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Let F' be a perfect field of characteristic p and let G be an abelian p-group. For
the normalized unit group V (F'G) of the group ring FG we find a useful criterion
only in terms of F and G for validity of the equalities V(FG) = G(1+I*(FG; G))
and V(FG) = G(1+ IP(FG;Q)) for p > 2, where I(FG;G) is the augmentation
ideal in F'G.
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1. INTRODUCTION

Everywhere in the text of the present paper, suppose F' is a field of non-
zero characteristic p and G is a multiplicative abelian group. As usual, FG
denotes the group ring of G over F with normalized group of units V(FGQ),
with augmentation ideal I(FG; G) and with nil-radical N(FG). For any ideal
I of FG, we set I = I...1, where n € N is a positive integer. Standardly,

C) will denote the cyclic group of order p. Recall that a field F' is said to be
perfect if F = FP = {aP | x € F}, and the group G is said to be p-divisible
it G =GP ={g” | g € G}. Likewise, our epimorphisms will always mean sur-
jective homomorphisms. All other undefined and unstated explicitly notions
and notations will follow essentially those from the monographs [15] and [16].

Some brief history on the recent progress concerning the decomposable
properties in commutative modular group rings is as follows: in [7] it was obtai-
ned a result concerning the decomposition V(RG) = Gx (1+N(R)G.I(RG; GQ)),
where R is a commutative ring with identity of prime characteristic p with
nil-radical N(R), and G is an abelian group. A slight generalization of the
preceding result was established in [10].

In [11] a result about the validity of the decomposition V(RG) =GV (RGy)
(1 + N(RG).I(RG;G)) was proved, where R is an arbitrary commutative
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ring with identity, and G is an arbitrary abelian group with maximal torsion
subgroup Go. In [12]| it was shown that the general validity of the formula
V(RG) = GV(RGy)(1 + N(R)G.I(RG;G)) depends only on some minimal
limitations on the commutative ring R and the abelian group G. Note that the
inclusion N(R)G C N(RG) holds always (see, e.g., [14]).

Some more results as well as a complete bibliography related to this sub-
ject can be found in the author’s articles [1-6] plus [8] and [9]. Some other
interesting things pertaining to this topic are nicely presented in [14].

In the case when G is a p-primary group, it is easily seen that V(FG) =
1+I(FG;G). The aim of this paper is to find a criterion only in terms associated
with F' and G when the equality V(FG) = G(1 + I(FG;G).I(FG;G)) holds,
provided G is a p-group. Iterating, it will be very useful for applications to
the classical Direct Factor Problem for modular group rings from [16] to know
when the equation

V(FG) = G(1+ I(FG;G).I(FG;G).--- I(FG;G))

is fulfilled, where the number of times the ideal I(RG;G) appears may vary.
We shall restrict in the sequel our attention to the case when this number is a
prime p > 3.

2. THE MAIN RESULT

We start here with a plain but helpful technicality.

LEMMA 2.1. Let R be o commutative ring with identity of prime characte-
ristic p, G an abelian group and A an abelian p-group. If the map G — G/A is
an epimorphism, then its element-wise extending map V(RG) — V(R(G/A))
1s also an epimorphism.

Proof. Since G — G/A is a homomorphism, it is plainly verified that
V(RG) = V(R(G/A)) is also a homomorphism with kernel 1+ I(RG; A). But
it is not too hard to check that I(RG;A) = RG.I(RA; A) is a nil ideal, and
thus 1 4+ I(RG}; A) is obviously a p-group. Now the desired epimorphism can
be readily detected. [

We are now ready to proceed by proving the following basic statement,
which also appeared in [13] but for the sake of completeness and for the readers’
convenience we provide a detailed proof.

THEOREM 2.2. Suppose that F is a perfect field of characteristic p > 0
and G is an abelian p-group. Then the equality

V(FG) =G+ I*(FG;Q))
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holds if, and only if, one of the following two conditions s true:

(1) G=¢G"
or
(2) G # G? and F = 7Z,,.

Proof. “Necessity”. Assuming G # GP, it follows that G/GP is a non-
trivial and bounded by p factor-group and thus, by [15], it must be a direct
sum of cyclic p-groups of the same order p; say C), is one of the direct factors
of this direct sum. So, one sees that there is a sequence of two epimorphisms
G — G/GP — O}, where the first one is the canonical epimorphism while the
second one is the canonical projection; thus there is an epimorphism G — C),.
Utilizing Lemma 2.1 or directly by simple independent arguments, it can be
extended to the epimorphism V(FG) — V(FCp) which sends I(FG;G) to
I(FCy; Cyp), because V(FG) = 1+ I(FG;G) and V(FC)p) = 1+ I(FCy; Cy).
Consequently, the relation V(FG) = G(1 + I*(FG;@G)) implies the relation
V(FC,) = Cp(1 + I*(FCy; Cp)). Clearly, I(FCy; Cp) is a linear space over F),
and F'is an one-dimensional linear space over itself. We shall now construct a
linear map ® : I(FCy; Cp) — F such that ® will send I?(FCp; C,) to {0}. To
this purpose, we set Cp = (a) with a? = 1. Define

(> fila=1)= > ifi,
1<i<p 1<i<p

where f; € F. It is elementary to check that this is a correctly defined map
between two linear spaces, because for any d € C, we have fid(a’ — 1) =
fi(da*—1)— f;(d—1) and, since d = a! for some positive integer I with 1 <[ < p,
we deduce that f;d(a’—1) = fi(a™! —1)— f;(a' — 1), so we are done. Moreover,
because of the self-evident reduction formula, (b—1)(¢—1) = (bc—1)—(b—1)—
(c—1) for some b, ¢ € Cp, say b = a/ and ¢ = a* with j, k € [1,p], it follows that
(b= 1)(c—1)) = D((@ —1) = (a8 — 1) = (a* — 1) = (j+k)-1—j-1— k-1 =
j-1l4+k-1—35-1—Fk-1=0, where 1 is the identity element of F'. Therefore,
since products of the type (b—1)(c—1) form a basis for I?(FCp; C,), one infers
that ®(I2(FCp; C,)) = {0}, as wanted.

Furthermore, for any f € F', we consider the normalized unit 1+ f(a —1)
which can be written like this:

L+ fla—1) = b(1+2),
where b € C,, and z € I*(FCy; Cp).

Thus f(a — 1) = (b— 1) + bz with b = @’ for some 1 < j < p. Since bz
lies in I2(FCy; Cp), acting by ® on both sides of this equality, we deduce that
f=7-1, where 1 € F. Hence F' = Z,, and we are finished.
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“Sufficiency”. Since G is p-torsion, one observes that V(FG) = 1+
I(FG;G). Firstly, if G is divisible, then for every g € G we have that g = h?
for some h € G, so that 1 —g = 1 — h? = (1 — h)? € I*(FG;@), because
p > 2. Since the elements 1 — g of FG form a natural basis for I(FG;G),
we deduce that I(FG;G) = I*(FG;G) and hence V(FG) = 1+ I[(FG;G) =
1+ I?(FG;G) = G(1 + I*(FG;@G)), so we are done.

Secondly, assume that G is not p-divisible and that F' is the simple field
of p elements, that is, F' = Z,. Given an arbitrary element x € V(FG), in view
of the formula V(FG) = 14 I(FG; G) we can write with no harm in generality
that

r=1+ klgl(al - 1) + -+ ksgs(as - 1)’

where 1 < ki,--- ks <p—1; 91,01, - ,9s,as € G; s € N.

Since k;g;(a;—1) = ki(gi—1)(a;—1)+k;(a;—1) for all ¢ € [1, s|, by repeating
the summands we may without loss of generality assume that k1 = --- = ks = 1,
and thus we need to consider only the element

y=1+(ar—1)+-+(as—1).

Furthermore, because of the reduction formula (a; — 1) + (a; — 1) = (a; —
1)(1 — a;) + (asa; — 1) which decreases the number of summands of the basis
type w — 1 for some w € G in the record, we may assume by induction that
s = 2. Therefore, y = 1+ (a1 — 1) + (a2 — 1) = ajaz + (a1 — 1)(1 —ag) =
araz(1 +aytay (a1 — 1)(1 — ag)) € G(1 + I*(FG; G)), as required. [

The next immediate consequence is somewhat rather surprising.

COROLLARY 2.3. If G is an abelian p-group, then the following equality is
always true:

V(Z,G) = G(1 + I*(Z,G; G)).

The next comments shed some more light on the specification of the above
explored equalities.

Remark. Tt is worthwhile noticing that if in Theorem 2.2 we have p = 2,
then I?(FCp; C,) = {0}. In fact, since Cy = {1,c¢ | ¢* = 1}, the basis elements
for I?(FCp; C,) have to be of the form (1—1)(1—¢)=0or (1-1)(1-1) =0
or (1-c)(1—¢c)=(1-c)?=1-c?=0, which substantiates our claim.

That is why, V(F'C,) = C), which readily leads to |F| = |C}| = 2.

Contrasting with the exceptional case alluded to above when we may
have p = 2, we are now in a position to prove the following somewhat curious
assertion in which, whenever p > 3, the p-group has to be necessarily p-divisible
and thus divisible.
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PROPOSITION 2.4. Let F' be a perfect field of characteristic p > 2 and let
G be an abelian p-group. Then the equality V(FG) = G(1+ IP(FG; Q)) is true
if, and only if, G = GP.

Proof. Considering the left-to-right implication, we will use the same idea
that was used in the “Necessity” part of the proof of Theorem 2.2. Indeed,
assuming to the contrary that G is not p-divisible (i.e., it is not divisible), and
using the same arguments as before, we will obtain the equality

V(FCp) = Cp(1+ IP(FCp; Cp)).

However, we assert that IP(FCp; Cp) = {0}, because the basis for IP(FCy; Cp)
must be equal to zero. In fact, write explicitly C, = {1,¢,¢?,--- ,cP~1 | P =1}
for the generating element ¢ of Cp. Thus (1—c¥) is a multiple of 1—cfor all k € N
with 1 < k& < p—1. Since all the non-trivial variants (i.e., excluding the 1) of the
existing basis for the product I?(FC); Cp) must contain (1—c)? = 1—c? = 0, our
claim can now be easily verified. Consequently, we derive that V(FC)) = C,,
which allows us to conclude as above that |F| = |C,| = 2. Therefore p = 2,
which contradicts our initial assumption that p > 2. Finally, G = GP, as
needed.

As for the right-to-left implication, since any element g € G must be of the
form g = aP for some a € G, we obtain that 1—g = 1—a? = (1—a)? € IP(FG; Q)
whence V(FG) = 1+ I(FG;G) = 1+ IP(FG;G) = G(1 + IP(FG;G)), as
desired. 0

We note here that we cannot generally have in the last proposition that
GN(1+IP(FG;G)) = {1}, because if GP # 1 and g € G \ {1}, then one may
havethat 1 #gP =1+¢gP —1=1+ (g —1)? € 1 + IP(FG;G), as expected.

3. AN UNRESOLVED PROBLEM

Recall that a commutative ring of prime characteristic p is said to be
perfect, provided that R = RP = {rP | r € R}.
We end our work with the following challenging question.

PROBLEM. Suppose R is a commutative ring with identity and positive
characteristic (in particular, a perfect ring of prime characteristic p) and sup-
pose G is an abelian group (in particular, a p-group). Find a necessary and suf-
ficient condition for the truthfulness of the equality V(RG) = G(1+1"(RG; G)),
where n € N is an arbitrary fized natural number.

We note here that the cases when n = 2 with an arbitrary prime p and n =
p > 2 were already settled above, provided R is a perfect field of characteristic p
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and G is an abelian p-group. So, it will be interesting to study the two different
cases when n > p and n < p, respectively.

(1]
(2]
(3]
[4]
[5]
(6]
[7]
18]
[9]
[10]
[11]
[12]
[13]
[14]

[15]
[16]

Acknowledgements. The author would like to express his sincere thanks to the referee
for the competent structural suggestions leading to an improvement of the exposition.

REFERENCES

P.V. Danchev, On a decomposition formula in commutative group rings. Miskolc Math.
Notes 6 (2005), 2, 153-159.

P.V. Danchev, On a decomposition equality in modular group rings. Vladikavkaz. Mat.
Zh. 9 (2007), 2, 3-8.

P.V. Danchev, On a decomposition equality in modular group rings. Pacific-Asian J.
Math. 1 (2007), 2, 123-128.

P.V. Danchev, A note on decompositions in abelian group rings. An. Stiintg. Univ.
“Ovidius” Constanta Ser. Mat. 16 (2008), 1, 73-76.

P.V. Danchev, On a decomposition of normalized units in abelian group algebras. An.
Univ. Bucur. Mat. 57 (2008), 2, 133-138.

P.V. Danchev, Note on a decomposition of normalized unit groups in abelian group al-
gebras. Bull. Allahabad Math. Soc. 23 (2008), 2, 365-368.

P.V. Danchev, Idempotent-nilpotent units in commutative group rings. Bull. Greek
Math. Soc. 56 (2009), 21-28.

P.V. Danchev, On some idempotent-torsion decompositions of normed units in commu-
tative group rings. J. Calcutta Math. Soc. 6 (2010), 1, 31-34.

P.V. Danchev, Idempotent-torsion normalized units in abelian group rings. Bull. Cal-
cutta Math. Soc. 103 (2011), 1, 31-34.

P.V. Danchev, Idempotent-nilpotent units of commutative group rings. Mathematica
(Cluj) 54 (2012), 16-25.

P.V. Danchev, On decompositions of normed units in abelian group rings. J. Indones.
Math. Soc. 18 (2012), 21-29.

P.V. Danchev, On a decomposition of normed unit groups in commutative group rings.
Adv. Appl. Math. Sci. 11 (2012), 271-278.

P.V. Danchev, Decomposing normed units in commutative modular group rings. Adv.
Stud. Contemp. Math. 27 (2017), 43-47.

W.L. May, Group algebras over finitely generated rings. J. Algebra 38 (1976), 483-511.
L. Fuchs, Abelian Groups. Springer Monogr. Math., Springer, Switzerland, 2015.

G. Karpilovsky, Unit Groups of Group Rings. Pitman Monographs and Surveys in Pure
and Applied Mathematics 47, Longman Scientific and Technical, 1989.

Received 12 December 2016 Bulgarian Academy of Sciences,
Institute of Mathematics and Informatics
“Acad. G. Bonchev” str., bl. 8, 1118
Sofia, Bulgaria
danchev@math.bas.bg
pvdanchev@yahoo.com



