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In this note, we consider the Iwatsuka model with a positive increasing magnetic
�eld having �nite limits. The associated magnetic Laplacian is �bred through
partial Fourier transform, and, for large frequencies, the band functions tend to
the Landau levels, which are thresholds in the spectrum. The asymptotics of the
band functions is already known when the magnetic �eld converge polynomially
to its limits. We complete this analysis by giving the asymptotics for a regular
magnetic �eld which is constant at in�nity, showing that the band functions
converge now exponentially fast toward the thresholds. As an application, we
give an estimate on the current of quantum states localized in energy near a
threshold.
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1. THE IWATSUKA MODEL

In this article, we review and complete some results about the band
function of the Iwatsuka model with an increasing positive magnetic �eld ha-
ving �nite limits. Assume that the magnetic �eld b : R2 → (0,+∞) depends
only on one variable in the sense that b(x, y) = b(x). We assume moreover that
(1)
b is C0, increasing, and has �nite limits b± as x→ ±∞,with 0 < b− < b+.

The model is gauge invariant, and we choose the magnetic potential

A(x, y) := (0, a(x)); with a(x) :=

∫ x

0
b(t)dt.

The magnetic Laplacian is then de�ned by

H0 := (−i∇−A)2 = −∂2x + (−i∂y − a(x))2

acting in L2(R2).
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Historically, this operator was introduced in order to provide an example
of a magnetic Laplacian with purely absolutely continuous spectrum, see [12].
After, this has been proved under various conditions on b, see [6,12,13,20], but
the fact that this is true as long as b is non-constant is still open, since [3].

Over the years, this model has been widely studied, as a source of inte-
resting questions linked to transport phenomena in the translation invariant
direction. In this note, we describe and complete results on the asymptotics
of the band functions, which is an important step when describing spectral
properties at energies near the thresholds.

A key tool for studying operators having a translation invariance is �bra-
tion through partial Fourier transform. In our case, denote by Fy the partial
Fourier transform in the y variable. Then there holds

FyH0F?y =

∫ ⊕
h(k)dk

where h(k) is the unidimensional Sturm-Liouville operator de�ned by

(2) h(k) := −∂2x + (a(x)− k)2

acting on L2(R). It is positive, self-adjoint with compact resolvent. We denote
by {En(k), n ≥ 1} the increasing sequence of its eigenvalues. They are simple,
see [12, Lemma 2.3], therefore the functions En(·) are analytic with respect to
k on R. They are called the band functions (or dispersion curves) of H0.

With the hypotheses made on b (see (1)), the band functions k 7→ En(k)
are increasing and converge to Λnb

± as k → ±∞, where Λn := 2n− 1. In this
case, the spectrum of H0 is obviously purely absolutely continuous.

The values Λnb
± are thresholds in the spectrum ofH0. The nature of these

thresholds, and more re�ned properties of the operator (and its perturbations),
are deeply linked to the behavior of the band functions at these limits.

The trajectory of a classical particle submitted to this kind of magnetic
�elds is quite easy to picture. Generically, the particles exhibit a drift in the
invariance direction y. Because the magnetic �eld varies slowly when |x| is
large, if the particle is located initially in such a zone, the drift will be weak,
and the trajectory of the particle will be close to a circle. For a spinless quantum
particle of a given energy, the evolution is linked to the band functions crossing
this energy, the velocity in the y direction being related to the derivative of
the band functions. If the energy is far from thresholds, the particle is usually
called an edge state, because it will show some propagation, as it is the case
for models involved in Quantum Hall E�ect, where edges induce transport.
We refer to [11, 13, 17] for a study of this case. On the other hand, if the
energy is closed to a threshold, the particle will bear a bulk component, that
is a component whose velocity is small. Quantitative estimates on the velocity
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requires asymptotics of the band functions near thresholds. Information on
the eigenfunctions of the �ber operator allow to describe the zone where the
particle is localized. This is done by an analysis in phase space (see [10, 15],
and also [4] for a rough analysis on a similar model).

2. ASYMPTOTICS OF BAND FUNCTIONS

In [15], it is assumed that the magnetic �eld converges to its limit like a
negative power of x, the model case being

∃x0 ∈ R,∀x ≥ x0, b(x) = b+ − 〈x〉α, α > 0.

Our hypotheses bear on the behavior of the magnetic �eld at +∞ and the
asymptotics of the band function when k → +∞. The same hypotheses in the
direction x→ −∞ would provide similar results as k → −∞.

Under this condition, the behavior of the band functions is provided in [15,
Theorem 2.2 and Corollary 2.4]:

(3) En(k) = b+Λn −
Λnb

M
+

kM
+O

( 1

kM+2

)
.

Here we will consider another physically relevant class of magnetic �elds, those
which are equal to their limit for large x:

(4) ∃x∞ ∈ R,∀x ≥ x∞, b(x) = b+.

Up to picking the smallest real satisfying the above relation, we may
assume that b(x) < b+ for x < x∞. The case of a piecewise constant magnetic
�eld was treated in [9, 17], but in that case, the use of special functions allows
precise computations of the asymptotics that are not available in a general
context. Moreover, in this article we are interested in more regular magnetic
�elds.

We say that the contact at x∞ is of order p ∈ N ∪ {+∞} when b is
Cp((−∞, x∞),

lim
x→x∞
x<x∞

b(p)(x) := b(p)(x−∞) 6= 0

and b(j)(x∞) = 0 for all j = 1, . . . , p− 1.
The potential in (2) vanishes at a unique point a−1(k) =: xk, a

−1 being the
inverse function of a. The proof of the asymptotics relies on the construction of
quasi-modes in the spirit of the harmonic approximation [5]. Indeed, after the

change of variable x = b
−1/2
+ t+ xk, the operator h(k) is transformed in b+h̃(k),

with

(5) h̃(k) = −∂2t +W (t, k).
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In both cases, (3) and (4), W has a unique minimum at 0 which is non dege-
nerate, in the sense that ∂2tW (0, k) = 2.

Writing W (t, k) = t2 + dk(t), then, in case (3), dk is not zero near t = 0,
and dk(t) = α(k)O(t3), where α(k) → 0 as k → +∞. Therefore, perturba-
tion theory provides the asymptotics of the eigenvalues of h(k) as k → +∞.
But in case (4), W (t, k) = t2 in a neighborhood of 0 and it is not clear on
which quantity depends the asymptotics of the band function, and which is the
convergence rate. We de�ne a∞ := a(x∞), and

tk :=
√
b+(x∞ − xk) =

a∞ − k
b
1/2
+

.

Notice that for k large enough, tk < 0, and W (t, k) = t2 for t ∈ (tk,+∞).
The asymptotics of the band functions is now very di�erent from (3): as one
expects, in case (4) the band functions converge faster to their limits, more
precisely the quantity En(k) − b+Λn is now exponentially small as k → +∞,
and the �rst order term depends only on the contact point, as follows:

Theorem 2.1. Assume that the contact at x∞ is of order p ≥ 1. Then,

as k → +∞:

(6) En(k) = Λn + C(n, p, b+)b(p)(x−∞)k2n−p−3e−t
2
k + o(k2n−p−3e−t

2
k),

where C(n, p, b+) = (−1)p 2n−p−2

√
π(n−1)!b

n− 3
2

+

.

If the contact is of order ∞, then

(7) et
2
k(En(k)− Λn) = o(k−∞).

Proof. Assume (4) and note that

(8) xk = x∞ +
k − a∞
b+

,

moreover, b is constant on (x∞, xk). Recall that dk(t) = W (k, t)− t2, with

W (t, k) =
1

b+
(a(b

−1/2
+ t+ xk)− a(xk))

2 =
1

b+

∫ xk

xk+
t√
b+

b(s)ds

2

.

Writing

t2 =
1

b+

∫ xk

xk+
t√
b+

b+ds

2

,
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we get for all t ∈ R that:

(9) dk(t) =
1

b+

∫ xk

xk+
t√
b+

(b(s) + b+)ds

∫ xk

xk+
t√
b+

(b(s)− b+)ds.

Note that |dk(t)| ≤ Ct2 and that dk → 0 point-wise as k → +∞. The-
refore, we will approximate h̃(k) by the harmonic oscillator h0 := −∂2t + t2 as
k → +∞.

The same computations as in [15, Section 2.1], based on construction of
quasi-modes for h̃(k) from Hermite's functions, and estimations of remainders
in the spirit of the theory of perturbations, apply. We describe here the �rst
step of the procedure, which is su�cient for our purposes. Denote by Ψn(t) =

Pn(t)e−
t2

2 the n-th normalized Hermite's function, starting from n = 1, where
Pn, the associated n-th Hermite's polynomial, is of degree n − 1 with leading
coe�cient γn := (2n−1/((n− 1)!π1/2))1/2. It satis�es

(10) h0Ψn = ΛnΨn.

We look for a quasi-mode for h̃(k) under the form Ψn + Γn, where Γn = o(1)
as k → +∞, associated with an approximated eigenvalue Λn + µn. This will
be satis�ed if we can write formally

h̃(k)(Ψn + Γn + . . .) = (Λn + µn + . . .)(Ψn + Γn + . . .),

Since h̃(k) = h0 + dk, using (10), this involves

(11) (h0 − Λn)Γn = (µn − dk)Ψn.

We can now construct our quasi-modes, based on the above anzatz. We make
the choice

(12) µn(k) = 〈dkΨn,Ψn〉 =

∫
R

Ψn(t)2dk(t)dt =

∫ tk

−∞
P 2
n(t)e−t

2
dk(t)dt,

so that, by the Fredholm alternative, we can �nd a unique solution Γn for
equation (11). Now, in order to evaluate the quasi-mode, we compute

Dn,k := h̃(k)(Ψn + Γn)− (Λn + µn)(Ψn + Γn) = (dk − µn)Γn.

Then we easily prove that ‖Dn,k‖ = o(µn) and that ‖Ψn + Γn‖ = 1 + o(1), as

k → +∞. Denote by Ẽn(k) the n-th eigenvalue of h̃(k), for k large enough, we

have a spectral gap near Ẽn(k), in the sense that

∃kn ∈ R,∃c > 0∀k ≥ kn, dist(Ẽn(k), σ(h̃(k)) \ {Ẽn(k)}) > c.

Therefore, the spectral Theorem shows that, as k → +∞,

(13) Ẽn(k) = Λn + µn(k) + o(µn(k)),
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Using the form of Ψn, we get

(14) µn(k) ∼
k→+∞

γ2n

∫ tk

−∞
t2n−2e−t

2
dk(t)dt.

Relation (9) and the de�nition of tk provides d
(j)
k (tk) = 0 for all j =

1, . . . , p, moreover |d(p+2)
k (t)| ≤ Cp|t| with Cp > 0. Therefore, using (p + 1)

integrations by parts, we get:∫ tk

−∞
t2n−2e−t

2
dk(t)dt ∼

k→+∞
−t2n−2k

e−t
2
k

(2tk)p+2
d(p+1)(tk).

Now, from (8):

(15) d
(p+1)
k (tk) = −2(k − a∞)b

− p+3
2

+ b(p)(x−∞).

Therefore, by the de�nition of tk:

µn(k) ∼
k→+∞

2n−p−2

√
π(n− 1)!b

n− 1
2

+

b(p)(x−∞)k2n−p−3e−t
2
k .

Using (13) and En(k) = b+Ẽn(k), we get (6).
When the contact is of in�nite order, we have d(j)(tk) = 0 for all j ∈ N.

Then, (7) follows easily from (12). �

Remark 2.2. In case of an in�nite contact point, the proof shows that the
asymptotics of the band function is still given by En(k) = b+Λn + b+µn(k) +
o(µn(k)), where µn is given in (12). For k large enough, µn(k) < 0, but there
is no natural expansion for this quantity without additional hypotheses.

3. CONSEQUENCES NEAR THE THRESHOLDS

3.1. Bulk states

The current operator is de�ned as the commutator Jy := −i[H0, y], on
Dom(H0). The evolution through the unitary group de�ned by H0 of this
self-adjoint operator is the velocity in the y direction, indeed, de�ning y(t) :=
e−itH0yeitH0 , the evolution of the position along the y direction, there holds

dy(t)

dt
= e−iH0Jye

itH0 .

In [8], the authors use this commutator to establish a Mourre estimate for
general analytically �bered Hamiltonian for any energies except for a discrete
set, called thresholds. Their technique relies on the strati�cation of the pro-
jection from the Bloch Variety into the spectrum, according to the algebraic
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multiplicity of values in the spectrum, the thresholds being the set of dimension
0 in the spectrum associated with this strati�cation, see [8, De�nition 3.2]. In
some sense, they provide a general estimate from below from the current: it is
bounded from below at energies away from thresholds.

Iwatsuka models, among others magnetic models, have the property that
their �bers operators are 1d, and the algebraic machinery described above can
be avoided by controlling the commutator in a more direct way. The key tool
to do this is the Feymann-Hellman formula. Given a function ϕ ∈ Dom(H0)
(see [15, Section 3] for a precise de�nition), there holds:

〈Jyπnϕ, πnϕ〉 =

∫
k∈R
|πnϕ(k)|2Λ′n(k)dk,

where πn is the projection along the n-th harmonic, see [13, Section 5] and [11].
Therefore, estimates on the derivative on the band function turn into

control on the current operator, more precisely, if we assume in addition that
ϕ is localized in energy in an interval I, then

(16) inf
E−1

n (I)
E′n ≤

〈Jyπnϕ, πnϕ〉
‖πnϕ‖2

≤ sup
E−1

n (I)

E′n.

If thresholds are de�ned as set of energies for which the derivative of the
band function can be small, then it becomes obvious that the current is bounded
from below, away from thresholds. In case where the band functions are proper,
such energies correspond to critical point of band functions. Note that being
proper is also an hypothesis from [8]. But in our case, the band functions tend
to �nite limit, giving rise to a di�erent kind of thresholds T := {b±Λn, n ≥ 1}.
For a particle whose energy interval contains a threshold, no bound from below
is available for the current. A more quantitative approach is given in [10]: we
consider an energy interval I at a small distance from the set of threshold T .
Then (16) shows that a precise asymptotics of En and its derivative provides
a good control on the current of states localized in energy in I. Following this
strategy, it is proved in [15] that in case (3), when I = (Λn − δ2,Λn − δ1):

δ
1+ 1

M
1 .

〈Jyπnϕ, πnϕ〉
‖πnϕ‖2

. δ
1+ 1

M
2 , δi → 0.

In the case where the magnetic �eld satis�es (4), then the strategy is
similar. First, note that for a �xed δ > 0 small enough, the equation Λn − δ =
En(k) has a unique solution k(δ), which satis�es, k(δ) =

√
|b+ log δ|+ o(1) as

δ → 0.
Next, one needs to show that the asymptotics of E′n(k) can be derived

from (6). Since the magnetic �eld does not satisfy any analyticity hypothesis,
no method based on special functions can be used (as it was the case in [7,9]).
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A direct method is to use the following Feynman-Hellmann integral formula for
E′n(k):

E′n(k) = −2

∫
R

(a(x)− k)un(x, k)2dx,

where un(·, k) is a normalized eigenfunction associated with En(k). Then, it is
su�cient to prove that the quasi-mode (Ψn + Γn) constructed in the previous
section is an accurate approximation of the eigenfunction, and to use this quasi-
mode in the evaluation of the integral. This procedure, based on a re�nement of
the spectral Theorem, is done in details in [15, Section 2.3]. As a consequence,
we get

E′n(k(δ)) ∼
δ→0

δ
√
| log δ|

and therefore the estimates on the current follow:

δ1
√
| log δ1| .

〈Jyπnϕ, πnϕ〉
‖πnϕ‖2

. δ2
√
| log δ2|,

showing the di�erence with case (3). Estimations on the localizations on states
localized in this interval are possible, as done in [15, Section 3.2].

3.2. Perturbations

Here we describe other possible applications of the asymptotics of band
functions, without entering into the details. Giving a measurable sign-de�nite
potential V : R2 → R going to 0 at in�nity, a physically relevant question
concerns the e�ect of this perturbation on the system. Some of the classical
trajectories may become bounded, corresponding to trapped modes. These ones
correspond in the quantum system to eigenvalues of the operator H0 + V . If
there are gaps in the essential spectrum of H0, then under these assumptions
on V , these gaps remain the same for the essential spectrum of H0 + V . But
discrete eigenvalues can appear inside these gaps. Finiteness (or asymptotics)
of these eigenvalues is an important topic that has received a lot of attention.
For example, the general case of thresholds corresponding to critical points
has been described in [16], but in our case, these techniques do not apply
since the thresholds are limit of band functions. These cases are treated under
various hypotheses on the potential in [14, 18, 19]. A delicate extension of
these questions concerns the behavior of the spectral shift function for the pair
(H0 + V,H0). This function can be used to describe the counting function of
eigenvalues outside the essential spectrum, and its singularity at thresholds is
a natural question. This problematic has been treated in [15, Section 4] for the
Iwatsuka model, under condition (3).
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In case (4), the exponential convergence of the band functions toward their

limits is closer to half-planes model with constant magnetic �eld. Therefore the

precise behavior of the eigenvalues counting function, and of the SSF, can be

obtained by adapting the methods from [1,2], using the asymptotics (6) for En
(and its derivatives).
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