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We consider a class of optimization problems in re�exive Banach spaces. The
existence of minimizers is a direct consequence of the Weierstrass theorem. We
study the dependence of the solution with respect to a perturbation of the cost
functional as well as with respect to the set of constraints. We establish weak
convergence results and, under additional assumptions, strong convergence re-
sults. Next, we introduce a mathematical model which describes the equilibrium
of an elastic body in contact with a rigid-plastic obstacle. We derive the weak
formulation of the model which is in the form of an optimization problem for
the displacement �eld. Then, we use our abstract results in order to obtain
the existence of a unique weak solution of the model as well as its continuous
dependence with respect to the data.
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1. INTRODUCTION

Optimization methods represent a powerful mathematical tool used in va-
rious domains of Applied Mathematics, including the analysis and numerical
approximation of various nonlinear boundary value problems. They are in-
tensively used in mathematical economics, mathematical physics, biology, and
aerospace, chemical, civil, electrical, and mechanical engineering. The Opti-
mization Theory was developed based on arguments of monotonicity, semicon-
tinuity, subdi�erentiability, compactness and convexity, among others. Basic
references in the �eld include the books [2, 5, 6, 9, 10].
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Processes of contact between deformable bodies abound in industry and
everyday life. A few simple examples are brake pads in contact with wheels,
tires on roads, and pistons with skirts. Because of the importance of contact
processes in structural and mechanical systems, considerable e�ort has been
put into their modeling, analysis and numerical simulations. The literature in
the �eld is extensive. It includes the books [1, 7, 8, 12, 14, 16�18], for instance.
There, the analysis and numerical simulations of contact problems with elastic,
viscoelastic and viscoplastic materials can be found. Excellent references in
the mathematical theory of elasticity and plasticity are the monographs [3, 4]
and [11,20], respectively.

In this paper, we consider an abstract optimization problem with appli-
cations in the study of mathematical models of contact with linearly elastic
materials. The problem is formulated as follows.

Problem. P. Find u ∈ K such that

(1.1) J(u, η) = min
v∈K

J(v, η).

Here K represents a subset of a re�exive Banach space X and J(·, η)
is a given function which depends on the parameter η. We state su�cient
conditions which guarantee the existence of a solution to Problem P. Then, for
each n ∈ N, we consider a perturbation of Problem P de�ned as follows.

Problem. Pn. Find un ∈ K such that

(1.2) J(un, ηn) = min
v∈K

J(v, ηn).

In (1.2) and below ηn represents a perturbation of the parameter η. Besi-
des the solvability of this problem we study the behavior of the solution when
n→∞ and prove various convergence result. Finally, for n ∈ N we consider a
second perturbation of Problem P, denoted Pnn , de�ned as follows.

Problem. Pnn . Find un ∈ Kn such that

(1.3) J(un, ηn) = min
v∈Kn

J(v, ηn)

Here Kn denotes a perturbation of the set K and, again, ηn denotes a
perturbation of η. For Problem Pnn we prove existence, uniqueness and con-
vergence results as the sequence {ηn} converges weakly to η and the sequence
{Kn} converges to K in the sense of Mosco.

Besides the mathematical interest in the abstract results presented in this
paper, they are important from mechanical point of view. Indeed, a large num-
ber of mathematical models which describe the equilibrium of linearly elastic
materials in contact with a foundation lead to optimization problems of the
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form (1.1). There, u represents either the displacement or the stress �eld, K is
the set of constraints and the function J represents the energy function, related
to the constitutive law, the applied forces and the contact conditions. Thus,
the abstract results we present in this paper can be used in the study of the
corresponding contact problems. They provide the continuous dependence of
the solution with the data and lead to interesting mechanical interpretations.

The rest of the paper is structured as follows. In Section 2, we state and
prove our �rst result, Theorem 2.1. It states the existence of the solutions
of problems P and Pn, together with a weakly convergence result. Then, we
reinforce the assumptions on the data and prove our second result, Theorem
2.2. It states the existence of a unique solution of Problems P and Pn, re-
spectively, together with a strongly convergence result. In Section 3, we obtain
similar results, Theorems 3.2 and 3.3, for Problems P and Pnn . The proofs of
the theorems are based on arguments of compactness and lower semicontinuity.
In Section 4, we introduce a mathematical model which describes the equili-
brium of an elastic body in contact with a rigid-plastic obstacle. We list the
assumptions on the data and provide the variational formulation of the model.
Then, in Section 5, we state and prove our main result in the study of this
problem, Theorem 5.1. The proof is based on the abstract result provided by
Theorem 3.3.

Note that the linear spaces considered in this paper including abstract
normed spaces, Banach spaces and various function spaces are assumed to be
real linear spaces. Notation ‖ · ‖Z will represent the norm of the normed space
Z. In addition, we denote by → and ⇀ the strong and weak convergence in
various normed spaces, which will be speci�ed. We end this introduction by
recalling the following version of the Weierstrass theorem.

Theorem 1.1. Let X be a re�exive Banach space space, K a nonempty

weakly closed subset of X and J : X → R a weakly lower semicontinuous

function. In addition, assume that J is coercive, i.e., J(v)→∞ as ‖v‖X →∞.

Then, the following statements hold.

i) There exists at least an element u such that

(1.4) u ∈ K, J(u) ≤ J(v) ∀ v ∈ K.

ii) If, moreover, K is a convex set and J is strictly convex function, then

the solution of the optimization problem (1.4) is unique.

Theorem 1.1 will be used in Sections 2 and 3 to prove the solvability and
the unique solvability of Problems P, Pn and Pnn , respectively. Its proof can
be found in many books and surveys, see, for instance, [6, 13,18].
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2. THE STUDY OF PROBLEMS P AND Pn

The functional framework in which we study Problems P and Pn is the
following. First, X is a re�exive Banach space, Y a normed space, K ⊂ X,
Λ ⊂ Y and J : X × Λ→ R. Moreover, we consider the following assumptions.

(Λ) Λ is a nonempty weakly closed subset of Y .

(K) K is a nonempty weakly closed subset of X.

(J1)


For all sequences {uk} ⊂ X and {ηk} ⊂ Λ such that

uk ⇀ u in X, ηk ⇀ η in Y and for all v ∈ X,
the inequality below holds:

lim sup
k→∞

[J(v, ηk)− J(uk, ηk)] ≤ J(v, η)− J(u, η).

(J2)

{
For all sequences {uk} ⊂ X and {ηk} ⊂ Λ such that

‖uk‖X →∞, ηk ⇀ η in Y one has J(uk, ηk)→∞.

(J3)

{
For all sequence {ηk} ⊂ Λ such that ηk ⇀ η in Y

and all v ∈ X one has J(v, ηk)− J(v, η)→ 0.

Note that below in this section we shall use assumptions (J1)�(J3) together
with assumption (Λ). This guarantees that, if {ηk} ⊂ Λ and ηn ⇀ η in Y , then
η ∈ Λ. For this reason, in the statement of assumptions (J1)�(J3) we do not
indicate explicitly that η ∈ Λ, which represents a necessary condition to de�ne
the functional J(·, η).

Next, we consider an element η ∈ Λ and, for each n ∈ N, let ηn ∈ Λ.
Moreover, we assume that

(2.1) ηn ⇀ η in Y.

Our �rst result in this section is the following.

Theorem 2.1. Assume (Λ), (K) and (J1)�(J3). Then the following sta-

tements hold.

i) Problem P has at least one solution and Problem Pn has at least one

solution, for each n ∈ N.
ii) If (2.1) holds and un is a solution of Problem Pn, for each n ∈ N, there

exists a subsequence of the sequence {un}, again denoted {un}, and an element

u ∈ K, such that

(2.2) un ⇀ u in X.

Moreover, u is a solution to Problem P.
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Proof. i) We take ηk = η in (J1) to see that for all sequences {uk} ⊂ X
such that uk ⇀ u and for all v ∈ X we have

lim sup
k→∞

[J(v, η)− J(uk, η)] ≤ J(v, η)− J(u, η),

which implies that
lim inf
k→∞

J(uk, η) ≥ J(u, η).

We conclude from here that the function J(·, η) : X → R is lower semi-
continuous. Moreover, taking ηk = η in (J2) we deduce that J(·, η) is coercive.
Recall also the assumption (K). The existence of at least one solution to Pro-
blem P is now a direct consequence of Theorem 1.1 i). The existence of at
least one solution to Problem Pn follows by the same argument, applied to the
function J(·, ηn) : X → R, for each n ∈ N.

ii) Assume (2.1). We claim that the sequence {un} is bounded in X. In-
deed, if {un} is not bounded then we can �nd a subsequence of the sequence
{un}, again denoted {un}, such that ‖un‖X →∞. Therefore, using assumpti-
ons (2.1) and (J2) we deduce that

(2.3) J(un, ηn)→∞.
On the other hand, using (J3) it follows that

(2.4) J(v, ηn)→ J(v, η),

v being an arbitrary element in K. Finally, since un is a solution of Problem
Pn we obtain that

(2.5) J(un, ηn) ≤ J(v, ηn).

We now pass to the limit in (2.5) and use the convergences (2.3) and (2.4)
to deduce that J(v, η) =∞ which represents a contradiction. We conclude from
above that the sequence {un} is bounded in X and, using a standard compact-
ness argument, we deduce that there exists a subsequence of the sequence {un},
again denoted {un}, and an element u ∈ X, such that (2.2) holds.

We now prove that u is a solution of Problem P. To this end, we note that
assumption (K) together with the convergence (2.2) guarantees that u ∈ K.
Moreover, since un is the solution to Problem Pn, we have

J(un, ηn) ≤ J(v, ηn) ∀ v ∈ K
which implies that

(2.6) 0 ≤ lim sup
n→∞

[J(v, ηn)− J(un, ηn)] ∀ v ∈ K.

On the other hand, convergences (2.1) and (2.2) combined with assump-
tion (J1) yield

(2.7) lim sup
n→∞

[J(v, ηn)− J(un, ηn)] ≤ J(v, η)− J(u, η) ∀ v ∈ K.
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We now combine (2.6) and (2.7) to deduce that

J(u, η) ≤ J(v, η) ∀ v ∈ K.

This implies that u is a solution of Problem P, which concludes the
proof. �

We now reinforce the conditions on the data by considering the following
assumptions.

(K̃) K ⊂ X is a nonempty closed convex subset.

(J̃) J(·, η) : X → R is a strictly convex function, for each η ∈ Λ.

(J∗)


There exists m > 0 such that

(1− t)J(u, η) + tJ(v, η)− J((1− t)u+ tv, η) ≥ mt(1− t)‖u− v‖2X
for all u, v ∈ X, η ∈ Λ, t ∈ [0, 1].

Note that assumption (J∗) implies assumption (J̃). Moreover, assumption
(K̃) implies assumption (K).

Our second result in this section is the following.

Theorem 2.2. Assume (Λ), (K̃), (J1)�(J3) and (J̃). Then, the following

statements hold.

i) Problem P has a unique solution u and Problem Pn has a unique solu-

tion un, for each n ∈ N.
ii) If (2.1) holds, then sequence {un} converges weakly to u, i.e., un ⇀ u

in X.

iii) If (2.1) and (J∗) hold, then the sequence {un} converges strongly to u,
i.e., un → u in X.

Proof. i) We use arguments similar to those used in the proof of Theo-
rem 2.1 i). The di�erence arises in the fact that, since (K̃) and (J̃) hold, we are
now in a position to apply Theorem 1.1 ii). In this way we deduce the existence
of a unique minimizer for the functions J(·, η) and J(·, ηn) on the set K, which
implies the unique solvability of Problems P and Pn, for each n ∈ N.

ii) Assume that (2.1) holds. Then, a careful analysis of the proof of
Theorem 2.1 ii) reveals that the sequence {un} is bounded and any weakly
convergent sequence of {un} converges to a solution of Problem P. On the
other hand, Problem P has a unique solution, denoted u, as proved in the �rst
part of the theorem. The weak convergence of the whole sequence {un} to u is
now a consequence of a standard argument.

iii) Assume now that (2.1) holds and, in addition, (J∗) holds, too. Let
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n ∈ N. Then, using (J∗) with t = 1
2 we �nd that

m

4
‖un−u‖2X ≤

1

2

[
J(un, ηn)−J

(un + u

2
, ηn

)]
+

1

2

[
J(u, ηn)−J

(un + u

2
, ηn

)]
and, since un is a minimizer for the function J(·, ηn) on K, we �nd that

(2.8)
m

4
‖un − u‖2X ≤

1

2

[
J(u, ηn)− J

(un + u

2
, ηn

)]
On the other hand, the part ii) shows that then the sequence {un} con-

verges weakly to u, i.e., un ⇀ u in X which implies that

(2.9)
un + u

2
⇀ u in X.

We use the convergences (2.1), (2.9) and assumption (J1) with v = u to deduce
that

(2.10) lim sup
n→∞

[
J(u, ηn)− J

(un + u

2
, ηn

)]
≤ 0.

We now combine inequalities (2.8) and (2.10) to deduce that un → u in X
which concludes the proof. �

3. THE STUDY OF PROBLEMS P AND Pnn

We now move to the study of Problem Pnn and the link of its solutions
with the solutions of Problem P. To this end, we need to complete the list of
assumptions with the following ones.

(Kn) Kn is a nonempty weakly closed subset of X, for each n ∈ N.

(K̃n) Kn ⊂ X is a nonempty closed convex subset, for each n ∈ N.

(J4)


For all sequences {vk} ⊂ X and {ηk} ⊂ Λ such that

vk → v in X, ηk ⇀ η in Y one has

J(vk, ηk)− J(v, ηk)→ 0.

Note that assumption (K̃n) implies assumption (Kn). Next, we recall the
following notion of Mosco convergence.

De�nition 3.1. Let X be a normed space, {Kn} a sequence of nonempty
subsets of X and K a nonempty subset of X. We say that the sequence {Kn}
converges to K in the Mosco sense if the following conditions hold.

(M1)

{
For each v ∈ K there exists a sequence {vn} such that

vn ∈ Kn for each n ∈ N and vn → v in X.
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(M2)

{
For each sequence {vn} such that

vn ∈ Kn for each n ∈ N and vn ⇀ v in X we have v ∈ K.

We denote in what follows the convergence in the Mosco sense by Kn
M−→

K in X and we recall that this convergence depends on the topology of the
normed space X. More details on this topic could be found in [15]. Consider
now the assumption

(3.1) Kn
M−→ K in X.

Our �rst result in this section is the following.

Theorem 3.2. Assume (Λ), (K), (Kn), (J1)�(J4). Then the following

statements hold.

i) Problem P has at least one solution and Problem Pnn has at least one

solution, for each n ∈ N.
ii) If (2.1), (3.1) hold and un is a solution of Problem Pnn , for each n ∈ N,

there exists a subsequence of the sequence {un}, again denoted {un}, and an

element u ∈ K, such that

(3.2) un ⇀ u in X.

Moreover, u is a solution to Problem P.

Proof. i) The solvability of Problem P follows from Theorem 2.1 i). The
solvability of Problem Pnn follows from similar arguments, applied to function
J(·, ηn) and the set Kn.

ii) Assume now that (2.1), (3.1) hold. We claim that the sequence {un} is
bounded in X. Indeed, if {un} is not bounded, then we can �nd a subsequence
of the sequence {un}, again denoted {un}, such that ‖un‖X → ∞. Therefore,
using assumptions (2.1) and (J2) we deduce that

(3.3) J(un, ηn)→∞.

Let v be a given element in K and note that assumption (3.1) implies that
condition (M1) holds. Thus, there exists a sequence {vn} such that vn ∈ Kn

for each n ∈ N and

(3.4) vn → v in X.

Moreover, since un is a solution of Problem Pnn we obtain that J(un, ηn) ≤
J(vn, ηn) and, therefore,

(3.5) J(un, ηn) ≤ J(vn, ηn)−J(v, ηn)+J(v, ηn)−J(v, η)+J(v, η) ∀n ∈ N.

On the other hand, the convergences (3.4) and (2.1) allow us to use as-
sumption (J4) to �nd that J(vn, ηn)−J(v, ηn)→ 0 and, in addition, assumption
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(J3) shows that J(v, ηn)− J(v, η)→ 0. Thus, inequality (3.5) implies that the
sequence {J(un, ηn)} is bounded, which contradicts (3.3). We conclude from
above that the sequence {un} is bounded in X and, therefore, there exists a
subsequence of the sequence {un}, again denoted {un}, and an element u ∈ X,
such that (3.2) holds.

We now prove that u is a solution of Problem P. To this end, we use (3.2)
and condition (M2), guaranteed by assumption (3.1), to deduce that u ∈ K.
Next, we consider an arbitrary element v ∈ K and, using condition (M1), we
know that there exists a sequence {vn} such that vn ∈ Kn for each n ∈ N
and (3.4) holds. Since un is the solution to Problem Pnn we have J(un, ηn) ≤
J(vn, ηn) which implies that

(3.6) 0 ≤ [J(v, ηn)− J(un, ηn)] + [J(vn, ηn)− J(v, ηn)].

We now use the convergences (3.4), (2.1) and assumptions (J1), (J4) to
see that

(3.7) lim sup
n→∞

[J(v, ηn)− J(un, ηn)] ≤ [J(v, η)− J(u, η),

(3.8) J(vn, ηn)− J(v, ηn)→ 0 .

We now combine (3.6)�(3.8) to deduce that u is a solution of Problem P, which
concludes the proof. �

Theorem 3.3. Assume that (Λ), (K̃), (K̃n), (J1)�(J4) and (J̃) hold.

Then:

i) Problem P has a unique solution u and Problem Pnn has a unique solu-

tion un, for each n ∈ N.
ii) If (2.1), (3.1) hold, then sequence {un} converges weakly to u, i.e.,

un ⇀ u in X.

iii) If (2.1), (3.1) and (J∗) hold, then the sequence {un} converges strongly
to u, i.e., un → u in X.

Proof. i)�ii) We use arguments similar to those used in the proof of Theo-
rem 2.2 i), ii). Since the modi�cations are straightforward, we skip the details.

iii) Assume now that (2.1), (3.1) and (J∗) hold and let {ũn} be a sequence
such that ũn ∈ Kn for each n ∈ N and

(3.9) ũn → u in X.

Recall that the existence of such sequence follows from assumption (M1),
guaranteed by condition (3.1). Then, using (J∗) with t = 1

2 we �nd that

m

4
‖ũn − un‖2X ≤

1

2

[
J(ũn, ηn)− J

( ũn + un
2

, ηn

)]
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+
1

2

[
J(un, ηn)− J

( ũn + un
2

, ηn

)]
and, since un is a minimizer for the function J(·, ηn) on K, we �nd that

m

4
‖ũn − un‖2X ≤

1

2

[
J(ũn, ηn)− J

( ũn + un
2

, ηn

)]
which implies that
(3.10)
m

4
‖ũn − un‖2X ≤

1

2

[
J(u, ηn)− J

( ũn + un
2

, ηn

)]
+

1

2

[
J(ũn, ηn)− J(u, ηn)

]
.

We use the convergences (2.1), (2.2), (3.9) and assumption (J1), (J4) to
deduce that

(3.11) lim sup
n→∞

[
J(u, ηn)− J

(un + u

2
, ηn

)]
≤ 0,

(3.12) J(ũn, ηn)− J(u, ηn)→ 0.

We now combine inequalities (3.10)�(3.12) to deduce that un → u in X
which concludes the proof. �

4. THE MODEL

We consider an elastic body which occupies a bounded domain Ω ⊂ Rd
(d = 1, 2, 3) with a Lipschitz continuous boundary Γ, divided into three me-
asurable disjoint parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. The body is
�xed on Γ1, is acted upon by given body forces of density f0 and given sur-
face tractions of density f2 on Γ2. Moreover, it is in contact with an obstacle
on Γ3. To describe the equilibrium of the elastic body in the physical setting
above we denote by u = (ui) and σ = (σij) the displacement �eld and the
stress �eld, respectively. The functions u and σ depend on the spatial variable
x = (xi) ∈ Ω ∪ Γ and play the role of the unknowns of the problem. Here and
below the indices i, j, k, l run between 1 and d and, unless stated otherwise,
the summation convention over repeated indices is used. Moreover, an index
that follows a comma represents the partial derivative with respect to the corre-
sponding component of the spatial variable x, e.g. ui,j = ∂ui/∂xj . Also, ε and
Div will represent the deformation and the divergence operators, respectively,
i.e.,

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij,j)

and, therefore, ε(u) represents the linearized strain tensor. Note also that,
in order to simplify the notation, we usually do not indicate explicitly the
dependence of various functions on the spatial variable x.
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We denote by Sd the space of second order symmetric tensors on Rd or,
equivalently, the space of symmetric matrices of order d. The inner product
and norm on Rd and Sd are de�ned by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u = (ui), v = (vi) ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀σ = (σij), τ = (τij) ∈ Sd,

and the zero element of these spaces will be denoted by 0. Also, we denote by
ν = (νi) the outward unit normal at Γ and uν , uτ will represent the normal
and tangential components of u on Γ given by uν = u · ν and uτ = u − uνν,
respectively. Finally, σν and στ denote the normal and tangential stress on Γ,
that is σν = (σν) · ν and στ = σν − σνν.

With these preliminaries, the classical formulation of the contact problem
we consider in this section is as follows.

Problem. Q. Find a displacement �eld u : Ω → Rd and a stress �eld
σ : Ω→ Sd such that

σ = Eε(u) in Ω,(4.1)

Divσ + f0 = 0 in Ω,(4.2)

u = 0 on Γ1,(4.3)

σν = f2 on Γ2,(4.4)

uν ≤ g,

σν = 0 if uν < 0

−F ≤ σν ≤ 0 if uν = 0

σν = −F if 0 < uν < g

σν ≤ −F if uν = g


on Γ3,(4.5)

στ = 0 on Γ3.(4.6)

We now provide a short description of the equations and boundary condi-
tions in Problem Q. First, equation (4.1) represents the elastic constitutive law
of the material in which E represents the fourth order elasticity tensor. Equa-
tion (4.2) is the equation of equilibrium and conditions (4.3), (4.4) represent
the displacement and the traction boundary conditions, respectively. Condi-
tion (4.5) models the contact with a foundation made of a rigid body covered
by a layer made of rigid-plastic material of thickness g, say asperities. It was
used in a number of papers, including [19] and the references therein. The
function F is assumed to be positive and could be interpreted as the yield limit
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of the foundation. Finally, condition (4.6) represents the frictionless contact
condition.

In the study of Problem Q, we need to introduce further notation and pre-
liminary material. Everywhere below we use the standard notation for Sobolev
and Lebesgue spaces associated to Ω and Γ. In particular, we use the spa-
ces L2(Ω)d, L2(Γ2)d, L2(Γ3) and H1(Ω)d, endowed with their canonical inner
products and the associated norms. Moreover, we consider the spaces

X = {v ∈ H1(Ω)d : v = 0 on Γ1 }, Y = L2(Γ3)× L2(Ω)d × L2(Γ2)d

which are real Hilbert spaces endowed with the canonical inner products given
by

(u,v)X =

∫
Ω
ε(u) · ε(v) dx,

(η, ξ)Y =

∫
Γ3

FG da+

∫
Ω
f0, g0 dx+

∫
Γ2

f2g2 da

for all u, v ∈ X, η = (F,f0,f2), ξ = (G, g0, g2) ∈ Y . The associated norms
on these spaces are denoted by ‖ · ‖X and ‖ · ‖Y , respectively. Also, recall that
the completeness of the space X follows from the assumption meas (Γ1) > 0
which allows the use of Korn's inequality.

For any element v ∈ X we denote by vν and vτ its normal and tangential
components on Γ given by vν = v ·ν and vτ = v−vνν. Moreover, for a regular
stress function σ, the following Green's formula holds:

(4.7)

∫
Ω
σ · ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ
σν · v da for all v ∈ H1(Ω)d.

We also recall that there exists c0 > 0 which depends on Ω, Γ1 and Γ3

such that

(4.8) ‖v‖L2(Γ)d ≤ c0‖v‖X for all v ∈ V.
Inequality (4.8) represents a consequence of the Sobolev trace theorem.

In the study of the contact problem (4.1)�(4.6) we assume that the elas-
ticity tensor E satis�es the following conditions.

(4.9)


(a) E = (Eijkl) : Ω× Sd → Sd.
(b) Eijkl = Eklij = Ejikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) There exists mE > 0 such that
Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ Sd, a.e. in Ω.

We also assume that the densities of body forces and tractions, the yield
limit of the foundation and the bound of the normal displacement are such that

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)d, F ∈ L2(Γ3), F (x) ≥ 0 a.e. x ∈ Γ3,(4.10)
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g > 0.(4.11)

Under these assumptions we introduce the setsK ⊂ X, Λ ⊂ Y the bilinear
form a : X×X → R and the functions j : X×Λ→ IR, J : X×Λ→ IR de�ned
by

K = {v ∈ X : vν ≤ g a.e. on Γ3 },(4.12)

Λ = {η = (F,f0,f2) ∈ Y : F (x) ≥ 0 a.e. x ∈ Γ3 },(4.13)

a(u,v) =

∫
Ω
Eε(u) · ε(v) dx,(4.14)

j(v,η) =

∫
Γ3

Fv+
ν da−

∫
Ω
f0 · v dx−

∫
Γ2

f2 · v da,(4.15)

J(v,η) =
1

2
a(v,v) + j(v,η)(4.16)

for all u, v ∈ X and η = (F,f0,f2) ∈ Λ. Here and below, r+ denotes the
positive part of r, i.e., r = max {0, r}.

We now derive the variational formulation of Problem Q and, to this end,
we assume that (u,σ) are su�ciently regular functions which satisfy (4.1)�
(4.6). Then, using (4.5) and (4.12) it follows that

(4.17) u ∈ K.
Let v ∈ K and denote η = (F,f0,f2) which, due to assumption (4.10),

belongs to Λ. We use the de�nitions (4.14)�(4.16), the properties of the elasti-
city tensor E and the constitutive law σ = Eε(u) to see that

J(v,η)− J(u,η) =
1

2
a(v − u,v − u) + a(u,v − u) + j(v,η)− j(u,η)

≥ a(u,v − u) + j(v,η)− j(u,η)

=

∫
Ω
σ · (ε(v)− ε(u)) dx+

∫
Γ3

F (v+
ν − u+

ν ) da

−
∫

Ω
f0 · (v − u) dx−

∫
Γ2

f2 · (v − u) da.

Therefore, using Green's formula (4.7) and equalities (4.2)�(4.4) we de-
duce that

(4.18) J(v,η)− J(u,η) ≥
∫

Γ3

σν · (v − u) da+

∫
Γ3

F (v+
ν − u+

ν ) da.

On the other hand, since∫
Γ3

σν · (v − u) da =

∫
Γ3

σν(vν − uν) da+

∫
Γ3

στ · (vτ − uτ ) da,
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the frictionless condition (4.6) yields

(4.19)

∫
Γ3

σν · (v − u) da =

∫
Γ3

σν(vν − uν) da.

We now use the contact condition (4.5) and the positivity of the function
F to see that

σν(vν − uν) ≥ F (u+
ν − v+

ν ) on Γ3.

Therefore,

(4.20)

∫
Γ3

σν(vν − uν) da+

∫
Γ3

F (v+
ν − u+

ν ) da ≥ 0.

Next, we combine relations (4.18)�(4.20) to �nd that

(4.21) J(v,η) ≥ J(u,η).

Finally, we combine inequality (4.21) with regularity (4.17) to deduce the
following variational formulation of Problem Q.

Problem. Q. Find a displacement �eld u such that

(4.22) u ∈ K, J(u,η) ≤ J(v,η) ∀v ∈ K.

The analysis of Problem Q, including existence, uniqueness and various
convergence results, will be provided in the next section. Here we restrict
ourselves to mention that a couple of functions (u,σ) which satis�es (4.22) and
(4.1) is called a weak solution of the elastic contact problem (4.1)�(4.6).

5. EXISTENCE, UNIQUENESS AND CONVERGENCE RESULTS

For each n ∈ N we consider a perturbation f0n, f2n, Fn, gn of the data
f0, fn, F , g and n, respectively, such that

f0n ∈ L2(Ω)d, f2n ∈ L2(Γ2)d, Fn ∈ L2(Γ3), Fn(x) ≥ 0 a.e. x ∈ Γ3.(5.1)

gn > 0.(5.2)

Denote ηn = (Fn,f0n,f2n) which, clearly, belongs to Λ and let Kn be the set

(5.3) Kn = {v ∈ X : vν ≤ gn a.e. on Γ3 }.

With these data we consider the following perturbation of Problem Q.

Problem. Qnn. Find a displacement �eld u such that

(5.4) un ∈ Kn, J(un,ηn) ≤ J(v,ηn) ∀v ∈ Kn.

We have the following existence, uniqueness and convergence result.
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Theorem 5.1. Assume (4.9)�(4.11), (5.1)�(5.2). Then, the following sta-
tements hold.

i) Problem Q has a unique solution and, for each n ∈ N, Problem Qn has

a unique solution un.
ii) If f0n ⇀ f0 in L2(Ω)d, f2n ⇀ f2 in L2(Γ2)d, Fn → F in L2(Γ3) and

gn → g, then the sequence {un} converges strongly to u, i.e., un → u in X.

To provide the proof of Theorem 5.1 we need some preliminary results
that we present in what follows. First, we note that assumption (4.9) on the
elasticity tensor implies that the bilinear form a is symmetric, continuous and
coercive with constant mF . Therefore,

uk → u in X, vk → v in X =⇒ a(uk,vk)→ a(u,v).(5.5)

a(u,v) ≤M‖u‖X‖v‖X ∀u, v ∈ X with M > 0.(5.6)

a(v,v) ≥ mF‖v‖2X ∀v ∈ X.(5.7)

This implies that the function v 7→ a(v,v) is weakly lower semicontinuous
on X, i.e.,

vk ⇀ v in X =⇒ lim inf
k→∞

a(vk,vk) ≥ a(v,v).(5.8)

On the other hand, using the trace inequality (4.8) and the de�nition
(4.13) of the set Λ, it is easy to see that the function j satis�es the following
properties:

j(v,η) ≤ (2c0 + 1)‖v‖X‖η‖Y ∀v ∈ X, η ∈ Λ.(5.9)

j(v,η) ≥ −(c0 + 1)‖v‖X‖η‖Y ∀v ∈ X, η ∈ Λ.(5.10)

Moreover, the compactness of the trace map γ : X → L2(Γ)d and the
compactness of the embedding X ⊂ L2(Ω)d yield

vk ⇀ v in X, ηk ⇀ η in Y =⇒ j(vk,ηk)→ j(v,η).(5.11)

We are now in a position to provide the proof of Theorem 5.1.

Proof. i) It is easy to see that the set Λ is a nonempty closed convex subset
of Y which implies that condition (Λ) holds. On the other hand, K is a closed
convex subset of X and, since g > 0, the zero element of X belongs to K.
Therefore, condition (K̃) is satis�ed. Similar arguments show that condition
(K̃n) holds, too. Moreover, a simple calculation based on the de�nitions (4.14)�
(4.15), the properties of the form a and the convexity of the function r → r+

shows that

(1− t)J(u,η) + tJ(v,η)− J((1− t)u+ tv,η) ≥ t(1− t)
2

a(u− v,u− v)
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for all u, v ∈ X, η ∈ Λ, t ∈ [0, 1]. We combine this inequality with inequality
(5.7) to see that condition (J∗) holds.

Assume now that {uk} ⊂ X and {ηk} ⊂ Λ are two sequences such that
uk ⇀ u in X, ηk ⇀ η in Y and let v ∈ X. We have

J(v,ηk)− J(uk,ηk) =
1

2
a(v,v)− 1

2
a(uk,uk) + j(v,ηk)− j(uk,ηk)

and, using (5.8), (5.11), we deduce that

lim sup
k→∞

[J(v,ηk)− J(uk,ηk)]

≤ 1

2
a(v,v)− 1

2
lim inf
k→∞

a(uk,uk) + j(v,η)− j(u,η)

≤ 1

2
a(v,v)− 1

2
a(u,u) + j(v,η)− j(u,η)

= J(v,η)− J(u,η).

It follows from here that condition (J1) is satis�ed.

On the other hand, for any sequences {uk} ⊂ X and {ηk} ⊂ Λ, using
inequalities (5.7) and (5.10) we have

J(uk,ηk) =
1

2
a(uk,uk) + j(uk,ηk)(5.12)

≥ mF
2
‖uk‖2X − (c0 + 1)‖uk‖X‖ηk‖Y .

Assume now that and ηk ⇀ η in Y . Then {ηk} is bounded in Y and, if
‖uk‖X → ∞, inequality (5.12) shows that J(uk,ηk) → ∞. We conclude from
above that condition (J2) is satis�ed, too.

Let {ηk} ⊂ Λ be a sequence such ηk ⇀ η in Y and let v ∈ X. We have

J(v,ηk)− J(v,η) = j(v,ηk)− j(v,η)

and, using (5.11) we obtain that J(v,ηk) − J(v,η) → 0 which shows that
condition (J3) holds.

Assume now that {vk} ⊂ X and {ηk} ⊂ Λ are two sequences such that
vk → v in X and ηk ⇀ η in Y . We have

J(vk,ηk)− J(v,ηk) =
1

2
a(vk,vk)−

1

2
a(v,v) + j(vk,ηk)− j(v,ηk)

and, using the convergences (5.5), (5.11), we deduce that

J(vk,ηk)− J(v,ηk)→ 0.

which shows that condition (J4) holds.
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On the other hand, if f0n ⇀ f0 in L
2(Ω)d, f2n ⇀ f2 in L

2(Γ2)d, Fn → F
in L2(Γ3), then ηn = (Fn,f0n,f2n) ⇀ η = (F,f0,f2) in Y , which shows that
condition (2.1) holds. Finally, de�nitions (4.12) and (5.3) combined with as-
sumptions (4.11), (5.2) imply the equality Kn = gn

g K, for each n ∈ N. There-
fore, using the compactness of the trace operator, it is easy to see that if gn → g
holds, then condition (3.1) is satis�ed.

To conclude, it follows from above that conditions (Λ), (K̃), (K̃n), (J1)�
(J4), (J∗), (2.1) and (3.1) hold. Theorem 5.1 is now a direct consequence of
Theorem 3.3. �

Note that Theorem 5.1 provides the unique weak solvability of ProblemQ.
Moreover, in addition to the mathematical interest in the convergence result
in Theorem 5.1 ii), it is important from mechanical point of view, since it
shows that the weak solution of the contact problem P depends continuously
on the densities of the applied forces, the yield limit and the thickness of the
rigid-plastic layer of the foundation.
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