the proof of the theorem. Set g(ε) :=
‖DMF (·, ε)‖Lp(Rn). Integrating (5.13) in x, we obtain (with r := |h|)

(5.14)

‖∆M
h f‖Lp(Rn) . r

M
M∑
j=1

g(jr) + rM
ˆ M

0
tM−1g(tr) dt

≈ rM
M∑
j=1

g(jr) +

ˆ Mr

0
tM−1g(t) dt.
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In view of (3.41) and (5.14), in order to establish (5.9) it su�ces to prove that

(5.15)

ˆ
Rn
|h|(M−s)p−n [g(j|h|)]p dh ≤ Cs,p,n,M,j

ˆ ∞
0

ε(M−s)p−1 [g(ε)]p dε

and

(5.16)

ˆ
Rn

(ˆ M |h|

0
tM−1g(t) dt

)p
dh

|h|n+sp
.
ˆ ∞

0
ε(M−s)p−1 [g(ε)]p dε.

Passing to spherical coordinates and performing on the left-hand side of
(5.15) the change of variable ε := j |h|, we see that the two integrals in (5.15)
are proportional, and thus (5.15) holds.

Also in spherical coordinates, (5.16) amounts to

(5.17)

ˆ ∞
0

1

εsp+1

(ˆ Mε

0
tM−1g(t) dt

)p
dε .

ˆ ∞
0

ε(M−s)p−1 [g(ε)]p dε.

In turn, after the change of variable δ := M ε on the left-hand side, (5.17)
follows from Hardy's inequality at 0 (2.3) applied with r ; sp, q ; p and
g(u) ; εM−1 g(ε).

Granted Lemma 24, the proof of Step 1 is complete.
Step 2. Proof of (5.9) in the general case. Let η ∈ C∞c (Rn) be a standard

molli�er. Let, for δ > 0,

Fδ(x, ε) :=

ˆ
Rn
F (x− y, ε)ηδ(y) dy, ∀x ∈ Rn, ∀ ε > 0.

Then clearly

∂αFδ(x, ε) =

ˆ
Rn

(∂αF (x− y, ε))ηδ(y) dy, ∀α ∈ Nn+1, ∀x ∈ Rn, ∀ ε > 0,

and thus

(5.18) ‖∂αFδ(·, ε)‖Lp(Rn) ≤ ‖∂αF (·, ε)‖Lp(Rn), ∀α ∈ Nn+1, ∀ ε, δ > 0.

We �nd that

(5.19)

∑
α∈MM

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αFδ(x, ε)|p dxdε

≤
∑

α∈MM

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αF (x, ε)|p dxdε, ∀ δ > 0.

On the other hand, we have

lim
ε↘0

Fδ(·, ε) = f ∗ ηδ in L∞loc(Rn),

and thus Fδ extends by continuity to Rn+1
+ by setting Fδ(x, 0) := f ∗ ηδ(x).
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We next note that the proof of (5.9), and in particular, the proof of
Lemma 24, still work if we weaken the assumption F ∈ CM (Rn+1

+ ) to F ∈
CM (Rn+1

+,∗ ) ∩ C(Rn+1
+ ). (Indeed, for such F we estimate ∆M

h F (x, τ), τ > 0, as
in (5.13), then we let τ → 0, and we recover the conclusion of Lemma 24.)

This observation implies that (5.9) holds for Fδ. Using this remark, (5.9)
and (5.18), we �nd that

(5.20)

|f ∗ ηδ|pW s,p(Rn) .
∑

α∈MM

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αFδ(x, ε)|p dxdε

≤
∑

α∈MM

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αF (x, ε)|p dxdε.

We obtain (5.9) from (5.3), which implies that f ∗ ηδ → f a.e. as δ → 0,
Fatou's lemma, and (5.20). �

Remark 11. In the proof of Theorem 7, we did not use the assumption
M > s! However, when M ≤ s the theorem is of limited interest. Indeed, if
F ∈ CM (Rn+1

+,∗ ∩ CM (Rn+1) with M ≤ s and if the right-hand side of (5.9) is
�nite, then f is a polynomial of degree ≤ M − 1, and thus |f |W s,p = 0. This
follows by combining the proof of (5.9) (which holds, as we have noticed, also
for M ≤ s) with [43, Proposition 5.1]. Thus, when M ≤ s, the information
conveyed by (5.8) is merely |f |W s,p = 0.

We now turn to the proof of Theorem 8. Its main ingredients are three
simple results, Lemmas 25, 26 and 27 below.

Lemma 25. Let ξ ∈ L∞(Rn) be such that supp ξ ⊂ B1(0) and
´
Rn ξ = 0.

Let 0 < s < 1 and 1 ≤ p < ∞. Given f ∈ L1
loc(Rn), set Gf (x, ε) := f ∗ ξε(x),

∀x ∈ Rn, ∀ ε > 0. Then we have

(5.21)

ˆ ∞
0

ε−sp−1

ˆ
Rn
|Gf (x, ε)|p dxdε ≤ Cs,p,n,ξ|f |pW s,p(Rn).

Proof. We have

(5.22) |Gf (x, ε)| = ε−n

∣∣∣∣∣
ˆ
|y|<ε

f(x− y) ξ(y/ε) dy

∣∣∣∣∣
= ε−n

∣∣∣∣∣
ˆ
|y|<ε

[f(x− y)− f(x)] ξ(y/ε) dy

∣∣∣∣∣
. ε−n

ˆ
|y|<ε

|∆1
yf(x)| dy.
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Using (5.22) and H�older's inequality, we �nd thatˆ ∞
0

ε−sp−1

ˆ
Rn
|Gf (x, ε)|p dxdε

.
ˆ ∞

0
ε−sp−np−1

ˆ
Rn

(ˆ
|y|<ε

|∆1
yf(x)| dy

)p
dxdε

.
ˆ ∞

0
ε−sp−n−1

ˆ
Rn

ˆ
|y|<ε

|∆1
yf(x)|p dy

=

ˆ
Rn

ˆ
Rn

ˆ ∞
|y|

ε−sp−n−1 |∆1
yf(x)|p dεdydx

= C

ˆ
Rn

ˆ
Rn
|y|−sp−n |∆1

yf(x)|p dydx = C |f |pW s,p ,

whence (5.21). �

Lemma 26. Let ρ ∈ C∞c (Rn), f ∈ L1
loc(Rn) and Ff be given by (5.2). For

every α ∈ Nn+1 \ {0}, there exists some ξ = ξα ∈ C∞c (Rn) (depending on n, α
and ρ) such that:

1. supp ξ ⊂ supp ρ,
2.

´
Rn ξ = 0,

3. ∂αFf (x, ε) = ε−|α| f ∗ ξε(x), ∀x ∈ Rn, ∀ ε > 0.

Proof. The proof is by induction, based on the following calculations.
If a ∈ R and η ∈ C∞c (Rn), set H(x, ε) := ε−a f ∗ ηε(x).
When j = 1, . . . , n, we have

(5.23)

∂jH(x, ε) = ∂j

(
ε−a−n

ˆ
Rn
f(y) η((x− y)/ε) dy

)
= ε−a−n−1

ˆ
Rn
f(y) (∂jη)((x− y)/ε) dy

= ε−a−1 f ∗ (∂jη)ε.

When j = n+ 1 and thus ∂n+1 =
∂

∂ε
, we have

(5.24)

∂n+1H(x, ε) =− ε−a−n−1

ˆ
Rn
f(y)

n∑
k=1

xk − yk
ε

(∂kη)((x− y)/ε) dy

− (a+ n) ε−a−n−1

ˆ
Rn
f(y) η((x− y)/ε) dy

= −ε−a−1 f ∗ (a η + div(x η))ε.

On the other hand, we clearly have

(5.25)

ˆ
Rn
∂jζ = 0 and

ˆ
Rn

div ζ = 0, ∀ j = 1, . . . , n, ∀ ζ ∈ C∞c (Rn).
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The existence of ξ satisfying 1�3 follows easily by induction on |α|, using
(5.23)�(5.25). �

When f has additional di�erentiability properties, we may improve the
conclusion of Lemma 26 as follows.

Lemma 27. Let m ∈ N, m ≥ 1. Assume that f ∈ Wm,1
loc (Rn). Let ρ ∈

C∞c (Rn) and let Ff be given by (5.2). Let α ∈ Nn+1 be such that |α| > m.

Then there exist ζα,β ∈ C∞c (Rn), ∀β ∈ Nn with |β| = m (depending on n, α,
β, ρ) such that:

1. supp ζα,β ⊂ supp ρ,
2.

´
Rn ζ

α,β = 0
and

(5.26) ∂αFf (x, ε) = ε−|α|+m
∑
β∈Nn
|β|=m

(∂βf) ∗ (ζα,β)ε(x), ∀x ∈ Rn, ∀ ε > 0.

Proof. By (5.23) and (5.24), for j = 1, . . . , n+ 1, we have

(5.27) ∂jFf (x, ε) =
1

ε
f ∗

n∑
k=1

(∂kψj,k)ε(x),

for appropriate ψj,k ∈ C∞c (Rn) such that suppψj,k ⊂ supp ρ. Using the fact
that (1/ε) (∂kψj,k)ε = ∂k[(ψj,k)ε], we �nd from (5.27) that

(5.28) ∂jFf (x, ε) =

n∑
k=1

(∂kf) ∗ (ψj,k)ε(x).

Starting from (5.28) and repeating the above argument, we �nd (by in-
duction on the length |γ| ≤ m) that for every γ ∈ Nn+1 with |γ| ≤ m we
have

(5.29) ∂γFf (x, ε) =
∑
β∈Nn
|β|=|γ|

(∂βf) ∗ (ψγ,β)ε(x)

for some appropriate ψγ,β ∈ C∞c (Rn) such that suppψγ,β ⊂ supp ρ.
We obtain properties 1, 2 and (5.27) from (5.29) and Lemma 26. �

Proof of Theorem 8. Step 1. Proof of (5.11). Without loss of generality,
we may assume that the molli�er ρ de�ning Ff in (5.2) satis�es supp ρ ⊂ B1(0).
If α ∈ Nn+1 is such that |α| = M , we write ∂αFf (x, ε) = ε−Mf ∗ ξε(x), as in
Lemma 26. Using Lemma 25, we �nd thatˆ ∞

0
ε(M−s)p−1

ˆ
Rn
|∂αFf (x, ε)|p dxdε =

ˆ ∞
0

ε−sp−1

ˆ
Rn
|f ∗ ξε(x, ε)|p dxdε

. |f |pW s,p ,
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i.e., (5.11) holds.
Step 2. Proof of (5.10). In view of Step 1, we may assume that s > 1. We

write s = m+ σ, with m ∈ N, m ≥ 1, and 0 < σ < 1. We choose on W s,p(Rn)
the norm

〈〈f〉〉pW s,p := ‖f‖pLp + 〈f〉pW s,p , with 〈f〉pW s,p :=
∑
β∈Nn
|β|=m

|∂βf |pWσ,p .

When 1 < s < 2 and n = 1, we have proved that this norm is equivalent to the
standard one, given by (3.41)�(3.42); see Lemma 19. The same holds for any
s, p and M > s. However, we will not need the full strength of this assertion,
but only the weaker property

(5.30) 〈f〉W s,p . ‖f‖W s,p ,

for which we refer the reader to [56, Section 2.3.8, Theorem, pp. 58�59]. In
view of (5.30), in order to complete Step 2 it su�ces to establish the estimate

(5.31)
∑

α∈Nn+1

|α|=M

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αFf (x, ε)|p dxdε ≤ Cs,p,n

∑
β∈Nn
|β|=m

|∂βf |pWσ,p .

By Lemmas 27 and 25, we have∑
α∈Nn+1

|α|=M

ˆ ∞
0

ˆ
Rn
ε(M−s)p−1|∂αFf (x, ε)|p dxdε

.
∑

α∈Nn+1

|α|=M

∑
β∈Nn
|β|=m

ˆ ∞
0

ˆ
Rn
ε−σp−1|(∂βf) ∗ (ζα,β)ε(x)|p dxdε

.
∑
β∈Nn
|β|=m

|∂βf |pWσ,p = 〈f〉pW s,p ,

and thus (5.31) holds. �

5.2. Two applications to superposition operators

We continue here the discussion initiated at the end of Section 4.1. We let
s > 1 and seek for conditions ensuring that if f ∈W s,p(Rn), then TΦf ∈W s,p.
We have noticed there that, even for smooth Φ, the conclusion TΦf ∈ W s,p

may require additional conditions either on f , or on the triple (s, p, n).
We present here two main results in this direction, together with a con-

sequence. (The interested reader may �nd in [43, Section 6] more applications
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of the trace theory of weighted Sobolev spaces to the study of the mapping
properties of TΦ.) It turns out that these results hold also (but they are less
interesting) for s ≤ 1. They are equally true for integer s.

First, a notation. If s is real number, dse denotes the smallest integer
k ≥ s.

Theorem 9. Let s > 0 and 1 ≤ p < ∞. Let M := dse. Let Φ ∈ CM (R)
be such that Φ(0) = 0. Then TΦ maps W s,p ∩ L∞(Rn) into itself.

Corollary 6. Let s > 0 and 1 ≤ p < ∞ be such that sp > n. Let

M := dse. Let Φ ∈ CM (R) be such that Φ(0) = 0. Then TΦ maps W s,p(Rn)
into itself.

Theorem 10. Let s > 0 and 1 ≤ p < ∞ be such that sp = n. Let M :=
dse. Let Φ ∈ CM (R) be such that Φ(0) = 0 and Φ(j) ∈ L∞, ∀ j = 1, . . . ,M .

Then TΦ maps W s,p(Rn) into itself.

When s is an integer, Theorem 9 is due to Moser [44]. Its proof relies
on the Gagliardo-Nirenberg inequalities that we will recall below. The need
of such inequalities in this context is obvious from the proof. When s is not
an integer, there are two standard proofs of Theorem 9. The �rst one uses
the para-di�erential calculus and an ingenious identity due to Meyer [38]. The
second one is elementary, but relies on a tedious identity which is quite di�cult
both to check and guess; see Escobedo [23]. We will see below that when we
prove this result using the theory of weighted Sobolev spaces, we only need an
obvious Gagliardo-Nirenberg type inequality!

We start with some important results that we will use in the proof. First,
let us recall the following fundamental interpolation inequality, due to Gagliardo
[26] and Nirenberg [46].

Lemma 28 (Gagliardo-Nirenberg inequalities). Let 0 ≤ m1 < m < m2

be integers, and 1 ≤ p1, p2 ≤ ∞. De�ne the number θ ∈ (0, 1) by m = (1 −

θ)m1 + θm2 and let 1 ≤ p ≤ ∞ be given by
1

p
=

1− θ
p1

+
θ

p2
. Then, for some

C = Cm1,m2,m,p1,p2,n, we have

(5.32) ‖Dmu‖Lp ≤ C ‖Dm1u‖1−θLp1 ‖D
m2u‖θLp2 , ∀u ∈ C∞(Rn).

In the above, we use the compact notation

(5.33) |Dmu| :=
∑
α∈Nn
|α|=m

|∂αu|.

When m = 0 (respectively m = 1), we write |u| instead of |D0u| (respecti-
vely |∇u| instead of |D1u|).
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We now present an interpolation inequality, of Gagliardo-Nirenberg type,
involving fractional Sobolev spaces; see [12] for the comprehensive list of the
Gagliardo-Nirenberg type inequalities valid in the full scale of Sobolev spaces.

Lemma 29. Let 0 < t < s < ∞ be non-integers, and let 1 ≤ p < ∞. Let

q := sp/t ∈ (p,∞) and θ := t/s ∈ (0, 1). Then we have W s,p ∩ L∞(Rn) ⊂
W t,q(Rn). More spec�cally, with C = Cs,t,p,n, we have

(5.34) ‖f‖W t,q ≤ C ‖f‖θW s,p ‖f‖1−θL∞ ,∀ f ∈W
s,p ∩ L∞(Rn).

Proof. Let M > s be an integer, and let | |W s,p , | |W t,q be the semi-norms
de�ned via M as in (3.41). We consider on W s,p and W t,q the norms given by
(3.42). Using the inequalities

|f |q ≤ |f |p ‖f‖q−pL∞ and |∆M
h f |q . |∆M

h f |p ‖f‖
q−p
L∞ ,

we immediately obtain (5.34). �

We next state and establish two special cases of the Sobolev embeddings.

Lemma 30. Let s > 0 and 1 ≤ p < ∞ be such that sp > n. Then

W s,p(Rn) ↪→ L∞.

Proof. When s is an integer, see e.g. Brezis [9, Corollary 9.13].
Assume next that 0 < s < 1. By Corollary 5, we have

(5.35) |f(y)− f(x)| . |f |W s,p , ∀ f ∈W s,p(Rn), ∀x ∈ Rn, ∀ y ∈ B1(x).

On the other hand, for every x ∈ Rn there exists some y ∈ B1(x) such
that

(5.36) |f(y) . ‖f‖Lp(B1(x)) ≤ ‖f‖Lp .

From (5.35) and (5.36), we obtain that |f(x)| . ‖f‖W s,p , and thusW s,p ↪→
L∞.

Finally, assume that s > 1 is non-integer. Write s = m+ σ, with m ∈ N,
m ≥ 1 and 0 < σ < 1. We consider on W s,p the norm 〈〈f〉〉pW s,p := ‖Dmf‖pLp +
|Dmf |pWσ,p . Let 0 < σ′ < σ. By Lemma 13, we have Wm+σ,p ↪→ Wm+σ′,p.
Therefore, by lowering σ if necessary, we may assume that sp > n and σp 6= n.

Applying repeatedly Lemma 13, we �nd that W s,p ↪→ W σ,p. Thus, if
σp > n then W s,p ↪→W σ,p ↪→ L∞.

On the other hand, if σp < n, then, by Corollary 4 applied to Dmf , we
�nd thatW s,p ↪→Wm,q, with q := (np)/(n−σp). It is easy to see that mq > n,
and thus W s,p ↪→Wm,q ↪→ L∞.

The proof of Lemma 30 is complete. �

Lemma 31. Let s > 1 and 1 ≤ p <∞ be such that sp = n. Let 1 ≤ k < s
be an integer. Then W s,p(Rn) ↪→W k,n/k.
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Proof. When s is an integer, see [9, Corollary 9.13].

Assume that s is non-integer and write as above s = m + σ. In view
of [9, Corollary 9.13], it su�ces to obtain the conclusion when k = m. In that
case, the conclusion follows from Corollary 4 applied to Dmf . �

In the proofs of the main results announced in this section, we will consider
only relatively small values of s (we take s ≤ 2). Although this limitation is not
important for the validity of the arguments, the reason is the following. We will
have to estimate Dm(Φ◦f), with m := dse. In order to calculate Dm(Φ◦f), we
rely on the Fa�a di Bruno's formula for the higher order derivatives of composite
functions. This formula becomes cumbersome when m ≥ 3. Since, apart
from this complexi�cation of the calculations, the arguments are similar for all
s > 1, we took the party of limiting the arguments to 1 < s ≤ 2. We refer the
interested reader to [43, Section 6] for full proofs of the above results (using
slightly di�erent arguments). In what follows, the case where s ≤ 1 is much
easier; it was brie�y discusses at the beginning of the Section 4.1, and is left to
the reader.

Proof of Theorem 9 when 1 < s ≤ 2. Step 1. Proof when s = 2. Let
p > n/2. Let f ∈ C∞(Rn). Consider a number r ≥ ‖f‖L∞ . On the one hand
we clearly have |TΦf | ≤ sup{|Φ′(t)|; |t| ≤ r} |f |, and thus

(5.37) ‖TΦf‖Lp ≤ sup{|Φ′(t)|; |t| ≤ r} ‖f‖Lp .

On the other hand, we have the pointwise inequality

(5.38) |D2TΦf | . sup{|Φ′(t)|; |t| ≤ r} |D2f |+ sup{|Φ′′(t)|; |t| ≤ r} |∇f |2.

Using the Gagliardo-Nirenberg inequality (5.32) with m1 := 0, m2 := 2,
m := 1, p1 :=∞ and p2 := p, as well as (5.38), we �nd that

(5.39)
‖D2TΦf‖Lp . sup{|Φ′(t)|; |t| ≤ r} ‖D2f‖Lp

+ sup{|Φ′′(t)|; |t| ≤ r} r ‖D2f‖Lp .

Using again the Gagliardo-Nirenberg inequalities, this time in conjunction
with (5.37) and (5.39), we �nd that

(5.40)

‖∇TΦf‖Lp . sup{|Φ′(t)|; |t| ≤ r} ‖f‖1/2Lp ‖D
2f‖1/2Lp

+ sup{|Φ′(t)|; |t| ≤ r}1/2 sup{|Φ′′(t)|; |t| ≤ r}1/2

× r1/2 ‖f‖1/2Lp ‖D
2f‖1/2Lp .

Consider now some f ∈W 2,p ∩ L∞ and set r := ‖f‖L∞ . Set fε := f ∗ ρε,
where ρ is a standard molli�er. Note that ‖fε‖L∞ ≤ ‖f‖L∞ , ∀ ε > 0. We may
thus apply (5.37), (5.39) and (5.40) to fε and obtain uniform Lp bounds for
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DjTΦfε, j = 0, 1, 2. By Fatou's lemma, we �nd that DjTΦf ∈ Lp, j = 0, 1, 2,
and thus TΦf ∈W 2,p (and clearly TΦf ∈ L∞.)

Step 2. Proof when 1 < s < 2. Let f ∈W s,p ∩L∞. Let Ff be as in (5.2).
Since f ∈ Lp, we have Ff (·, ε) → f in Lp as ε → 0. On the other hand, we
have |Ff | ≤ ‖f‖L∞ , and thus

‖TΦFf (·, ε)− TΦf‖Lp ≤ sup{|Φ′(t)|; |t| ≤ ‖f‖L∞} ‖Ff (·, ε)− f‖Lp
→ 0 as ε→ 0.

Therefore, the function TΦFf has trace TΦf in the stronger sense of Theo-
rem 7. In view of Theorem 7 it follows that, in order to prove that TΦf ∈W s,p,
it su�ces to prove that

TΦf ∈ Lp,(5.41)

I :=

ˆ ∞
0

ˆ
Rn
ε(2−s)p−1|D2TΦFf (x, ε)|p dxdε <∞.(5.42)

(5.41) being clear, we proceed to the proof of (5.42). As in Step 1, using
the fact that ‖Ff‖L∞ ≤ ‖f‖L∞ , we obtain

(5.43)

I ≤Cf
ˆ ∞

0

ˆ
Rn
ε(2−s)p−1|D2Ff (x, ε)|p dxdε

+ Cf

ˆ ∞
0

ˆ
Rn
ε(2−s)p−1|∇Ff (x, ε)|2p dxdε.

In view of (5.43), of Theorem 8 (applied twice) and of Lemma 29, we have

(5.44)

I ≤Cf ‖f‖pW s,p + Cf

ˆ ∞
0

ˆ
Rn
ε(2−s)p−1|∇Ff (x, ε)|2p dxdε

=Cf ‖f‖pW s,p + Cf

ˆ ∞
0

ˆ
Rn
ε(1−s/2) (2p)−1|∇Ff (x, ε)|2p dxdε

≤Cf ‖f‖pW s,p + Cf ‖f‖2pW s/2,2p ≤ Cf ‖f‖
p
W s,p .

This completes the proof of Theorem 9 when 1 < s ≤ 2. �

Proof of Corollary 6. We combine Theorem 9 with Lemma 30. �

Proof of Theorem 10. By Lemma 31, we have W s,p ↪→ W s,p ∩ W 1,sp.
Therefore, Theorem 10 is a special case of Theorem 11 stated and proved in
the next section. �

5.3. Superposition operators in W s,p ∩W 1,sp

Let us take a closer look at the proof of Theorem 9 when s = 2. It relies
on the following ingredients.
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1. Φ(f) ∈ Lp.
2. Φ′(f)D2f ∈ Lp.
3. Φ′′(f) |∇f |2 ∈ Lp.
Let us now make the following assumptions on Φ: Φ ∈ C2, Φ(0) = 0,

Φ(j) is bounded, j = 1, 2. Then item 1 above holds if f ∈ Lp. Item 2 holds
if f ∈ W 2,p. Finally, item 3 holds if ∇f ∈ L2p. By the Gagliardo-Nirenberg
inequalities (5.32), the third requirement is satis�ed if f ∈W 2,p∩L∞. However,
if we replace the assumption f ∈W 2,p∩L∞ by the weaker assumptions f ∈W 2,p

and∇f ∈ L2p, we still obtain the conclusion of Theorem 10 (with s = 2). These
considerations and Lemma 31 suggest the following improvement of Theorems
9 and 10.

Theorem 11. Let s > 1 and 1 ≤ p <∞. Let M := dse. Let Φ ∈ CM (R)
be such that Φ(0) = 0 and Φ(j) ∈ L∞, ∀ j = 1, . . . ,M . Set

X := {f ∈W s,p(Rn); ∇f ∈ Lsp}.

Then TΦ maps X into itself.

This result was initially obtained in [12], with a proof using Fe�erman-
Stein type vector-valued maximal inequalities [24] and Littlewood-Paley theory.
A more elementary proof, using fractional maximal inequalities, was found by
Maz'ya and Shaposhnikova [37]. We present below a very natural proof, using
trace theory. It relies only on the maximal function theorem in Lp, p > 1, and
on the following simple observation.

Lemma 32. Let g ∈ L1
loc(Rn) and η ∈ C∞c (Rn). Then

(5.45) |g ∗ ηε(x)| ≤ CηMg(x), ∀x ∈ Rn, ∀ ε > 0.

Proof. Let R > 0 be such that supp η ⊂ BR(0). Then

|g ∗ ηε(x)| ≤ sup |η| 1

εn

ˆ
BRε(x)

|g(y)| dy

= Cn sup |η|
 
BRε(x)

|g(y)| dy .Mg(x),

whence (5.45). �

The interested reader may �nd a useful generalization of (5.45) in [52,
Chapter II, Section 2.1, formula (16), p. 54].

Proof of Theorem 11 when 1 < s ≤ 2. The case where s = 2 has been
discussed at the beginning of this section. We may thus assume that 1 < s < 2.
Let f ∈W s,p be such that ∇f ∈ Lsp. We have

|TΦf | ≤ ‖Φ′‖L∞ |f | and |∇TΦf | ≤ ‖Φ′‖L∞ |∇f |,
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so that f ∈ Lp and ∇f ∈ Lp ∩ Lsp.
Write s = 1 + σ, with 0 < σ < 1. In view of the above, in order to

complete the proof of the theorem we have to prove that ∇TΦf ∈W σ,p. We �x
some 1 ≤ j ≤ n, and prove that g := ∂jTΦf = Φ′(f) ∂jf ∈ W σ,p. Let f 7→ Ff
be the operator de�ned in (5.2). Set

(5.46)
G(x, ε) :=FΦ′(f)(x, ε) ∂jFf (x, ε)

=FΦ′(f)(x, ε)F∂jf (x, ε), ∀x ∈ Rn, ∀ ε > 0.

We let to the reader the proof of the fact that limε→0G(·, ε) = g in Lp,
and thus that g is the trace of G in the strong sense of Theorem 7. Note also
that 1−σ = 2−s. From these observations and Theorem 7, we �nd that, when
1 < s < 2, the conclusion of Theorem 11 amounts to

(5.47)

ˆ ∞
0

ˆ
Rn
ε(2−s)p−1 |∇G(x, ε)|p dxdε <∞.

By (5.46) and the assumption that Φ′ ∈ L∞, we have

(5.48) |∇G| . |D2Ff |+ |∇FΦ′(f)| |∇Ff |.

The heart of the proof consists of estimating |∇FΦ′(f)| in two di�erent
ways. On the one hand, since Φ′ is bounded, we have Φ′(f) ∈ L∞ and therefore,
by Lemma 26 item 3, we have

(5.49) |∇FΦ′(f)(x, ε)| .
1

ε
, ∀x ∈ Rn, ∀ ε > 0.

On the other hand, using successively (5.26) with |α| = 1, the fact that
Φ′′ is bounded and Lemma 32, we obtain

(5.50)

|∇FΦ′(f)(x, ε)| .
∑

α∈Nn+1

|α|=1

∑
β∈Nn
|β|=1

|(∂βf) ∗ (ζα,β)ε(x)|

.M|∇f |(x), ∀x ∈ Rn, ∀ ε > 0.

Similarly, we have

(5.51) |∇Ff (x, ε)| .M|∇f |(x), ∀x ∈ Rn, ∀ ε > 0.

Combining (5.48)�(5.51) , we �nd that

(5.52)
|∇G(x, ε)| . |D2Ff (x, ε)|+

(
1

ε
∧M|∇f |(x)

)
,

×M|∇f |(x), ∀x ∈ Rn, ∀ ε > 0.
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Using (5.52), Theorem 8 and the maximal function theorem, we obtainˆ ∞
0

ˆ
Rn
ε(2−s)p−1 |∇G(x, ε)|p dxdε

.
ˆ ∞

0

ˆ
Rn
ε(2−s)p−1 |D2Ff (x, ε)|p dxdε

+

ˆ ∞
0

ˆ
Rn
ε(2−s)p−1

(
1

ε
∧M|∇f |(x)

)p
(M|∇f |(x))p dxdε

=

ˆ ∞
0

ˆ
Rn
ε(2−s)p−1 |D2Ff (x, ε)|p dxdε

+

ˆ
Rn

ˆ 1/M|∇f |(x)

0
ε(2−s)p−1 (M|∇f |(x))2p dεdx

+

ˆ
Rn

ˆ ∞
1/M|∇f |(x)

ε(2−s)p−1 ε−p (M|∇f |(x))p dεdx

≈
ˆ ∞

0

ˆ
Rn
ε(2−s)p−1 |D2Ff (x, ε)|p dxdε+

ˆ
Rn

(M|∇f |(x))sp dx

.‖f‖pW s,p + ‖∇f‖spLsp .

This yields (5.47) and completes the proof of Theorem 11 when 1 < s
< 2. �

Remark 12. Theorem 11 is, in some sense, optimal. Indeed, assume
that f ∈ W s,p and that, for every Φ as in Theorem 11, we have TΦf ∈
W s,p. In particular, by taking Φ =id, we �nd that f ∈ W s,p. Similarly,
we have sin f, (cos f − 1) ∈ W s,p. Since sin f, (cos f − 1) ∈ L∞, we �nd from
the general form of the Gagliardo-Nirenberg inequalities (see e.g. [12]) that
sin f, (cos f − 1) ∈ W 1,sp. Using the chain rule for composite functions, we
obtain cos f ∇f, sin f ∇f ∈ Lsp, and thus |∇f | = |(cos f, sin f) ∇f | ∈ Lsp. We
have thus obtained that the assumptions on f in Theorem 11 are essentially
necessary.

6. MAPS WITH VALUES INTO MANIFOLDS

6.1. Overview

Let Σ be a smooth r-dimensional manifold and let ω be a smooth k-form
on Σ. If f : Rn → Σ is su�ciently smooth (say, f ∈ C` for some ` ≥ 1), then
we may de�ne the pullback f ]ω of ω by f , which is a k-form of class C`−1 on
Rn. More speci�cally, if (y1, . . . , yr) is a system of local coordinates on Σ and
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if we write, near f(a) with a ∈ Rn,

ω =
∑

1≤i1<...<ik≤r
αi1,...,ik(y) dyi1 ∧ · · · ∧ dyik ,

then near a we have

ω =
∑

1≤i1<...<ik≤r
αi1,...,ik(f(x)) dfi1 ∧ · · · ∧ dfir

(with (f1(x), . . . , fr(x)) the coordinates of f(x) in the coordinate system (y1,
. . . , yr)).

The question we address here is the possibility of de�ning f ]ω when f
has less regularity, say f is not even C1. This is already an issue when we
assume that f ∈ W 1,p

loc (Rn). In that case, f ]ω is well-de�ned a.e. as a k-form
with measurable coe�cients. This form is a useful analytical object (a form
distribution, or current) only when its coe�cients are in L1

loc. Since clearly the

coe�cients are in L
p/k
loc (Rn), we �nd that f ]ω is a current when p ≥ k. However,

we will see below that in some situations it is possible to de�ne f ]ω when f
has a regularity below W 1,k

loc .

A thorough discussion about these topics would require a considerable
amount of auxiliary results. Therefore, we will focus on some results in this
direction that require little additional technology, and refer the interested reader
to a series of articles dealing with the case where Σ = Sr and ω is the canonical
volume form on Sr (or the Jacobian in Rr+1): Jerrard and Soner [31,32], Hang
and Lin [28], Brezis and Nguyen [15], and also [6, 7, 40].

The arguments we present below rely on two types of ingredients: �null
Lagrangians� (or �cancellation phenomena�) and the trace theory. In order
to make clear the role of each ingredient, we start with continuous (or, more
generally, VMO ) maps, for which the null Lagrangians play a key role. We
next turn to the W s,p setting, which requires combining both tools. While the
questions discussed in Section 6.2 are rather simple and could have been tackled
by other methods, the approach we use to answer them will prove to be useful
in the more complicated situations investigated in Sections 6.3 and 6.4, and
even beyond.

6.2. Winding number (I)

We discuss here the possibility of de�ning through a convenient integral
formula the winding number of maps f : S1 → S1. This turns out to be possible
when f is continuous (and even slightly less than continuous). We mention that
it is possible to extend this approach to higher dimensions, and de�ne the degree
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of continuous maps f : Sn → Sn via an integral formula similar to (6.18) below
(see [39]).

Since at some point we would like to address this question in the context
of Sobolev maps and we want to avoid working with Sobolev spaces of maps
de�ned on manifolds, we rather consider maps f : R→ S1. In order to further
simplify the discussion, we make the following assumption:

(6.1) f ≡ 1 for |x| ≥ R = Rf .

Assume temporarily that f is continuous. Identifying f with a complex-
valued function, we may write f = eıϕ, with ϕ continuous and ϕ constant on
(−∞,−R] and on [R,∞). In addition, ϕ(−R), ϕ(R) ∈ 2πZ (since f(±R) = 1).
Therefore, the �winding number� (or �index�, or �degree�)

(6.2) deg f :=
ϕ(R)− ϕ(−R)

2π
is an integer, and one can prove that this integer does not depend on the choice
of R as in (6.1) or on the speci�c continuous lifting ϕ.

Let us recall the following standard property of the degree:

(6.3) if f, g satisfy (6.1) and if |f − g| < 2, then deg f = deg g.

Assume next that f is smoother, say f ∈ C1. Then ϕ ∈ C1, and thus we
have f ′ = ı ϕ′ eıϕ. We claim that

(6.4) ϕ′ =
1

ı f
f ′ = f ∧ f ′.

In the second equality in (6.4), we have identi�ed f with an R2-valued
map, and we let (a1, a2) ∧ (b1, b2) := a2b1 − a1b2. In order to justify (6.4), we
note that

1

ı f
f ′ =− ı f f ′ = f ∧ f ′ − ı (f1 f

′
1 + f2 f

′
2) = f ∧ f ′;

the latter equality follows from the fact that

f1 f
′
1 + f2 f

′
2 =

1

2
(|f |2)′ = 0.

Let f satisfy

(6.5) f ∈ C1(R;S1) and f(x) ≡ 1,∀ |x| ≥ R = Rf .

Combining (6.2) and (6.4), we recover the Cauchy formula

(6.6) deg f =
1

2π

ˆ
R
f ∧ f ′, ∀ f as in (6.5).

The connection between this formula and the pullback of forms is the
following. Let

ω :=
1

2π
(x1 dx2 − x2 dx1) =

1

2π
dθ
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denote the canonical volume form on S1. Then

f ]ω =
1

2π
(f1 f

′
2 − f2 f

′
1) =

1

2π
f ∧ f ′.

Therefore, (6.6) reads

(6.7) deg f =

ˆ
R
f ]ω = 〈f ]ω, 1〉,

the latter quantity being the duality bracket between the compactly supported
distribution f ]ω and the smooth test function 1.

Starting from (6.7), one may address the question of the existence of the
distribution f ]ω when f is less than C1. We do not follow this route, for which
we refer the reader to [15]. We consider instead the more modest task of �nding
an analogue of (6.7) valid when f is merely continuous. For this purpose we
let u = (u1, u2) : R2

+,∗ → R2, u := Ff , with Ff as in (5.2). Although f is
S1-valued, u is merely R2-valued, and not S1-valued (unless f ≡ 1). We let Ju
denote the Jacobian of u,

Ju = ∂1u ∧ ∂2u = ∇u1 ∧∇u2.

The following formula goes back to Poincar�e.

Lemma 33. Let f ∈ C2(R;S1) satisfy (6.5). Then

(6.8) deg f =
1

π

ˆ
R2
+,∗

Ju.

Proof. By Lemma 27 (with m := 2), u extends to a map in C2(R2
+). On

the other hand, the assumption (6.5), Lemma 26 and Lemma 27 (with m := 1)
lead to

(6.9) |∇u(x1, x2)| .

{
0, if |x1| ≥ R+ x2

1 ∧ (1/(x2)2), if |x1| < R+ x2

.

In view of (6.9), we have ˆ
R2
+,∗

|Ju| <∞,(6.10)

lim
r→∞

ˆ
C+
r (0)
|∇u| d` = 0.(6.11)

Here,

C+
r (0) := {x = (x1, x2) ∈ R2; x2 > 0 and |x| = r}.

Since u ∈ C2, the following two identities hold in R2
+:

Ju = ∂1(u1 ∂2u2)− ∂2(u1 ∂1u2),(6.12)
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Ju = ∂2(u2 ∂1u1)− ∂1(u2 ∂2u1).(6.13)

Combining (6.12) and (6.13), we �nd that

(6.14) Ju =
1

2
[∂1(u ∧ ∂2u)− ∂2(u ∧ ∂1u)].

Let Ωr := R2
+,∗ ∩Br(0), r > 0, and let ν denote the unit outward normal

to ∂Ωr. Note that, on (−r, r), we have ν = (0,−1). Using successively (6.10),
(6.14), (6.11) and (6.6), we �nd that

1

π

ˆ
R2
+,∗

Ju =
1

π
lim
r→∞

ˆ
Ωr

Ju =
1

2π
lim
r→∞

ˆ
Ωr

[∂1(u ∧ ∂2u)− ∂2(u ∧ ∂1u)]

=
1

2π
lim
r→∞

ˆ
∂Ωr

[ν1(u ∧ ∂2u)− ν2(u ∧ ∂1u)]

=
1

2π
lim
r→∞

ˆ r

−r
[ν1(u ∧ ∂2u)− ν2(u ∧ ∂1u)]

=
1

2π
lim
r→∞

ˆ r

−r
u ∧ ∂1u =

1

2π

ˆ R

−R
u ∧ ∂1u

=
1

2π

ˆ R

−R
f ∧ f ′ = deg f.

This completes the proof of Lemma 33. �

It will be convenient later to have a variant of Lemma 33, Lemma 34
below, whose proof, very similar to the one of Lemma 33, is left to the reader.

Lemma 34. Let f ∈ C2(R; S1) satisfy f(x) ≡ 1 for |x| ≥ R = Rf . Let

w ∈ C2(R2
+;R2) be any extension of f to R2

+ such thatˆ
R2
+,∗

|Jw| <∞(6.15)

and

lim
r→∞

ˆ
C+
r (0)
|∇w| d` = 0.(6.16)

Then

(6.17) deg f =
1

π

ˆ
R2
+,∗

Jw.

Our next task, consisting of extending (6.17) to maps f which are merely
continuous, is more subtle. Indeed, Lemma 34 asserts that, when f is smooth,
deg f can be calculated via any smooth extension w of f that has su�cient
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decay at in�nity. In the case of a continuous f , one has to take care not only
of the decay at in�nity, but also of the behavior of w near R.

We let Π : R2 → R2 be an �approximate projection� onto S1, i.e., a map
satisfying

1. Π ∈ C∞.
2. Π(x) = x/|x| ∈ S1 when |x| ≥ 1/2.

Thus Π is the radial projection onto S1 except near the origin, where it is
modi�ed in order to obtain a smooth function.

Lemma 35. Let f ∈ C(R;S1) satisfy (6.1). Let u := Ff (as in (5.2)) and
set w := Π(u). Then

(6.18) deg f =
1

π

ˆ
R2
+,∗

Jw.

The proof of the lemma relies on a cancellation phenomenon described
below.

Proof. In view of (6.1), f is uniformly continuous. Therefore, there exists
some ε0 > 0 such that

(6.19) |u(x, ε)− f(x)| ≤ 1/2, ∀x ∈ R,∀ 0 < ε ≤ ε0.

In view of (6.19) and of the fact that |f | = 1, we �nd that

(6.20) |u(x, ε)| ≥ 1/2, ∀x ∈ R,∀ 0 < ε ≤ ε0.

In turn, (6.20) implies that

|w(x, ε)| = 1, ∀x ∈ R, ∀ 0 < ε ≤ ε0,(6.21)

|w(x, ε)− f(x)| ≤ 1/2, ∀x ∈ R,∀ 0 < ε ≤ ε0.(6.22)

Now comes the crucial observation. We claim that the Jacobian of a
smooth map g : Ω → S1, with Ω ⊂ R2, vanishes. Indeed, di�erentiating the
identity |g|2 ≡ 1, we �nd that g · ∂1g = 0 and g · ∂2g = 0. This implies that
the vectors ∂1g and ∂2g are both orthogonal to g, thus parallel. In conclusion,
Jg = ∂1g ∧ ∂2g = 0, as claimed.

Using this observation and (6.21), we obtain the fundamental cancellation
property

(6.23) Jw(x, ε) = 0, ∀x ∈ R, ∀ 0 < ε < ε0.

On the other hand, the assumption (6.1) and Lemma 26 yield

(6.24) |∇u(x1, x2)| .

{
0, if |x1| ≥ R+ x2

(1/(x2)2), if |x1| < R+ x2

.
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Combining (6.23) and (6.24), we �nd thatˆ
R2
+,∗

|Jw| <∞,(6.25)

lim
r→∞

ˆ
C+
r (0)+{(0,ε0)}

|∇w| d` = 0.(6.26)

Using the cancellation property (6.23) and applying Lemma 34 in R ×
(ε0,∞), we �nd that

(6.27)
1

π

ˆ
R2
+,∗

Jw =
1

π

ˆ
R×(ε,∞)

Jw = deg(w(·, ε0)).

Combining (6.3), (6.22) and (6.27), we obtain (6.18). �

Remark 13. We brie�y explain here the possibility of de�ning deg f when
f is slightly less than continuous. In this context, a natural class of maps is
the class VMO of functions of �vanishing mean oscillations� (introduced by
Sarason [50]), and de�ned on R as follows.

VMO (R) :=

{
f ∈ L1

loc(R); lim
ε→0

sup
x∈R

 x+ε

x−ε

 x+ε

x−ε
|f(y)− f(z)| dydz = 0

}
.

We adopt the same notation as in Lemma 35. One may prove (see e.g.

Brezis and Nirenberg [16, formula (7)]) that if f : R → S1 satis�es f ∈ VMO ,
then u := Ff satis�es

(6.28) lim
ε→0

sup
x∈R
||u(x, ε)| − 1| = 0,

or, equivalently, that |u(·, ε)| → 1 uniformly as ε→ 0. Assume in addition that
f(x) ≡ 1 for |x| ≥ R = Rf . Repeating the proof of Lemma 35, we obtain that
there exists some ε0 such that

(6.29)
1

π

ˆ
R2
+,∗

Jw = degw(·, ε), ∀ 0 < ε ≤ ε0.

At this stage, we have the non-trivial information that the left-hand side of

(6.29) is an integer. But we cannot continue and claim that
1

π

ˆ
R2
+,∗

Jw = deg f .

Indeed, we have not de�ned deg f ! However, we may take this equality as the
de�nition of deg f . It is not di�cult to see that this de�nition coincides with
the one in [16]. To summarize, maps in VMO (R;S1) satisfying f(x) ≡ 1 for
|x| ≥ R = Rf have a well-de�ned degree. This degree can be calculated via the
integral formula

(6.30) deg f =
1

π

ˆ
R2
+,∗

Jw.
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6.3. Winding number (II)

We return here to the Sobolev context and investigate the existence of
deg f when f : R → S1 has some Sobolev regularity. More speci�cally, we
assume that

(6.31) f(x) ≡ 1 for |x| ≥ R = Rf and f − 1 ∈W s,p(R).

When sp > 1 or s = p = 1, f is continuous and thus it has a degree.
When sp < 1, there is no reasonable de�nition of degree [39]. The �critical�
case is the one of the spaces W 1/p,p, with 1 < p < ∞. It turns out that these
spaces are embedded into VMO (see e.g. [16, § 1.2, Example 2]), and thus,
as explained in Remark 13, we may de�ne deg f , which is given by formula
(6.30). We address here the question of an estimate for deg f . The answer
is provided by the following result, originally established in [6] with a slightly
di�erent argument.

Lemma 36. Let 1 < p < ∞. Let f : R → S1 satisfy f(x) ≡ 1 for

|x| ≥ R = Rf and f − 1 ∈W 1/p,p. Then

(6.32) | deg f | ≤ Cp |f |pW 1/p,p .

Proof. Let, for x ∈ R,

(6.33) d(x) := inf{ε > 0; |u(x, ε)| ≤ 1/2}.
By (6.28), we know that d(x) > 0. Consider the open set

(6.34) U := {(x, ε); x ∈ R, 0 < ε < d(x)}.
By the proof of (6.23), we have

(6.35) Jw = 0 in U.

On the other hand, Lemma 26 implies that

(6.36) |Jw(x, ε)| ≤ C

ε2
, ∀ f : R→ S1, ∀x ∈ R, ∀ ε > 0.

Combining (6.30), (6.35) and (6.36), we obtain

(6.37) | deg f | ≤ 1

π

ˆ
R2
+,∗

|Jw| .
ˆ
R

ˆ ∞
d(x)

1

ε2
dεdx ≈

ˆ
R

1

d(x)
dx.

We complete the proof of Lemma 36 combining (6.37) with Lemma 37 below
(with s = 1/p). �

Lemma 37. Let 0 < s < 1 and let f : R→ S1 be such that f − 1 ∈ W s,p.

Let d(x) be as in (6.33). Then

(6.38)

ˆ
R

1

[d(x)]sp
dx . |f |pW s,p .
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Proof. In view of (5.3) and of Theorem 8, for a.e. x ∈ R we have

lim
ε→0

u(x, ε) = f(x)(6.39)

and ˆ ∞
0

ε(1−s)p−1 |∇u(x, ε)|p dε <∞.(6.40)

Let x satisfy (6.39)�(6.40). Since (6.39) holds, we have either d(x) =∞,
or d(x) < ∞ and then |u(x, d(x))| = 1/2. Assume that d(x) < ∞. Using
H�older's inequality when p > 1 (and a trivial argument when p = 1) we �nd
that

(6.41)

(1/2)p = ||u(x, d(x))| − |f(x)||p ≤ |u(x, d(x))− f(x)|p

≤

(ˆ d(x)

0

∣∣∣∣ ∂∂εu(x, ε)

∣∣∣∣ dε
)p

≤ Cs,p [d(x)]sp
ˆ d(x)

0
ε(1−s)p−1 |∇u(x, ε)|p dε

≤ Cs,p [d(x)]sp
ˆ ∞

0
ε(1−s)p−1 |∇u(x, ε)|p dε.

Consequently, we have

(6.42)
1

[d(x)]sp
≤ Cs,p

ˆ ∞
0

ε(1−s)p−1 |∇u(x, ε)|p dε, for a.e. x ∈ R.

We obtain (6.38) by combining (6.42) with Theorem 8. �

6.4. Factorization

We �rst summarize what we have achieved in Sections 6.2 and 6.3. We
have an integral formula for deg f when f is continuous, or merely VMO . If, in
addition, f has some Sobolev regularity, then we also have an estimate of deg f .
In terms of pullback of forms, we gave a meaning to 〈f ]ω, 1〉 for f ∈ VMO and
we also have an estimate of this quantity when f ∈W 1/p,p.

It is much more di�cult to give a robust meaning to f ]ω when f : Rn →
S1. It is beyond the scope of this presentation to explain in detail how can
this be achieved (and we refer to [13, Chapter 8] for the complete proofs).
However, we will explain the de�nition of f ]ω and the main ingredient used in
the de�nition. Assume �rst that f = eıϕ, with smooth ϕ. Then (see the proof
of (6.4)) we have

(6.43) f ]ω =
1

2π
dϕ.
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Similarly, if f, g : Rn → S1 are su�ciently smooth, then

(6.44) (f g)]ω = f ]ω + g]ω.

Another easy observation is that

(6.45) f ]ω =
1

2π
f ∧ df is well-de�ned when ∇f ∈ L1.

Put together, the three above observations lead to the following reasonable
de�nition. If

(6.46) f = g h, where g = eiϕ and ∇h ∈ L1,

then we de�ne

(6.47) f ]ω :=
1

2π
dϕ+

1

2π
h ∧ dh.

It is possible to follow this route and give a robust meaning to f ]ω when
f − 1 ∈W s,p with sp ≥ 1. The main ingredient is the �factorization� theorem,
asserting the possibility of decomposing f as in (6.46). More speci�cally, we
have the following result, valid in any dimension [13, Chapter 8].

Theorem 12. Assume that n ≥ 1, s > 0 and 1 ≤ p <∞. Let f : Rn → S1

be such that f − 1 ∈W s,p and

(6.48) f(x) ≡ 1 for |x| ≥ R = Rf .

Then we may write f = eiϕ h, where ϕ ∈ W s,p(Rn;R) and h − 1 ∈
W sp,1(Rn;R2).

In particular, when sp ≥ 1, Theorem 12 allows to de�ne

(6.49) f ∧ df = f ]ω :=
1

2π
dϕ+

1

2π
h ∧ dh,

the result being a 1-form with coe�cients in W s−1,p +W sp−1,1.
The proof of Theorem 12 is too long to be given here. Let us simply

mention that it relies heavily on the trace theory of weighed Sobolev spaces
and on cancellation phenomena. It is simpler when sp < 1, and in this speci�c
case we refer the reader to [42].

APPENDIX. SOME DETAILED CALCULATIONS

Proof of Lemma 16. By scaling, it su�ces to prove the lemma when
R = 1.

We start with a useful preliminary observation. By the mean value theo-
rem, there exists some y ∈ B1(0) such thatˆ

B1(0)

|f(x)− f(y)|p

|x− y|n+sp
dx . |f |pW s,p(B1(0)).
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For any such y, we have

(7.1) ‖f − f(y)‖pLp(B1(0)) .
ˆ
B1(0)

|f(x)− f(y)|p

|x− y|n+sp
dx . |f |pW s,p(B1(0)).

We now recall the following elementary inequality. Let µ be a measure on
the set A such that 0 < µ(A) <∞. Then

(7.2)

∥∥∥∥f −  
A
f dµ

∥∥∥∥
Lp(A)

≤ 2‖f − c‖Lp(A), ∀ f ∈ Lp(A), ∀ c ∈ R.

Using (7.1), (7.2) (with A := B1(0) and µ the Lebesgue measure), and
the assumption

´
B1(0) f = 0, ∀ f ∈ Y1, we obtain

(7.3) ‖f‖Lp(B1(0)) . |f |W s,p(B1(0)), ∀ f ∈ Y1.

For x ∈ Rn such that |x| > 1, let x∗ := x/|x|2 ∈ B1(0). Fix some
ψ ∈ C∞c (B2(0)) such that ψ ≡ 1 in B1(0). Let f ∈ Y1. We set

(7.4) f∗(x) :=

{
f(x), if |x| < 1

f(x∗), if |x| > 1
and P1f := ψ f∗.

Noting that

P1f(x)− P1f(y) = 0 if |x| > 2 and |y| > 2

and that

(7.5) |P1f(x)− P1f(y)| ≤ |f∗(x)| |ψ(x)− ψ(y)|+ |ψ(y)| |f∗(x)− f∗(y)|,

we �nd that

(7.6) |P1f |pW s,p . |f∗|pW s,p(B2(0)) +

ˆ
B2(0)

ˆ
Rn
|f∗(x)|p |ψ(x)− ψ(y)|p

|x− y|n+sp
dydx.

On the other hand, since ψ ∈ C∞c (Rn), it is easy to see that

(7.7)

ˆ
Rn

|ψ(x)− ψ(y)|p

|x− y|n+sp
dy ≤ C = Cψ, ∀x ∈ Rn.

Combining (7.6) and (7.7), we �nd that

(7.8) |P1f |pW s,p . |f∗|pW s,p(B2(0)) + ‖f∗‖pLp(B2(0)).

Next, using the de�nition of f∗ and performing in B2(0)\B1(0) the change
of variable x 7→ x∗, we �nd that

(7.9) ‖f∗‖Lp(B2(0)) . ‖f‖Lp(B1(0)).

By (7.8), (7.9) and (7.3), we obtain

(7.10) |P1f |pW s,p . |f∗|pW s,p(B2(0)) + |f |pW s,p(B1(0)),
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and thus the conclusion of the lemma amounts to

(7.11) |f∗|W s,p(B2(0)) . |f |W s,p(B1(0)).

In turn, (7.11) is obtained as follows. We have

(7.12)

|f∗|pW s,p(B2(0)) .|f |
p
W s,p(B1(0))

+

ˆ
B2(0)\B1(0)

ˆ
B2(0)\B1(0)

|f(x∗)− f(y∗)|p

|x− y|n+sp
dydx

+

ˆ
B1(0)

ˆ
B2(0)\B1(0)

|f(x)− f(y∗)|p

|x− y|n+sp
dydx.

Using the change of variable x∗ 7→ x and y∗ 7→ y and noting that

|x∗ − y∗| ≈ |x− y|, ∀x, y ∈ B2(0) \B1(0),

and

|x− y∗| ≈ |x− y|, ∀x ∈ B1(0), ∀ y ∈ B2(0) \B1(0),

we obtain (7.11) from (7.12).

The proof of Lemma 16 is complete. �

Proof of Lemma 17. We will use repeatedly the following straightforward
consequences of H�older's inequality. If 0 < a <∞, then for some C = Ca,p,n <
∞ we have

(7.13)

ˆ
Rn\BaR(0)

|f(x)|p

|x|n+sp
dx ≤ C R−n ‖f‖pLq(Rn\BaR(0)), ∀ f : Rn → R.

Similarly, we have, with C = Ca,p,n <∞,

(7.14)

ˆ
BaR(0)

|f |p ≤ C Rsp ‖f‖pLq(BaR(0)).

Using the fact that ψ ∈ C∞c (Rn), we �nd that the function ξ : Rn → R,

ξ(x) :=

ˆ
Rn

|ψ(x)− ψ(y)|p

|x− y|n+sp
dy,

satis�es

(7.15) ξ(x) .

{
1, if |x| < 1

|x|−(n+sp), if |x| ≥ 1
.

Set ηε := 1− ψε. Combining (7.15) with the fact thatˆ
Rn

|ψε(x)− ψε(y)|p

|x− y|n+sp
dy =

ˆ
Rn

|ηε(x)− ηε(y)|p

|x− y|n+sp
dy = εsp ξ(εx),
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we obtain

(7.16)

ˆ
Rn

|ψε(x)− ψε(y)|p

|x− y|n+sp
dy =

ˆ
Rn

|ηε(x)− ηε(y)|p

|x− y|n+sp
dy

.

{
εsp, if |x| < 1/ε

ε−n |x|−(n+sp), if |x| ≥ 1/ε
.

For the convenience of the reader, we split the remaining part of the proof
into three steps. Clearly, these steps lead to the conclusion of the lemma.

Step 1. We have

(7.17) |ψε f − f |W s,p → 0 as ε→ 0.

Indeed, noting that

ψε(x) f(x)− f(x) = ηε(x) f(x) = 0 if |x| ≤ 1/ε,

we �nd that

(7.18)

|ψε f − f |pW s,p .
ˆ
|x|>1/ε

ˆ
Rn
|f(x)|p |η

ε(x)− ηε(y)|p

|x− y|n+sp
dydx

+

ˆ
|x|>1/ε

ˆ
Rn

|f(x)− f(y)|p

|x− y|n+sp
dydx.

Using successively (7.16) and (7.13), we �nd that

(7.19)

|ψε f − f |pW s,p .‖f‖pLq(Rn\B1/ε(0))

+

ˆ
|x|>1/ε

ˆ
Rn

|f(x)− f(y)|p

|x− y|n+sp
dydx→ 0 as ε→ 0.

The �rst step is complete.
Step 2. We have

(7.20) |fε − f |W s,p → 0 as ε→ 0.

With no loss of generality, we assume that supp ρ ⊂ B1(0). Set Hε :=
fε − f . Then (7.20) amounts to

(7.21)

Iε :=

ˆ
Rn

ˆ
Rn

|Hε(x)−Hε(y)|p

|x− y|n+sp
dxdy

=

ˆ
Rn

ˆ
Rn

|Hε(x+ h)−Hε(x)|p

|h|n+sp
dxdh→ 0 as ε→ 0.

In order to estimate Iε, we start by noting that

|Hε(x+ h)−Hε(x)| .
ˆ
|y|<ε

|f(x+ h− y)− f(x+ h)− f(x− y) + f(x)|
εn

dy.
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Using this observation, we estimate the integrand in (7.21) as follows.
1. If |h| < ε, we use

|Hε(x+ h)−Hε(x)| .
ˆ
|y|<ε

|f(x+ h− y)− f(x− y)|
εn

dy

+

ˆ
|y|<ε

|f(x)− f(x+ h)|
εn

dy.

2. If |h| ≥ ε, we write

|Hε(x+ h)−Hε(x)| .
ˆ
|y|<ε

|f(x+ h− y)− f(x+ h)|
εn

dy

+

ˆ
|y|<ε

|f(x)− f(x− y)|
εn

dy.

Thus

Iε . ε
−np (K1 +K2 +K3 +K4) = ε−np (K1,ε +K2,ε +K3,ve +K4,ε),

where

K1 :=

ˆ
Rn

ˆ
|h|<ε

(ˆ
|y|<ε

|f(x+ h− y)− f(x− y)| dy

)p
|h|−(n+sp) dhdx,

K2 :=

ˆ
Rn

ˆ
|h|<ε

(ˆ
|y|<ε

|f(x+ h)− f(x)| dy

)p
|h|−(n+sp) dhdx,

K3 :=

ˆ
Rn

ˆ
|h|≥ε

(ˆ
|y|<ε

|f(x+ h− y)− f(x+ h)| dy

)p
|h|−(n+sp) dhdx,

K4 :=

ˆ
Rn

ˆ
|h|≥ε

(ˆ
|y|<ε

|f(x− y)− f(x)| dy

)p
|h|−(n+sp) dhdx.

We will prove that ε−npKj → 0 as ε → 0, j = 1, . . . , 4. The only
ingredient we use in the proof is the straightforward fact that

(7.22) lim
ε→0

ˆ
Rn

ˆ
|y|<ε

|f(x+ y)− f(x)|p

|y|n+sp
dydx = 0.

We start with K2. Noting that(ˆ
|y|<ε

|f(x+ h)− f(x)| dy

)p
= C εnp |f(x+ h)− f(x)|p,

we �nd that

ε−npK2 = C

ˆ
Rn

ˆ
|h|<ε

|f(x+ h)− f(x)|p

|h|n+sp
dh→ 0 as ε→ 0.
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For K1, H�older's inequality implies that

(7.23)

(ˆ
|y|<ε

|f(x+ h− y)− f(x− y)| dy

)p
. εn(p−1)

ˆ
|y|<ε

|f(x+ h− y)− f(x− y)|p dy,

and thus

ε−npK1 .
ˆ
Rn

ˆ
|h|<ε

ˆ
|y|<ε

|f(x+ h− y)− f(x− y)|p

εn |h|n+sp
dydhdx.

For �xed y and h, the change of variable x− y = z leads to

ε−npK1 .
ˆ
Rn

ˆ
|h|<ε

|f(z + h)− f(z)|p

|h|n+sp
dhdz → 0 as ε→ 0.

We next estimateK3; the calculation forK4 is similar and will be omitted.
Inequality (7.23) implies that

ε−npK3 . ε
−n

ˆ
Rn

ˆ
|h|≥ε

ˆ
|y|<ε

|f(x+ h− y)− f(x+ h)|p

|h|n+sp
dydhdx.

In the above integral, we �x y and h and make the change of variable
x+ h = z. Next we integrate in h and �nd that

ε−npK3 .
ˆ
Rn

ˆ
|y|<ε

|f(z − y)− f(z)|p

εn+sp
dydz

.
ˆ
Rn

ˆ
|y|<ε

|f(z − y)− f(z)|p

|y|n+sp
dydz → 0 as ε→ 0.

The second step is complete.
Step 3. We have

(7.24) |ψε (fε − f)|W s,p → 0 as ε→ 0.

Set Lε := fε − f , so that

(7.25) |Lε|W s,p → 0 and ‖Lε‖Lq → 0 as ε→ 0.

In order to prove (7.24), we start from the straightforward estimate

(7.26) |ψε Lε|pW s,p . |Lε|pW s,p +

ˆ
Rn
|Lε(x)|p

ˆ
Rn

|ψε(x)− ψε(y)|p

|x− y|n+sp
dydx.

Combining (7.26) with (7.13), (7.14) and (7.16), we obtain (7.24).
The third step is complete. �

Proof of Lemma 18. Let f : Rn → R. Let x, y ∈ Rn. Set

z0 := x, z1 = (y1, x2, . . . , xn), z2 := (y1, y2, x3 . . . , xn), . . . , zn := y.
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Then

(7.27) |f(x)− f(y)|p .
n∑
j=1

|f(zj)− f(zj−1)|p.

Dividing (7.27) by |x− y|n+sp and integrating over x and y, we �nd that

(7.28) |f |pW s,p .
n∑
j=1

ˆ
Rn

ˆ
Rn

|f(zj)− f(zj−1)|p

|x− y|n+sp
dxdy.

Next, we note that

(7.29)

ˆ
Rn−1

1

|x− y|n+sp
dx1 . . . dxj−1dyj+1 . . . dyn =

C

|xj − yj |1+sp
,

for some �nite constant C. Inserting (7.29) into (7.28), we �nd that �.� holds
in (3.38).

For the reverse inequality, we �x some j, say j = 1. For x1 6= y1 ∈ R, set
t := (x1 + y1)/2, X := (t, x2, . . . , xn) and r := |x1 − y1|/4. We start from the
inequality

(7.30)
|f(x1, x2, . . . , xn)− f(y1, x2, . . . , xn)|p .|f(x1, x2, . . . , xn)− f(z)|p

+ |f(y1, x2, . . . , xn)− f(z)|p.
We divide (7.30) by |x1 − y1|n+1+sp and integrate over x ∈ Rn, y1 ∈ R

and z ∈ Br(X). We �nd that

(7.31)

ˆ
Rn−1

|f(·, x2, . . . , xn)|pW s,p(R) dx̂1 .
ˆ
Rn
|f(x)− f(z)|p F (x, z) dxdz,

with
F (x, z) :=

ˆ
z∈Br(X)

1

|x1 − y1|n+1+sp
dy1.

Using the fact that, whenever z ∈ Br(X), we have |x−z| ≤ (3/4) |x1−y1|,
we �nd that F (x, z) . |x − z|−(n+sp). Inserting this into (7.31), we �nd that
�&� holds in (3.38) for j = 1. The calculation for other values of j is similar
and will be omitted. �

Lemma 38. Let 0 < s < 1 and 1 ≤ p <∞. Let

Z1 :=

{
f : R→ R; f ∈ Lp, |f |pW s,p :=

ˆ
R

ˆ
R

|∆1
hf(x)|p

|h|1+sp
dxdh <∞

}
,(7.32)

Z2 :=

{
f : R→ R; f ∈ Lp, 〈f〉pW s,p :=

ˆ
R

ˆ
R

|∆2
hf(x)|p

|h|1+sp
dxdh <∞

}
,(7.33)

equipped respectively with the norms

‖f‖pZ1
:= ‖f‖pLp + |f |pW s,p ,

‖f‖pZ2
:= ‖f‖pLp + 〈f〉pW s,p .

Then Z1 = Z2, with equivalence of norms.



71 The role of the Hardy type inequalities in the theory of function spaces 517

Proof. As explained in the proof of Lemma 19, it su�ces to establish the
semi-norm equivalence |fε|W s,p ≈ 〈fε〉W s,p , which in turn amounts to establis-
hing the semi-norm equivalence

(7.34) |g|W s,p ≈ 〈g〉W s,p , ∀ g ∈ Z1 ∩ Z2.

The identity ∆2
hg(x) = ∆1

hg(x+h)−∆1
hg(x) leads to ‖∆2

hg‖Lp ≤ 2‖∆1
hg‖Lp ,

which in turn implies the inequality ‖g‖Z2 ≤ 2‖g‖Z1 and the embedding Z1 ↪→
Z2.

In order to obtain the opposite inequality

(7.35) |g|W s,p . 〈g〉W s,p , ∀ g ∈ Z1 ∩ Z2,

we let k ≥ 2 be a large integer to be �xed later. We have the identity

k−1∑
j=1

j∆2
εg(x+ (j − 1)ε) = k∆1

εg(x+ (k − 1)ε)−∆1
(k−1)εg(x),

and thus

(7.36) |∆1
εg(x+ (k − 1)ε)| ≤ 1

k
|∆1

(k−1)εg(x)|+ 1

k

k−1∑
j=1

j |∆2
εg(x+ (j − 1)ε)|.

If we raise (7.36) to the pth power, divide by |ε|1+sp, integrate over x
and ε and perform in the �rst right-hand side integral the change of variable
h := (k − 1)ε, we �nd that

(7.37) |g|pW s,p ≤ Cs,p k−(1−s)p |g|pW s,p + Cs,p,k〈g〉pW s,p .

Let k satisfy Cs,p k
−(1−s)p < 1/2. If we apply (7.37) with such k and use

the fact that |g|W s,p <∞, we obtain (7.35). �

Proof of Lemma 21. The argument is similar to the one in Step 2 in the
proof of Lemma 17. We take advantage of the compact notation for variations
and present a shorter argument. With no loss of generality, we may assume
that supp ρ ⊂ [−1, 1].

Let h, τ, x ∈ R. Then we have the identity

(7.38)
∆2
hf(x+ τ) + ∆2

hf(x− τ)− 2∆2
hf(x)

= ∆2
τf(x− τ + 2h) + ∆2

τf(x− τ)− 2∆2
τf(x− τ + h).

Multiplying (7.38) by ρε(τ), integrating over sup ρε ⊂ [−ε, ε] and taking
into account the fact that ρε is even, we �nd that

(7.39)

2∆2
h(fε − f)

=

ˆ
[∆2

τf(· − τ + 2h) + ∆2
τf(· − τ)− 2∆2

τf(· − τ + h)] ρε(τ) dτ.
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Using the fact that |ρε| . 1/ε, we obtain from (7.39) that

(7.40) ‖∆2
h(fε − f)‖Lp .

1

ε

ˆ
|τ |≤ε

‖∆2
τf‖Lp .

On the other hand, we clearly have

‖∆2
hfε‖ =

∥∥(∆2
hf) ∗ ρε

∥∥
Lp
≤
∥∥∆2

hf
∥∥
Lp
‖ρε‖Lp =

∥∥∆2
hf
∥∥
Lp
,

and thus

(7.41) ‖∆2
h(fε − f)‖ ≤ 2‖∆2

hf‖Lp .

Using (7.40) when |h| > ε and (7.41) when |h| ≤ ε and H�older's inequality,
we �nd that

|fε − f |pW s,p .
1

εp

ˆ
|h|>ε

(ˆ
|τ |≤ε

‖∆2
τf‖Lp dτ

)p
|h|−1−sp dh

+

ˆ
|h|≤ε

‖∆2
hf‖

p
Lp

|h|1+sp
dh

≈ε−p−sp
(ˆ
|τ |≤ε

‖∆2
τf‖Lp dτ

)p
+

ˆ
|h|≤ε

‖∆2
hf‖

p
Lp

|h|1+sp
dh

.ε−1−sp
ˆ
|τ |≤ε

‖∆2
τf‖

p
Lp dτ +

ˆ
|h|≤ε

‖∆2
hf‖

p
Lp

|h|1+sp
dh

.
ˆ
|h|≤ε

‖∆2
hf‖

p
Lp

|h|1+sp
dh→ 0 as ε→ 0.

The proof of Lemma 21 is complete. �

Proof of Lemma 22. As explained in the proof of Lemma 19, it su�ces to
establish, for smooth f : Rn → R the following semi-norm equivalences:

‖Dmf‖pLp ≈
ˆ
Sn−1

ˆ
ω⊥

∥∥∥(fxω)(m)
∥∥∥p
Lp

dxdω, ∀m ∈ N,(7.42)

|f |pW s,p ≈
ˆ
Sn−1

ˆ
ω⊥
|fxω |

p
W s,p dxdω, ∀ s > 0 non-integer, ∀M > s.(7.43)

Estimate (7.43) is actually an identity, up to a multiplicative constant.
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Indeed, we have

|f |pW s,p =

ˆ
Rn

ˆ
Rn

|∆M
h f(y)|p

|h|n+sp
dydh

=
1

2

ˆ
Sn−1

ˆ
R

ˆ
Rn

|∆M
rωf(y)|p

|r|1+sp
dydrdsω

=
1

2

ˆ
Sn−1

ˆ
ω⊥

ˆ
R

ˆ
R

|∆M
rωf(x+ t ω)|p

|r|1+sp
dtdrdxdsω

=
1

2

ˆ
Sn−1

ˆ
ω⊥

ˆ
R

ˆ
R

|∆M
r f

x
ω(t)|p

|r|1+sp
dtdrdxdsω

=
1

2

ˆ
Sn−1

ˆ
ω⊥
|fxω |

p
W s,p dxdsω,

whence (7.43). In the above, we �rst expressed h in spherical coordinates (with
r ∈ R), next we performed the change of variables y = x+ t ω, x ∈ ω⊥, t ∈ R,
whose Jacobian is 1.

We now turn to the proof of (7.42). We let to the reader the easy case
where m = 0 and we assume that m ≥ 1. The starting point of the proof is the
following observation. If A is a symmetric m-linear form on Rn, and if

A(ω, . . . , ω︸ ︷︷ ︸
m times

) = 0, ∀ω ∈ Sn−1,

then A = 0. This is a consequence of the polarization formula for symmetric
forms. It follows that

A 7→ 〈A〉p :=

(ˆ
Sn−1

|A(ω, . . . , ω)|p dsω
)1/p

,

is a norm on the space of symmetric m-linear form on Rn.
Applying the above to A := Dmf(x), x ∈ Rn, we �nd that

‖Dmf‖pLp ≈
ˆ
Rn
〈Dmf(y)〉pp dy

=

ˆ
Sn−1

ˆ
Rn
|Dmf(y)(ω, . . . , ω)|p dydsω

=

ˆ
Sn−1

ˆ
ω⊥

ˆ
R
|Dmf(x+ t ω)(ω, . . . , ω)|p dtdxdsω

=

ˆ
Sn−1

ˆ
ω⊥

ˆ
R

∣∣∣(fxω)(m)(t)
∣∣∣p dtdxdsω

=

ˆ
Sn−1

ˆ
ω⊥

∥∥∥(fxω)(m)
∥∥∥p
Lp

dxdsω,

whence (7.42). �
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Remark 14. The proof of (7.43) yields the following more general identity.
If g : Rn × Rn → [0,∞) and α ∈ R, then

(7.44)

ˆ
Rn

ˆ
Rn

g(x, y)

|x− y|n+α
dxdy

=
1

2

ˆ
Sn−1

ˆ
ω⊥

ˆ
R

ˆ
R

g(x+ t ω, x+ τ ω)

|t− τ |1+α
dtdτdxdsω.

Proof of Lemma 23 when n = 1. Let f ∈W 1,1
loc (R). We will prove that

(7.45) |f |′ = (sgn f) f ′ ∈ L1
loc.

Since f is continuous, the conclusion is clear if f does not vanish. We may
thus assume that f vanishes at some point, say f(0) = 0. Then (7.45) amounts
to

(7.46) |f(x)| =
ˆ x

0
(sgn f(t)) f ′(t) dt, ∀x ∈ R.

We prove e.g. (7.46) when x > 0. Assume �rst that f(x) = 0. Let
U := {y ∈ (0, x); f(y) 6= 0}. We write the open set U as a disjoint union
U = ∪jIj , with each Ij = (aj , bj) an open interval. Since f has constant sign
on Ij and we have f(aj) = f(bj) = 0, we �nd that

ˆ
Ij

(sgn f(t)) f ′(t) dt = ±
ˆ
Ij

f ′(t) dt = ±(f(bj)− f(aj)) = 0, ∀ j.

Therefore,ˆ x

0
(sgn f(t)) f ′(t) dt =

ˆ
U

(sgn f(t)) f ′(t) dt

=
∑
j

ˆ
Ij

(sgn f(t)) f ′(t) dt = 0 = f(x),

as desired.

When f(x) 6= 0, set z := sup{y ∈ [0, x); f(y) = 0}. Then sgn f =
sgn f(x) on (z, x) and f(z) = 0. By the previous calculation, we have

´ z
0 (sgn f(t)) f ′(t) dt =

0. On the other hand, we clearly haveˆ x

z
(sgn f(t)) f ′(t) dt = sgn f(x)

ˆ x

z
f ′(t) dt = (sgn f(x)) f(x) = |f(x)|,

so that (7.46) holds. �

Proof of Lemma 24. Step 1. An identity. We claim that, for x, h ∈ Rn
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and M > 0 we have, with r := |h|:

(7.47)

∆M
h f(x) =

M∑
j=0

(
M

j

)
(−1)j∆M

ren+1
F (x+ jh, 0)

+
M∑
j=1

(
M

j

)
(−1)j+1∆M

h F (x, jr).

In order to prove (7.47), we start from the identity

f(x) =
M∑
j=0

(
M

j

)
(−1)jF (x, jr) +

M∑
j=1

(
M

j

)
(−1)j+1F (x, jr), ∀x ∈ Rn.

As a consequence,

∆M
h f(x) =

M∑
k=0

(
M

k

)
(−1)M−kf(x+ kh)

=

M∑
k=0

(
M

k

)
(−1)M−k

M∑
j=0

(
M

j

)
(−1)jF (x+ kh, jr)

+
M∑
k=0

(
M

k

)
(−1)M−k

M∑
j=1

(
M

j

)
(−1)j+1F (x+ kh, jr)

=

M∑
k=0

(
M

k

)
(−1)k∆M

ren+1
F (x+ kh, 0) +

M∑
j=1

(
M

j

)
(−1)j+1∆M

h F (x, jr).

(In the second term of the last equality, we have inverted the sums over M and
j.) Therefore, (7.47) holds, as claimed.
Step 2. From the identity (7.47) to the estimate (5.13)
In view of (7.47) and of the desired estimate (5.13), it su�ces to establish the
estimate (7.48) below. �

Lemma 39. Let M > 0 be an integer. Let X := (x, ε) ∈ Rn+1
+ and let

H = (h, t) ∈ Rn+1 be such that [X,X + MH] ⊂ Rn+1
+ . Assume that either

h = 0 or t = 0. Then we have

(7.48) |∆M
H F (X)| . |H|M

ˆ M

0
tM−1|DMF (X + tH)| dt.

Proof. Set G(t) := F (X + tH), t ∈ [0,M ]. Then clearly

∆M
H F (X) = ∆M

1 G(0) and |G(M)(t)| . rM |DMF (X + tH)|.
Therefore, it su�ces to prove that

(7.49) |∆M
1 G(0)| .

ˆ M

0
tM−1|G(M)(t)| dt.
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In turn, estimate (7.49) is obtained as follows. Let χ1 := 1[−1,0] and, for
j ≥ 2, set

χj := χ1 ∗ χ1 ∗ · · · ∗ χ1︸ ︷︷ ︸
j times

.

By a straightforward induction on j, the distributional derivative χ
(j−1)
j

is bounded, and χj(t) = 0 when t ≥ 0 or when t ≤ −j. This leads to the
inequality

(7.50) |χj(−t)| ≤ Cjtj−1, ∀ j ≥ 1, ∀ t ≥ 0.

On the other hand, by a straightforward induction on M , we have

(7.51) ∆M
1 G(0) = G(M) ∗ χM (0) =

ˆ M

0
G(M)(t)χM (−t) dt.

We obtain (7.49) from (7.50) and (7.51). �
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