GENERALIZED q-GAUSSIAN VON NEUMANN ALGEBRAS WITH COEFFICIENTS III. UNIQUE PRIME FACTORIZATION RESULTS

MARIUS JUNGE and BOGDAN UDREA

Communicated by Dan Timotin

Abstract

We prove some unique prime factorization results for tensor products of type II_{1} factors of the form $\Gamma_{q}(\mathbb{C}, S \otimes H)$ arising from symmetric independent copies with sub-exponential dimensions of the spaces $D_{k}(S)$ and $\operatorname{dim}(H)$ finite and greater than a constant depending on q.

AMS 2010 Subject Classification: 46L10.
Key words: von Neumann algebras, type II_{1} factors, prime factorization.

1. INTRODUCTION

This article is a continuation of the program initiated in [2]. In [2], we introduced the generalized q-gaussian von Neumann algebras $\Gamma_{q}(B, S \otimes H)$ with coefficients in B and proved their strong solidity relative to B under the assumptions of $\operatorname{dim}_{B}\left(D_{k}(S)\right)$ sub-exponential and $\operatorname{dim}(H)<\infty$ (see [2], Definition 3.18 and Corollary 7.4). In a subsequent paper [3], we investigated the presence of non-trivial central sequences and we showed they do not exist when B is a finite dimensional factor, the dimensions over B of the modules $D_{k}(S)$ are sub-exponential and the dimension of H is finite and greater than a constant depending on q. In the present work, we prove some unique prime factorization results for tensor products of von Neumann algebras of the form $\Gamma_{q}(\mathbb{C}, S \otimes H)$ arising from a sequence of symmetric independent copies over \mathbb{C} and having sub-exponential dimensions (over \mathbb{C}) of the spaces $D_{k}(S)$ introduced in [2], Definition 3.18. The first results of this kind for type $I I_{1}$ factors arising from either (discrete) ICC non-amenable hyperbolic groups or (discrete) subgroups of connected simple Lie groups of rank one - have been obtained by Ozawa and Popa in [7], through a combination of Ozawa's C^{*}-algebraic techniques previously used in [6] and the powerful intertwining and unitary conjugacy techniques of Popa (see e.g. [8], Appendix and [9], Theorem 2.1). Let's recall that for (\mathcal{M}, τ) a type $I I_{1}$ factor and $t>0$, the amplification of \mathcal{M} by t is defined as $\mathcal{M}^{t}=p\left(M_{n}(\mathbb{C}) \otimes \mathcal{M}\right) p$, where $n>t$ and $p \in M_{n}(\mathbb{C}) \otimes \mathcal{M}$ is a projection with $\tau(p)=t / n$. Our main result is (see also Theorem 1 in [7]):

TheOrem 1.1. Let $M_{k}=\Gamma_{q_{k}}\left(\mathbb{C}, S_{k} \otimes H_{k}\right)$ coming from a sequence of symmetric independent copies $\left(\pi_{j}^{k}, \mathbb{C}, A_{k}, D_{k}\right)$ for $-1<q_{k}<1$ and $1 \leq k \leq n$. Assume that for all $1 \leq k \leq n, H_{k}$ is finite dimensional and $\operatorname{dim}_{\mathbb{C}}\left(\left(D_{k}\right)_{i}\left(S_{k}\right)\right)<$ $C d^{i}$ for all i and some constants $C, d>0$. Suppose that $M=\bar{\bigotimes}_{k=1}^{n} M_{k}=$ $N_{1} \bar{\otimes} N_{2}$ for some type $I I_{1}$ factors N_{1} and N_{2}. Then there exists $t>0$ and a partition $I_{1} \sqcup I_{2}=\{1, \ldots, n\}$ such that, modulo conjugacy by an unitary in M, we have $N_{1}^{t}=\bar{\bigotimes}_{k \in I_{1}} M_{k}$ and $N_{2}^{1 / t}=\bar{\bigotimes}_{k \in I_{2}} M_{k}$.

To prove Theorem 1.1, instead of relying on C^{*}-algebraic techniques and the property (AO) as in $[6,7]$, we use our relative strong solidity result in [2], Corollary 7.4. We should note that the von Neumann algebras $\Gamma_{q_{k}}\left(\mathbb{C}, S_{k} \otimes H_{k}\right)$ are automatically factors if $\operatorname{dim}\left(H_{k}\right) \geq d\left(q_{k}\right)$ (Proposition 3.23 in [2]). By repeatedly applying Theorem 1.1 one obtains

Corollary 1.2. Let $M_{k}=\Gamma_{q_{k}}\left(\mathbb{C}, S_{k} \otimes H_{k}\right)$ with the dimensions (over $\mathbb{C})$ of the spaces $\left(D_{k}\right)_{i}\left(S_{k}\right)$ sub-exponential and $\infty>\operatorname{dim}\left(H_{k}\right) \geq d\left(q_{k}\right)$ for all $1 \leq k \leq n$. Assume that

$$
M_{1} \bar{\otimes} \cdots \bar{\otimes} M_{n}=N_{1} \bar{\otimes} \cdots \bar{\otimes} N_{m}
$$

for $m \geq n$ and some type $I I_{1}$ factors N_{1}, \ldots, N_{m}. Then $m=n$ and there exist $t_{1}, \ldots, t_{n}>0$ with $t_{1} t_{2} \cdots t_{n}=1$ such that, after permutation of indices and unitary conjugacy, we have $N_{k}^{t_{k}}=M_{k}$.

When the factors N_{j} are assumed to be prime the assumption $m \geq n$ becomes unnecessary and hence we obtain

Corollary 1.3. Let M_{1}, \ldots, M_{n} be generalized q-gaussians as above. Suppose that for some $m \in \mathbb{N}$ and prime type $I I_{1}$ factors N_{1}, \ldots, N_{m} we have

$$
M_{1} \bar{\otimes} \cdots \bar{\otimes} M_{n}=N_{1} \bar{\otimes} \cdots \bar{\otimes} N_{m}
$$

Then $m=n$ and there exist $t_{1}, \ldots, t_{n}>0$ with $t_{1} t_{2} \cdots t_{n}=1$ such that, after permutation of indices and unitary conjugacy, we have $N_{k}^{t_{k}}=M_{k}$. In particular this holds if each $N_{j}=\Gamma_{q_{j}}\left(\mathbb{C}, T_{j} \otimes K_{j}\right)$ is a generalized q_{j}-gaussian with scalar coefficients, sub-exponential dimensions of $\left(D_{j}\right)_{i}\left(T_{j}\right)$ and $\operatorname{dim}\left(K_{j}\right)<\infty$.

In particular, M_{k} and / or N_{j} could be any of the examples in 4.4.1, 4.4.2, 4.4.3 in [2]. Thus, if $M_{i}, 1 \leq i \leq n$, and $N_{j}, 1 \leq j \leq m$, are generalized q-gaussian von Neumann algebras as above and $m \neq n$, then $M_{1} \bar{\otimes} \cdots \bar{\otimes} M_{n} \nexists$ $N_{1} \bar{\otimes} \cdots \bar{\otimes} N_{m}$.

2. PROOF OF THE MAIN THEOREM

Throughout this section, we freely use notations and results from Section 3 of [2]. We start by stating some preliminary technical results. The first one
is Proposition 2.7 in [12]. If (M, τ) is a tracial von Neumann algebra and $P, Q \subset M$ are von Neumann subalgebras, we say that P is amenable relative to Q (inside M) if there exists a P-central state Ω on $B\left(L^{2}(M)\right) \cap\left(Q^{o p}\right)^{\prime}$ such that $\left.\Omega\right|_{M}=\tau$ (see e.g. Definition 2.2 in [12]).

Proposition 2.1. Let (M, τ) be a tracial von Neumann algebra and let $Q_{1}, Q_{2} \subset M$ be von Neumann subalgebras. Assume that Q_{1}, Q_{2} form a commuting square, which means $E_{Q_{1}} \circ E_{Q_{2}}=E_{Q_{2}} \circ E_{Q_{1}}$, where $E_{Q_{1}}, E_{Q_{2}}$ are the conditional expectations of M onto Q_{1}, Q_{2} respectively, and that Q_{1} is regular in M. Let $P \subset M$ be a von Neumann subalgebra which is amenable relative to both Q_{1} and Q_{2}. Then P is amenable relative to $Q_{1} \cap Q_{2}$.

The next result is Proposition 12 in [7].
Proposition 2.2. Let $M=M_{1} \bar{\otimes} M_{2}$ and $N \subset M$ be type $I I_{1}$ factors. Assume that $N \prec_{M} M_{1}$ and $N^{\prime} \cap M$ is a factor. Then there exists a decomposition $M=M_{1}^{t} \bar{\otimes} M_{2}^{1 / t}$ for some $t>0$ and a unitary $u \in \mathcal{U}(M)$ such that $u N u^{*} \subset M_{1}^{t}$.

The next result will be needed in the proof of Theorem 1.1. It is an analogue of Proposition 15 in [7]. For convenience, if $M=M_{1} \bar{\otimes} \cdots \bar{\otimes} M_{n}$ and $1 \leq k \leq n$, let's denote by

$$
\widehat{M}_{k}=M_{1} \bar{\otimes} \cdots M_{k-1} \bar{\otimes} 1 \bar{\otimes} M_{k+1} \cdots \bar{\otimes} M_{n} \subset M
$$

More generally, for every subset $I \subset\{1, \ldots, n\}$, we will denote by \widehat{M}_{I} the von Neumann algebra

$$
\widehat{M}_{I}=\widehat{\bigotimes}_{i \notin I} M_{i} \subset M
$$

Proposition 2.3. Let $M_{i}=\Gamma_{q_{i}}\left(\mathbb{C}, S_{i} \otimes H_{i}\right)$ be generalized q-gaussian von Neumann algebras with scalar coefficients coming from symmetric independent copies and having sub-exponential dimensions over \mathbb{C} of the spaces $\left(D_{i}\right)_{k}\left(S_{i}\right)$, for all $1 \leq i \leq n$. Let $M=M_{1} \bar{\otimes} \cdots \bar{\otimes} M_{n}$ and assume that $N \subset M$ is a type $I I_{1}$ factor such that $N^{\prime} \cap M$ is a non-amenable factor. Then there exists $t>0$, $1 \leq k \leq n$ and a unitary $u \in \mathcal{U}(M)$ such that $u N u^{*} \subset\left(\widehat{M}_{k}\right)^{t}$.

Proof. Let's first note that there exists a $1 \leq k \leq n$ such that $N^{\prime} \cap M$ is not amenable relative to \widehat{M}_{k}. Indeed, if this were not the case, since the subalgebras $\widehat{M}_{I}, \widehat{M}_{J}$ form a commuting square for all subsets $I, J \subset\{1, \ldots, n\}$ and all of them are regular in M, by repeatedly applying Proposition 2.1, we would obtain that $N^{\prime} \cap M$ is amenable relative to $\bigcap_{k=1}^{n} \widehat{M}_{k}=\mathbb{C}$, i.e. $N^{\prime} \cap M$ is amenable, a contradiction. Fix a k such that $N^{\prime} \cap M$ is not amenable relative to \widehat{M}_{k}. Suppose that $N \nprec_{M} \widehat{M}_{k}$. By Corollary F. 14 in [1] there exists an abelian von Neumann subalgebra $\mathcal{A} \subset N$ such that $\mathcal{A} \nprec_{M} \widehat{M}_{k}$. Let's make the
following general remark. Suppose $\Gamma_{q}(B, S \otimes H)$ is associated to a sequence of symmetric independent copies $\left(\pi_{j}, B, A, D\right)$ and let \mathcal{M} be any tracial von Neumann algebra. Then the von Neumann algebra

$$
\mathcal{M} \bar{\otimes} \Gamma_{q}(B, S \otimes H)=\Gamma_{q}(B \bar{\otimes} \mathcal{M}, S \otimes H)
$$

is associated to a new sequence of symmetric independent copies $\left(\tilde{\pi}_{\tilde{D}}, \tilde{B}, \tilde{A}, \tilde{D}\right)$, defined by $\tilde{B}=B \bar{\otimes} \mathcal{M}, \tilde{A}=A \bar{\otimes} \mathcal{M}, \tilde{D}=D \bar{\otimes} \mathcal{M}$ and $\tilde{\pi}_{j}: \tilde{A} \rightarrow \tilde{D}$ are given by $\tilde{\pi}_{j}(a \otimes x)=\pi_{j}(a) \otimes x$, for $a \in A, x \in \mathcal{M}$. Now note that

$$
\mathcal{A} \subset M=\widehat{M}_{k} \bar{\otimes} M_{k}=\widehat{M}_{k} \bar{\otimes} \Gamma_{q_{k}}\left(\mathbb{C}, S_{k} \otimes H_{k}\right)=\Gamma_{q_{k}}\left(\widehat{M}_{k}, S_{k} \otimes H_{k}\right)
$$

It's trivial to check that $\operatorname{dim}_{\widehat{M}_{k}}\left(\left(D_{k}\right)_{i}\left(S_{k}\right)\right)=\operatorname{dim}_{\mathbb{C}}\left(D_{k}\right)_{i}\left(S_{k}\right)$ are sub-exponential. Since \mathcal{A} is amenable relative to \widehat{M}_{k}, by applying Corollary 7.4 in [2], we must have that either $\mathcal{A} \prec_{M} \widehat{M}_{k}$ or $\mathcal{N}_{M}(\mathcal{A})^{\prime \prime}$ is amenable relative to \widehat{M}_{k}. The first half of the alternative is precluded by the choice of \mathcal{A}, and the second would imply that $N^{\prime} \cap M \subset \mathcal{N}_{M}(\mathcal{A})^{\prime \prime}$ is also amenable relative to \widehat{M}_{k}, which is a contradiction. Thus $N \prec_{M} \widehat{M}_{k}$, and by Proposition 2.2 we see that there exists a unitary $u \in \mathcal{U}(M)$ and a $t>0$ such that $u N u^{*} \subset\left(\widehat{M}_{k}\right)^{t}$.

Now we can prove Theorem 1.1. The proof proceeds verbatim as in [7]. We nevertheless give details for completeness.

Proof of Theorem 1.1. We use induction over n. The case $n=0$ is trivial. Let $M=\bar{\bigotimes}_{k=1}^{n} M_{k}=N_{1} \bar{\otimes} N_{2}$. Since M is non-amenable, we can assume that N_{2} is non-amenable. By Proposition 2.3 there exist $t>0,1 \leq k \leq n$ and $u \in \mathcal{U}(M)$ such that $u N_{1} u^{*} \subset\left(\widehat{M}_{k}\right)^{t}$. Set $\mathcal{M}_{1}=\widehat{M}_{k}, \mathcal{M}_{2}=M_{k}$ and $N_{2,1}=N_{1}^{\prime} \cap u \mathcal{M}_{1}^{t} u^{*}$. Then we see that

$$
N_{2}=N_{1}^{\prime} \cap M=u^{*}\left(N_{2,1} \bar{\otimes} \mathcal{M}_{2}^{1 / t}\right) u \subset u^{*}\left(\mathcal{M}_{1}^{t} \bar{\otimes} \mathcal{M}_{2}^{1 / t}\right) u=M
$$

and $u \mathcal{M}_{1}^{t} u^{*}$ is generated by N_{1} and $N_{2,1}$. Using the induction hypothesis, we can find an $s>0$, a partition $I_{1}, I_{2,1}$ of $\{1, \ldots, n\} \backslash\{k\}$ such that $N_{1}=$ $\left(\bar{\bigotimes}_{j \in I_{1}} M_{j}\right)^{s}$ and $N_{2,1}=\left(\bar{\bigotimes}_{j \in I_{2,1}} M_{j}\right)^{t / s}$ after conjugating with a unitary element in $\left(\widehat{M}_{k}\right)^{t}$. If we now set $I_{2}=I_{2,1} \cup\{k\}$, the proof is complete

Remark 2.4. The statement of the results and the proofs remain verbatim the same if one assumes that B_{k} is a finite dimensional factor for every $1 \leq$ $k \leq n$.

REFERENCES

[1] N. Brown and N. Ozawa, C^{*}-algebras and finite-dimensional approximations. Grad. Stud. Math. 88. Amer. Math. Soc., Providence, RI, 2008.
[2] M. Junge and B. Udrea, Generalized q-gaussian von Neumann algebras with coefficients, I. Relative strong solidity. To appear in Anal. PDE.
[3] M. Junge and B. Udrea, Generalized q-gaussian von Neumann algebras with coefficients, II. Absence of central sequences. To appear in Math. Rep. (Bucur.).
[4] I. Krolak, Wick product for commutation relations connected with Yang-Baxter operators and new constructions of factors. Comm. Math. Phys. 210 (2000), 3, 685-701.
[5] I. Krolak, Factoriality of von Neumann algebras connected with general commutation relations-finite dimensional case. In: M. Bożejko et al. (Ed.), Quantum Probability. Banach Center Publ. 73, Polish Acad. Sci. Inst. Math., Warsaw, 277-284, 2006.
[6] N. Ozawa, Solid von Neumann algebras. Acta Math. 192 (2004), 1, 111-117.
[7] N. Ozawa and S. Popa, Some prime factorization results for type $I I_{1}$ factors. Invent. Math. 156 (2004), 2, 223-234.
[8] S. Popa, On a class of type II_{1} factors with Betti numbers invariants. Ann. of Math. (2) $\mathbf{1 6 3}$ (2006), 809-899.
[9] S. Popa, Strong rigidity of II_{1} factors arising from malleable actions of w-rigid groups I. Invent. Math. 165 (2006), 2, 369-408.
[10] S. Popa, On Ozawa's property for free group factors. Int. Math. Res. Notes 2007 (2007), 11, 10 p.
[11] S. Popa, On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc. 21 (2008), 981-1000.
[12] S. Popa and S. Vaes, Unique Cartan decomposition for II_{1} factors arising from arbitrary actions of free groups. Acta Math. 212 (2014), 1, 141-198.
[13] E. Ricard, Factoriality of q-Gaussian von Neumann algebras. Comm. Math. Phys. 257 (2005), 3, 659-665.
[14] P. Sniady, Factoriality of Bożejko-Speicher von Neumann algebras. Comm. Math. Phys. 246 (2004), 3, 561-567.

Received 23 August 2017

> University of Illinois
> Department of Mathematics, Urbana, IL 61801, USA
> junge@math.uiuc.edu
> University of Iowa
> Department of Mathematics, Iowa City, IA 52242, USA
> and
> "Simion Stoilow" Institute of Mathematics
> of the Romanian Academy,
> P.O. Box 1-764, Bucharest, Romania bogdanteodor-udrea@uiowa.edu

