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Let H be the Heisenberg group and H = H ∪ΣH be its radial compacti�cation.
Our main result is a decomposition of the essential spectrum of the Schr�odinger-
type operator T = −∆ + V , where V is a continuous real function on H. Our
result extends classical results of HVZ-type from Euclidean spaces to the Hei-
senberg group. While many features are preserved in the Heisenberg group case,
there are also some notable di�erences. First, the action of H on itself extends
to an action of H on H and we compute the quasi-orbits (the closure of the or-
bits) of the action, whose structure is more complicated in the Heisenberg case.
Following [16], we show that the essential spectrum of any operator T contained
in (or a�liated to) C(H) oH is the union of the spectra of a family (Tα)α∈F of
simpler operators indexed by a family of quasi-orbits that cover H rH, that is,
σess(T ) =

⋃
α∈F

σ(Tα). We obtain similar results also for an other H-equivariant

compacti�cation of H.
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INTRODUCTION

We study the essential spectrum and Fredholm conditions for Schr�odinger-
type operators with homogeneous potentials at the in�nity acting on L2(H),
where H is the Heisenberg group. The approach of this paper is based on the
articles [9,10,13,16]. The techniques presented here also work for more general
locally compact groups.

We consider H a compacti�cation of H such that the algebra of continu-
ous function on the compacti�cation C(H) is separable. The compacti�cation
induces a natural family of translations at the �in�nity� Rα. We also show that
the action of H on itself extends to the compacti�cation and we compute the
quasi-orbits. Recall that a quasi-orbit is the closure of an orbit. We show that
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the family Rα is, in fact, an exhaustive family of morphisms for a suitable
operator algebra contained in the Calkin algebra. In particular, for the operator
T = −∆ + V with potential V , a continuous function on the compacti�cation
H, we obtain:

σess(T ) =
⋃
α∈F

σ(Tα).

Here F is a covering by quasi-orbits of the part at the in�nity of the
compacti�cation and Tα = −∆ + Vα, with Vα a simpler potential associated
to a quasi-orbit corresponding of α. The operator algebra that we consider
contains the resolvent of the Schr�odinger-type operator and is generated by
some integral operators. For more details on the concept of exhaustive family of
morphisms, see [17] and [21]. The idea of considering the algebra of the resolvent
operators is not new and has been well developed by Georgescu and others
in [1, 9]. The method of spectral decomposition used here involved crossed
product of C∗-algebras and has been applied to magnetic �elds [14] and to the
N -body problem [10, 12]. However, every crossed product of a commutative
C∗-algebra can be viewed as a C∗-algebra of a groupoid [20]. Examples of
C∗-algebras associated to groupoids, and more generally algebras of pseudo-
di�erential operators on groupoids, can be found in [4�6] and the references
therein. The advantage of the crossed product C∗-algebras is that most of them
have the quasi-regularity property. The quasi-regularity allows us to express
the spectrum of the crossed product C∗-algebra in term of quasi-orbits of the
action of the group on the spectrum of the initial C∗-algebra. More details on
quasi-regularity will be given in Section 3 and can be found in [22]. For results
on Fredholm conditions and decompositions of the essential spectrum, see [3],
published also in this Special Issue.

Contents of the paper

We brie�y describe the contents of the paper. Section 1 is dedicated to the
study of the operator algebra that contains the resolvents of T . We also recall
some earlier results from [9,12,16,17]. We �nish the �rst section with elementary
facts on the Heisenberg group. The second section focuses on the de�nition
and a convenient description of the Laplacian on a Lie group. In Section 3,
we discuss the quasi-regularity property. Thanks to Williams [22], we have
convenient conditions that imply the quasi-regularity. In Section 4, we compute
explicitly the quasi-orbits for two di�erents (but similar) compacti�cation of
H. Section 5 is devoted to the study of translations at the in�nity and to the
proof of the main theorem. The last section describes other kinds of algebras
of potentials associated to repeated compacti�cations. We also discuss the
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relation between our results and a result of Power in [19] characterizing the
spectrum of mixed algebras.

1. BACKGROUNDS

By H, we will always denote a Hilbert space and by B(H) the bounded
operator acting on H.

1.1. C∗-algebras

Recall that a C∗-algebra A is a complex algebra with a norm ‖.‖, an
involution �∗� such that (λa+ µb)∗ = λa∗ + µb∗, (ab)∗ = b∗a∗, ‖ab‖ ≤ ‖a‖‖b‖,
and ‖aa∗‖ = ‖a‖2 for λ, µ ∈ C and a, b ∈ A. In addiction, A is complete
for the topology induces by the norm ‖.‖ . Every commutative C∗-algebra A
is isomorphic to C0(Ω), the continuous function that vanishes at in�nity on a
locally compact space Ω. When 1 ∈ A, the space Ω is compact. See [7] for
more basic material on C∗-algebra.

1.2. A�liated operators

Let P be a self-adjoint, not necessarily bounded, operator acting on H.
We consider a self-adjoint, norm closed subalgebra A ⊂ B(H). Then A is a C∗-
algebra. We say that P is a�liated to A, writing P ∈′ A, if for all ϕ ∈ C0(R)
the operator ϕ(P ) ∈ A. It is known (see [17] for example), that in order to
check that P ∈′ A, it is enough to show that (P − z)−1 ∈ A for some z in the
resolvent set of P . Of course every self-adjoint operator is a�liated to B(H),
however, we are interested in smaller C∗-algebras. If P ∈′ A and φ : A → B
is a morphism of C∗-algebra, then φ(P ) is de�ned. More details on the notion
of a�liated operator can be found in [1]. In [8], we can �nd a generalization
of a�liated operators for densely de�ned and non self-adjoints operators. A
related (but di�erent) notion of �a�liated operators� has been studied in [2]
and [23]. See [17] for a comparison of these notions.

1.3. Spectrum of a C∗-algebra

A character of a commutative C∗-algebra A is a nonzero morphism χ :
A → C. The set of all characters endowed with the weak topology is the
spectrum of A, denoted Â. We recall that Â is compact, if and only if, A has a
unit. In this case, there is an isomorphism A ' C(Â).
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For a non commutative C∗-algebra, the spectrum Â is formed of classes of
equivalence of irreducible representations of A. More precisely, a representation
of A is a ∗-morphism π : A→ B(H). A representation π is said to be irreducible
if the only invariant closed subspaces of H under the action of π(A) are {0}
and H. In general, the space Â is too big, so we prefer studying the primitive

spectrum of A denoted by Prim(A), with Prim(A) := {ker(π), π ∈ Â}.

1.4. C∗-dynamical systems

We recall now some basic facts concerning C∗-dynamical systems and
their associated crossed products, see [18], [22] for more details.

A C∗-dynamical system consists of a C∗-algebra A and a locally compact
group G with a strongly continuous action θ : G→ Aut(A). Let LUC(G) be the
C∗-algebra of left uniformly continuous functions on G. We focus our study on
the case when A is an unital C∗-subalgebra of LUC(G) and θy(f)(x) = f(y−1x)
for x, y ∈ G. Note that, with this choice of A and θ, the C∗-algebra A is
commutative and we have to assume that A is invariant by translation. We
consider L1(G,A), the Bochner space of integrable functions. The norm on
L1(G,A) is de�ned using the norm of A. We endow L1(G,A) with a structure
of ∗-algebra with the product and the involution de�ned by:

φ ∗ ψ(x) =

∫
G
φ(y)θy[ψ(y−1x)]dµ(y), φ∗(x) = m(x)−1θx[φ(x−1)∗],

where φ, ψ ∈ L2(G,A), x ∈ G and µ is the Haar measure on G, and m is the
modular function of G. The crossed product, AoG is de�ned as the completion
of L1(G,A) for the norm ||φ|| := supΠ||Π(φ)||, where the supremum is taken
over all non-denegerate ∗-representation Π : L1(G,A)→ B(H).

To characterize the representations of AoG, we need the notion of cova-
riant pair.

De�nition 1.1. For a C∗-dynamical system (A, θ,G), a triplet (π, U,H) is
a covariant pair of (A, θ,G) if:

• H is a Hilbert space,

• π : A→ B(H) is a ∗−representation of A,

• U : G→ B(H) is a strongly continuous unitary morphisms,

• for all a ∈ A, g ∈ G, we have U(g)π(a)U(g−1) = π(θg(a)).

If there is no ambiguity, we will drop the Hilbert space H and simply write
(π, U) for a covariant pair.

De�nition 1.2. Let (A, θ,G) be a C∗-dynamical system and (π, U) be a
covariant pair. To (A, θ,G), we associate a representation πoU : AoG→ B(H)
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called the integrated form of (π, U). This integrated form is de�ned by:

π o U(f) =

∫
G
π(f(x))Uxdµ(x),

where, f ∈ L2(G,A).

The following proposition corresponds to Proposition 2.40 in [22].

Proposition 1.3 (Williams). Let (A, θ,G) be a dynamical system with A
not necessarily commutative. Every non degenerate representation Π of AoG
comes from a unique integrated form of a covariant pair of the dynamical system

(A, θ,G). That is Π = πoU , where the pair (π, U) is a covariant representation
of the (A, θ,G) and the pair (π, U) is unique (up to equivalence).

Remark 1.4. There exists another de�nition of the crossed product, cal-
led the reduced crossed product, which is the completion by another norm of
L1(G,A) induces by a particular covariant pair. However, for amenable groups
likeH the Heisenberg group, the two de�nitions of the crossed product coincide.

If we assume as before that A is a C∗-subalgebra of LUC(G), any function
φ : G → A is identi�ed with a function G2 → C. Let x, y ∈ G, we will use
the notation φ(x; y) = [φ(x)](y) to keep in mind the dependence on the two
variables. The following proposition gives a convenient representation of the
crossed product AoG.

Proposition 1.5. Let φ ∈ L1(G,A), we de�ne Sch(φ), an operator on

L2(G), by

|Sch(φ)f ](x) =

∫
G
φ(x; y)f(y−1x)dµ(y).

where f ∈ L2(G) and x ∈ G. The application Sch can be extended from

L1(G,A) to AoG. The extension of Sch is a faithful representation of AoG
on B(L2(G)).

The preceding proposition corresponds to the Proposition 7.9 in [15].

Remark 1.6. The category of commutative C∗-algebras and the category
of locally compact spaces are equivalent, via the isomorphism A ' C0(Â). A
C∗-dynamical system (A, θ,G), where A is a commutative C∗-algebra, can be
de�ned by a triplet (Ω, θ, G), where θ is a continuous action of the group G
on the locally compact space Ω = Â. When A is a commutative and unitary
C∗-algebra, the corresponding space Ω is compact and we will call the triplet
(Ω, θ, G) a compact dynamical system. We will often navigate between the C∗-
algebra formalism and the locally compact space formalism for C∗-dynamical
system.
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For a compact dynamical system (Ω, θ, G), we will denote by Oω, the orbit
of ω. The closure of Oω is called the quasi-orbit of ω and we will denote it by
Qω.

Remark 1.7. There exists a natural identi�cation between L1(G,A) and
the projective tensor product A⊗L1(G). The assumption 1 ∈ A allows us to
consider Sch(1⊗ ψ) for ψ ∈ L1(G). In this case, Sch(1⊗ ψ) is an operator of
convolution acting on L2(G).

The discussion in Section 4 of [9] give details on the crossed product in
the particular case G = Rn as additive group.

1.5. The case G = Rn

Assume G = Rn, regarded as additive group. We denote by B(L2(G)) the
algebra of bounded linear operator on L2(G) and by K(G) the subalgebra of
compact operators of B(L2(G)).

Let Cb(G) be the algebra of bounded continuous functions on G with
complex values, Cc(G) the subalgebra of functions with compact support and
C0(G) the subalgebra of functions that go to zero at in�nity.

Any measurable function φ : G→ C induces an operator of multiplication
by φ acting on L2(G). To avoid the ambiguity, the operator of multiplication
will be denoted by φ(q). We also introduce the operator φ(p) de�ned using the
Fourier transform: φ(p) := F−1φ(q)F . When φ ∈ C0(G), the operator φ(p)
is an element of B(L2(G)). There is a natural action by translations of G on
Cb(G), we denote by τx this translation for each x ∈ G. With this notation,
we can describe the crossed product A = A o G, where A is a C∗-algebra of
functions on G such that 1 ∈ A and τx(A) ⊂ A for every x ∈ X. Moreover,
we suppose that C0(G) ⊂ A ⊂ Cb(G). With this assumption, A o G can be
represented into B(L2(G)) as the norm closure and stable by involution of the
linear subspace generated by φ(q)ψ(p) for φ ∈ A,ψ ∈ C0(G). See Remark 1.7
to relate it with the representation φ(q)ψ(p) and Proposition 1.5.

We recall that Â is compact if and only if A has a unit and there is an
isomorphism between A and C(Â). Each element x ∈ G can be identi�ed with
a character χx of A de�ned by χx(φ) = φ(x). We can show that Â is actually a
compacti�cation of G and let A† be the part at in�nity of this compacti�cation
space, that is

A† = Â \G = {κ ∈ Â|κ(φ) = 0, ∀φ ∈ C0(G)}.

Let κ ∈ A† and let φ ∈ A, then there exists a net (xi)i∈I of elements of G such
that lim

i∈I
xi = κ. Using this net, we can de�ne τκ, the translation at the in�nity
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by κ, that is:

τκ[φ](x) = lim
i∈I

τxi [φ](x) = lim
i∈I

φ(x+ xi) = φ(x+ κ).

We can extend the translations τx and τκ from A to AoG such these extensions
leave invariant the operator ψ(p) and acts on φ(q) as on φ viewed as a element
of A. We keep the same notation for the extension. For P ∈ A o G, we have
τx(P ) = eixpPe−ixp, where eixp is the translation operator by x and

τκ(P ) = lim
j∈I

eixjpPe−ixjp := Pκ.

The convergence holds for the topology induces by the family of semi-norms
||P ||θ = ||Pθ(q)||, with θ ∈ C0(G) on B(L2(G)). We have the following theorem
in [8].

Theorem 1.8 (Georgescu). For any operator P ∈ AoG, we have

σess(P ) =
⋃

κ∈A†
σ(Pκ).

1.6. Generalities on the Heisenberg group

De�nition 1.9. We recall that the Heisenberg group H is the sub-group
of GL(3,R) of upper triangular matrices and that we have a natural bijection
between H and R3:

(1) H 3

1 a c
0 1 b
0 0 1

↔ (a, b, c) ∈ R3

Let h be the Lie algebra of H, it's well known that h is the space of strictly
upper triangular matrix. Like forH and R3, there is a natural bijection between
h and R3:

(2) h 3

0 a c
0 0 b
0 0 0

↔ (a, b, c)0 ∈ R3

To distinguish the identi�cation betweenH and R3 and between h and R3,
we will denote by (a, b, c)0 with the label ”0” when we consider an element of
the Lie algebra. The Heisenberg group is nilpotent, hence the exponential map
is a di�eomorphism from the Lie algebra h to H. Recall that he exponential
map is given by exp((a, b, c)0) = (a, b, c + ab

2 ) with inverse exp−1((a, b, c)) =

(a, b, c − ab
2 )0. For each X ∈ H, let LX (resp RX): H → H, the left (resp.

right) multiplication by X. In the next sections, we will consider potentials
equivariant for various compacti�cation.
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2. LAPLACIAN OF A LIE GROUP

This section is dedicated to a convenient presentation of the Laplacian for
a Lie group and to make connection with the notion of a�liated operators to
a C∗-algebra. Let G be a Lie group. We denote by Lie(G) the Lie algebra of
G. It consists of �rst-order di�erential operators without constant term acting
on C∞c (G) and commuting with the right translation. We take X1, . . . , Xn an
orthonormal basis of Lie(G) with respect to a right invariant metric and we
consider

L =
n∑
i=1

X2
i .

The operator L is an unbounded operator acting on L2(G) with core C∞c (G),
which is dense in L2(G). The Laplacian is de�ned as

∆ = L∗.

The following proposition is from [11].

Proposition 2.1. For λ > 0, the resolvent ρλ = (λ−∆)−1 is a bounded

operator acting on L2(G). Moreover there exists νλ, an absolutely continuous

measure with respect to the Haar measure of G, such that, for every f ∈ L2(G),
we have:

ρλf = νλ ∗ f.
The Radon-Nikodym derivative of νλ, denoted by kλ, is an element of L1(G)
and is given by

kλ =

∫ ∞
0

e−λtptdt,

where, for every t > 0, pt is a non-negative function that ful�lls the following

conditions:
pt ∈ L1(G) ∩ L2(G), ‖pt‖1 = 1.

Corollary 2.2. We have the following consequence of Remark 1.7 and

2.1, the crossed product contains the operator Sch(1⊗ψ) = ψ(p) for ψ ∈ L1(G).
In particular, ρλ is an operator of convolution by a function in L1(G). That

means that ∆ is a�liated to C(G+) oG, where G+ is the one-point compacti-

�cation of G.

3. EXHAUSTIVE FAMILIES AND QUASI-REGULAR

DYNAMICAL SYSTEM

3.1. Exhaustive family

We shall need the notion of an exhaustive family of morphisms, which is
due to Nistor and Prudhon in [17].
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De�nition 3.1. Let A be a C∗-algebra and F be a family of *-morphisms
φ : A→ Bφ. We say the family F is exhaustive if

∀J ∈ Prim(A),∃φ ∈ F , ker(φ) ⊂ J.

The main reason why we are interested in exhaustive families of mor-
phisms is because of the following result from [17].

Proposition 3.2. Let A be C∗-algebra and F be an exhaustive family of

morphisms. Then for every operator P a�liated to A, we have:

σ(P ) =
⋃
φ∈F

σ(φ(P )).

The property described in Proposition 3.2 is the de�nition of a spectral

family of morphisms. However, we introduced the notion of exhaustive family
of morphisms because it is an easier condition to show than the condition that
a family of morphisms is a spectral family.

3.2. Quasi-regular dynamical systems

Let (A, θ,G) be a C∗-dynamical system, where A = C(Ω) is a commu-
tative and a unital C∗-algebra. The quasi-regularity is a property of the C∗-
dynamical system that links the quasi-orbits of the action G on Ω and the
primitive spectrum of A o G. Topological conditions on the system leads to
quasi-regularity and then to a convenient algebraic decomposition of the pri-
mitive spectrum of the crossed product.

Recall that for a compact dynamical system (Ω, θ, G), we denote by Oω,
the orbit of ω ∈ Ω. The quasi-orbit of ω, which is the closure of Oω, will be
denoted by Qω.

De�nition 3.3. Let (Ω, θ, G) be a compact dynamical system, this dyn-
amical system is said to be quasi-regular if each irreducible representation of
C(Ω) o G lives on a quasi-orbit. More precisely, let Π be an irreducible re-
presentation of C(Ω) o G and (π, U) the covariant pair that realizes Π (see
Proposition 1.3). The representation Π lives on a quasi-orbit if there exists
ω ∈ Ω such that Res(ker(Π)) := ker(π) = CΩω(Ω) = {f ∈ C(Ω), f|Qω = 0}.

The following proposition gives a topological condition that implies the
quasi-regularity.

Proposition 3.4 (Gootman-Rosenberg-Sauvageot). Let (A, θ,G) be a

C∗-dynamical system. We suppose that A is separable and G is second counta-

ble. In this case, the C∗-dynamical system is quasi-regular.
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Proposition 3.4 is a consequence of Theorem 8.21 in [22]. It states that
with the same assumptions, the C∗-dynamical system is EH-regular, which
is a stronger condition than quasi-regularity. However, we only need quasi-
regularity is this paper.

De�nition 3.5. A set {ωi, |i ∈ I} of points of Ω is a called a su�cient

family if the associated quasi-orbit {Qωi |i ∈ I} form a covering of the space Ω,
in other words,

⋃
i∈I

Qωi = Ω.

An important propriety is given by the following proposition, which is
Proposition 6.3 in [16].

Proposition 3.6. Let (Ω, θ, G) be a compact quasi-regular dynamical sy-

stem, and {ωi, i ∈ I} a su�cient family of points of Ω. We consider for every

i ∈ I, the restriction morphism:

pi : C(Ω)→ C(Qωi), pi(f) = f |Qωi
and then extend it to the crossed product

Pi := poi : C(Ω) oG→ C(Qωi) oG.

The family of morphims P := {Pi, i ∈ I} is then an exhaustive family of mor-

phisms of the C∗-algebra C(Ω) oG.

4. COMPACTIFICATION OF H

In this subsection, we will consider two compacti�cations of the Heisen-
berg group and the induced action of H on each of these compacti�cations. We
will denote by ‖.‖ the usual euclidean norm.

4.1. The spherical compacti�cation

We consider the spherical compacti�cation of H induced by the canonical
identi�cation (1). We will denote by H this compacti�cation, hence, we have
H = H ∪ ΣH with ΣH ' (R3)∗/(R∗+) ' S2. We shall need an explicit identi-
�cation between (R3)∗/(R∗+) and S2. Let α ∈ (R3)∗/(R∗+), then by de�nition,
there exists V ∈ H \{0} such that the equivalence class α is the half-line R∗+V .
We choose the point v = (a, b, c) ∈ R∗+V such that ‖v‖ = 1, then the point
v ∈ S2 characterizes α. Conversely to each point of the sphere, z ∈ S2, we can
associate the half-line R∗+z to obtain an element of (R3)∗/(R∗+). A sequence
Un = (an, bn, cn) ∈ H converges to the point (a, b, c) ∈ ΣH if:

(3) lim
n→+∞

‖Un‖ = +∞, lim
n→+∞

Un
‖Un‖

= (a, b, c).
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4.1.1. TRANSLATION AT INFINITY

Let lX be the left translation by the vector X ∈ H. The left translation
lX can be extended from H → H to H → H that is, we want to de�ne
lX(α) for α ∈ ΣH . It is convenient to have an explicit formula of lX(α), with
X = (x, y, z) ∈ H and α = (a, b, c) ∈ ΣH . Let Un be as in equation (3), we
have

lX(Un) = (x+ an, y + bn, z + cn + xbn)
Then

‖lX(Un)‖2 = x2 + y2 + z2 + a2
n + b2n + c2

n + x2b2n

+2(xan + ybn + zcn + xbncn + xzbn)

= ‖Un‖2
(
a2
n + b2n + (cn + xbn)2

‖Un‖2
+ εn

)

with εn =
‖X‖2 + 2〈X,Un〉+ 2xzbn

‖Un‖2
→ 0. Moreover, a2 + b2 + c2 = 1, hence

for every x ∈ R, the quantity C := a2 +b2 +(c+xb)2 is always positive. Indeed,
if b 6= 0 then C 6= 0, and if b = 0 then C = a2 + c2 = 1. This leads to:

‖lX(Un)‖2 ∼ ||Un||2
(
a2 + b2 + (c+ xb)2

)
= +∞.

We obtain:

lX(Un)

‖lX(Un)‖
→ 1√

a2 + b2 + (c+ xb)2
(a, b, c+ xb).

The two points (a, b, c + xb) and
1√

a2 + b2 + (c+ xb)2
(a, b, c + xb) have the

same equivalence class in (R3)∗/(R∗+), hence we can drop the constant and
only consider (a, b, c+ bx) for the limit of lX(Un).

4.1.2. CHARACTERIZATION OF THE QUASI-ORBITS

We can sum up the preceding subsection with this equality:

(4) lX((a, b, c)) = λ(a, b, c+ bx)

where X = (x, y, z) ∈ H,α = (a, b, c) ∈ ΣH and λ ∈ R∗+. Using this relation,
we can characterize the set of �xed points: Ofix := {(a, 0, c), a2 + c2 = 1}. For
α ∈ ΣH \Ofix, that is α = (a, b, c) with b 6= 0. The orbit of α is:

Oα = {R∗+(a, b, x), x ∈ R}.

The set Zα = {(a, b, x), x ∈ R} is a line in R3 not containing the origin.
The orbit Oα is the set of the half-lines starting at 0 that intersect Zα. The
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pre-image in the projective space of Oα is a half-space. Then the intersection
of this half-space and S2 is the open great half-circle of S2 with end points
(0, 0, 1), (0, 0,−1) and passing through the point 1√

a2+b2
(a, b, 0). The quasi-

orbit is then the closed great half-circle. The di�erence between the orbit and
the quasi-orbit is:

Qα = Oα t {(0, 0, 1), (0, 0,−1)}.
Let F be a family of points of ΣH such that

⋃
α∈F

Qα = ΣH . We also

assume that F is minimal in the sense that each points of F are necessary
to make the cover of ΣH . With these choices, F is a su�cient family of the
dynamical system (ΣH , l,H), that is ΣH =

⋃
α∈F

Qα. An example of a minimal

su�cient family is

F = {(a, b, 0), a2 + b2 = 1} ∪ {(a, 0, c), a2 + c2 = 1, a 6= 0}.

4.2. Spherical compacti�cation via the exponential map

We consider another compacti�cation of H. Let h be the spherical com-
pacti�cation of h via the identi�cation (2). We de�ne H̃ as the image of the
exponential map of h, formally H̃ = exp(h). Each point s ∈ H̃ \H is the limit
of a sequence exp(Un), where Un = (an, bn, cn)0 ∈ h and

lim
n→+∞

||Un|| = +∞, lim
n→+∞

Un
||Un||

= (a, b, c)0

with ||(a, b, c)0|| = 1.

4.2.1. TRANSLATION AT INFINITY AND THE EXPONENTIAL MAP

As before, we want to extend the operator lX to H̃. That is, we want to
�nd the point (a′, b′, c′) ∈ H̃ \H such that

lim
n→+∞

Vn
||Vn||

= (a′, b′, c′)0,

where Vn ∈ h and checks exp(Vn) = lX(exp(Un)). We have:

X. exp(Un) = (an + x, bn + y, cn + z + xbn +
anbn

2
).

If we take Vn = (an + x, bn + y, cn + z + 1
2(xbn − yan − xy))0, we obtain:

‖Vn‖2 = ‖Un‖2

a2
n + b2n + (cn +

xbn
2
− yan

2
)2

‖Un‖2
+ εn

 ,
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with

εn=
1

||Un||2

(
‖X‖2 + 2〈X,Un〉+

x2y2

4
− xycn + xzbn − xyz −

xy

2
(xbn − yan)

)
.

Note that lim
n→+∞

εn = 0. Moreover, a2 +b2 +c2 = 1, hence for every X ∈ H, the

quantity C ′ := a2 + b2 + (c+ xb
2 −

ya
2 )2 is always positive. To see this, suppose

that a = b = 0 then C ′ = c2 = 1. Otherwise, 0 < a2 + b2 ≤ C ′. This leads to:

||Vn||2 ∼ ||Un||2
(
a2 + b2 + (c+

xb

2
− ay

2
)2

)
→ +∞.

4.2.2. CHARACTERIZATION OF THE ORBIT OF EXPONENTIAL-RADIAL
COMPACTIFICATION

We can sum up the preceding subsection with this equality:

(5) lX(exp((a, b, c)0)) = exp(λ(a, b, c+
1

2
(xb− ay))0)

whereX = (x, y, z) ∈ H,α = (a, b, c)0 ∈ H̃\H and λ ∈ R∗+. Using this relation,
we note that (0, 0, 1) and (0, 0,−1) are the only �xed points. If α = (a, b, c) is
not a �xed point then

Oexp(α) = {(R∗+(a, b, x), x ∈ R}.

An example of a minimal su�cient family for exp(h) is

F = {(a, b, 0), a2 + b2 = 1}.

4.2.3. COMPARISON OF THE (QUASI)-ORBITS

We stress the di�erences between the two structure of orbits and quasi-
orbits of the two compacti�cations H and H̃ = exp(h). In the two cases, we
can identify the part at in�nity with S2. For α ∈ S2, we recall that the notation
Oα is the orbit for the action of H on H and Oexp(α) for the action of H on
exp(h). By the equations (4) and (5), we obtain for α = (a, b, c) ∈ S2:

• The two points (0, 0, 1) and (0, 0,−1) are �xed points in both cases.

• If b 6= 0 then Oα = Oexp(α).

• If b = 0 and a 6= 0, then Oα = {α} and Oexp(α) = {(a, 0, x), x ∈ R|a2 +
x2 = 1}.
In other words, the main di�erence is that the great circle passing through

the points (0, 0,−1), (0, 0− 1) and (1, 0, 0) is the set of �xed points for H. For
exp(h), this great circle splits into two open half great circles: Oexp(−1,0,0) and
Oexp(1,0,0) and two �xed point: (0, 0,−1) and (0, 0, 1).
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5. AN EXHAUSTIVE FAMILY FOR C(ΣH) oooH

For each function f : H → C, as in Subsection 1.5, we will denote by
f(q) the operator of multiplication acting on L2(X). This kind of operator is
well de�ned for instance when f ∈ Cb(H). Let α ∈ ΣH and Un a sequence
of elements of H that converges to α. We want to characterize the function
fα such that fα(q) is �invariant by right translations at the in�nity.� Thus,
we consider fα, which is the limit of the operator fn(q) := RUnf(q)R∗Un , with

f ∈ C(H̃). For any element X ∈ H and φ ∈ L2(H), we write

(fn(q)φ)(X) = RUnf(q)R∗Un(φ)(X) = f(RUn(X))φ(X) = f(XUn)φ(X).

When n goes to in�nity XUn → Xα and the value of LX(α) = Xα hence
it is an element of the quasi-orbits of Qα. Hence, the function fα := lim fn
associated to the limit operator of fn(q) can be view as an element of C(Qα).
At the level of functions, the link between f and fα is Rα(f) = fα, where
Rα is the pointwise limit of the right translation RUn . Moreover, using the
translation Rα, we can build an exhaustive family.

Theorem 5.1. Let H̃ = H ∪ ΣH be one of the two compacti�cations of

H considered in Section 4. We consider a su�cient family F of points of ΣH

with the extended action of H. For each α ∈ F , we extend the translation Rα
to the crossed product: C(H̃) o H → C(Qα) o H. With this assumption, the

family {Rα}α∈F is an exhaustive family of morphisms of C(ΣH) oH.

The two main tools of the proof are the following lemma and the well
behavior of the product constructions.

Lemma 5.2. Let Rα be the right translation at the in�nity de�ned as be-

fore. We have:
ker(Rα) ⊂ CΩα(H̃).

Where CQ
α
(H̃) = {f ∈ C(H̃), f|Qα = 0}.

Proof. Let f ∈ C(H̃) such that f(β) 6= 0, for β ∈ Qα. We want to show
that Rα(f) 6= 0. By de�nition of β, there exists a sequence Un of elements of
H such that lUn(α) = Un.α → β. The continuity of f implies Rα(f)(Un) =
f(Un.α)→ f(β) 6= 0. We conclude that Rα(f) 6= 0 and �nish the proof. �

Proof of Proposition 5.1. For each α ∈ ΣH , we have Rα(C0(H)) = 0 hence
the function Rα can be de�ned on C(H̃)/C0(H) ' C(ΣH). We extend Rα to
the crossed product C(ΣH) o H. Now, we show that the family (Rα)α∈F is
exhaustive. Let J be a primitive ideal of C(ΣH) oH and Π be an irreducible
representation of C(ΣH) o H with kernel J . In view of Proposition 3.4, the
separability of the C(ΣH) implies the quasi-regularity of (C(ΣH), l,H). Quasi-
regularity implies the existence of a covariant pair (π, U) and β ∈ ΣH such that
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Π = π o U and kerπ = CQβ (H̃). Moreover, the family F is a su�cient family
hence, there exists α ∈ F such that β ∈ Qα then Qβ ⊂ Qα or equivalently
CQα(ΣH) ⊂ CQβ (ΣH). In view of Lemma 5.2, we have

ker(Rα) ⊂ CQα(ΣH) ⊂ CQβ (ΣH).

Then the equality holds when we pass to the crossed product and ker(Rα) ⊂
J . �

Proposition 5.3. Let T be an operator a�liated to C(H̃) oH. We have

the following spectral decomposition:

(6) σess(T ) =
⋃
α∈F

σ(Tα),

where Tα is the image of T through Rα.

Corollary 5.4. In particular, when T ∈ C(H̃) oH and the operator T
is associated to φ ∈ L1(H, C(H̃)) via the formula T = Sch(φ), we obtain

σess(T ) =
⋃
α∈F

σ(Rα(Sch(φ))).

Corollary 5.5. In particular, for T = −∆+V , an operator of Schr�odin-

ger-type with a potential V ∈ C(H̃) such that V is a real potential, the decom-

position (6) holds.

Proof. By Corollary 2.2, the Laplacian is a�liated to C(H+)oH ⊂ C(H̃)o
H. The identity

(T + i) = −∆ + V + i = (−∆ + i)[1 + (−∆ + i)−1V ]

leads to T ∈′ C(H̃) oH hence, we can apply Proposition 5.3 on T . �

Proof of Proposition 5.3. The isomorphism C(H̃)/C0(H) ' C(ΣH) can be
extended to an isomorphism of (C(H̃) oH)/(C0(H) oH) ' C(ΣH) oH, since
H is amenable. Moreover C0(H)oH ' K(L2(H)) and it is well-known that the
essential spectrum of an element coincides with the usual spectrum of its image
in the quotient by the compact operators. In other words, for T an operator
a�liated to C(H̃) o H, we have σess(T ) = σ(π(T )), where π : C(H̃) o H →
C(ΣH)oH. By Proposition 5.1, the family (Rα)α∈F is an exhaustive family of
morphisms, which gives the following spectral decomposition

σess(T ) = σ(π(T )) =
⋃
α∈F

σ(Rα(π(T ))),

and hence the decomposition (6). �
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6. ALGEBRAS GENERATED BY A FAMILY

OF COMPACTIFICATIONS

A similar approach could be used to study more complicated compacti�-
cation of H (or more generally locally compact group). They often arise from
continuous map φ : H → K with, φ(H) is dense in a compact set K. The
problem is to understand these compacti�cations. We describe a convenient
approach in this section.

Let G be a locally compact group and K be a compact space with a
continuous map φ : X → K. We also assume that φ(G) is dense in K. Let
βG the Stone-�Cech compacti�cation of G and ι : G → βG the embedding of
G in βG. By the universal propriety of the Stone-�Cech compacti�cation, there
exists a unique continuous map ψ : βG→ K that makes the following diagram
commutative:

G
φ //

ι

  

K

βG

ψ

OO

Let ψ∗ : C(K) → C(βG) be the pull-back induced by ψ. The commu-
tativity of the preceding diagram and the density of φ(G) in K implies the
injectivity of ψ∗. We can view C(K) as unital C∗-subalgebra of C(βG). The
space βG is the spectrum of the C∗-algebra Cb(G), the continuous bounded
functions on G equipped with the supremum norm. This leads to the iso-
morphism C(βG) ' Cb(G). With all this identi�cation, we can view C(K) as
C∗-subalgebra of Cb(G).

We consider a family K of compact spaces and a continuous map φK :
G → K for each K ∈ K such that φK(X) is dense in K. We de�ne the
C∗-algebra generated by:

EK(X) := 〈C(K), C0(G),K ∈ K〉.

The algebra EK(X) remains a C∗-algebra of Cb(G) because each generator
is contained in Cb(G). Following Theorem 4.4 in [12], we will give a characte-
rization of the spectrum of EK(G). We combine all the functions φK with the
identity map on X to de�ne Φ:

Φ : idG ×
∏
K∈K

φk : G→ G×
∏
K∈K

K, Φ(x) = (x, (φK(x))K∈K).

For each K ∈ K, we consider γK , the restriction map de�ned by:

γK : ÊK(X)→ Ĉ(K) ' K, χ 7→ χ|C(K) = xK .
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As before, we combine all the map γK and add the restriction to C0(X)

to de�ne Γ : ÊK(X)→ G×
∏
K∈K

K with:

χ 7→ (x, xK),where χ(f) = f(xK), f ∈ C(K),K ∈ K.

With this assumption, we can generalize the lemma 4.3 of [12].

Lemma 6.1. The map Γ is continuous and a homeomorphism onto its

image.

Proof. We recall the argument in [12]. The continuity comes from the fact
that the restriction of a character is continuous. The injectivity is a consequence
of the construction of EK(G): the values of the character on the generators
determines the character everywhere. We have a continuous map between two
compact spaces hence, a homeomorphism on its image. �

Let j : G→ ÊK(G) be the extension of a character from the ideal C0(G) to
the algebra EK(G). We have all the notation to generalize Theorem 4.4 of [12].

Theorem 6.2. The following diagram is commutative:

ÊK(G)
Γ // G×

∏
K∈K

K

G

j

``

Φ

;;

Moreover, the diagram induces a homeomorphism between ÊK(G) and

Φ(G), the closure of the image of Φ(G).

Proof. For each K ∈ K, the image of φK ◦ j is given by the extension
a character χx of C0(G) to the algebra EK(G) and the restrict to C(K). This
extension is unique and corresponds to the character χφK(x), that is, to the
evaluation map at φK(x). Recall that C0(G) is an essential ideal of EK(G) and
then G is dense in the spectrum of EK(G). The continuity of j,Γ and Φ implies

j(G) = ÊK(G), Γ(ÊK(G)) = Γ(j(G)) = Γ(j(G)) = Φ(G). �

Example 6.3. Let G be a locally compact group and F a family of sub-
groups of G. For eachH ∈ F , we suppose that there exists a compacti�cation of

the quotient G/H such that the action of G on G/H extend to G̃/H. The con-

tinuous map with dense image is given by the canonical map πH : G→ G̃/H.

Similar mixed algebras have been studied in [13] and by Power [19]. In
particular, Power introduced the notion of permanent point to characterize the
spectrum of the mixed (repeated compacti�cation) algebras.
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De�nition 6.4. Let A be a unitary C∗-algebra and (Ai)i∈I a family of

unitary C∗-subalgebra of A. A point χ = (χi)i∈I ∈
∏
i∈I

Âi is called permanent

point if for every Γ, a �nite subset of I, the character χ veri�es the following
propriety:

If, for every index γ ∈ Γ and every contraction aγ ∈ Aγ , 0 ≤ aγ ≤ 1, the
equality χγ(aγ) = 1 is ful�lled, then ‖

∏
γ∈Γ

aγ‖ = 1.

The notion of �permanent point� is convenient to describe the spectrum
of A := 〈Ai, i ∈ I〉.

Proposition 6.5 (Power). The spectrum Â can be embedded in
∏
i∈I

Âi via

the restriction map. As subset of
∏
i∈I

Âi, the spectrum Â is exactly the set of

permanent points.

This provides a new way of looking at Theorem 6.2.
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