GENERALIZED q-GAUSSIAN VON NEUMANN ALGEBRAS WITH COEFFICIENTS III. UNIQUE PRIME FACTORIZATION RESULTS

MARIUS JUNGE and BOGDAN UDREA

Communicated by Dan Timotin

We prove some unique prime factorization results for tensor products of type II₁ factors of the form $\Gamma_q(\mathbb{C}, S \otimes H)$ arising from symmetric independent copies with sub-exponential dimensions of the spaces $D_k(S)$ and $\dim(H)$ finite and greater than a constant depending on q.

AMS 2010 Subject Classification: 46L10.

Key words: von Neumann algebras, type II₁ factors, prime factorization.

1. INTRODUCTION

This article is a continuation of the program initiated in [2]. In [2], we introduced the generalized q-gaussian von Neumann algebras $\Gamma_a(B,S\otimes H)$ with coefficients in B and proved their strong solidity relative to B under the assumptions of $dim_B(D_k(S))$ sub-exponential and $dim(H) < \infty$ (see [2], Definition 3.18 and Corollary 7.4). In a subsequent paper [3], we investigated the presence of non-trivial central sequences and we showed they do not exist when B is a finite dimensional factor, the dimensions over B of the modules $D_k(S)$ are sub-exponential and the dimension of H is finite and greater than a constant depending on q. In the present work, we prove some unique prime factorization results for tensor products of von Neumann algebras of the form $\Gamma_q(\mathbb{C}, S \otimes H)$ arising from a sequence of symmetric independent copies over \mathbb{C} and having sub-exponential dimensions (over \mathbb{C}) of the spaces $D_k(S)$ introduced in [2], Definition 3.18. The first results of this kind for type II_1 factors – arising from either (discrete) ICC non-amenable hyperbolic groups or (discrete) subgroups of connected simple Lie groups of rank one - have been obtained by Ozawa and Popa in [7], through a combination of Ozawa's C^* -algebraic techniques previously used in [6] and the powerful intertwining and unitary conjugacy techniques of Popa (see e.g. [8], Appendix and [9], Theorem 2.1). Let's recall that for (\mathcal{M}, τ) a type II_1 factor and t > 0, the amplification of \mathcal{M} by t is defined as $\mathcal{M}^t = p(M_n(\mathbb{C}) \otimes \mathcal{M})p$, where n > t and $p \in M_n(\mathbb{C}) \otimes \mathcal{M}$ is a projection with $\tau(p) = t/n$. Our main result is (see also Theorem 1 in [7]):

THEOREM 1.1. Let $M_k = \Gamma_{q_k}(\mathbb{C}, S_k \otimes H_k)$ coming from a sequence of symmetric independent copies $(\pi_j^k, \mathbb{C}, A_k, D_k)$ for $-1 < q_k < 1$ and $1 \le k \le n$. Assume that for all $1 \le k \le n$, H_k is finite dimensional and $\dim_{\mathbb{C}}((D_k)_i(S_k)) < Cd^i$ for all i and some constants C, d > 0. Suppose that $M = \overline{\bigotimes}_{k=1}^n M_k = N_1 \overline{\otimes} N_2$ for some type II_1 factors N_1 and N_2 . Then there exists t > 0 and a partition $I_1 \sqcup I_2 = \{1, \ldots, n\}$ such that, modulo conjugacy by an unitary in M, we have $N_1^t = \overline{\bigotimes}_{k \in I_1} M_k$ and $N_2^{1/t} = \overline{\bigotimes}_{k \in I_2} M_k$.

To prove Theorem 1.1, instead of relying on C^* -algebraic techniques and the property (AO) as in [6,7], we use our relative strong solidity result in [2], Corollary 7.4. We should note that the von Neumann algebras $\Gamma_{q_k}(\mathbb{C}, S_k \otimes H_k)$ are automatically factors if $dim(H_k) \geq d(q_k)$ (Proposition 3.23 in [2]). By repeatedly applying Theorem 1.1 one obtains

COROLLARY 1.2. Let $M_k = \Gamma_{q_k}(\mathbb{C}, S_k \otimes H_k)$ with the dimensions (over \mathbb{C}) of the spaces $(D_k)_i(S_k)$ sub-exponential and $\infty > \dim(H_k) \geq d(q_k)$ for all $1 \leq k \leq n$. Assume that

$$M_1 \bar{\otimes} \cdots \bar{\otimes} M_n = N_1 \bar{\otimes} \cdots \bar{\otimes} N_m,$$

for $m \ge n$ and some type II_1 factors N_1, \ldots, N_m . Then m = n and there exist $t_1, \ldots, t_n > 0$ with $t_1t_2 \cdots t_n = 1$ such that, after permutation of indices and unitary conjugacy, we have $N_k^{t_k} = M_k$.

When the factors N_j are assumed to be prime the assumption $m \geq n$ becomes unnecessary and hence we obtain

COROLLARY 1.3. Let M_1, \ldots, M_n be generalized q-gaussians as above. Suppose that for some $m \in \mathbb{N}$ and prime type II_1 factors N_1, \ldots, N_m we have

$$M_1 \bar{\otimes} \cdots \bar{\otimes} M_n = N_1 \bar{\otimes} \cdots \bar{\otimes} N_m.$$

Then m=n and there exist $t_1, \ldots, t_n > 0$ with $t_1t_2 \cdots t_n = 1$ such that, after permutation of indices and unitary conjugacy, we have $N_k^{t_k} = M_k$. In particular this holds if each $N_j = \Gamma_{q_j}(\mathbb{C}, T_j \otimes K_j)$ is a generalized q_j -gaussian with scalar coefficients, sub-exponential dimensions of $(D_j)_i(T_j)$ and $dim(K_j) < \infty$.

In particular, M_k and / or N_j could be any of the examples in 4.4.1, 4.4.2, 4.4.3 in [2]. Thus, if $M_i, 1 \leq i \leq n$, and $N_j, 1 \leq j \leq m$, are generalized q-gaussian von Neumann algebras as above and $m \neq n$, then $M_1 \bar{\otimes} \cdots \bar{\otimes} M_n \ncong N_1 \bar{\otimes} \cdots \bar{\otimes} N_m$.

2. PROOF OF THE MAIN THEOREM

Throughout this section, we freely use notations and results from Section 3 of [2]. We start by stating some preliminary technical results. The first one

is Proposition 2.7 in [12]. If (M, τ) is a tracial von Neumann algebra and $P, Q \subset M$ are von Neumann subalgebras, we say that P is amenable relative to Q (inside M) if there exists a P-central state Ω on $B(L^2(M)) \cap (Q^{op})'$ such that $\Omega|_M = \tau$ (see e.g. Definition 2.2 in [12]).

PROPOSITION 2.1. Let (M,τ) be a tracial von Neumann algebra and let $Q_1,Q_2\subset M$ be von Neumann subalgebras. Assume that Q_1,Q_2 form a commuting square, which means $E_{Q_1}\circ E_{Q_2}=E_{Q_2}\circ E_{Q_1}$, where E_{Q_1},E_{Q_2} are the conditional expectations of M onto Q_1,Q_2 respectively, and that Q_1 is regular in M. Let $P\subset M$ be a von Neumann subalgebra which is amenable relative to both Q_1 and Q_2 . Then P is amenable relative to $Q_1\cap Q_2$.

The next result is Proposition 12 in [7].

PROPOSITION 2.2. Let $M=M_1\bar{\otimes}M_2$ and $N\subset M$ be type II_1 factors. Assume that $N\prec_M M_1$ and $N'\cap M$ is a factor. Then there exists a decomposition $M=M_1^t\bar{\otimes}M_2^{1/t}$ for some t>0 and a unitary $u\in\mathcal{U}(M)$ such that $uNu^*\subset M_1^t$.

The next result will be needed in the proof of Theorem 1.1. It is an analogue of Proposition 15 in [7]. For convenience, if $M = M_1 \bar{\otimes} \cdots \bar{\otimes} M_n$ and $1 \leq k \leq n$, let's denote by

$$\widehat{M}_k = M_1 \bar{\otimes} \cdots M_{k-1} \bar{\otimes} 1 \bar{\otimes} M_{k+1} \cdots \bar{\otimes} M_n \subset M.$$

More generally, for every subset $I \subset \{1, ..., n\}$, we will denote by \widehat{M}_I the von Neumann algebra

$$\widehat{M}_I = \overline{\bigotimes}_{i \notin I} M_i \subset M.$$

PROPOSITION 2.3. Let $M_i = \Gamma_{q_i}(\mathbb{C}, S_i \otimes H_i)$ be generalized q-gaussian von Neumann algebras with scalar coefficients coming from symmetric independent copies and having sub-exponential dimensions over \mathbb{C} of the spaces $(D_i)_k(S_i)$, for all $1 \leq i \leq n$. Let $M = M_1 \bar{\otimes} \cdots \bar{\otimes} M_n$ and assume that $N \subset M$ is a type II_1 factor such that $N' \cap M$ is a non-amenable factor. Then there exists t > 0, $1 \leq k \leq n$ and a unitary $u \in \mathcal{U}(M)$ such that $uNu^* \subset (\widehat{M}_k)^t$.

Proof. Let's first note that there exists a $1 \leq k \leq n$ such that $N' \cap M$ is not amenable relative to \widehat{M}_k . Indeed, if this were not the case, since the subalgebras $\widehat{M}_I, \widehat{M}_J$ form a commuting square for all subsets $I, J \subset \{1, \ldots, n\}$ and all of them are regular in M, by repeatedly applying Proposition 2.1, we would obtain that $N' \cap M$ is amenable relative to $\bigcap_{k=1}^n \widehat{M}_k = \mathbb{C}$, i.e. $N' \cap M$ is amenable, a contradiction. Fix a k such that $N' \cap M$ is not amenable relative to \widehat{M}_k . Suppose that $N \not\prec_M \widehat{M}_k$. By Corollary F.14 in [1] there exists an abelian von Neumann subalgebra $\mathcal{A} \subset N$ such that $\mathcal{A} \not\prec_M \widehat{M}_k$. Let's make the

following general remark. Suppose $\Gamma_q(B, S \otimes H)$ is associated to a sequence of symmetric independent copies (π_j, B, A, D) and let \mathcal{M} be any tracial von Neumann algebra. Then the von Neumann algebra

$$\mathcal{M} \bar{\otimes} \Gamma_q(B, S \otimes H) = \Gamma_q(B \bar{\otimes} \mathcal{M}, S \otimes H)$$

is associated to a new sequence of symmetric independent copies $(\tilde{\pi}_j, \tilde{B}, \tilde{A}, \tilde{D})$, defined by $\tilde{B} = B \bar{\otimes} \mathcal{M}$, $\tilde{A} = A \bar{\otimes} \mathcal{M}$, $\tilde{D} = D \bar{\otimes} \mathcal{M}$ and $\tilde{\pi}_j : \tilde{A} \to \tilde{D}$ are given by $\tilde{\pi}_j(a \otimes x) = \pi_j(a) \otimes x$, for $a \in A, x \in \mathcal{M}$. Now note that

$$\mathcal{A} \subset M = \widehat{M}_k \bar{\otimes} M_k = \widehat{M}_k \bar{\otimes} \Gamma_{q_k}(\mathbb{C}, S_k \otimes H_k) = \Gamma_{q_k}(\widehat{M}_k, S_k \otimes H_k).$$

It's trivial to check that $\dim_{\widehat{M}_k}((D_k)_i(S_k)) = \dim_{\mathbb{C}}(D_k)_i(S_k)$ are sub-exponential. Since \mathcal{A} is amenable relative to \widehat{M}_k , by applying Corollary 7.4 in [2], we must have that either $\mathcal{A} \prec_M \widehat{M}_k$ or $\mathcal{N}_M(\mathcal{A})''$ is amenable relative to \widehat{M}_k . The first half of the alternative is precluded by the choice of \mathcal{A} , and the second would imply that $N' \cap M \subset \mathcal{N}_M(\mathcal{A})''$ is also amenable relative to \widehat{M}_k , which is a contradiction. Thus $N \prec_M \widehat{M}_k$, and by Proposition 2.2 we see that there exists a unitary $u \in \mathcal{U}(M)$ and a t > 0 such that $uNu^* \subset (\widehat{M}_k)^t$. \square

Now we can prove Theorem 1.1. The proof proceeds verbatim as in [7]. We nevertheless give details for completeness.

Proof of Theorem 1.1. We use induction over n. The case n=0 is trivial. Let $M=\overline{\bigotimes}_{k=1}^n M_k=N_1 \bar{\otimes} N_2$. Since M is non-amenable, we can assume that N_2 is non-amenable. By Proposition 2.3 there exist t>0, $1\leq k\leq n$ and $u\in \mathcal{U}(M)$ such that $uN_1u^*\subset (\widehat{M}_k)^t$. Set $\mathcal{M}_1=\widehat{M}_k$, $\mathcal{M}_2=M_k$ and $N_{2,1}=N_1'\cap u\mathcal{M}_1^tu^*$. Then we see that

$$N_2 = N_1' \cap M = u^*(N_{2,1} \bar{\otimes} \mathcal{M}_2^{1/t}) u \subset u^*(\mathcal{M}_1^t \bar{\otimes} \mathcal{M}_2^{1/t}) u = M,$$

and $u\mathcal{M}_1^t u^*$ is generated by N_1 and $N_{2,1}$. Using the induction hypothesis, we can find an s>0, a partition $I_1,I_{2,1}$ of $\{1,\ldots,n\}\setminus\{k\}$ such that $N_1=(\overline{\bigotimes}_{j\in I_1}M_j)^s$ and $N_{2,1}=(\overline{\bigotimes}_{j\in I_{2,1}}M_j)^{t/s}$ after conjugating with a unitary element in $(\widehat{M}_k)^t$. If we now set $I_2=I_{2,1}\cup\{k\}$, the proof is complete \square

Remark 2.4. The statement of the results and the proofs remain verbatim the same if one assumes that B_k is a finite dimensional factor for every $1 \le k \le n$.

REFERENCES

 N. Brown and N. Ozawa, C*-algebras and finite-dimensional approximations. Grad. Stud. Math. 88. Amer. Math. Soc., Providence, RI, 2008.

- [2] M. Junge and B. Udrea, Generalized q-gaussian von Neumann algebras with coefficients, I. Relative strong solidity. To appear in Anal. PDE.
- [3] M. Junge and B. Udrea, Generalized q-gaussian von Neumann algebras with coefficients, II. Absence of central sequences. To appear in Math. Rep. (Bucur.).
- [4] I. Krolak, Wick product for commutation relations connected with Yang-Baxter operators and new constructions of factors. Comm. Math. Phys. 210 (2000), 3, 685-701.
- [5] I. Krolak, Factoriality of von Neumann algebras connected with general commutation relations-finite dimensional case. In: M. Bożejko et al. (Ed.), Quantum Probability. Banach Center Publ. 73, Polish Acad. Sci. Inst. Math., Warsaw, 277-284, 2006.
- [6] N. Ozawa, Solid von Neumann algebras. Acta Math. 192 (2004), 1, 111-117.
- [7] N. Ozawa and S. Popa, Some prime factorization results for type II₁ factors. Invent. Math. 156 (2004), 2, 223-234.
- [8] S. Popa, On a class of type II₁ factors with Betti numbers invariants. Ann. of Math.
 (2) 163 (2006), 809-899.
- [9] S. Popa, Strong rigidity of II₁ factors arising from malleable actions of w-rigid groups
 I. Invent. Math. 165 (2006), 2, 369-408.
- [10] S. Popa, On Ozawa's property for free group factors. Int. Math. Res. Notes 2007 (2007), 11, 10 p.
- [11] S. Popa, On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc. 21 (2008), 981–1000.
- [12] S. Popa and S. Vaes, Unique Cartan decomposition for II₁ factors arising from arbitrary actions of free groups. Acta Math. 212 (2014), 1, 141-198.
- [13] E. Ricard, Factoriality of q-Gaussian von Neumann algebras. Comm. Math. Phys. 257 (2005), 3, 659-665.
- [14] P. Sniady, Factoriality of Bożejko-Speicher von Neumann algebras. Comm. Math. Phys. 246 (2004), 3, 561-567.

Received 23 August 2017

University of Illinois
Department of Mathematics,
Urbana, IL 61801, USA
junge@math.uiuc.edu

University of Iowa
Department of Mathematics,
Iowa City, IA 52242, USA
and

"Simion Stoilow" Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest, Romania bogdanteodor-udrea@uiowa.edu