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We embed the homogenization theory of second-order elliptic di�erential equa-
tions in a more general framework, where the unknown is a di�erential form of
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statements. A central tool is the duality between the homogenization of forms
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1. INTRODUCTION

Most of the statements in this introduction are well-known. The reader
may refer to classical books [1, 7, 11].

We limit ourselves to the context of uniformly elliptic second-order PDEs
in space dimension n, when the underlying di�erential operator divA(x)∇ is
self-adjoint, that is A(x) is positive de�nite (we write A(x) ∈ SPDn), uni-
formly in x. The theory of homogenization is concerned with sequences of such
operators, when the tensor Aε depends upon a small parameter ε. We assume
that it remains elliptic, uniformly as ε→ 0. In practice the coe�cients do not
converge almost everywhere, but only weakly-star in L∞(Ω). A typical example
is that of periodic homogenization, where

Aε(x) = A
(x
ε

)
,

A being periodic according to a lattice Γ.

Given f ∈ H−1(Ω), the solutions uε of a Dirichlet boundary-value problem

div(Aε∇uε) = f in Ω, uε = 0 on ∂Ω
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form a bounded sequence in H1
0 (Ω). L. Tartar [11] proved that, up to a subse-

quence, uε converges weakly in H1
0 (Ω) towards the solution u of a problem of

the same family

div(Aeff∇u) = f in Ω, u = 0 on ∂Ω,

where Aeff depends only upon the sequence Aε. The tensor Aeff(x) is called
the e�ective tensor. In periodic homogenization, it does not depend upon x.
In general Aeff is signi�cantly di�erent from the weak limit of the sequence Aε.
This is obvious if n = 1 (then Aε = aε(x) is just a scalar function), where one
�nds

1

aeff
= w ∗ lim

ε→0

1

aε
.

For higher dimensions, the situation is much more complex and we know
a closed formula of e�ective tensors in only a very few cases.

For the sake of simplicity, we restrict to the periodic case. If Γ is a lattice
of Rn, functions h that are Γ-periodic admit an average, denoted

−
∫
Rn/Γ

h(x) dx.

We consider an equation

(1) div(A(x)∇u) = f,

where x 7→ A(x) is symmetric, measurable, uniformly elliptic in the sense that

αIn ≤ A(x) ≤ βIn, p.p. x ∈ Rn,

for some constants 0 < α ≤ β <∞, and is Γ-periodic. We often call A a tensor.
Our domain is the torus Rn/Γ. The e�ective tensor Aeff ∈ SPDn associated
with the sequence Aε = A( ·ε) can be calculated by the following procedure.
Given a vector p ∈ Rn, the elliptic equation

div(A(x)(p+∇u)) = 0, x ∈ Rn

admits a unique Γ-periodic solution up, up to an additive constant. Then

Aeffp := −
∫
Rn/Γ

A(x)(p+∇up) dx.

An integration by parts shows that

(2) pTAeffp = −
∫
Rn/Γ

(p+∇up)TA(x)(p+∇up) dx,

a formula that can be taken as an alternate de�nition of Aeff . Equivalently, we
have

(3) pTAeffp = inf
u
−
∫
Rn/Γ

(p+∇u)TA(x)(p+∇u) dx,
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where the in�mum is taken on all Γ-periodic functions u ∈ H1
loc. The latter

formula implies immediately (take u ≡ 0 in (3)) an upper bound for the e�ective
tensor, namely the average of A itself:

(4) Aeff ≤ A+ := −
∫
Rn/Γ

A(x) dx.

Notice that A+ is nothing but the weak limit of Aε.
A slightly less obvious bound follows from the observation that the map

(S,w) 7→ wTS−1w is convex1 over SPDn × Rn. Writing this convexity at
S = A(x) and w = p+∇up, one derives the lower bound

(5) Aeff ≥ A− :=

(
−
∫
Rn/Γ

A(x)−1 dx

)−1

.

The bounds A± are respectively the arithmetic and harmonic means of
the tensor A. They turn out to be sharp:

Proposition 1.1. The equality case Aeff = A+ happens if and only if the
rows of A are divergence-free:

n∑
j=1

∂jaij = 0, i = 1, . . . , n.

The equality case Aeff = A− happens if and only if A−1 = ∇2ρ is the Hessian
matrix of a convex function ρ.

We point out that in the latter case ∇2ρ is Γ-periodic, but ρ itself is not.

Proof. The equality to A+ corresponds obviously to the case where ∇up ≡
0 for every p. Taking for p the ith vector of the canonical basis, we obtain the
divergence-free condition. And because p 7→ ∇up is linear, the condition is also
su�cient.

To treat the second equality case, we must go back to the proof of (5).
The convex function F (S,w) = wTS−1w satis�es

F (S,w) = F (S0, w0) + LS0;w0(S − S0, w − w0) +R

where LS0;w0 is a linear form (the di�erential of F at (S0, w0)) and

R = (S−1w − S−1
0 w0)TS(S−1w − S−1

0 w0)

is non-negative. We infer a general formula

−
∫
Rn/Γ

F (S,w) dx = F (S0, w0) +−
∫
Rn/Γ

R dx ≥ F (S0, w0).

1This convexity extends that of the map (ρ,m) 7→ |m|2
2ρ

, which represents the kinetic
energy of a �uid in terms of mass density and linear momentum.
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Taking

S = A−1, w = p+∇up, S0 = (A−)−1, w0 = p,

we obtain the lower bound Aeff ≥ A−. Then the equality case is characterized
by R = 0, namely A(p+∇up) ≡ A−p. Let us denote wi the function p+∇up
associated with the choice p = ~ei. Then the vector �eld ~z := A−1

− ~w satis�es
A∇~z = In (we have used the symmetry of A−). Therefore ∇~z = A(x)−1 is
symmetric positive de�nite. This implies the existence of a convex function ρ
such that ~z = ∇ρ. Then we have A−1 = ∇2ρ. �

We point out that the equality cases are of di�erent nature. On the one
hand, the equality Aeff = A− is parametrized by only one function ρ, while

the equality Aeff = A+ is parametrized by n(n−1)
2 independent functions. On

another hand, we have

(6) (Aeff = A−) =⇒

(
−
∫
Rn/Γ

dx

detA(x)
=

1

detA−

)
.

To see this, write

ρ(x) =
1

2
xTA−1

− x+ r · x+ g(x)

where g is Γ-periodic, then

−
∫
Rn/Γ

dx

detA(x)
= −
∫
Rn/Γ

det(A−1
− +∇g) dx,

and the determinant in the right is the sum of detA−1
− and null-Lagrangians

(for this notion, we refer to [3]), the average of the latter being zero. On the
contrary, the equality Aeff = A+ does not imply an equality (except if n = 2,
for a special reason we shall explain below), but only an inequality: it was
proved recently [10] that

(7) (Aeff = A+) =⇒

(
−
∫
Rn/Γ

(detA(x))
1

n−1dx ≤ (detA+)
1

n−1

)
.

We point out that if moreover A = diag(a1, . . . , an) is diagonal and Γ = Zn,
then Aeff = A+ means that aj = aj(x̂j) does not depend upon the jth coordi-
nate xj . Then (7) reduces to the famous Gagliardo inequality [6]∥∥∥∥∥∥

n∏
j=1

gj(x̂j)

∥∥∥∥∥∥
L1(Kn)

≤
n∏
j=1

‖gj‖Ln−1(Kn−1),

where Km is the unit cube in Rm.
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Remark 1.1. We warn the reader that (7) does not extend naively when
Aeff di�ers from A+. If

−
∫
Rn/Γ

(detA(x))
1

n−1dx

was bounded by (detAeff)
1

n−1 for every tensor, then the bound (4), together
with the monotony of the determinant, would again imply the same conclusion

as in (7). This would imply the concavity of the map S 7→ (detS)
1

n−1 over
SPDn; but this property is false, since this map is homogeneous of degree
n
n−1 > 1.

Notice that the equality case Aeff = A+ is precisely that one for which
the �rst corrector in the expansion of the solution uε of

div
(
A(
x

ε
)∇uε

)
= f(x),

with Dirichlet boundary condition for instance, is independent of the fast va-
riable x

ε . This yields the sharper estimate that the sequence uε remains in a
bounded set of H2(Ω) whenever f ∈ L2(Ω) and ε→ 0+; see theorem 4.7 of [4].

Let us end this short presentation with special situations where the ef-
fective matrix Aeff can be expressed in closed form. We have already mentioned
the one-dimensional case, where aeff = a−. Similar, though more involved, for-
mulæ exist for laminated structures, that is when A depends upon only one
spatial coordinate; see for instance Theorem 1.3.28 in [1]. Other formulæ can
be established in two space dimensions, using a special trick that works only
when n = 2. The idea is that the rotation σ(x) := (x2,−x1) of angle π

2 switches
solenoidal and potential vector �elds. The basic ingredient is the equivariance
formula:

If n = 2 and B(y) := A(σy)−1, then Beff = (Aeff)−1.

This can be used to prove the following property:

If n = 2 and detA ≡ δ is a constant, then detAeff = δ.

This also allows one to calculate the e�ective matrix of a chessboard:
suppose A(x) = a±I2, according to whether x belongs to a square [k, k + 1)×
[`, `+ 1) with k + ` even/odd. Then Aeff =

√
a−a+ I2.

Goal of the paper. We intent to develop a framework in which many
of the special situations described above become special cases of general sta-
tements. This will be done by replacing the unknown ∇u in (1) by a closed
di�erential form of degree m (with m = 1 in (1)) and A∇u by another closed
di�erential form of degree n−m. Let us summarize our results:
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• There is a duality, which transforms a homogenization problem in degree
m into another homogenization problem, in degree n −m. This duality
is involutive.

• The map A 7−→ Aeff is equivariant under this duality. An upper bound
of Aeff in the primary problem yields a lower bound in the dual problem.

• Convex functions with periodic Hessian provide tensors A(x) for which
the theoretical upper bound actually equals the e�ective tensor.

When n = 2m, the duality is a little more powerful in that it relates two
distinct homogenization problems on forms of same degree. For instance, if
n = 2 and m = 1, we obtain the formulæ mentioned above.

2. HOMOGENIZING DIFFERENTIAL FORMS

2.1. Di�erential forms over Rn

Again, we recall basics of di�erential forms, without proofs.
Let U be an open subset of Rn. A di�erential form over U , of degree

m (we call it an m-form), is a map x 7→ α(x), where α(x) is an alternate m-
linear form over Rn, that is α(x) ∈ Λm∗(Rn). The space of m-forms is denoted
Ωm(U). In practice, we need some control of the coe�cients of x 7→ α(x)
over some (arbitrary) basis of Λm∗(Rn); at least, they must be measurable.
When they belong to some Lebesgue, Sobolev or H�older space, we write α ∈
LpΩm(U), HsΩm(U) or CsΩm(U). If the coe�cients are bounded measures, we
speak ofMΩm(U). We recall that 0-forms are just scalar functions over U and
1-forms

a1(x)dx1 + · · ·+ an(x)dxn, dxj := ~e∗j

are meant to be integrated along curves. More generally, m-forms can be inte-
grated over m-dimensional oriented submanifolds. Finally, Ωm(U) = {0} when
m > n.

A canonical basis of Λm∗(Rn) is given by the elements

dxI := dxi1 ∧ · · · ∧ dxim , I = {i1 < · · · < im}.

Its dimension is therefore the binomial
(
n
m

)
. An m-form decomposes in a

unique way as ∑
|I|=m

aI(x)dxI .

For instance, every n-form is written in a unique way g(x)vol, where
vol = dx1 ∧ · · · ∧ dxn is the canonical volume form.

The direct sum
Ω(U) = ⊕nm=0Ωm(U)
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is an associative, graded algebra under the exterior product α∧β. The product
of an m-form α and an `-form β is an (m+ `)-form; in particular α ∧ β = 0 if
m+ ` > n. There holds

β ∧ α = (−1)m`α ∧ β.
For instance, 1-forms satisfy α∧ α = 0, and the subspace spanned by the

forms of even degree is a commutative2 subalgebra.
An exterior derivative d is de�ned from Ωm(U) into3 Ωm+1(U), which

displays the following properties:

d ◦ d = 0, d(α ∧ β) = (dα) ∧ β + (−1)mα ∧ (dβ), df =

n∑
j=1

∂f

∂xj
dxj ,

when f is a function and α, β are an m-form and an `-form. One therefore has

d

∑
|I|=m

aI(x)dxI

 =
∑
|I|=m

daI(x) ∧ dxI =
∑
|I|=m

∑
j 6∈I

∂aI
∂xj

dxj ∧ dxI .

An m-form α is closed if dα = 0; it is exact if there exists an (m−1)-form
β such that α = dβ. An exact form is always closed, but the converse is not
necessarily true (its validity depends upon m and the topology of U).

The formula above shows that the gradient of a function f can be identi�ed
with df . Likewise, the di�erential of a vector �eld identi�es with its rotational
(curl operator). For an (n− 1)-form

α = q1dx2∧· · ·∧dxn−q2dx1∧dx3∧· · ·∧dxn+ · · ·+(−1)n−1qndx1∧· · ·∧dxn−1,

the exterior derivative dα equals (div ~q)vol. We warn the reader that these
identi�cations depend upon the choice of a euclidian structure over Rn (here
we choose the standard one).

2.2. Elliptic second-order equations for di�erential forms

Adopting the formalism of di�erential forms, we see that an equation (1)
can be rewritten as

dα = 0, d(Aα) = 0,

where α = ∇u is a 1-form and Aα is viewed as an (n−1)-form. The tensor A(x)
is now identi�ed with a linear map A(x) : Λ1∗(Rn) → Λn−1,∗(Rn). De�ning a
bilinear form bx by

bx(α, β)vol = (A(x)α) ∧ β,
2This fact is used in the proof of the Amitsur�Levitski Theorem; see [9], chapter 4.
3Here, we do not mention the regularities needed for the de�nition. The regularity must

be high enough that products make sense.
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the symmetry and positivity of A(x) amount to saying that bx is symmetric
and positive de�nite.

If A is Γ-periodic, we observe that the e�ective tensor can be described as
follows. We begin by setting a positive de�nite quadratic form over Λ1∗(Rn),

beff(p, p) := inf

{
−
∫
Rn/Γ

(Aα) ∧ α | α = p+ du, u ∈ H1(Rn/Γ)

}
.

Then Aeff : Λ1∗(Rn) → Λn−1,∗(Rn) is the unique symmetric linear map
such that

(Aeffp) ∧ p = beff(p, p)vol, ∀p ∈ Λ1∗(Rn).

Remark that in the procedure above, one minimizes over those 1-forms
α that are square integrable, closed, and such that −

∫
Rn/Γ α dx = p. This for-

mulation has the advantage that the minimizer αp is unique, contrary to the
classical formulation, where up is unique only up to an additive constant.

2.2.1. GENERALIZING TO FORMS OF HIGHER DEGREE

This suggests to adopt the same presentation when the degree 1 ≤ m ≤
n − 1 of the unknown form is arbitrary. We start from a �eld of bilinear
symmetric forms bx over Λm∗(Rn), measurable in x ∈ Rn/Γ. We suppose that
bx is positive de�nite, uniformly in x ∈ Rn/Γ: there exists a �nite constant C
such that

1

C
‖p‖2 ≤ bx(p, p) ≤ C‖p‖2, ∀ p ∈ Λm∗(Rn), ∀x ∈ Rn/Γ,

where a norm has been chosen once for all in Λm∗(Rn). This bilinear form
de�nes a self-adjoint operator

T (x) ∈ L(Λm∗(Rn); Λn−m,∗(Rn))

by the formula

(T (x)p) ∧ p′ = bx(p, p′)vol = (T (x)p′) ∧ p.

The functional

L2Ωm(Rn/Γ) −→ R

α 7−→ −
∫
Rn/Γ

bx(α(x), α(x)) dx

is convex, continuous and coercive. When restricted to the a�ne subspace
Fp of closed m-form whose average equal a given p ∈ Λm∗(Rn), it achieves a
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minimum at a unique element αp. This one is the unique solution of the elliptic
problem

(8) dαp = 0, d(Tαp) = 0, −
∫
Rn/Γ

αp dx = p.

The map p 7→ αp is obviously linear. Then the e�ective operator Teff ∈
L(Λm∗(Rn); Λn−m,∗(Rn)), which is self-adjoint too, is de�ned by

Teffp := −
∫
Rn/Γ

Tαpdx

or equivalently

(9) beff(p, p) = (Teffp) ∧ p := −
∫
Rn/Γ

bx(αp(x), αp(x)) dx

= inf

{
−
∫
Rn/Γ

bx(α, α) dx | dα = 0,

α ∈ L2Ωm(Rn/Γ), −
∫
Rn/Γ

α dx = p

}
.

It is clear that beff(p, p) satis�es the same inequalities

1

C
‖p‖2 ≤ beff(p, p) ≤ C‖p‖2, ∀ p ∈ Λm∗(Rn).

We justify the terminology Teff or beff in the next paragraphs. We begin
by de�ning an appropriate boundary value problem in bounded domains. Then
we prove a homogenization result.

2.2.2. A DIRICHLET BOUNDARY VALUE PROBLEM

Let U be a bounded open domain in Rn, and T (x)∈L(Λm∗(U); Λn−m,∗(U))
be self-adjoint and positive de�nite, uniformly in x. We de�ne the symmetric,
positive de�nite bilinear form

B(α, α′) =

∫
U

(Txα) ∧ α′, α, α′ ∈ L2Ωm(U),

where we use the fact that (Txα) ∧ α′ is a volume form over U and therefore
can be integrated.

If β ∈ L2Ωn−m(U), the functional

N [α] :=
1

2
B(α, α) +

∫
U
α ∧ β
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is continuous, coercive and strictly convex over L2Ωm(U). Given a closed vector
space (or even an a�ne one), it achieves a unique minimum. We apply this
principle to the subspace d(H1

0 Ωm(U)) of exact forms α = dξ whose potential
is of class

ξ ∈ H1
0 Ωm(U) = DΩ(U)

H1

.

Here above, H1 is the usual Sobolev space and D denotes the space of C∞-
functions with compact support. Let α be this minimum. The Euler�Lagrange
equation for this minimization problem is

α ∈ d(H1
0 Ωm(U)), B(α, α′) =

∫
U
β ∧ α′, ∀α′ ∈ d(H1

0 Ωm(U)).

The second equality is∫
U

(Txα− β) ∧ dβ′ = 0, ∀β′ ∈ H1
0 Ωm(U).

Since the left-hand side is ∫
U

(d(Txα− β)) ∧ β′,

this amounts to saying that d(Txα − β) = 0. We summarize this analysis in
the following statement.

Proposition 2.1. Let U be a bounded open domain in Rn, and

T (x) ∈ L(Λm∗(U); Λn−m,∗(U))

be self-adjoint and positive de�nite, uniformly in x.

Given an exact form γ ∈ H−1Ωn−m+1(U), there exists one, and only one
exact form α ∈ d(H1

0 Ωm(U)), satisfying

d(Tα) = γ.

We emphasize that the boundary condition is encoded in the requirement
that α ∈ d(H1

0 Ωm(U)). When µ ∈ L2Ωm(U) is closed, dµ = 0, it admits a
tangential trace µτ ∈ H−1/2Ωm(∂U), by a duality argument similar to that
used for the de�nition of the normal trace of elements of the space Hdiv(U). If
U1 is a contractile subdomain and ξ ∈ H1Ωm(U1) is a potential in U1, µ = dξ,
then µτ coincides with the exterior derivative of the tangential part of the
standard trace of ξ over ∂U1∩∂U . In the case of α, the potential vanishes over
the boundary and we have therefore

ατ ≡ 0 over ∂U.
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2.2.3. HOMOGENIZATION OF THE DIRICHLET BVP

Theorem 2.1. Let U be a bounded open domain in Rn, and

T (x) ∈ L(Λm∗(Rn); Λn−m,∗(Rn))

be self-adjoint, Γ-periodic and positive de�nite, uniformly in x.
Let γ ∈ L2Ωn−m+1(U) be an exact form. Denote αε the unique solution

of

αε ∈ d(H1
0 Ωm(U)), d(T

(x
ε

)
αε) = γ in Ω.

When ε→ 0+, αε converges weakly-star in L2Ωm(U) towards the unique solu-
tion of

α ∈ d(H1
0 Ωm(U)), d(Teffα) = γ in Ω.

Proof. We follow Tartar's strategy (see Section 1.3 of [7]), which employs
the compensated compactness in its version for di�erential forms (Theorem 1.1
in [8] or Lemma 9.1 in [11]).

Let us denote pε = T
(
x
ε

)
αε = T εαε, which is a closed (n−m)-form. Be-

cause of the variational formulation and the uniform ellipticity, αε is a bounded
sequence in L2Ωm(U). Since T ε is uniformly bounded, pε is also a bounded
sequence, in L2Ωn−m(U). Up to an extraction, we may assume that both se-
quences have weak-star limits:

αε ⇀ α, pε ⇀ p weakly-star in L2.

By continuity and closeness, we still have α ∈ d(H1
0 Ωm(U)) and dp = γ.

Let ξ ∈ Λm∗(Rn) be given. We denote ω the unique solution of the cell
problem

dω = 0, d(Tω) = 0 in Rn, −
∫
Rn/Γ

ω(x) dx = ξ.

Then we de�ne
ωε(x) := ω

(x
ε

)
.

We still have dωε = 0 and d(T εωε) = 0. In addition, the following weak
convergence holds

ωε ⇀ −
∫
Rn/Γ

ω(x) dx = ξ, T εωε ⇀ −
∫
Rn/Γ

T (x)ω(x) dx = Teffξ,

by the de�nition of Teff .
Finally, the self-adjointness of T gives us

(10) pε ∧ ωε = (T εαε) ∧ ωε = αε ∧ (T εωε).

We are now in position to apply compensated compacted to both sides
of equality (10). All the factors in action are sequences of closed forms, but
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one, namely pε. The sequence dpε is independent of ε, therefore remains in
a compact subset of H−1Ωn−m+1(U). All of them are weakly converging in
L2Ω. The version of the div-curl Lemma for di�erential forms tells us that
the exterior product weakly-star converges in MΩn, towards the product of
weak-star limits. We deduce the equality p ∧ ξ = α ∧ (Teffξ), that is

p ∧ ξ = (Teffα) ∧ ξ.

Since this equality holds true for every ξ ∈ Λm∗(Rn), we infer p = Teffα.
Therefore α is the (unique) solution of the Dirichlet problem in U associated
with the operator Teff ∈ L(Λm∗(Rn); Λn−m,∗(Rn)).

The uniqueness of the limit α ensures that the whole sequence αε conver-
ges. �

2.3. Duality in homogenization

When the operator Tx is as above, it is invertible, because of positive
de�niteness. Its inverse

T (x)−1 ∈ L(Λn−m,∗(Rn); Λm∗(Rn))

is still self-adjoint and positive de�nite. We associate with T−1 an elliptic PDE
similar to (8), but whose unknown is an (n−m)-form. Of course, homogeniza-
tion yields an e�ective tensor (T−1)eff , for which we establish an equivariance
property.

Proposition 2.2 (Equivariance). Let the tensor T (x) ∈ L(Λm∗(Rn);
Λn−m,∗(Rn)) be self-adjoint and positive de�nite. Then we have the formula

(11) (T−1)eff = (Teff)−1.

Proof. It is enough to remark that (8) and the de�nition of Teff are equi-
valent to

d(Tαp) = 0, d(T−1(Tαp)) = 0, −
∫
Rn/Γ

Tαp dx = Teffp,

together with

−
∫
Rn/Γ

T−1(Tαp) dx = p.

This shows that (T−1)eff(Teffp) = p. Since Teff is positive de�nite and
therefore one-to-one, this proves (11). �

Warning. When m = 1 and we start from a PDE in classical formulation
(1), then the dual PDE governs (n− 1)-forms, instead of 1-forms. Both PDEs
are of a completely di�erent nature, except if n = 2.
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The case n = 2m. When m is the half of the space dimension, both T (x)
and T (x)−1 belong to L(Λm(Rn)). Then T and T−1 de�ne two elliptic PDEs
over the same space of m-forms. If it happens that these PDEs are identical
up to an isometry of the domain Rn/Γ, then we have a linear relation between
Teff and (T−1)eff . For instance, say that Teff = (T−1)eff ; thanks to (11) and
because Teff is self-adjoint and positive de�nite, we conclude that Teff is nothing
but the identity of Λm(Rn). This is exactly the way that the e�ective tensor of
a chessboard was identi�ed (when m = 1 and n = 2). We thus have a similar
result for generalized chessboards in even-dimensional spaces. For this, we say
that a cube z+ [0, 1)n with z ∈ Zn is even/odd if

∑
j zj is even/odd. If |I| = m

and n = 2m, we denote εI = ±1 the sign in dxI ∧ dxIc = ±vol.

Proposition 2.3 (n = 2m.). Let T (x) be de�ned by

T (x)dxI = a±εIdx
c
I , ∀ |I| = m,

equivalently

bx(dxI , dxJ) = a±δ
J
I , ∀ |I| = |J | = m,

according to whether x belongs to an even/odd cube. Then

Teff =
√
a−a+ T1,

where T1dxI = εIdx
c
I , that is b1(dxI , dxJ) = δJI .

2.3.1. BOUNDS FOR THE EFFECTIVE TENSOR

An obvious bound is obtained by choosing α ≡ p in (9):

beff(p, p) ≤ −
∫
Rn/Γ

bx(p, p) dx,

which we write simply and by analogy with the case of 1-forms

(12) beff ≤ −
∫
Rn/Γ

bxdx =: b+, or Teff ≤ −
∫
Rn/Γ

Txdx =: T+.

By duality, and because the map T 7→ T−1 is monotonous decreasing over
the self-adjoint positive de�nite operators, we infer the lower bound

(13) Teff ≥ T− :=

(
−
∫
Rn/Γ

T−1
x dx

)−1

.
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2.4. The equality Teff = T+

Because the minimum in (9) is achieved at a unique point αp, the equality
Teff = T+ happens if, and only if αp ≡ p for every p and almost every x ∈ Rn/Γ.
Looking at (8), this amounts to saying that for every |I| = m one has

d(TdxI) ≡ 0.

This condition is denoted dT = 0, by analogy with the case m = 1, where it
was written DivA = 0, the divergence acting over the rows (or columns) of the
symmetric matrix A(x).

By duality, we infer that the equality of Teff to T− is equivalent to
d(T−1) = 0.

We now give two important examples where Teff coincides with T+.

2.4.1. THE DIAGONAL CASE

We say that T is diagonal if TdxI = εIfI(x)dxIc for some scalar function
fI , for every index set I of cardinality m. In other words, bx(dxI , dxJ) equals
fI if J = I and 0 otherwise. Then one has

d(TdxI) = d(fIdxIc) = dfI ∧ dxIc =
∑
j∈I

∂f

∂xj
dxj ∧ dxIc .

We deduce that dT = 0 if and only if fI depends only upon the coordinates
xi for i ∈ Ic; we write fI = fI(xIc). Remark that for this to be compatible
with the periodicity, one needs that Γ = DZn, where D is a diagonal matrix.

The discriminant of bx in the canonical basis of the dxI 's, is the product
of the functions fI . It turns out that a generalization of Gagliardo's inequality
provides an inequality for this discriminant. The following result is due to
Finner [5] and was rediscovered later on in [2].

Proposition 2.4 (Generalized Gagliardo inequality). For each index sub-
set I of cardinality `, let FI : R` → R be a non-negative, measurable function
of the variables xI = (xi)i∈I . Let us form the product

F (x) =
∏
|I|=`

FI(xI).

Then there holds

(14)

∫
Rn
F (x) dx ≤

∏
|I|=`

‖FI‖Lq(R`),

where q =
(
n−1
`−1

)
is a binomial coe�cient.

The same inequality, where integrals are replaced by averages, is valid in
the periodic case.
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Applying (14) to the functions FJ = fJc , with ` = n−m, we obtain:

Corollary 2.1. Suppose that Teff = T+ and that T (x) is diagonal. Then
one has

(15) −
∫
Rn/Γ

(disc bx)1/qdx ≤ (disc b+)1/q, q =

(
n− 1

m

)
.

Remark that the function b 7→ (disc b)
1
q is homogeneous of degree

1

q

(
n

m

)
=

n

n−m
> 1,

and therefore is not concave. Thus (15) is not a consequence of Jensen's ine-
quality.

2.4.2. ANOTHER CASE OF EQUALITY

Proposition 2.5. Let θ : Rn → R be a strongly convex function such that
∇2θ is Γ-periodic. Let us de�ne T (x) : Λm∗(Rn)→ Λn−m,∗(Rn) by

TdxI = εI
∧
j∈Ic

d∂jθ whenever |I| = m.

Then T is symmetric positive de�nite and satis�es the constraint dT = 0. One
thus has Teff = T+.

In addition, T satis�es

(16) −
∫
Rn/Γ

(disc bx)1/qdx = (disc b+)1/q,

where disc bx is the discriminant of the quadratic form bx, and q =
(
n−1
m

)
is the

same binomial coe�cient as above.

This generalizes the observation made in [10] that for m = 1, a tensor

A(x) = ∇̂2θ de�ned as the cofactor matrix of the Hessian of a strongly convex
function is symmetric positive de�nite and row-wise divergence-free.

An equivalent de�nition of T can be given in terms of the m-forms

αK :=
∧
k∈K

d∂kθ.

Using the symmetry of T , we have

(TαK) ∧ dxI = (TdxI) ∧ αK =

εI ∧
j∈Ic

d∂jθ

 ∧ αK .
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This yields (TαK) ∧ dxI = 0 if K 6= I, and

(TαI) ∧ dxI =

n∧
i=1

d∂iθ = det∇2θ · vol

otherwise. Equivalently,

bx(αK , dxI) =

{
0 if K 6= I,
det∇2θ if K = I.

This means also

(17) TαI = εI(det∇2θ) dxIc .

Proof. Because of d ◦ d = 0, and the Leibniz rule, one obviously has
d(TdxI) = 0 for every I.

Decomposing m-forms over the canonical basis, ω =
∑

I ωIdxI , the bili-
near form associated with Tx writes

bx(ω, ω′) =
∑

|I|=|J |=p

aIJωIω
′
J ,

where the coe�cients are Jacobian determinants

aIJ = Jac(∂kθ|k∈Ic ; x`|`∈Jc) = det (∂k∂`θ)k∈Ic,`∈Jc .

Because aIJ = aJI , the form bx is symmetric, as required.
The rest of the proof involves the following result, whose proof is postpo-

ned for a minute.

Lemma 2.1. Let H ∈ Symn(R) be given. Let R be the quadratic form
over Λr∗(Rn), de�ned by

η =
∑
|K|=r

ηKdxK 7−→ R(η) =
∑

|K|=|L|=r

H

(
K
L

)
ηKηL,

where the coe�cient of ηKηL is the minor of H whose rows (resp. columns)
have indices in the set K (resp. L).

The discriminant of R in the canonical basis equals (detH)N where N =(
n−1
r−1

)
.
If H is positive de�nite, then R is positive de�nite.

Actually, the quadratic form

Qx(ξ) =
∑

|I|=|J |=m

aIJ(x)ωIωJ

can be written R(η) with r = n − m and H = ∇2θ(x), after the change of
variable ηI := ωIc . According to the Lemma, it is positive de�nite, and its
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discriminant equals

(det∇2θ)N , N :=

(
n− 1

n−m− 1

)
=

(
n− 1

m

)
= q.

One deduces

−
∫
Rn/Γ

(discT (x))1/qdx = −
∫
Rn/Γ

det∇2θ dx = det−
∫
Rn/Γ

∇2θ dx,

where the last equality follows from the fact that det∇2θ is a null-Lagrangian.
Remarking now that, for the same reason,(

−
∫
Rn/Γ

∇2θ dx

)(
K
L

)
= −
∫
Rn/Γ

∇2θ

(
K
L

)
dx, ∀ |K| = |L| = n−m,

one sees that the quadratic form associated with A+ is nothing but the R of
the lemma when choosing

H = −
∫
Rn/Γ

∇2θ dx.

One has therefore

discA+ =

(
det−
∫
Rn/Γ

∇2θ dx

)q
,

from which we deduce the equality in (16). �

There remains to prove Lemma 2.1.

Proof. Let us diagonalize H in an orthogonal basis, H = UTDU where
D is diagonal and U is orthogonal. The Cauchy�Binet formula (see in [9], the
chapter about square matrices) yields

H

(
K
L

)
=

∑
|M |=|N |=r

UT
(
K
M

)
D

(
M
N

)
U

(
N
L

)

=
∑

|M |=|N |=r

U

(
M
K

)
D

(
M
N

)
U

(
N
L

)
.

We infer

R(η) = S(ρ) :=
∑

|M |=|N |=r

D

(
M
N

)
ρMρN , ρM :=

∑
|K|=r

U

(
M
K

)
ηK .

The change of variable η 7→ ρ is an isomorphism, because of

ηK =
∑
|K|=r

U

(
M
K

)
ρM .
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Since D is diagonal, one has

S(ρ) =
∑
|M |=r

dMρ
2
M , dM :=

∏
i∈M

di.

When H is positive de�nite, the di's are > 0, the dM 's are positive too
and the quadratic form S is positive de�nite.

Eventually, we compute the discriminant of R. The reciprocal of η 7→ ρ
being equal to its transpose, it is an orthogonal transformation. The discrimi-
nant of R is thus equal to that of S. And the latter is just

discS =
∏
|M |=r

dM =

(
n∏
i=1

di

)s
= (detH)s

where, by homogeneity,

s =
r

n

(
n

r

)
=

(
n− 1

r

)
. �

3. FUNCTIONAL INEQUALITIES

Let us assemble the results that we know so far, concerning the equality
case Teff = T+:

• If m = 1, that is T (x) is represented by a symmetric matrix A(x) > 0n,
which satis�es DivA ≡ 0, then the following inequality is shown in [10]:

−
∫
Rn/Γ

(detA(x))
1

n−1dx ≤

(
det−
∫
Rn/Γ

A(x) dx

) 1
n−1

.

• By duality, the case m = 1 and Aeff = A− yields a situation where
m = n− 1 and Teff = T+. Then (6) transforms into

−
∫
Rn/Γ

disc bxdx = disc−
∫
Rn/Γ

bxdx.

• In the diagonal case, we have inequality (15):

−
∫
Rn/Γ

(disc bx)1/qdx ≤ (disc b+)1/q, q =

(
n− 1

m

)
.

• In the special case built from the Hessian of a convex function, we have
the equality (16):

−
∫
Rn/Γ

(disc bx)1/qdx = (disc b+)1/q, q =

(
n− 1

m

)
.
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We point out that the second case is a particular one of the latter. These

convergent clues lead us to a more general statement, which contains all of

them. We leave it as an open question:

Let T (x) : Λm∗(Rn)→ Λn−m,∗(Rn) be Γ-periodic, and bx de�ned by

bx(ω, ω′)vol = (T (x)ω) ∧ ω′

be symmetric, positive semi-de�nite and uniformly bounded.

If dT ≡ 0, is it true that

(18) −
∫
Rn/Γ

(disc bx)1/qdx ≤ (disc b+)1/q, q =

(
n− 1

m

)
?

Remark. Let

q1 =

(
n

m

)
be the dimension of Λm∗(Rn). If the exponent 1

q is replaced by 1
q1
, then the

map b 7→ (disc b)
1
q1 is concave over the cone of positive de�nite quadratic forms,

and the inequality

−
∫
Rn/Γ

(disc bx)1/q1dx ≤ (disc b+)1/q1

is valid, even without the constraint dT = 0, as a consequence of Jensen's

inequality. Instead, the inequality (18), if it was true, would be non-trivial

because the map b 7→ (disc b)
1
q is not concave; it is actually superlinear along

the rays passing through the origin.

By duality, every statement about the case Teff = T+ is equivalent to a

statement about the case Teff = T−. Here, an equivalent question is

Let T (x) : Λm∗(Rn) → Λn−m,∗(Rn) be Γ-periodic, and bx de�ned by

bx(ω, ω′)vol = (T (x)ω)∧ω′ be symmetric, positive semi-de�nite and uniformly

bounded below.

If Teff = T−, is it true that

(19) −
∫
Rn/Γ

dx

(disc bx)1/r
≤ 1

(disc b−)1/r
, r =

(
n− 1

m− 1

)
?
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