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1. INTRODUCTION

This paper deals with the following nonsmooth constrained multiobjective

optimization problem

(MPO) f(x̄) = Local Extremum f(x), x ∈ G−1(0) ∩ S,

where f = (f1, . . . , fr) : U → Rr with one component fs p-times G�ateaux

di�erentiable at x̄ ∈ G−1(0)∩S, G : U → Rk is m-times G�ateaux di�erentiable

at x̄, p, k, n, m, r are positive integers, G−1(0) = {x ∈ U ; G(x) = 0}, S is an

arbitrary subset of Rn, and U is an open subset of Rn that contains S.

Also we consider the problem (P ) which is a nonsmooth scalar case of

(MPO) and problem (P1) which is a smooth particular case of problem (P ).

(P ) F (x̄) = Local Extremum F (x), x ∈ G−1(0) ∩ S,

where F : U → R is p-times G�ateaux di�erentiable at x̄ ∈ G−1(0) ∩ S, and G,
U , S are as above.

(P1) F (x̄) = Local ExtremumF (x), x ∈ G−1(0),
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where F : U → R is of class Cp on an open subset U of Rn, G : U → Rk is of

class Cm on U , x̄ ∈ G−1(0).

In this paper, we give some higher-order su�cient e�ciency conditions for

the nonsmooth multiobjective problem (MPO) and some higher-order su�cient

optimality conditions for the nonsmooth scalar problem (P ) with su�ciently

often G�ateaux di�erentiable data (and, consequently, to its smooth particular

case problem (P1)) by means of the contingent cone to the constrained set at

the extremum point.

The classical approach to solving problem (P1) involves the Second Deriva-

tive Test for Constrained Extrema applied to nondegenerate constraint critical

points found by means of the method of Lagrange multipliers.

With the aid of our results we analyze some examples for which the Second

Derivative Test for Constrained Extrema fails and some examples to which the

method of Lagrange multipliers cannot be applied.

In a joint paper with N.H. Pavel and I. Raykov [5], we derived second-

order su�cient conditions for a strict local minimizer of a twice continuously

di�erentiable function subject to an arbitrary set constraint via the contingent

cone. In [3, 4] and [6], we obtained higher-order necessary conditions useful in

excluding as nonoptimal constrained and unconstrained critical points for which

the Second Derivative Test for functions of several variables fails. Our higher-

order necessary conditions of [3, 6] were formulated for a smooth optimization

problem with an arbitrary set constraint via the higher-order tangent cones in

Pavel-Ursescu sense [24, 25]. Higher-order necessary optimality conditions via

higher-order tangent cones (in Ledzewicz-Schaettler sense [17]) for a local mini-

mizer of a su�ciently often continuously di�erentiable scalar objective function

subject to equality constraints have also been established in [17, 18] where the

problem has inequality constraints too.

Our Theorems 3.1 and 3.2 generalize the well-known second-order suf-

�cient optimality conditions of Bertsekas, [2, Proposition 3.2.1]. Unlike the

classical result of [2, Proposition 3.2.1], our Theorem 3.2 applies to a constraint

function G with the derivative at the critical point not necessarily di�erent

from zero and applies to a constrained degenerate critical point as well. In our

results, as in [2, Proposition 3.2.1], the constrained critical point is not required

to be regular. Our Theorems 3.3 and 3.4 generalize a result concerning second-

order su�cient optimality conditions for smooth scalar optimization problems,

by the present author, N.H. Pavel and I. Raykov [5, Theorem 3.2].

Recently D.V. Luu, [19] introduced the notion of G�ateaux di�erentiabi-

lity of higher-order and established in [19, Theorem 4.2] su�cient e�ciency

conditions for the existence of a higher-order strict local Pareto minimum for
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a multiobjective optimization problem involving cone-constraints and a convex

set constraint with G�ateaux di�erentiable functions via higher-order tangential

cones in Pavel-Ursescu sense. The di�erentiability in the classical sense implies

the G�ateaux di�erentiability.

In this paper, we give su�cient optimality conditions for the existence

of a higher-order isolated local extremum of the scalar optimization problem

(P ) with equality constraints and an arbitrary constraint set with G�ateaux

di�erentiable functions via the contingent cone (Theorems 3.1 and 3.3). We

then use our su�cient optimality conditions for the scalar problem (P ) and a

result due to B. Jimenez [14] to derive su�cient e�ciency conditions for the

multiobjective problem (MPO).

Thus we extend our second-order su�cient optimality conditions of [5] for

a scalar optimization problem with twice continuously di�erentiable data and

with an arbitrary set constraint to higher order su�cient optimality conditi-

ons for scalar and multiobjective optimization problems with su�ciently often

G�ateaux di�erentiable data and with an arbitrary constraint set and equality

constraints.

We present examples (Examples 3.1 and 3.3) to which [19, Theorem 4.2] is

applicable but cannot recognize the origin as a higher-order isolated local mini-

mizer for the smooth scalar equality constrained optimization problems conside-

red in these examples because the higher-order su�cient optimality conditions

of Luu's result are not veri�ed. Also we analyze an example (Example 4.1)

to which [19, Theorem 4.2] is applicable but fails to identify the origin as a

strict local Pareto minimum of higher-order for the nonsmooth multiobjective

(MPO) with G�ateaux di�erentiable data because the higher-order su�cient

e�ciency conditions of Luu's result are not satis�ed. In Examples 3.1 and 3.3,

our results (Theorem 3.2 and Corollary 3.1, respectively) help us classify the

origin as an isolated local minimizer of order four, while in Example 4.1, The-

orem 4.1 guarantees that the origin is a strict local Pareto minimum of order

four. Also we show that the second-order su�cient optimality conditions we

previously obtained in [5, Theorems 2.2, 3.2] either are not applicable or are

not veri�ed in the examples given in this paper.

The paper is organized as follows. In Section 2, we present some de-
�nitions and basic results which are used throughout the paper. In Section
3, we derive higher-order su�cient conditions for a feasible point to be a lo-
cal extremum to the nonsmooth scalar optimization problem (P ) and to the
smooth scalar optimization problem (P1), and we analyze some illustrative ex-
amples. In Section 4, we give higher-order su�cient e�ciency conditions for
the nonsmooth multiobjective problem (MPO) and an example.
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2. PRELIMINARIES

We begin with some preliminary de�nitions and notations.

A point x̄ ∈ D = G−1(0) ∩ S is said to be an isolated local minimizer of
order p (p positive integer) of F : Rn → R on D if there exists a neighborhood
V of x̄ and a constant c > 0 such that

(1) F (x)−F (x̄) ≥ c‖x−x̄‖p, for all x ∈ D∩V \{x̄},

where ‖ · ‖ denotes the norm of the n-dimensional Euclidean space Rn. If
the sense of inequality (1) is reversed, then x̄ is said to be an isolated local
maximizer of order p of F on D.

In several articles the isolated local minimizers are investigated (for in-
stance in [7, 8, 10,13,15,16,21,22,27]).

An isolated local extremum of any order is a strict local extremum.

Let us recall that the point x̄ ∈ D is a local Pareto minimum (or lo-
cal e�cient solution) for problem (MPO) (or of f on D) if there exists a
neighborhood V of x̄ such that (f(D ∩ V ) − f(x̄)) ∩ −Rr

+ = {0}, where
Rr

+ = {x = (x1, . . . , xr) ∈ Rr : xs ≥ 0, s = 1, . . . , r}. This means that
x̄ ∈ D is a local Pareto minimum if there exists a neighborhood V of x̄ such
that no x ∈ V ∩D satis�es fs(x) ≤ fs(x̄) for all s = 1, . . . , r with fs(x) < fs(x̄)
for at least one index.

The notion of local Pareto minimum is the concept of local minimizer
when r = 1.

A point x̄ ∈ D is a strict local Pareto minimum of order p, p ≥ 1 integer,
for (MPO) (Jim�enez, [15]) if there exists a constant α > 0 and a neighborhood
V of x̄ such that

(f(x) + Rr
+) ∩B(f(x̄), α‖x− x̄‖p) = ∅, ∀x ∈ D ∩ V, x 6= x̄,

where B(f(x̄), α‖x − x̄‖p) denotes the open ball of center f(x̄) and radius
α‖x− x̄‖p.

This is equivalent to (1) in the scalar case (r = 1).

A point x̄ ∈ D is a strict local Pareto minimum for (MPO) (or of f
on D) (Jimenez, [15]) if there exists a neighborhood V of x̄ such that f(x) �
f(x̄), ∀x ∈ D ∩ V, x 6= x̄,

or equivalently, f(x)− f(x̄) /∈ −Rr
+, ∀x ∈ D ∩ V, x 6= x̄.

Here z = (z1, . . . , zr) 5 w = (w1, . . . , wr), z, w ∈ Rr, means zs ≤ ws,
s = 1, . . . , r.

The above two notions generalize the corresponding scalar notions.

The following result due to Jimenez (a particular case of [14, Proposi-
tion 3.4]) will be used to prove the theorems in Section 4.
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Proposition 2.1 ([14, Proposition 3.4]). Let f : U → Rr, x̄ ∈ D, U
an open subset of Rn that contains D, and p ≥ 1. Then x̄ is not a strict

local Pareto minimum of order p of f on D if and only if there exist sequences

xi ∈ D \ {x̄}, bi ∈ Rr
+, such that xi → x̄ and

lim
i→∞

f(xi)− f(x̄) + bi
‖xi − x̄‖p

= 0.

Let us denote [v]k = (v, . . . , v) ∈ Xk = X × . . .×X︸ ︷︷ ︸
k−times

, k ≥ 2 integer.

Let g be a mapping from X into Y , where X and Y are real normed linear
spaces. Recall that g is G�ateaux di�erentiable at x̄ if there exists a continuous
linear mapping Λ1 from X into Y such that

g(x̄+ tv) = g(x̄) + tΛ1(v) + o(t), ∀ v ∈ X,

where ‖o(t)‖/|t| → 0 as t→ 0. The mapping Λ1 is said to be G�ateaux derivative
of g at x̄ and is denoted by g′G(x̄). Note that a mapping which is G�ateaux
di�erentiable at x̄ may not be continuous at x̄.

The mapping g : X → Y is p-times G�ateaux di�erentiable at x̄ (p ≥ 2) if g
is G�ateaux di�erentiable at x̄ and there exist continuous multilinear symmetric
mappings Λk from Xk into Y (continuous linear symmetric in k variables), k =
2, . . . , p, such that

g(x̄+ tv) = g(x̄) + tΛ1(v) +
t2

2!
Λ2[v]2 + · · ·+ tp

p!
Λp[v]p + o(tp), ∀ v ∈ X,

where Λ1 = g′G(x̄), ‖o(tp)‖/|t|p → 0 as t → 0 (see Luu [19]). Note that
symmetric means it does not change under permutation of variables. For the
correctness of this de�nition, the symmetric multilinear mapping Λp should be
uniquely determined by the respective form v → Λp(v)p (see, for example, [23]).
The continuous multilinear symmetric mapping Λk is the kth order G�ateaux

derivative of g at x̄ and is denoted by g
(k)
G (x̄). Thus for a function g which is

p-times G�ateaux di�erentiable at x̄, g can be expanded as

(2) g(x̄+tv) = g(x̄)+tg′G(x̄)(v)+
t2

2!
g

(2)
G (x̄)[v]2+· · ·+ tp

p!
g

(p)
G (x̄)[v]p+o(tp),

for all v ∈ X, where ‖o(tp)‖/|t|p → 0 as t→ 0.

If g is p-times (Fr�echet) di�erentiable at x̄ (see [1, De�nition 4, p. 86]
and [1, De�nition 1, p. 97]), we have the following Taylor expansion

(3) g(x̄+v) = g(x̄)+g′(x̄)(v)+
1

2!
g′′(x̄)[v]2 + · · ·+ 1

n!
g(p)(x̄)[v]p +‖v‖pr(v),

for all v ∈ X, where ‖r(v)‖ → 0, as v → 0, and g(k)(x̄) is the k-th order
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(Fr�echet) derivative of g at x̄, k = 1, . . . , p (see Theorem on Taylor's Formula, [1,
p. 100]). In this case g is p-times G�ateaux di�erentiable at x̄ and g(k)(x̄) =

g
(k)
G (x̄), k = 1, . . . , p.

If the p-th order (Fr�echet) derivative g(p)(x) of g : X → Y exists at each
point x in an open set U ⊆ X and x → g(p)(x) is continuous in the uniform
topology of the space L(X, ..., L(X,Y )︸ ︷︷ ︸

p times

...) (generated by the norm), then g is

of class Cp(U) (see [1, p. 97]).

Let g(p)(x̄)[y]p =
∑

1≤i1,...,ip≤n
gxi1

...xip
(x̄)yi1 . . . yip , y = (y1, . . . , yn) ∈ Rn,

where gxi1
...xip

(x̄) is the p-order partial derivative of g at x̄ with respect to
xi1 , . . . , xip , p ≥ 2.

Our su�cient optimality conditions are formulated using the theory of
contingent cones.

The contingent cone TxD to a subset D of Rn at x in the closure D̄ of D
is de�ned by

TxD = {y ∈ Rn; ∃ ti → 0+, ∃ yi → y, such that x+ tiyi ∈ D, ∀ i ≥ 1}.

It is known that TxD is a closed cone. If x is an interior point of D, then
TxD = Rn. If x ∈ A ∩B, then Tx(A ∩B) ⊆ TxA ∩ TxB, for any A, B ⊆ Rn.

Several equivalent de�nitions of the contingent cone are presented in [20].

It is well-known the method Lagrange developed for �nding possible sites
for extrema of a functional constrained optimization problem of type (P1) (see,
for instance, [2, Proposition 3.1.1]).

Next we remind the de�nitions of a constrained critical point, of a dege-
nerate constraint critical point, and of a regular feasible point for problem (P1).
A feasible point x̄ ∈ G−1(0) for which there is λ such that F ′(x̄)− λG′(x̄) = 0
is called a constrained critical point. If x̄ is a constrained critical point and the
second order expression [F ′′(x̄)−λG′′(x̄)][y]2 is equal to zero in any direction y
such that G′(x̄)(y) = 0, then x̄ is called a degenerate constrained critical point.

A feasible point x̄ ∈ G−1(0) for which the constraint gradients G′1(x̄),
G′2(x̄), . . . , G′k(x̄) are linearly independent is called regular. The vectors G′1(x̄),
G′2(x̄), . . . , G′k(x̄) are linearly independent if and only if G′(x̄) is onto.

To guarantee that a given constrained critical point is a local extremum,
we need su�cient conditions for optimality. Di�erent forms of the Second Deri-
vative Test for regular nondegenerate constrained critical points are given in [9]
and [26]. In [26], it is also established a criterion for a regular constrained
critical point that may be degenerate to be a saddle point. Our higher-order
necessary conditions for su�ciently often Fr�echet di�erentiable objective and
constraint functions de�ned on in�nite dimensional linear normed spaces can
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be used to classify as saddle points, regular constrained critical points that are
degenerate or not [6, Theorem 3]. In [5], we established second-order necessary
conditions for optimization problems with C2 data and an arbitrary constraint
set [5, Theorem 2.1] via �rst and second-order tangent cones in Pavel-Ursescu
sense, and second-order su�cient conditions via the contingent cone [5, The-
orem 3.2]. Also we gave second-order su�cient conditions of extremum for
regular constrained critical points for equality constrained optimization pro-
blems with C2 data [5, Theorem 2.2].

The classical second-order su�cient condition for a constrained critical
point x̄ with G′(x̄) 6= 0 to be a local extremum for problem (P1) is known
as the Second Derivative Test for Constrained Extrema [2, Proposition 3.2.1,
p. 272].

If x̄ is a regular degenerate constrained critical point for problem (P1),
then both the classical second-order necessary conditions for a local minimizer
and for a local maximizer of Lagrange Multiplier Theorem [2, Proposition 3.1.1,
p. 255], are veri�ed at x̄. Moreover, if x̄ is a degenerate constrained critical
point for problem (P1), then the classical second-order su�cient conditions of
Second-Derivative Test for Constrained Extrema, [2, Proposition 3.2.1] do not
give any information about x̄.

Therefore if x̄ is a degenerate constrained critical point we must use anot-
her method to determine whether or not it is a local extremum and if it is a
local minimizer or a local maximizer. In the next section, we introduce such a
method.

3. HIGHER-ORDER SUFFICIENT OPTIMALITY CONDITIONS

FOR SCALAR PROBLEMS

In this section, we give our main results for the nonsmooth scalar problem
(P ) with su�ciently often G�ateaux di�erentiable data.

Theorem 3.1. Let F : U → R and G : U → Rk be p-times G�ateaux

di�erentiable at x̄ ∈ G−1(0) ∩ S, where G−1(0) = {x ∈ U ; G(x) = 0}, p ≥ 2,
and S is an arbitrary subset of Rn, S ⊆ U . Suppose that there exists some

λ ∈ Rk satisfying

i) [F
(j)
G (x̄)− λG(j)

G (x̄)][y]j ≥ 0, for all y ∈ Rn, 1 ≤ j ≤ p− 1, and

ii) [F
(p)
G (x̄)− λG(p)

G (x̄)][y]p > 0, ∀ y ∈ Tx̄(G−1(0) ∩ S), y 6= 0.

Then x̄ is an isolated local minimizer of order p of F on G−1(0) ∩ S.

Proof. We can show that F (x) − F (x̄) ≥ c‖x − x̄‖p, for some c > 0 and
for all x ∈ G−1(0) ∩ S in a neighborhood of x̄.
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Assume by contradiction, that there exists a sequence {xi}i≥1 such that
xi → x̄, and for all i, xi 6= x̄, G(xi) = 0, xi ∈ S, and

(4) F (xi) < F (x̄) +
1

i
‖xi − x̄‖p.

Let us write xi − x̄ = δiyi, yi =
xi − x̄
‖xi − x̄‖

, δi = ‖xi − x̄‖ → 0 as i → ∞.

The sequence {yi}i≥1 is bounded, so it must have a subsequence converging to
some ȳ with ‖ȳ‖ = 1. Without loss of generality, we assume that the whole
sequence {yi}i≥1 converges to ȳ. Since x̄+ δiyi = xi ∈ G−1(0)∩S we have that
ȳ ∈ Tx̄(G−1(0) ∩ S).

Taking into account that F and G are p-times G�ateaux di�erentiable at
x̄, we can use equality (2) to get the following expansions of F and G about x̄

(5)
1

i
‖xi − x̄‖p > F (xi)− F (x̄) = δiF

′
G(x̄)(yi) +

δ2
i

2!
F
′′
G(x̄)(yi)(yi)+

+
δ3
i

3!
F

(3)

G (x̄)(yi)(yi)(yi) + . . .+
δpi
p!
F

(p)
G (x̄)[yi]

p + o(δpi ),

(6) 0 = G(xi)−G(x̄) = δiG
′
G(x̄)(yi) +

δ2
i

2!
G
′′
G(x̄)(yi)(yi)+

+
δ3
i

3!
G

(3)

G (x̄)(yi)(yi)(yi) + . . .+
δpi
p!
G

(p)
G (x̄)[yi]

p + o(δpi ),

where o(δpi )/δpi → 0 as i→∞. Consider the two possible cases:

1) If λ 6= 0, we subtract (6) multiplied by λ from (5), to get

(7)
1

i
‖xi − x̄‖p > δi(F

′
G(x̄)(yi)− λG

′
G(x̄)(yi)) +

δ2
i

2!
(F
′′
G(x̄)(yi)(yi)−

−λG′′G(x̄)(yi)(yi)) + . . .+
δpi
p!

(F
(p)
G (x̄)[yi]

p − λG(p)
G (x̄)[yi]

p) + o(δpi ),

where o(δpi )/δpi → 0 as i→∞.

Since [F
(j)
G (x̄)− λG(j)

G (x̄)][yi]
j ≥ 0, 1 ≤ j ≤ p− 1, we have from (7) that

(8)
1

i
‖xi − x̄‖p >

δpi
p!

(F
(p)
G (x̄)[yi]

p − λG(p)
G (x̄)[yi]

p) + o(δpi ),

where o(δpi )/δpi → 0 as i→∞.

After dividing (8) by δpi and letting i go to in�nity, we obtain

0 ≥ [F
(p)
G (x̄)− λG(p)

G (x̄)][ȳ]p.
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On the other hand, by assumption ii), [F
(p)
G (x̄)− λG(p)

G (x̄)][ȳ]p is strictly
positive because ȳ ∈ Tx̄(G−1(0) ∩ S) and ȳ 6= 0 as ‖ȳ‖ = 1. This contradiction
shows that x̄ is an isolated local minimizer of order p of F on G−1(0) ∩ S.

2) If λ = 0, we divide inequality (5) by δpi .

Since F
′
G(x̄)(yi), F

′′
G(x̄)[yi]

2,. . ., F
(p−1)

G (x̄)[yi]
p−1 are nonnegative, we have

(9)
1

i
>

1

p!
F

(p)
G (x̄)[yi]

p + o(δpi )/δpi ,

where o(δpi )/δpi → 0 as i→∞.

Letting i→∞, we obtain from (9) that 0 ≥ F (p)
G (x̄)[ȳ]p.

We arrive at a contradiction because, by assumption ii) with λ = 0,

F
(p)
G (x̄)[y]p > 0, for any y ∈ Tx̄(G−1(0) ∩ S), y 6= 0.

Thus, x̄ is an isolated local minimizer of order p of F on G−1(0) ∩ S in
this case as well. �

Note that the condition [F ′G(x̄) − λG′G(x̄)](y) ≥ 0, for all y ∈ Rn is
equivalent to F ′G(x̄) − λG′G(x̄) = 0 because the mapping F ′G(x̄) − λG′G(x̄) :
Rn → R is linear.

By taking S = Rn in our Theorem 3.1, we obtain the theorem below that
gives higher-order su�cient conditions of extremum for the smooth equality
constrained optimization problem (P1).

Theorem 3.2. Let F : U → R and G : U → Rk be of class Cp on an open

subset U of Rn, p ≥ 2, and x̄ ∈ G−1(0) = {x ∈ U ; G(x) = 0}.
Suppose that there exists some λ ∈ Rk such that

i) [F (j)(x̄)− λG(j)
(x̄)][y]j ≥ 0, ∀ y ∈ Rn, 1 ≤ j ≤ p− 1, and

ii) [F (p)(x̄)− λG(p)(x̄)][y]p > 0, ∀ y ∈ Tx̄G−1(0), y 6= 0.
Then x̄ is an isolated local minimizer of order p of F on G−1(0).

Lemma 3.1. i) If G : U → Rk is m-times G�ateaux di�erentiable at x̄ ∈
G−1(0) = {x ∈ U ; G(x) = 0} and G

(j)

G (x̄) = 0, 0 ≤ j ≤ m − 1, while G
(m)
G (x̄)

is not identically zero, then Tx̄G
−1(0) ⊆ {y ∈ Rn; G

(m)
G (x̄)[y]m = 0}.

ii) If G : U → Rk is m-times (Fr�echet) di�erentiable at x̄ ∈ G−1(0)

and G
(j)

(x̄) = 0, 0 ≤ j ≤ m − 1, while G(m)(x̄) is not identically zero, then

Tx̄G
−1(0) ⊆ {y ∈ Rn; G(m)(x̄)[y]m = 0}.
Here G

(0)

G (x̄) = G(x̄).

Proof. i) Let y ∈ Tx̄G−1(0). We will show that G
(m)
G (x̄)[y]m = 0. Since

there are ti → 0+ and yi → y, i ≥ 1 such that xi = x̄ + tiyi ∈ G−1(0), using
the fact that G is m-times G�ateaux di�erentiable at x̄, we get
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0 = G(x̄+ tiyi)−G(x̄) = tiG
′
G(x̄)(yi) +

t2i
2!
G
′′
G(x̄)(yi)(yi)+

+
t3i
3!
G

(3)
G (x̄)(yi)(yi)(yi) + . . .+

tmi
m!
G

(m)
G (x̄)[yi]

m + o(tmi ),

where o(tmi )/tmi → 0 as i→∞.

By taking the limit as ti → 0 in the relation

0 =
G(xi)−G(x̄)

tmi
= G

(m)
G (x̄)[yi]

m +
o(tmi )

tmi
,

we obtain G
(m)

G (x̄)[y]m = 0.

ii) The proof follows from part i) in view of Remark 2.1. �

Example 3.1. Let us consider the objective function F (x1, x2, x3) = 3x4
3 +

5x1 + 3x2 + 5x3, subject to the equality constraints G1(x1, x2, x3) = x5
1 − x5

2 +
x1 + x2 + x3 = 0, and G2(x1, x2, x3) = 2x4

1 + x4
2 + x1 − x2 + x3 + x1x

3
3 = 0,

F,G1, G2 : R3 → R.
We have that x̄ = (0, 0, 0) is a constrained critical point because G(0,

0, 0) = 0, where G = (G1, G2), the vectors G′1(0, 0, 0) = (1, 1, 1) and G′2(0,
0, 0) = (1,−1, 1) are linearly independent (so G′(0, 0, 0) is onto), and the pair
(λ, x̄) = ((λ1, λ2); (x̄1, x̄2, x̄3)) = ((4, 1); (0, 0, 0)) is a solution of the equation
F
′
(x1, x2, x3) = λG′(x1, x2, x3) = λ1G

′
1(x1, x2, x3) + λ2G

′
2(x1, x2, x3).

We have F
′′
(0, 0, 0) = G

′′
(0, 0, 0) = F

(3)
(0, 0, 0) = G

(3)
(0, 0, 0) = 0.

Since F ′′(0, 0, 0) − λG′′(0, 0, 0) = 0, the classical second-order necessary
conditions [2, Proposition 3.1.1] are veri�ed at (0, 0, 0) but the Second Deri-
vative Test for Constrained Extrema [2, Proposition 3.2.1] does not give any
information.

We apply our su�cient conditions of Theorem 3.2 with p = 4, G = (G1,
G2), and λ = (4, 1).

Lyusternik's Theorem [12] implies that T(0,0,0)G
−1(0) = {y ∈ R3; G′1(0, 0,

0)(y) = 0, G′2(0, 0, 0)(y) = 0}.
We notice that F ′(0, 0, 0)−λG′(0, 0, 0) = 0, F ′′(0, 0, 0)−λG′′(0, 0, 0) = 0,

and F (3)(0, 0, 0)− λG(3)
(0, 0, 0) = 0.

We have that [F (4)(0, 0, 0) − λG
(4)

(0, 0, 0)][y]4 = Fx3x3x3x3(0, 0, 0)y4
3 −

λ2[(G2)x1x1x1x1(0, 0, 0)y4
1 + (G2)x2x2x2x2(0, 0, 0)y4

2 + 4(G2)x1x3x3x3(0, 0, 0)y1y
3
3]

= 3(4!y4
3) − [2(4!y4

1) + 4!y4
2 + 4(3!)y1y

3
3] = 48y4

1 > 0, for all y ∈ T(0,0,0)G
−1(0),

y 6= 0, i.e., for all y ∈ {y ∈ R3; y1 + y2 + y3 =0, y1 − y2 + y3 = 0} = {y ∈
R3; y1 + y3 = 0, y2 = 0}, as y1 = 0 yields y3 = 0, and thus, y = 0.

In conclusion, according to Theorem 3.2, (0, 0, 0) is a strict local minimizer
of F on G−1(0), it is an isolated local minimizer of order four of F on G−1(0).



11 Higher-order su�cient conditions for optimization problems 35

Theorem 4.2, [19] is applicable to Example 3.1 with fs = F , h = G,

g(x) = 0, ∀x ∈ R3, and C = R3. The higher-order su�cient optimality

conditions of D.V. Luu's result are not veri�ed at (0, 0, 0) as F
′
(0, 0, 0)(y) =

5y1 + 3y2 + 5y3 is not necessarily nonnegative for any direction y = (y1, y2, y3)

with ‖y‖ = 1, for example F ′(0, 0, 0)(−1, 0, 0) = −5 � 0. Thus the origin

cannot be recognized as a higher-order isolated local minimizer of F on G−1(0)

by means of [19, Theorem 4.2].

Remark 3.1. Taking p = 2i and λ = (4, 1) in Theorem 3.2, it can be

shown that (0, 0, 0) is a strict local minimizer of F (x1, x2, x3) = 3x2i
3 + 5x1 +

3x2 + 5x3, (x1, x2, x3) ∈ R3, i positive integer, i ≥ 3, subject to the constraints

G1(x1, x2, x3) = x2i+1
1 − x2i+1

2 + x1 + x2 + x3 = 0, and G2(x1, x2, x3) = 2x2i
1 +

x2i
2 + x1 − x2 + x3 + x1x

2i−1
3 = 0. The origin is an isolated local minimizer of

order 2i of F on G−1(0).

Theorem 3.2 as well as Corollary 3.1 deal with the situation where G has

the gradient equal to zero and therefore the method of Lagrange multipliers

cannot be applied.

Example 3.2. Let us consider the objective function F (x1, x2) = x4
1−4x2

2,

subject to G(x1, x2) = x5
1 − x4

2 + x2
2 − x3

1x2 = 0, F,G : R2 → R.
We notice that x̄ = (0, 0) belongs to the constraint set G−1(0). Obviously,

x̄ veri�es the well-known �rst-order necessary optimality conditions F ′(x̄)(v) ≥
0, for all v ∈ Tx̄G−1(0), as F ′(0, 0) = 0. Also it can be seen that x̄ satis�es

our second-order necessary optimality conditions given in [5, Theorem 2.1]:

F ′′(x̄)(v)(v) +F ′(x̄)(w) = F ′′(x̄)(v)(v) = −8v2
2 ≥ 0, for all v = (v1, v2) ∈ Sw ⊂

Tx̄G
−1(0) ⊆ {v ∈ R2; G′′(0, 0)[v]2 = 0} = {v ∈ R2; v2 = 0} (see [5] for the

de�nition of the set Sw).

The gradient of G at x̄ is equal to zero, and thus the Method of Lagrange

Multipliers and the classical second-order optimality conditions [2, Propositi-

ons 3.1.1 and 3.2.1] cannot be used for the point x̄.

The conditions of Theorem 3.2 are ful�lled with p = 4, and λ = −4.

Indeed, �rst of all we notice that F
′
(x̄)−(−4)G

′
(x̄) = 0, F

(3)
(x̄)−(−4)G

(3)
(x̄) =

0, as all the �rst and third-order partial derivatives of F and G at x̄ are equal

to zero. Then we get that [F
′′
(x̄)− (−4)G

′′
(x̄)][y]2 = −4(2y2

2)− (−4)(2y2
2) = 0,

∀ y ∈ R2, and [F
(4)

(x̄)−(−4)G
(4)

(x̄)][y]4 = 24y4
1 +4(−24y4

2−24y3
1y2) = 24y4

1 >

0, ∀ y 6= 0, y ∈ Tx̄G−1(0) ⊆ {y ∈ R2; y2 = 0}, as if y1 = 0 then y = 0 as well.

Thus x̄ = (0, 0) is a strict local minimizer of F on G−1(0), it is an isolated

local minimizer of order four of F on G−1(0).

Here we used the fact that the explicit forms of the involved derivati-

ves of F are given by F
′′
(x̄)[y]2 = Fx1x1(x̄)y2

1 + Fx2x2(x̄)y2
2 + 2Fx1x2(x̄)y1y2,
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F (3)(x̄)[y]3 = Fx1x1x1(x̄)y3
1 +3Fx1x1x2(x̄)y2

1y2 +3Fx1x2x2(x̄)y1y
2
2 +Fx2x2x2(x̄)y3

2,

and F (4)(x̄)[y]4 = Fx1x1x1x1(x̄)y4
1 + 4Fx1x1x1x2(x̄)y3

1y2 + 6Fx1x1x2x2(x̄)y2
1y

2
2 +

4Fx1x2x2x2(x̄)y1y
3
2 + Fx2x2x2x2(x̄)y4

2.

Remark 3.2. Taking p = 2i and λ = −4 in Theorem 3.2, it can be seen

that (0, 0) is a strict local minimizer of F (x1, x2) = x2i
1 − 4x2

2, (x1, x2) ∈ R2, i

positive integer, i ≥ 3, subject to G(x1, x2) = x2i+1
1 − x2i

2 + x2
2 − x

2i−1
1 x2 = 0.

Theorem 3.3. Suppose that

a) F : U → R is p-times G�ateaux di�erentiable at x̄ ∈ G−1(0) ∩ S, where
G−1(0) = {x ∈ U, G(x) = 0}, G : U → Rk, p ≥ 2, and S is an arbitrary subset

of Rn, S ⊆ U .

b) There is a positive integer m such that G is m-times G�ateaux di�e-

rentiable at x̄, G
(j)

G (x̄) = 0, 0 ≤ j ≤ m − 1, and G
(m)
G (x̄) is not identically

zero.

c) F
(j)
G (x̄)[y]j ≥ 0, ∀ y ∈ Rn, 1 ≤ j ≤ p− 1, and F

(p)
G (x̄)[y]p > 0, ∀ y 6= 0

with G
(m)
G (x̄)[y]m = 0 and y ∈ Tx̄S.

Then x̄ is an isolated local minimizer of order p of F on G−1(0) ∩ S.

Proof. We assume by contradiction that x̄ is not an isolated local minimi-

zer of order p of F on G−1(0)∩S, i.e., that (4) holds for some sequence xi → x̄,

G(xi) = 0, xi ∈ S, xi 6= x̄ for all i. Then we obtain (5) for δi = ‖xi − x̄‖ → 0,

yi → ȳ ∈ Tx̄(G−1(0) ∩ S), ‖ȳ‖ = 1 as in the proof of Theorem 3.1. Since

Tx̄(G−1(0) ∩ S) ⊆ Tx̄G−1(0) ∩ Tx̄S, by Lemma 3.1 we get G
(m)
G (x̄)[ȳ]m = 0.

Since F
(j)
G (x̄)[yi]

j ≥ 0, 1 ≤ j ≤ p− 1, it follows from (5) that

(10)
1

i
‖xi − x̄‖p >

δpi
p!
F

(p)
G (x̄)[yi]

p + o(δpi ),

where o(δpi )/δpi → 0 as i→∞.

After dividing (10) by δpi and letting i go to in�nity, we obtain F
(p)
G (x̄)[ȳ]p

≤ 0. On the other hand, by assumption c), F
(p)
G (x̄)[ȳ]p > 0 because ȳ ∈ Tx̄S,

G
(m)
G (x̄)[ȳ]m = 0, and ȳ 6= 0 as ‖ȳ‖ = 1. This contradiction implies that x̄ is

an isolated local minimizer of order p of F on G−1(0) ∩ S. �

By arguments similar to those used in the proof of Theorem 3.3, we can get

the following theorem for optimization problems with an arbitrary constraint

set only.

Theorem 3.4. Suppose that

a) F : U → R is p-times G�ateaux di�erentiable at x̄ ∈ S, where p ≥ 2,

and S is an arbitrary subset of Rn, S ⊆ U .
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b) F
(j)
G (x̄)[y]j ≥ 0, ∀ y ∈ Rn, 1 ≤ j ≤ p − 1, and F

(p)
G (x̄)[y]p > 0, ∀ y ∈

Tx̄S, y 6= 0.

Then x̄ is an isolated local minimizer of order p of F on S.

Remark 3.3. Theorem 3.4 extends to higher-order su�cient conditions of
extremum for nonsmooth optimization problems with su�ciently often G�ateaux
di�erentiable data the second-order su�cient conditions of extremum obtained
in [5, Theorem 3.2] for smooth optimization problems with C2 data. Indeed,
if the objective function is of class C2 on X, Theorem 3.2 [5] follows from
Theorem 3.4 with p = 2 because the condition F ′(x̄)(y) ≥ 0, ∀ y ∈ Rn of
Theorem 3.4 is equivalent to the condition F ′(x̄) = 0 of [5, Theorem 3.2] as
F ′(x̄) is linear. Also the cone T l

x̄S used in [5] is the contingent cone (see [11,20]
for various equivalent de�nitions of the contingent cone).

Theorem 3.3 concerning nonsmooth optimization problems with equality
constraints and an arbitrary constraint set generalizes [5, Theorem 3.2] concer-
ning smooth optimization problems with an arbitrary constraint set only.

Theorem 3.3 implies the result below if we take S = Rn. Corollary 3.1
gives higher-order su�cient conditions of extremum for the smooth equality
constrained optimization problem (P1).

Corollary 3.1. Suppose that

a) F : U → R is of class Cp on an open subset U of Rn, p ≥ 2, and

x̄ ∈ G−1(0) = {x ∈ U, G(x) = 0}, G : U → Rk.

b) There is a positive integer m such that G is of class Cm on U , G
(j)

(x̄) =
0, 0 ≤ j ≤ m− 1, and G(m)(x̄) is not identically zero.

c) F (j)(x̄)[y]j ≥ 0, ∀ y ∈ Rn, 1 ≤ j ≤ p− 1, and F (p)(x̄)[y]p > 0, ∀ y 6= 0
with G(m)(x̄)[y]m = 0.

Then x̄ is an isolated local minimizer of order p of F on G−1(0).

Remark 3.4. Theorems 2.2 and 3.2 and Corollary 3.1 do not require the
constrained critical point x̄ to be regular. Moreover, the case G′(x̄) = 0 is
covered by our results.

Example 3.3. Let us consider the objective function F (x1, x2) = x4
1 + 3x5

2,

subject to G(x1, x2) = 2x
7/3
1 + x1x2 + x2

2 = 0, F,G : R2 → R.
The method of Lagrange multipliers and the classical second-order opti-

mality conditions [2, Propositions 3.1.1 and 3.2.1] cannot be applied to this
example because G′(x) = 0, for all x ∈ R2.

We notice that x̄ = (0, 0) belongs to the constraint set G−1(0). Obviously,
x̄ veri�es the well-known �rst-order necessary optimality conditions F ′(x̄)(v) ≥
0, for all v ∈ Tx̄G−1(0) as F

′
(0, 0) = 0. Moreover, x̄ satis�es our second-order

necessary optimality conditions of [5, Theorem 2.1] as F
′
(x̄) = F

′′
(x̄) = 0.
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The conditions of Corollary 3.1 are ful�lled with m = 2, p = 4 since
F
′
(x̄) = F

′′
(x̄) = F

(3)
(x̄) = 0, and F

(4)
(x̄)[y]4 = 24y4

1 > 0, ∀ y = (y1, y2), y 6= 0
such that G

′′
(x̄)[y]2 = 0, i.e., for all y 6= 0 with y1y2 +y2

2 = 0, as y1 = 0 implies
y2 = 0 too, which contradicts y 6= 0.

By Corollary 3.1, we conclude that x̄ = (0, 0) is a strict local minimizer
of F on G−1(0), it is an isolated local minimizer of order four of F on G−1(0).

Theorem 4.2 [19] is applicable to Example 3.3 with fs = F , h = G,
g(x) = 0, ∀x ∈ R2, and C = R2. The higher-order su�cient optimality

conditions of D.V. Luu's result are not veri�ed at (0, 0) as F
(4)

(0, 0)[y]4 is
not necessarily strictly positive for any direction y with ‖y‖ = 1, for example

F
(4)

(0, 0)[(0, 1)]4 = 0. Thus the origin cannot be recognized as a higher-order
isolated local minimizer of F on G−1(0) by means of [19, Theorem 4.2].

Remark 3.5. Taking p = 2i, m = 2l in Corollary 3.1, it can be seen that
(0, 0) is a strict local minimizer of F (x1, x2) = x2i

1 + 3x2i+1
2 , (x1, x2) ∈ R2,

subject to G(x1, x2) = 2x
(6l+1)/3
1 + xl1x

l
2 + x2l

2 = 0, i and l positive integers,
i ≥ 3, l ≥ 1. The origin is an isolated local minimizer of order 2i of F on
G−1(0).

Remark 3.6. In Examples 3.1�3.3, Theorem 3.2 [5] is applicable with D =
G−1(0) as F ′(x̄) = 0. In Examples 3.1 and 3.3, the second-order su�cient
optimality conditions of [5, Theorem 3.2] are not veri�ed because F

′′
(x̄) = 0

and therefore F
′′
(x̄)(y)(y) is not strictly positive in any nonzero direction y ∈

Tx̄G
−1(0). In Example 3.2, the second-order su�cient optimality conditions

of [5, Theorem 3.2] are not satis�ed as F
′′
(x̄)(y)(y) = −8y2

2 = 0 ≯ 0 for any
nonzero y ∈ Tx̄G−1(0) ⊆ {y ∈ R2; y2 = 0}. Thus, in all the examples in this
paper, the origin cannot be identi�ed as a strict local minimizer of F on G−1(0)
with the aid of [5, Theorem 3.2].

In Examples 3.2 and 3.3, [5, Theorem 2.2] is not applicable as G′(x̄) is
not onto. In Example 3.1, the second-order su�cient optimality conditions
of [5, Theorem 2.2] are not satis�ed at any x ∈ G−1(0). Indeed, since F

′′
(x) =

G
′′
(x) = 0, for all x ∈ R3 and there exists λ = (4, 1) such that F ′(x) = λG′(x),

for all x ∈ R3, we get F ′′(x)(v)(v) + F ′(x)(w) = F ′(x)(w) = −λG′(x)(w) =
−λG′′(x)(v)(v) = 0 ≯ 0, for any (v, w) 6= 0 such that F ′(x)(v) = 0, G′(x)(v) =
0, G′′(x)(v)(v) + G′(x)(w) = 0. Thus, in all the examples in this paper, the
origin cannot be recognized as a local minimizer of F on G−1(0) by means
of [5, Theorem 2.2].

Remark 3.7. If we reverse the sense of all the inequalities in our results of
this section, then we obtain su�cient conditions for x̄ to be an isolated local
maximizer of order p.
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4. HIGHER-ORDER SUFFICIENT EFFICIENCY CONDITIONS

FOR MULTIOBJECTIVE PROBLEMS

In this section, we give our main results for the nonsmooth multiobjective
problem (MPO) with su�ciently often G�ateaux di�erentiable data.

Theorem 4.1. Let f = (f1, . . . , fr) : U → Rr be de�ned on an open subset

U of Rn. Suppose that G : U → Rk and fs : U → R for some s ∈ {1, . . . , r}
are p-times G�ateaux di�erentiable at x̄ ∈ G−1(0) ∩ S, where G−1(0) = {x ∈
U ; G(x) = 0}, p ≥ 2, S is an arbitrary subset of Rn, S ⊆ U . Suppose that

there exists some λ ∈ Rk such that

i) [(fs)
(j)
G (x̄)− λG(j)

G (x̄)][y]j ≥ 0, for all y ∈ Rn, 1 ≤ j ≤ p− 1, and

ii) [(fs)
(p)
G (x̄)− λG(p)

G (x̄)][y]p > 0, for all y ∈ Tx̄(G−1(0) ∩ S), y 6= 0.

Then x̄ is a strict local Pareto minimum of order p of f on G−1(0) ∩ S.

Proof. By Theorem 3.1, x̄ is an isolated local minimizer of order p of fs
on G−1(0) ∩ S.

Assume by contradiction that x̄ is not a strict local Pareto minimum of
order p of f on G−1(0)∩S. Then by Proposition 2.1 [14, Proposition 3.4], there
would exist xi ∈ G−1(0) ∩ S, xi 6= x̄ for all i, xi → x̄, and bi = (bi,1, . . . , bi,r) ∈
Rr

+ such that

lim
i→∞

f(xi)− f(x̄) + bi
‖xi − x̄‖p

= 0,

which implies that

lim
i→∞

fs(xi)− fs(x̄) + bi,s
‖xi − x̄‖p

= 0.

Then Proposition 2.1 guarantees that x̄ is not an isolated local minimizer
of order p of fs on G

−1(0) ∩ S, and we arrive at a contradiction. �

Example 4.1. Let us consider the function f = (f1, f2) : R2 → R2 subject
to G(x1, x2) = 0, where f1 = F and G are the functions from Example 3.2, and

f2(x1, x2) =

{
−x2, if x1 = x2

2

0, if otherwise.

The functions f1(x1, x2) = x4
1 − 4x2

2 and G(x1, x2) = x5
1 − x4

2 + x2
2 − x3

1x2

are polynomials so they are (Fr�echet) di�erentiable at (0, 0) of any order and
therefore G�ateaux di�erentiable of any order. The function f2 is G�ateaux dif-
ferentiable at (0, 0) with f ′2,G(0, 0) = 0, but f2 is not (Fr�echet) di�erentiable at

(0, 0). Indeed, lim
‖h‖→0

|f2((0, 0) + h)− f2(0, 0)|
‖h‖

= 1 6= 0, for h(t) = (t2, t) with

t→ 0+, so the (Fr�echet) derivative of f2 does not exist at (0, 0).
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In view of Example 3.2, the hypotheses of Theorem 4.1 are veri�ed with
fs = f1 = F , S = R2, p = 4, m = 2, and therefore, the origin is a strict local
Pareto minimum of order four of f subject to G(x1, x2) = 0.

Theorem 4.2 [19] is applicable with fs = f1, h = G, g(x) = 0, for all x ∈
R2, C = R2, but the hypotheses of Luu's result are not satis�ed as f ′′1 (0, 0)[y]2 =
F ′′(0, 0)[y]2 = −8y2

2 � 0, for all y with ‖y‖ = 1. Thus, the origin cannot be
recognized as a strict local Pareto minimum of order four by means of [19,
Theorem 4.2].

Theorem 4.2. Suppose that

a) f = (f1, . . . , fr) : U → Rr is de�ned on an open subset U of Rn,

fs : U → R for some s ∈ {1, . . . , r} is p-times G�ateaux di�erentiable at x̄ ∈
G−1(0) ∩ S, where G−1(0) = {x ∈ U ; G(x) = 0}, p ≥ 2, S is an arbitrary

subset of Rn, S ⊆ U .

b) There is a positive integer m such that G is m-times G�ateaux di�e-

rentiable at x̄, G
(j)

G (x̄) = 0, 0 ≤ j ≤ m − 1, and G
(m)
G (x̄) is not identically

zero.

c) (fs)
(j)
G (x̄)[y]j ≥ 0, ∀ y ∈ Rn, 1 ≤ j ≤ p−1, and (fs)

(p)
G (x̄)[y]p > 0, ∀ y 6=

0 with G
(m)
G (x̄)[y]m = 0 and y ∈ Tx̄S.

Then x̄ is a strict local Pareto minimum of order p of f on G−1(0) ∩ S.

Proof. The proof is similar to the proof of Theorem 4.1, only that it makes
use of Theorem 3.3 instead of Theorem 3.1.
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