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In these notes, we introduce a geometric characterization of the Z2-equivariance
of the phase space of a complex generic real analytic family with an elliptic
equilibrium. The equivariance allows us to understand the interaction between
complex and real foliations in terms of an antiholomorphic involution or real
structure. The existence of the latter provides an explanation to some rigid phe-
nomena observed in the complex phase portrait (e.g. the appearance of complex
singularities in the real phase space; the presence of conformal symmetries af-
fecting the invariant of analytic classi�cation; etc.) In the complex phase space
the equivariance is called the real character. It plays a fundamental role in
the characterization of the conformal structure of elliptic equilibria of analytic
families of vector �elds.
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1. INTRODUCTION

LetM and N be complex manifolds. A di�erentiable function σ : M → N
is called antiholomorphic if in terms of a local coordinate z it takes the form z 7→
η(z) where η is holomorphic and z 7→ z is the standard complex conjugation.
By an antiholomorphic involution or real structure of the complex manifold M
we mean an antiholomorphic map σ : M →M such that σ ◦ σ = idM .

Not every pair (M,σ) can be obtained by complexifying a real analytic
manifold. Indeed,M might not have enough real points (�xed points of σ), and
in fact it might not have any at all [11]. General and particular properties of real
structures on manifolds have been extensively reported in the literature. For
example, a detailed study of antiholomorphic involutions of analytic families of
abelian varieties can be found in [1].

In these notes, we consider the simplest case where the manifold M is the
product C2. In this case, the �xed point set for any real structure �xing the
origin is a totally real 2-plane containing the origin [9]. (A 2-plane in C2 is
totally real if any basis over R for the plane is also linearly independent over
C). Further, let Z = (z,w) be the standard coordinates of C2. It is proved [13]
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that any antiholomorphic involution σ �xing the origin in C2 has the form

(1.1) σ : Z 7→ PZ
T

+ β(Z),

where P is a unitary matrix, and the higher-order terms β satisfy β(σ(Z)) =
−Pβ(Z). (The bar on β indicates complex conjugation only of the coe�cients
in the series β). Real maps and vector �elds, invariant under the involution, can
be de�ned: a germ of map f : (C2, 0)→ (C, 0) is called σ-real if it is a conjugacy
between σ and the standard complex conjugation. A germ of complex map f
or complex vector �eld F, with f,F : (C2, 0) → (C2, 0) is called σ-real if it
commutes with the involution (1.1).

By de�nition the �xed points of σ (i.e. the solutions of the system Z =
σ(Z)) satisfy, in terms of the chart (z,w), the equation w = pz + qw + · · · ,
with p 6= 0. A simple transformation allows us to assume q = 0, so that the
system is equivalent to a single equation w = pz + γ(z, z), where γ = O(|z|2).
We introduce coordinates (z, w) by w = pw + γ(z, w), and z = z. This chart
brings (1.1) into the antiholomorphic involution (z, w) 7→ (z, w). Finally, the
change (z, w) 7→ (z + iw, z − iw) transforms the latter involution into

(1.2) (z, w) 7→ (w, z).

Hence, in C2 it su�ces to consider the standard particular case (1.2) correspon-
ding to P = ( 0 1

1 0 ) and β ≡ 0. The �xed point set of this involution coincides
with the totally real plane R2 = {w = z}.

If F is an autonomous and σ-real (in the sense of the standard antiho-
lomorphic involution (1.2)) germ of a complex analytic vector �eld in (C2, 0),
then its linear part has the form

(1.3) (az + bw)
∂

∂z
+ (bz + aw)

∂

∂w
,

where a, b ∈ C. If b ≡ 0, the system is called elliptic or monodromic [8, 15]
provided Re(a) = 0 but Im(a) 6= 0. Evidently, the eigenvalues of the linear part
are complex conjugate.

Let η denote a tuple of one or more complex parameters de�ned on a
polydisk containing zero and of small diameter. Any family of vector �elds Fη
which depends analytically on the parameters is called either an elliptic family,

deformation or unfolding of the single vector �eld F, if F0 ≡ F.We say that the
unfolding Fη is σ-real if (1.2) is a conjugacy between Fη and the parameter-
conjugate vector �eld Fη. Elliptic unfoldings are called generic provided the
real part of the complex-conjugate eigenvalues crosses the imaginary axis at
non-zero speed,

d

dη
Re(a(η))|η=0 6= 0.
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Generic elliptic germs of analytic vector �elds form an important class in
the theory of holomorphic singular foliations [2, 8]. For example, for certain
values of the unfolding parameter the Hopf bifurcation takes place, provided
the system does not unfold a center on those values. In this case, the local
geometry of the phase portrait around the equilibria allows us to study, among
other properties, the temporal behavior of the solution curves [3, 5, 6]. The
most remarkable property is that elliptic equilibria of planar analytic germs of
vector �elds are intrinsically real. This means that the complex foliation can
be reali�ed in the sense of (1.2). In any case, the complex foliation itself is the
complexi�cation of an underlying real analytic foliation (see next section) lying
on a totally real 2-plane embedded in C2. Conversely, the standard complexi�-
cation of a real analytic elliptic foliation is invariant under (1.2). This provides
a complete characterization of the conformal symmetries associated with the
complex equilibrium. In article [3] we have described the conformal symme-
tries a�ecting the invariant (or modulus) of the analytic classi�cation of the
singularity. These symmetries are generalized complex re�ections around a real

axis in the orbit space of the Poincar�e monodromy. However, these symmetries
can occur when the parameter belongs to open symmetric sectorial domains
V± around the real axis. In this case, the parameter belongs to the Poincar�e
domain. If the values of the parameter are taken in open sectorial domains
covering both V± and the imaginary axis then the parameter belongs to the
Siegel domain. A description of the dynamics in the intersection of Poincar�e
and Siegel domains of the parameter space can be found in [4].

2. Z2-EQUIVARIANCE

Let n be a positive integer, and let G be a (compact) group which can be
represented in Rn by matrices {Tg} :

Te = In, Tg1g2 = Tg1Tg2 ,

for any g1, g2 ∈ G. The element e ∈ G is the group unit (eg = ge = g), and In
is the n× n unit matrix. Consider an analytic germ of di�erential equations

d~x

dt
= Fη(~x), ~x ∈ Rn

depending analytically on a multiparameter η ∈ Rk. This family is called in-

variant with respect to the representation {Tg} of the group G, or simply
G-equivariant, if

Tg · Fη = Fη · Tg,
for all g ∈ G, where the dot represents the action of G on the vector �eld Fη.
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In these terms, the real structure (1.2) corresponds in R4 to the linear
transformation Tσ represented by the premultiplication by the matrix

M =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 .
That is, if ~X = (x1, y1, x2, y2) are the standard coordinates of R4, then the
antiholomorphic involution (1.2) in C2 corresponds to the linear transformation

Tσ :


x1
y1
x2
y2

 7→

x2
−y2
x1
−y1


in R4 for the complex coordinates z = x1 + iy1 and w = x2 + iy2. Inasmuch
as M2 = I4, the transformation Tσ is an involution, T ◦2σ = Te, where Te is the
identity linear transformation, represented by premultiplication by the identity
matrix I4. This representation decomposes R4 into a direct sum

R4 = Σ+ ⊕ Σ−,

where Σ+ = { ~X ∈ R4 : M ~X = ~X} and Σ− = { ~X ∈ R4 : M ~X = − ~X}.
The subspace Σ+ is the �xed point subspace of the transformation Tσ. In

the complex representation (1.2), the space Σ+ itself corresponds to {z = w}
which is canonically identi�ed with the real plane R2 ⊂ C2. The space Σ+ will
be called the real plane.

On the other hand, in terms of the complex coordinates z, w the subspace
Σ− is the set of �xed points of −σ. That is, it corresponds to {z = −w}. By
analogy, the space Σ− will be called the imaginary plane (in the sense of the
direct sum above).

In the sequel, we will assume that η ∈ R. (The case η ∈ Rk presents
some substantial di�erences). Let Fη denote the germ of a generic analytic
unfolding of an elliptic vector �eld with the linear part (1.3) and which depends
analytically on the parameter. Since Fη commutes with the involution σ on
real values of the parameter, this vector �eld is essentially real. In other words,
the �ow of Fη leaves the real plane invariant. Therefore, the complex foliation
de�ned by the system induces a real foliation on Σ+. Such a real foliation must
hence be the phase portrait of a planar real analytic vector �eld Fη on Σ+.
The vector �eld Fη is called the reali�cation of Fη [7]. Therefore, if we denote
G = {Te, Tσ} ∼ Z2, then parameter-dependent vector �eld Fη is Z2-equivariant
for real values of the parameter:

(2.1) MFη( ~X) = Fη(M ~X), ~X ∈ R4, η ∈ R.
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Moreover, division by Im(a) (for the constant a in (1.3)) and subsequent time
scaling t 7→ Im(a)t allows us to take ε = Re(a)/Im(a) as a new parameter.
This new parameter is an invariant under analytic changes of coordinates [2].

These considerations prove that generic σ-invariant germs of analytic vec-
tor �elds in (C2, 0) have the standard form

(2.2)

dz

dt
= (ε+i)z +

∑
j+k≥2

ajk(ε)z
jwk,

dw

dt
= (ε−i)w +

∑
j+k≥2

ajk(ε)z
kwj ,

where the coe�cients ajk depend analytically on ε . These unfoldings are (non-
exhaustive) generic unfolding of 1 : 1 resonant complex saddle points in C2,
with the ratio of eigenvalues equal to −1, see [12]. The Z2-equivariance (2.1) of
Fη is called the real character of this system. Let (x, y) be the real coordinates
of Σ+. The real foliation induced on this surface by (2.2) is de�ned by the
integral curves of a real system of the form

(2.3)

dx

dt
= ε x− y +

∑
j+k≥2

bjk(ε)x
jyk,

dy

dt
= x+ ε y +

∑
j+k≥2

cjk(ε)x
jyk,

where the bjk's and cjk's depend analytically on the parameter ε. The �rst
Lyapunov constant can be explicitly computed in terms of the coe�cients of
the vector �eld:

`1 = 3b30+b12+c21+3c03+
1

β

(
b11(b20+b02)−c11(c20+c02)−2b20c20+2b02c02

)
.

Fig. 1 � The supercritical Hopf bifurcation of order 1.

It is known that if `1(0) 6= 0 then the system exhibits a generic Hopf bifurca-
tion: the generic coalescence of a focus with a limit cycle [10]. The geometric
con�guration of the phase space at the bifurcation value is denominated a weak
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focus. Weakness means that the convergence of integral curves to the origin
is slower than that of logarithmic spirals of strong foci. The Hopf bifurcation
is subcritical if the cycle is present on negative values of ε . It is supercritical

otherwise. Whether a Hopf bifurcation is subcritical or supercritical can be
found from the sign of the �rst Lyapunov coe�cient. Positive sign of `1(0)
indicates a subcritical Hopf bifurcation and negative sign of `1(0) corresponds
to a supercritical Hopf bifurcation, see Fig. 1.

De�nition 2.1. The sign of `1(0) is called the sign of the system.

In the next sections, we will study the relationship between complex and
real singular holomorphic foliations of this family. This connection is only fully
appreciated in the blow-up space.

3. COMPLEX AND REAL BLOW-UP

Let P1 denote the projective space (Riemann sphere) and de�ne the quasi-
projective variety

(3.1) M = {([t2 : t1], (z, w)) ∈ P1 × C2 : zt1 − wt2 = 0},

where [t2 : t1] is the line at in�nity through (t2, t1) (homogeneous coordinates
on P1). Projection onto C2 induces a surjective morphism % : M→ C2, with

%−1(z, w) =

{
P1 × {0}, (z, w) = (0, 0),
([z : w], (z, w)), (z, w) 6= (0, 0).

The �ber S = %−1(0, 0) is a projective line, called the exceptional line. Away
from zero %−1 gives an isomorphism between C2\{0} and M\S. The map %
is called the (standard) monoidal map. The analytic curve S ⊂ M is called
(standard) exceptional divisor. The pair (%,M) is the blow-up of C2 at zero.

By de�nition, the surface M is embedded in the complex 3-dimensional
space P1×C2. It carries the compact curve (Riemann sphere) P1×{0} = S on
it. The points of S correspond to the lines through the origin in C2, see Fig. 5.

The standard a�ne covering P1 = U1 ∪U2, where U1 = {[t2 : t1] : t1 6= 0}
and U2 = {[t2 : t1] : t2 6= 0}, induces a covering M = V1 ∪ V2, with

V1 =
{
t1 6= 0, z − wt2

t1
= 0
}
,

V2 =
{
t2 6= 0, z

t1
t2
− w = 0

}
.

By using coordinates (Z,w) = ( t2t1 , w) for V1, and (W, z) = ( t1t2 , z) for V2, we see

that V1 and V2 are both isomorphic to C2. The transition map between these
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charts is a monomial transformation ϕ : V1 → V2,

(3.2) ϕ(Z,w) =

(
1

Z
,Zw

)
= (W, z)

with inverse ϕ−1(W, z) = ( 1
W ,Wz), and hence ϕ◦2 = id. Thus M is indeed a

nonsingular 2-dimensional complex analytic manifold. Observe that the map
% : M→ C2 in these charts is polynomial, hence globally holomorphic:

%|V1 = c1, %|V2 = c2,

where

(3.3) c1 : (Z,w) 7→ (Zw,w) and c2 : (W, z) 7→ (z, zW ).

Let Fε be the singular foliation of the system (2.2). The blow-up of Fε is
the singular holomorphic foliation

(3.4) F̃ε = %∗Fε
extending the preimage foliation %−1(Fε) of the surface M\S. One may have a
priori two possibilities for the blown-up foliation F̃ε : either di�erent points of
S belong to di�erent leaves of F̃ε, or the exceptional divisor S is a separatrix of
F̃ε. In the former case leaves of this foliation cross S transversally at all points,
eventually except for �nitely many tangency points. On the other hand, a
singular point of Fε is called non-dicritical if the latter case holds; that is, the
exceptional divisor S is a separatrix of %∗Fε. Otherwise the singular point is
called dicritical. The use of a real atlas in the blow-up space allows us to solve
the dichotomy.

3.1. The reali�ed atlas

Notice that S in complex charts (Z,w) and (W, z) is determined by

S ∩ V1 = {z = 0}, S ∩ V2 = {w = 0}.

As the two sets are isomorphic to C, they can be reali�ed. Indeed, the real
projective line RP 1 is a closed loop on the Riemann sphere P1 which is visible
as the real line R in the a�ne charts S ∩ V1 and S ∩ V2. This can be proved as
follows. The complex M�obius strip M intersects the real variety RP 1 × R2 at
{t1 = t2} and {z = w}. This intersection is a real M�obius strip:

M = {([a : b], (x, y)) ∈ RP 1 × R2 : xb+ ya = 0},
where z = x+ iy and t1 = a+ ib. Such a surface can be explicitly parametrized
in real charts.

Proposition 3.1. The covering M = V1 ∪ V2 induces a real covering

M = V1 ∪V2, where V1, V2 are both isomorphic to R2.
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Proof. The charts V1, V2 intersect RP 1 × R2 at t2 = t1 and w = z. Then,

V1 ∩
(
{t2 = t1} × {w = z}

)
= {t1 6= 0, zt1 − zt1 = 0}
= {t1 6= 0, Im(zt1) = 0}
= {(a, b) 6= (0, 0), xb+ ya = 0} ⊂ RP 1 × R2,

where z = x+ iy and t1 = a+ ib with x, y, a, b ∈ R. If a 6= 0 the chart

V1 =
{

([a : b], (x, y)) ∈ RP 1 × R2 : a 6= 0, x
b

a
+ y = 0

}
∼ R2

is parametrized by (x, u) ∈ R2, where u = − b
a . If b 6= 0, the chart

V2 =
{

([a : b], (x, y)) ∈ RP 1 × R2 : b 6= 0, x+ y
a

b
= 0
}
∼ R2

is parametrized by (v, y) ∈ R2, where v = −a
b . �

The monoidal map % : M→ C2 induces a real map (denoted by % again)
between M and R2, %|V1 = r1, and %|V2 = r2, where

(3.5) r1 : (x, u) 7→ (x, xu) and r2 : (v, y) 7→ (vy, y).

Hence, the exceptional divisor S = P1 × {0} ⊂ P1 ×C2 intersects RP 1 ×R2 at
RP 1×{0} ' S1, which is the equator of the real M�obius stripM, see Fig. 2. The
equator is then covered by real charts S1∩V1 = {x = 0} and S1∩V2 = {y = 0}.

Fig. 2 � The real line (equator) of the exceptional divisor.

3.2. The tangent polynomial of the unfolding.

Let Fε(x, y) be the germ of a real analytic parameter-dependent vector
�eld with the linear part

Aε(x, y)
∂

∂x
+Bε(x, y)

∂

∂y
,

having an isolated singularity of order 1. (This means that the coe�cients
Aε, Bε are homogeneous polynomials of degree 1 and at least one of these two
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homogeneous polynomials does not vanish identically). The singular point of
the vector �eld is called generalized elliptic [8] if the real homogeneous degree-2
polynomial pε = xBε − yAε ∈ R[x, y] is non-vanishing except at zero. The
polynomial pε is called the tangent polynomial of the vector �eld. The singular
points on the exceptional divisor after real blow-up, are roots of the polynomial

x−2pε(x, xu) = Bε(1, u)− uAε(1, u),

where u is de�ned in (3.5). For a generalized elliptic singularity this polynomial
is not identically zero and then the blow-up is always non-dicritical. It is easy
to see then that there are no singular points on the real equator RP 1 ⊂ S in
the chart (x, u). Similarly, the point u = ∞ (mapped as v = 0 in the second
chart) is also non-singular.

As an immediate consequence, a real analytic singularity is generalized
elliptic if and only if it is non-dicritical and after the blow-up it has no sin-
gularities on the real projective line RP 1 ⊂ P1 of the exceptional divisor. In
coordinates this means the following.

Proposition 3.2. The foliation of (2.3) has two singular points at (x, u) =
(0, i) and (x, u) = (0,−i) in the �rst chart of the real blow-up (3.5). These

singularities are, therefore, complex and they are located at (Z,w) = (0, 0)
and (Z,w) = (∞, 0) respectively, in the �rst complex chart of the blow-up.

Further, system (2.3) is generalized elliptic and the points (x, u) = (0, 0) and

(x, u) = (0,∞) on the equator RP 1 ⊂ P1 are non singular.

Proof. The tangent polynomial is

pε(x, y) = x(x+ ε y)− y(ε x− y) = x2 + y2,

which is non-vanishing except at zero. Its pullback into (x, u) coordinates is
pε(x, xu) = x2(1 + u2) and hence the singular points are complex and they are
located at u = ±i ∈ P1. As these are the only singular points in the complex
blow-up, the points u = 0,∞ (mapped as v =∞, 0 in the other chart) are non
singular. Taking u = − b

a , the real point (x, u) = (0, 0) corresponds to b = 0
when t1 = a + ib in (3.1). This means Z = t2

t1
= a

a = 1. Analogously, the real

point (x, u) = (0,∞) corresponds to a = 0 and then Z = −ib
ib = −1. Therefore

the points Z = −1, 1 (mapped as W = −1, 1 in the second complex chart) are
non singular.

On the other hand, the imaginary point (x, u) = (0,+i) corresponds to
b = −ia, and then i(a − ib) = 0. As t2 = t1 = a − ib in the real coordinates,
we get t2 = 0, and hence Z = 0. The other point (x, u) = (0,−i) yields
b = ia or i(a + ib) = 0. That is, t1 = 0 and this is Z = ∞. The singular
points of the complex chart (V1, c1) are therefore located at (Z,w) = (0, 0) and
(Z,w) = (∞, 0) on the Riemann sphere. �
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In particular, the singular points of a weak focus are not detected in the
real plane after blow-up, see Fig. 3.

Fig. 3 � The exceptional divisor S ' P1 in real coordinates (x, u).

4. POINCAR�E MONODROMY

Each point of the exceptional divisor S represents a complex line through
zero in C2, see Fig. 5. Since the singular points of the foliation (3.4) are non-
dicritical all the lines Σµ : {z = µw} are transversal to Fε provided µ 6= 0,∞.
More precisely, we have the following result.

Proposition 4.1. The a�ne collection {Σµ}µ is a transverse �bration

for the foliation (2.2) in a neighborhood of zero.

Proof. Since Σµ = {z = µw} = { zw = µ}, we use equations (2.2) and get

d

dt

( z
w

)
=

dz

dt
w − zdw

dt
w2

=
z

w
(2i + · · · ) = 2iµ+ · · · 6= 0

for z, w su�ciently small. �

If µ = 1 we will simply denote Σ the corresponding surface. The structure
Σ∩Σ+ ' R is the real line embedded in the real plane. We endow these surfaces
with a parametrization by the w coordinate. We will use the same notation for
the pullback of Σµ in complex charts: Σµ = {Z = µ} in the c1 direction of the
complex M�obius strip, and Σµ = {W = µ−1} in the c2 direction of the complex
M�obius strip.

In particular, the holonomy map of the family (2.2) along the loop RP 1 in
the c1 direction of the blow-up, is well de�ned for the cross section Σ with the
coordinate w as a local chart on it, see Fig. 4. Inasmuch as (2.2) is analytic, the
real singular foliation on the real M�obius strip is well de�ned. The holonomy
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map along the circle RP 1 is therefore real analytic. Note, however, that this
loop does not belong entirely to any of the two canonical real charts V1 and
V2 : to compute the holonomy in the real chart (x, u) one has to continue

across in�nity u = ∞ that is, pass to the other chart. This problem can be
easily avoided after complexi�cation: if the singularity is generalized elliptic,
the holonomy can be computed in the chart (x, u) as the result of analytic
continuation along the semi-circular loop

[−R,R] ∪ {|u| = R, Im(u) > 0}, R > 1

which is homotopic to RP 1.

De�nition 4.2. The holonomy map Q1,ε : Σ→ Σ of the family (2.2) in the
(Z,w) chart of the blow-up is the semi-Poincar�e map or semi-monodromy of the
system. The standard monodromy Pε of the system is the second iterate Q◦21,ε.
The holonomy map of (2.2) in (W, z) coordinates is denoted by Q2,ε : Σ→ Σ.

The complex description of the semi-monodromy immediately allows us
to prove its analyticity and that of the monodromy map.

Theorem 4.3. The semi-monodromy Q1,ε of a generalized elliptic singu-

lar point is an orientation reversing (that is, Q′1,ε(0) = −1) germ of di�eomor-

phism, which is also real analytic on (R, 0), including the origin.

The holonomy operator Q1,ε of the system (2.2) is visible on the real plane
(R2, 0) before the blow-up: the cross-section Σ blows-down as the x-axis on the
(x, y)-plane. Indeed, the blow-down of Σ is {z = w} and since z = w, we must
have Im(z) = y = 0, which is the x-real axis. By construction, (Q1,ε(x), 0) is
the �rst point of intersection with the x-axis of a solution starting at (x, 0),
after continuation counterclockwise, see Fig. 4.

Theorem 4.4. The Poincar�e monodromy Pε : Σ → Σ of the complex

family (2.2) is an analytic germ of di�eomorphism which has the form

(4.1) Pε(w) = e2π εw ± e2π ε
(
2π +O(ε)

)
w3 +O(w4).

Proof. The analyticity follows from de�nition. Write (2.3) in polar coor-
dinates (r, θ) :

(4.2)


dr

dt
= r(ε+sr2) + g(r, θ),

dθ

dt
= 1 + h(r, θ),

where s = ±1 is the sign of the system, see De�nition 2.1. The dependence of
the terms g(r, θ) = O(|r|4), h(r, θ) = O(|r|3) on the parameter ε is not explicitly



18 W. Arriagada and P. Skrzypacz 12

Fig. 4 � The complexi�cation of the holonomy in the blow-up.

mentioned to simplify notations. An orbit of (4.2) starting at (r, θ) = (r0, 0)
has the following representation: r = r(θ, r0), r0 = r(0, r0) with r satisfying
the equation

(4.3)
dr

dθ
=
r(ε+sr2) + g

1 + h
= r(ε+sr2) +R(r, θ),

where R(r, θ) = O(|r|4). Notice that the transition from (4.2) to (4.3) is equi-
valent to the introduction of a new time parametrization in which dθ/dt = 1
which implies that the return time to the half-axis θ = 0 is the same for all
orbits starting on this axis with r0 > 0. Since r(θ, 0) ≡ 0 we can write the
Taylor expansion for r(θ, r0),

(4.4) r = u1(θ)r0 + u2(θ)r
2
0 + u3(θ)r

3
0 +O(|r0|4).

Substituting (4.4) into (4.3) and solving the resulting linear di�erential
equations at corresponding powers of r0 with initial conditions u1(0) = 1,
u2(0) = u3(0) = 0, yields

u1(θ) = eε θ, u2(θ) ≡ 0, u3(θ) = seε θ
(

e2 ε θ − 1

2 ε

)
.

Notice that these expressions are independent of the term R(r, θ). Therefore,
the standard monodromy r0 7→ rP = r(2π, r0) has the form

(4.5) rP = e2π εr0 + se2π ε
(
2π +O(ε)

)
r30 +O(r40)

for all R = O(r40). The complexi�cation of (4.5) yields the expression (4.1) in
the w coordinate. �

As a consequence, the real germ of the semi-monodromy is simply r(π, r0)
in the proof above. Since Pε = Q◦21,ε, the semi-monodromy has the form

Qc10 (w) = −eπ εw ± eπ ε
(
π +O(ε)

)
w3 + o(w3).
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Proposition 4.5. The (complex) Poincar�e monodromy Pε sends the real

line into itself, provided the parameter be real. In particular, the complex mo-

nodromy of the system (2.2) is the complexi�cation of the Poincar�e �rst return

map of the family (2.3).

Proof. Let ε ∈ R be given and take an orbit γ of the system (2.2) (for real
time) starting at the point z0 = w0 ∈ Σ and returning to a point z1 = w1 ∈ Σ
close to w0 : w1 = Pε(w0). If z0 = w0, the real trajectory of this point coincides
with γ (which is then contained in R2). Hence z1 = w1 because the �ow
is real for real values of the parameter (that is, the orbits starting at real
initial conditions are contained in Σ+, due to the real character of the family).
Therefore,

Pε(z0) = z1 = w1 = Pε(w0) = Pε(z0).
Since Pε depends analytically on ε the Schwarz re�ection principle implies that
Pε is a real germ. �

Denote by f(x, ε) the displacement function f = Pε − id for some choice
of a cross-section, say, the semiaxis R+ = {y = 0, x > 0}, and an analytic
chart x on this cross-section. By de�nition, su�ciently small limit cycles of
the system (2.2) intersect R+ at isolated zeros of f. The map (4.1) can easily
be analyzed for su�ciently small r0 and | ε |. For instance, if the sign of the
system is s = −1, there is a neighborhood of the origin in which the map has
only a trivial �xed point for small ε < 0 and an extra �xed point

√
ε + ... for

small ε > 0. The stability of the �xed points is also easily obtained from (4.1).
Taking into account that a positive �xed point of the map corresponds to a
limit cycle of the system, we can conclude that system (4.2) with any O(|w|4)
terms has a unique (stable) limit cycle bifurcating from the origin and existing
for ε > 0. If s = +1 an unstable limit cycle appears on ε < 0. Thus, generically
the family (2.2) undergoes a Hopf bifurcation, see Fig. 1.

5. BLOW-UP OF THE FOLIATION

To describe the geometry of the foliation of the system, equations (2.2)
are blown-up by the complex standard monoidal map (3.3). The blow-up space
is equipped with the two charts (V1, c1) and (V2, c2) which overlap around the
equator of the Riemann sphere. The complex equilibrium at zero in (z, w)
coordinates splits in two singularities located at Z = 0 and Z = ∞ on P1 and
those points correspond to u = +i and u = −i in the real chart (x, u), see Fig. 3.
Inasmuch as the singularity is non-dicritical, the projective line is a common
separatrix in the two charts of the blow-up space.
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The pullback of (2.2) by the map c1 yields a system of di�erential equa-
tions in the chart (Z,w) :

(5.1)

dZ

dt
= 2iZ +

∑
j+k≥4

(ajk(ε)− ak+1,j−1(ε))Z
jwk+j−1,

dw

dt
= (ε−i)w + sw3Z +

∑
j+k≥4

ajk(ε)Z
kwj+k.

The vector �eld determined by the right-hand side of this equation will be
denoted by F1,ε in the sequel.

The pullback of (2.2) by the map c2 yields a system of di�erential equa-
tions in the chart (W, z) :

(5.2)

dW

dt
= −2iW +

∑
j+k≥4

(ajk(ε)− ak+1,j−1(ε))W
jzk+j−1,

dz

dt
= (ε+i)z + sz3W +

∑
j+k≥4

ajk(ε)W
kzj+k.

The vector �eld determined by this system will be denoted by F2,ε. These vector
�elds are generic unfoldings of complex resonant saddle points with the ratio
of eigenvalues equal to −2 and −1

2 respectively [2]. The equilibria are located
exactly at ±i on the exceptional divisor.

We now investigate how the vector �elds F1,ε, F2,ε in the blow-up are
related by the Z2-equivariance of the vector �eld in the usual chart. In the
complex blow-up space, the real plane embeds as the M�obius strip M = %∗Σ+.
This pullback can be explicitly parametrized in terms of the complex charts.
For instance in (Z,w) coordinates the strip M = {Z = w

w}, whereas M =
{W = z

z} in the other chart. Hence, such a surface can be seen as the embedding
R2\{0} ↪→ R4\{0}

(x, y) 7→
(
x2 − y2

x2 + y2
,

2xy

x2 + y2
, x,−y

)
.

Indeed, points in polar form (eiθ, re−i
θ
2 ) ∈ RP 1 × R2 are in 1-to-1 correspon-

dence with points (ww , w) ∈ M with θ ∈ [0, 2π). The second component re−i
θ
2

corresponds to the direction of a real line L through the origin in the real plane
R2. The �rst component eiθ gives the point of the unit circle (which is homeo-
morphic to the exceptional real line RP 1×{0}) in correspondence with the line
L′ projecting as L on the real plane R2, see Fig. 5. (Evidently, the manifold

de�ned by the coordinates (eiθ, re−i
θ
2 ) is non-orientable).

This formulation makes clear that the real M�obius strip M is invariant
under the change of charts: ϕ(M) = M. Indeed, ϕ

(
w
w , w

)
=
(
w
w , w

)
=
(
z
z , z
)
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Fig. 5 � The real M�obius strip in complex coordinates.

provided z = w. Notice that the absolute value of the �rst coordinate is always
1. The real M�obius strip M is then strictly contained in the product RP 1×R2.
The latter is given in complex charts by {|Z| = 1} = {|W | = 1} within the
product P1 × C2, and by {|z| = |w|} in ambient coordinates (z, w). Further,
M ( RP 1 × R2 (properly) as real spaces. The real dimension of RP 1 × R2 is
3 and this product is topologically equivalent to the product S1 × R2 in the
blow-up space.

Proposition 5.1. Denote by τ the involution (z, w) 7→ (z, w). The Z2-

equivariance (2.1) of the family (2.2) is equivalent to the symmetric equations

(5.3)
F1,ε = τ ◦ ϕ ◦ F1,ε ◦ ϕ ◦ τ,
F2,ε = τ ◦ ϕ ◦ F2,ε ◦ ϕ ◦ τ.

Inasmuch as (3.2) is an involution, this yields F1,ε = τ ◦ F2,ε ◦ τ.

Proof. Inasmuch as τ∗ = τ and σ∗ = σ (the di�erentials are computed in
R4), the Z2-equivariance of the family Fε yields

F1,ε = (c−11 )∗Fε ◦ c1
= (c−11 )∗(σ ◦ Fε ◦ σ) ◦ c1
= c−11 ◦ σ ◦ Fε ◦ σ ◦ c1.
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But c−11 ◦ σ = τ ◦ c−12 and σ ◦ c1 = c1 ◦ ϕ ◦ τ. Thus

F1,ε = (τ ◦ c−12 )∗Fε ◦ c1 ◦ ϕ ◦ τ
= (τ ◦ ϕ)∗(c

−1
1 )∗Fε ◦ c1 ◦ ϕ ◦ τ

= τ ◦ ϕ ◦ F1,ε ◦ ϕ ◦ τ.

In analogous way we prove the other identity and the converse statement. �

Equations (5.3) are referred to as the real character in the blow-up of the
family Fε.

Corollary 5.2. The Z2-equivariance is expressed by the invariance of

the real M�obius strip M under the �ows of the systems (5.1) and (5.2) for real

values of the parameter.

6. COMPLEX HOLONOMIES

In general, the holonomy map between two complex lines through zero in
C2, Σa = {Z = a} and Σb = {Z = µb} is obtained as follows [14]. We lift
the radial path de�ned by the segment between the intersection of the �ber
Σa with the exceptional divisor (the common separatrix of the foliations of
the two charts), and the unit circle S1. We continue the lifting along S1 in
the counterclockwise direction. Finally, we lift the radial path de�ned by the
segment between the intersection of the �ber Σb with the separatrix, and the
unit circle S1.

In particular, the holonomy map sends M into itself and it is, hence,
intrinsically real. In either chart, the counterclockwise direction (with respect
to the real equator of the Riemann sphere) will be the positive orientation,
and the clockwise direction, the negative orientation. The direction of the
parametrization of the two radial segments depends on whether the modulus
of the projection of the �bers on the separatrix, namely |a| and |b|, are greater
or smaller than 1. In the picture above |a|, |b| < 1.

If a = b = 1, then the holonomy map coincides with the semimonodromy
Q1,ε (the semi-monodromy of the �eld (5.1) for the section Σ in the �rst chart
of the blow-up). Likewise, the holonomy map of the �eld (5.2) coincides Q2,ε

provided a = b = 1.

Corollary 6.1. The holonomies Q1,ε and Q2,ε are the inverse of each

other.

Proof. The equator RP 1 is positively parametrized by (eiθ, 0), θ ∈ [0, 2π)
in the �rst chart of the blow-up. The lifting of this loop in the leaf of the
foliation induced by (5.1) through the point w0 ∈ Σ is given by the trajectory
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γ = {(eiθ, w(θ)) : θ ∈ [0, 2π)}, where w is the only curve of the �eld (5.1)
satisfying w(0) = w0.

Consider, on the other hand, the lifting of the loop (eiφ, 0), φ ∈ [0, 2π)
in the leaf of the foliation induced by (5.2) starting at the point w(2π) ∈ Σ
and positively oriented (i.e. oriented in the counter-clockwise direction) in the
second chart of the blow-up. Such a lifting is given by (eiφ, z(φ)), where z
is the only curve satisfying z(0) = w(2π). Since (5.2) is the pullback of (5.1)
by the transition (3.2), the trajectory γ− = {ϕ(eiθ, w(θ)) = (e−iθ, eiθw(θ)) :
θ ∈ [0, 2π)} is a well-de�ned lifting in the leaf of the foliation induced by
(5.2) passing through the point (1, w(2π)). However, such a lifting is negatively
parametrized (i.e., it is oriented in the clock-wise direction) in the second chart
of the blow-up space, because the transition ϕ reverses the orientation along
the equator. Changing the parametrization by θ 7→ 2π − φ yields a trajectory
γ+ = {(eiφ, e−iφw(2π − φ)) : φ ∈ [0, 2π)} which starts at w(2π). This path is
positively oriented in the second chart of the blow-up. Hence, by unicity of
solutions in polar coordinates (with the initial condition w(2π)), we have that
z(φ) ≡ e−iφw(2π − φ). Thus,

Q2,ε ◦ Q1,ε(w0) = Q2,ε(w(2π)) = Q2,ε(z(0)) = z(2π) = w(0) = w0

and the conclusion follows. �

Acknowledgements. The authors are grateful to the anonymous referee for his/her
thorough review and highly appreciate the comments and suggestions, which signi�-
cantly contributed to improving the quality of this publication.

REFERENCES

[1] A. Adler, Antiholomorphic involutions of analytic families of Abelian varieties. Trans.
Amer. Math. Soc. 254 (1979), 69�94.

[2] W. Arriagada-Silva, Characterization of the generic unfolding of a weak focus. J. Di�e-
rential Equations 253 (2012), 1692�1708.

[3] W. Arriagada-Silva, Temporally normalizable generic unfoldings of order-1 weak foci.

J. Dyn. Control Syst. 21 (2014), 2, 239�256.

[4] W. Arriagada and J. Fialho, Parametric rigidness of germs of analytic unfoldings with

a Hopf bifurcation. Port. Math. 73 (2016), 2, 156�170.

[5] J. Gin�e, Isochronous foci for analytic di�erential systems. Internat. J. Bifur. Chaos
Appl. Sci. Engrg. 13 (2003), 6, 1617�1623.

[6] J. Gin�e and M. Grau, Characterization of isochronous foci for planar analytic de�erential

systems. Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), 985�998.

[7] Y. Il'yashenko, Nonlinear Stokes phenomena. Advances in Soviet Mathematics 14,
Amer. Math. Soc., Providence RI, 1993.

[8] Y. Il'yashenko and S. Yakovenko, Lectures on analytic di�erential equations. Grad.
Stud. Math. 86, Amer. Math. Soc., Providence RI, 2008.



24 W. Arriagada and P. Skrzypacz 18

[9] H. Jacobowitz, An introduction to CR structures. Math. Surveys Monogr. 32, Amer.
Math. Soc., Providence RI, 1990.

[10] Y.A. Kuznetsov, Elements of applied bifurcation theory. Appl. Math. Sci. 112,
Springer-Verlag, 1995.

[11] Y. Manin, Gauge �eld theory and complex geometry. A Series of Comprehensive Studies
in Mathematics 289, Springer-Verlag, 1997.

[12] J. Martinet and J.P. Ramis, Classi�cation analytique des �equations di��erentielles non

lin�eaires r�esonnantes du premier ordre. Ann. Sci. �Ec. Norm. Sup�er. (4) 16 (1983),
571�621.

[13] J.K. Moser and S.M. Webster, Normal forms for real surfaces in C2
near complex

tangents and hyperbolic surface transformations. Acta Math. 150 (1983), 255�296.

[14] R. P�erez-Marco and J.-C. Yoccoz, Germes de feuilletages holomorphes �a holonomie

prescrite. Ast�erisque 222 (1994), 345�371.

[15] S. Yakovenko, A geometric proof of the Bautin theorem. Amer. Math. Soc. Transl.
Ser. 2 165 (1995), 203�219.

Received 13 August 2017 Khalifa University of Science

and Technology,

Department of Applied Mathematics

and Sciences,

P.O. Box 127788, Abu Dhabi,

United Arab Emirates

waldo.arriagada@ku.ac.ae

Nazarbayev University,

School of Science and Technology,

Department of Mathematics,

53 Kabanbay Batyr Ave.,

Astana 010000 Kazakhstan

piotr.skrzypacz@nu.edu.kz


