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The purpose of this article is to give a short introduction to the concept of quasi-
unitary equivalence of quadratic forms and its consequences. In particular, we
improve an estimate concerning the transitivity of quasi-unitary equivalence for
forms. We illustrate the abstract setting by two classes of examples.
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1. GENERALISED NORM-RESOLVENT CONVERGENCE

In this article, we give an overview of the concept of quasi-unitary equi-
valence for non-negative and self-adjoint operators and quadratic forms acting
in different Hilbert spaces. Quasi-unitary equivalence provides a sort of “dis-
tance” between two operators resp. two quadratic forms. The concept was
introduced by the first author in [9] and later explained in great detail in the
monograph [10, Ch. 4]. In this article, we also improve an estimate concerning
the transitivity of the notion of quasi-unitary equivalence of quadratic forms
in Proposition 1.6 (cf. [10, Proposition 4.4.16]). Moreover, we also specify the
convergence rate of functions of the operators in Theorem 1.8 which also fol-
lows from quasi-unitary equivalence and thus simplifying some earlier results
(cf. [10, Theorem 4.2.9 and following pages|). In particular, we make both
estimates more explicit.

To illustrate the strength of the concept, we give several examples. We
start with the approximation of Laplacians on post-critically finite fractals such
as the Sierpiriski gasket by their finite-dimensional analogues, see Section 2;
more details can be found in [11]. In [13,14] we extend the results to magnetic
Laplacians and more general spaces such as finitely ramified fractals. In [12]
we use a similar strategy to compare Laplacians on discrete graphs with metric
spaces such as metric graphs and graph-like manifolds. In particular, using the
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above-mentioned transitivity, we could show that Laplacians on a post-critically
finite fractal can be approximated by a sequence of Laplacians on manifolds.

The concept of quasi-unitary equivalence is not restricted to such discre-
tisations: it can also be applied in other situations where the underlying spaces
change: it was originally developed for a family of thin manifolds shrinking to a
so-called metric (or quantum) graph (see [9]), but can also be applied to other
(drastic) changes of the space as in [1]. We give a flavour of such arguments
in Section 3 where we apply the concept to the case of a manifold with (small)
obstacles taken out: we show that the Neumann Laplacian on the remaining
set is close to the original (unperturbed) Laplacian.

Other applications are possible, e.g. in [7] we could apply it to homogenisa-
tion problems and show a generalised norm resolvent convergence. Typically,
results in homogenisation theory only include strong resolvent convergence.
Due to the lack of spectral exactness (the limit spectrum can suddenly shrink:
there may be approximating sequences that do not correspond to spectral values
in the limit, so-called spectral pollution). Norm resolvent convergence (and also
our generalised version of it, see Definition 1.2) implies that the spectra con-
verge, see Subsection 1.3 for details. Our concept is also closely related to gene-
ralised norm resolvent convergence in the sense of Weidmann, see [18, Sec. 9.3].
We also refer to the recent work [2| and references therein; we deal with these
aspects in a forthcoming publication. Our results also have a link to numerical
analysis where elliptic problems are typically approximated by finite dimensio-
nal problems. We will treat such questions also in a forthcoming publication.

We restrict our analysis to non-negative operators and forms mostly for
simplicity only. The concept of quasi-unitary equivalence for operators in Sub-
section 1.1 can be extended to any self-adjoint pair of operators using then the
resolvents in +i, i.e., Ry := (A Fi)~!. Moreover, /2 is then the domain of
A together with its graph norm || f||2 := [|Af]|2 4 ||f]|% and similarly for A,
see also |4, Sec. 3|; for non-self-adjoint operators, see [10, Sec. 4.5-4.6]. The
concept of quasi-unitary equivalence for energy forms can be generalised to
more general forms once there is a good theory of associated operators, e.g. for
sectorial operators, see [8] or |10, Sec. 4.7] for details.

1.1. Quasi-unitary equivalence for operators

We first start defining a “distance” between two non-negative and self-
adjoint operators A and A acting in different Hilbert spaces 5 and . The
distance is expressed in terms of a parameter § > 0, and appears in the concept
of §-quasi-unitary equivalence, which we will explain now.
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Associated with such a A we define a so-called scale of Hilbert spaces
HF = dom A*/? with norm ||f||x := [|[(A + 1)¥/2f||» for k > 0. For nega-
tive powers, we let 7% be the completion of /# under the norm | f|_x :=
(A +1)"%/2f| »»; moreover the inner product (-,-), extends continuously
onto the dual pairing ¢ —k % 7%, Similarly, we have a scale of Hilbert spaces
A% associated with A.

Definition 1.1. Let 6 > 0.
(i) We say that a linear operator J: . — . is d-quasi-unitary with 0-
quasi-adjoint J': 7 — A (for the operators A and A) if

(L1a) [7f < @+ DI [(Tfow)=(f, Tw)| < sl full (f € #,ue ),
(LIb) |[f =TT <O fll2 Nu—JTu| <Slulls — (f € #%ue 7).

We call J and J' identification operators.
(ii)) We say that the operators A and A are d-close if

(Lle)  [(Jf.Bu) = (JAfu)or| < SlIflollulle (f € #7%ue #7).

(i) We say that A and A are 8- (operator-)quasi-unitarily equivalent, if (1.1a)
(1.1c) are fulfilled, i.e., we have the following equivalent operator norm

estimates
(1.1a") [Tl <1+6, [T =J]<é
(1.1b") IGdse —T' TR <6, |(id —JT)R|| <6,
(1.1¢) IRJ — JR| <6,

where R:= (A+ 1)t and R:= (A+1)"L.
Note that we also have
(1.2) [ < |7 =T + [T <1+ 29,

using [|J*]| = ||J|| and (1.1a%).

If § = 0 in the above definition then J is unitary with inverse J* =
J' by (1.1a’) and (1.1b). Thus the corresponding operators A and A are
unitarily equivalent by (1.1¢’). Hence, quasi-unitary equivalence generalises
unitary equivalence.

Note that quasi-unitary equivalence allows to define a sort of “distance”
between two operators A and A as the infimum of all § > 0 such that (1.1a’)—
(1.1¢’) are fulfilled. Then the distance is 0 if and only if A and A are approxi-
mately unitarily equivalent. For more details, we refer to [15].
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Definition 1.2. Let A,, be a self-adjoint and non-negative operator acting
in 4, for m € N:= NU {oo}. We say that the sequence {A,,}men converges
in generalised norm resolvent sense (with error estimate {9, }men) to Ao, if
Ay, and Ay are §p,-quasi-unitarily equivalent with §,, — 0.

The notion also generalises the concept of norm resolvent convergence:
Assume that the operators all act in the same Hilbert space, i.e., that JZ =
Ao = Ho for all m € N. Then the sequence {A,, }men converges in norm
resolvent sense to Ay if and only if

(1.3) [(Am+ 1) = (A + 17| =0 as  m — 00.

If we choose J and J’ to be the identity operator on ., then (1.1a’) and (1.1b")
are fulfilled with ¢, = 0, and (1.1¢’) with §,, — 0 is equivalent with (1.3). A
sequence of operators also converges in generalised norm resolvent sense if there
is a sequence of unitary operators J,,: 4, — % such that

[T (A + 1) 7LT5 — (Ao + 1) = 0.

The notion of operator-quasi-unitary equivalence is transitive in the fol-
lowing sense (the proof is similar to the one of Proposition 1.6, and we slightly
improved the error term 0 compared to the one given in [10, Proposition 4.2.5]):

ProposiTION 1.3. Assume that 9, § €10,1]. Assume in addition that A
and A are §- quasi- unitarily equivalent with identification operators J and J,
and that A and A are §- quasi- umtamly equivalent with identification operators
J and J'. Then A and A are - quasi-unitarily equivalent with identification
operators J = JJ and J' = J'J', where § = 58 + 50.

1.2. Quasi-unitary equivalence for energy forms

It is actually more convenient to start with the quadratic forms & and £
associated with the non-negative operators A and A, and develop a slightly
more elaborated version of quasi-unitary equivalence. This approach avoids
dealing with the sometimes complicated operator domains and graph norms.
Nevertheless, in applications, the more elaborated conditions are easily verified.

Let s and S be two separable (complex) Hilbert spaces. We say that
& is an energy form in J if £ is a closed, non-negative quadratic form in J#,

e., if £(f) :== E(f, f) for some sesquilinear form £: s x #' — C, denoted
by the same symbol, if £(f) > 0 and if ! := dom £, endowed with the norm
defined by

(1.4) IF1IE = 115 +E(F),
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is itself a Hilbert space and dense (as a set) in 7. We call the corresponding
non-negative, self adjoint operator A (see e.g. [5, Sec. V1.2|) the Laplacian
associated with £. Similarly, let & be an energy form in A with Laplacian
A. Note that ||f]1 = ||f|le and that |[fle < ||f]2 in the terminology of
Subsection 1.1.

We now also need identification operators J' and J! acting on the form
domains.

Definition 1.4. Let § > 0, J: # — A and J': H — A, resp.
Jb: ot — A and J'V: AT — ! be linear operators on the Hilbert
spaces and energy form domains.
(i) We say that J is d-quasi-unitary with §-quasi-adjoint J' (for the energy
forms € and &) if

(152) [IIfIl < L+ OIFN, [(If,w) = (f, Tw)] < 8 fllllull (f € #,u € ),
(13b)  If = TS <6l lles Nu— TTull < llully (f € 7 ue A,

(ii) We say that J' and J'* are §-compatible (with identification operators J
and J') if

(15¢) T = Jf) <ol flle, |17Mu—Jull <dlullz (f € A" ue A,
(iii) We say that the energy forms &£ and & are §-close if
(15d)  |E fou) = E(f, T )] <Ol fllelully  (f € 2" ue Y.

(iv) We say that € and € are §-quasi-unitarily equivalent, if (1.5a)(1.5d) are
fulfilled.

We have the following relation between quasi-unitary equivalence for qua-
dratic forms and operators; the last conclusion has already been shown in [10,
Proposition 4.4.15]:

PrOPOSITION 1.5. If the forms € and E are d-quasi-unitarily equivalent
then we have

(1.6) 1R(2)T = JR(2)|| < C(2)s,
where R(z) := (A —2)"! and R(z) :== (A—2)""! for z € C\ (¢(A)Uo(A)) and

|z + 1] 2
C(z):=4(1 — )
=) ( * d(z,0(A)U U(A)))

In particular, the associated operators A and A are 49 -quasi-unitarily
equivalent.
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Proof. For g € 7 and v € % we have
[((R(2)J — JR(2))g,v)| = |(g, J*R(Z)v) — (JR(2)g,v)|
= [{Af, T'u) = (Jf, Au)|
< KAL AT =T+ (S =T u)| +[E(f, I"Ma) = EJ fu)|
+ (= D) f, Au)|
< 26|\ fllallell + Sl Fllallelly + Sl A wllz < 48] Fll2llwll2,
where f = R(z)g and v = R(Z)v. We have |[f[l = |[(A+1)R(z)g| <
I(A+1)R()|llgll and
A+1 |z + 1] |z + 1]
I(A+1DR(z)[ = sup <14 sup =1+
reo(A) |A = 2] reo(a) [A = 2] d(z,0(A))
using the spectral theorem. A similar estimate holds for ||ul|2. In particular, the
resolvent estimate follows. For the second statement, note that for z = —1 we
have C(—1) = 1, hence (1.1c) holds with 45. The remaining estimates (1.1a)—

(1.1b) follow from the quasi-unitary equivalence of the forms and the fact that
Ik < |Ifll2 and similarly for w. O

In particular, if we choose the rough estimate o(A)Uo(A) C [0, 00), then
C(z) <1+|z+1]/d(z,[0,00)). For Rez > 0, the latter equals 14|z + 1|/|Im 2|
and for Re z < 0 the latter equals 1+ |z + 1|/|z|. Hence, we have
|z + 1] |z + 1]
|Im z| 2]

Cz) <1+ resp. C(z) <1+

for Rez > 0 resp. Rez < 0.

Let us mention a special case here, namely 6 = 0 in (1.5a)—(1.5¢). In this
situation, J is a unitary operator with J' = J* J!' = J| 1 and J'' = J* [ 715
hence without loss of generality we can assume = 7, J = J' =idy and
dom & = dom €. In particular, £ and £ are J-quasi-unitarily-equivalent if and

only if

(1.7a) E(fsu) = ECf,u)| <O fllelullg

for all f,u € #"' := domE = dom E. Using the fact that £ and & are sym-
metric, it is sufficient if (1.7a) only holds for f = u, i.e., (1.7a) is equivalent
with

(1.7b) E(f) = EN <lIFIZ

for all f € 2#'. For the implication (1.7a) = (1.7b) one can use § =

0/ (240)/(2—=6) (provided § < 2) and for (1.7b)=-(1.7a) one can use § =
6/V/1 =46 (provided § < 1). This situation has also been studied in [3]'; basi-

'In memoriam Johannes Brasche, who suddenly passed away in December 2018.
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cally, their Theorem 2 is the implication (1.7b)=-(1.7a) together with Proposi-
tion 1.5 (with z = —1 and 46 replaced by 4, as 6 = 0 in (1.5a)—(1.5c)).

In particular, if {&, }men is a sequence of energy forms acting in the same
Hilbert space as £, i.€., Hp, = 5 with the same domain dom &, = dom E
for all m € N, then (with all identification operators being the correspon-
ding identity operators) (1.5a)—(1.5¢) are trivially fulfilled with 6 = 0. Moreo-
ver, (1.5d) with 6 = §,, — 0 is equivalent with

Eac(f) = Em(F)] < omllfII2

for all f € dom &y, with 9, and Sm related as above. This is the classical situa-
tion of Kato |5, Theorem VI.3.6] or [16, Theorem VIII.25(c)|, and we conclude
(using Proposition 1.5) that the operators A, associated with &,, converge to
Ao in norm resolvent sense, see (1.3). Note that both classical results do not
state the convergence speed of the norm of the resolvent difference.

Another useful implication is the transitivity of quasi-unitary equivalence
for energy forms; it was originally proved in [10, Proposition 4.4.16]; we give
here a simpler proof.

PROPOSITION 1.6. Let 0,6 € [0,1]. Assume that & and € are 6-quasi-
unitarily equivalent with identification operators J, JY, J and Jt. Moreover,

assume that £ and & are - quasi-unitarily equivalent with identification opem—
tors J, JY, J' and J*. Assume in addition that, for all f € S and w € S,

17 fllg < L+ 0)flle and [T wlz < (1+0)[w]g.
Then € and € are 5-quasi-unitarily equivalent with § = 14 (6 + 5)
Proof. We define the identification operators by J =

{ = J’J’ and J'! = J’1J’1 and we set R:= (A+1)7} R:
R:=(A+1)"!. Then J is bounded, because

J, JL = JUL
1

170 = 177) < (148)(1+3) < 1456 +9).
The second inequality in (1.5a) follows from
17 = T < 5T = T+ 1 = )T < (1465 +5(1+25) < 25+ 75
as ||J'|| < 1426 by (1.2). The first inequality in (1.5b) is also satisfied because
If = TTF < N = TTFN A+ 1T (T = T+ 1T Gd =T )T
F T TT = DI < (54 (04 20)(5+3(1+8) + (1+28)(1 +8)9) )1 e
< 145+ 3)[If e
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and the second one follows by similar arguments. Next we prove that the two
inequalities in (1.5¢) also hold. We estimate

(T = Df < NI = DI+ 1T = D) 1|
< (8(1+8) + (1+0)d)lIfle < 205+ )| flle
and
mﬁ—fmwsmﬂ—fﬁ%ﬂ+wwﬂ—fmu
< (5(1+8) + (1+26)3) ]z < (6+®mwg
For inequality (1.5d) we estimate

E(T fow) — E(F, T w)]
< |ETH T fyw) — EJLf, TMw0)| + [ETLf, T w) — E(f, T T )
<O fllglwlg + Sl fllell T wllz
< (01 +0)+5(1+0)Ifllellwlz <20+ )| flellwlg O

It is a useful feature of Definition 1.4 that it provides us with some flex-
ibility in terms of the inequalities. The next lemma is one example. In [11] it
was applied to avoid a Poincaré-type estimate, i.e., to bypass an estimate of
the first non-zero eigenvalue.

LEMMA 1.7 (|11, Lem. 2.4]). Assume that (1.5a) is fulfilled with 6, > 0
and (1.5¢) with 6. > 0. If

(1.5b) lu—JJ%) < &fullz  (ue )

holds, then the second inequality in (1.5b) is fulfilled with 6 = 6" + (1 + 64)0c-

In particular, if all conditions (1.5) are fulfilled for some 6 > 0, except
for the second one in (1.5b) which is replaced by (1.5b%), then & and & are
S-quasi-unitarily equivalent with § = &' + (1+ 6)0.

1.3. Consequences of quasi-unitary equivalence

Let A be non-negative and self-adjoint and R(z) := (A — 2)~! be its
resolvent. Let U be an open neighbourhood of o(A) C C such that 9U is locally
the graph of a Lipschitz continuous function and such that U No(A) = 0.
Moreover, let n: U — C be a holomorphic function. Then the integral

(1.9) n(A) = —% [ n(n()
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is defined in the operator norm topology provided

1 [n(2)]

Choi=—
e 27 oU (Z,O‘)

dlz] < o0

for o := o(A). For example, if U encloses a compact subset K of o(A), then
1y (A) (defined with n = 1y in (1.9)) is the spectral projection onto K.

THEOREM 1.8. Assume that the forms £ and g corresponding to the ope-
rators A and A are §-quasi-unitarily equivalent (or that (1.6) holds), and that
U is an open subset such that OU is locally Lipschitz and such that OU N (o (A)U
o(A)) =0 then

(1.10) In(B)] = In(A)]| < Gy,
where Cy, is defined in (1.11).

Proof. Since the integrals for n(A) and 7(A) exist in operator norm, we
have

n(A)J — Jn(A =—/ z)J — JR(2)) d=.

Taking the operator norm on both sides and using (1.6), we obtain
(1.11)

1 2+ 1] 2
37 =gl < 5o [ (1 o S el

=:Cy

Note that €' < oo implies that Cy 5(a) < 00 and €  x) < 0.

Remark 1.9. Note that we have also a functional calculus for measurable
functions continuous in a neighbourhood of o(A). Then the error Cy0 has to
be replaced by a function ®,(6) with the property that ®,(5) — 0 as § — 0;
in particular, we lose the information about the convergence speed (see |9,
Theorem A.8| for details). Nevertheless, the following result remains true (with
a modified error term, see [9, Theorem A.10].

PROPOSITION 1.10 (|10, Lem. 4.2.13|). Assume that (1.10) holds. Then
In(A) = Tn(A)J'| < Cpé and  |[n(A) = T'n(A)J|| < Cpo

with

C;? =5 sup |[p(A\)(\+ 1)1/2| + 30,
AE[0,00)NU

for all energy forms € and g (with corresponding operators A and &, respecti-
vely) being 0-quasi-unitarily equivalent with identification operators J and J'
and ¢ € [0,1].
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Let us calculate explicitly the constants Cj, and C;] for two examples of

the function #:

(i)

Ezample 1.11.

Spectral projections. Let I := (a,b) such that —1 < a < b and a,b ¢
o(A)Uo(A) =: S with d({a,b},S) > & for some ¢ > 0.2 We want to
compare the spectral projections 17(A) and ]11(3), defined via the functi-
onal calculus for self-adjoint operators. Let U := I x i(—¢,e) C C be a
rectangle enclosing I. Note that we have 1;(A) = n(A) with n = 1y
where the latter operator function is defined via the holomorphic functi-
onal calculus (1.9); a similar statement holds for A A straightforward
estimate shows that

Cp = é(b—a+e)(1+ 14 (b+1)2)2 — 0(b).
i €
Moreover, C = 5v/b + 1+ 3C;; = O(b).
Heat operator. For the heat operator, we have n;(\) = e7* for t > 0. As
open neighbourhood of the spectrum we let U be the open sector with
half-angle # € (0,7/2) and vertex at —1, and symmetric with respect to
the real axis. Then we have

4 [ 1 \2 4 1 \2 1
C. <= —trcosG(l ) dr = (1 ) 2
m_ﬂ/o ¢ +sin9 "7 rcosd +sin& t
since d(z,0(A) U o(A)) > |2+ 1|sinf. Now, the minimum of the right
hand side over # € (0,7/2) is achieved when § = w/4, and hence is
4(4 +3+/2)/m - 1/t < 11/m. Moreover, as

1, t>1/2,

up Je A+ 1)1/ <
sp JeT A DTS ane, ve o1y,

A€[0,00)

we conclude that a rough estimate is
39

/
(1.12) Cp = +5.

In particular, we conclude the following convergence result for the solution

of the heat equation:

2If we aim in operator convergence of spectral projections, it is a standard assumption
that OI is in the resolvent set of at least one of the operators; if § is small enough, it
can then be shown that 9 is also in the resolvent set of the other operator, see e.g. [16,
Theorem VIIL.23 (b)|. For strong convergence, the assumption can be weakened to exclude
that OI are eigenvalues.
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COROLLARY 1.12. Let & and & be two §- quasi-unstarily equivalent energy
forms with associated operators A and A. Assume that € and € are 8- quasi-
unitarily equivalent. Let f; resp. up be the solution of the heat equations

atft + Aft =0 resp. 8tut + Aut =0
fort > 0. If fo = Jug, then for any T > 0 we have

Hut—thHff' nT(SHuOHj;a
for all t € [T, 00) with C;, = O(1/T) (T — 0) given in (1.12).

Proof. We have u; = e_tzuo and f; = e *®.J'ug. Then

lue = Till = 172 = Je AT Yuo | 7 < C4 lluo| 7

We apply Proposition 1.10 and the concrete estimate for C{H to conclude the
desired estimate. [

As in the case of usual norm convergence the operator norm convergence
of spectral projections implies the convergence of spectra (also called spectral
exactness):

COROLLARY 1.13 ([10, Theorem 4.3.3]). If A, converges in generalised
norm resolvent sense to Ao, then

d(o(Am),0(As)) — 0
as m — 0o, where
d(A, B) := max{sup inf d(a,b),sup inf d(a,b)}
acAbEB beB a€A
defines a weighted Hausdorff metric between two closed sets A, B C [0,00).
Here, d(a,b) == |(a+1)"' — (b+ 1)7!| is a weighted metric on [0, ).

If the operators have purely discrete spectrum, we can specify the error
estimate:

COROLLARY 1.14. Let A\p(A,) resp. M\i(Aoo) denote the k™ eigenvalue of
A, resp. Ao (in increasing order and repeated according to their multiplicity).
Then
for all m € N such that dim .7, > k, where Cy, depends only on \p(As).

In the case of purely discrete spectrum (or isolated eigenvalues) we can
approximate an eigenfunction also in energy norm:

PROPOSITION 1.15 ([11, Proposition 2.6]). Let £ and € be two §-quasi-
unitarily equivalent energy forms with associated operators A and A. Assume
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that ® is an eigenvector of 5, such that its eigenvalue X~is discrete in O'(A),
i.e., there is an open disc D in C such that o(A)N D = {)\}. Then there ezists
a normalised eigenvector ® of A with ® € ran1p(A) and a universal constant
C' depending only on X (and the radius of D) such that

|J'® — ||z < C0.

Note that the eigenvalue X does not necessarily need to have finite multi-
plicity.

2. POST-CRITICALLY FINITE SELF-SIMILAR FRACTALS

In [11] the authors applied the quasi-unitary equivalence to the case of
certain fractals called post-critically finite self-similar fractals (which supports
a regular resistance form in the sense of [6]; see also [17]). Here, we will simply
discuss two examples. For the general case, we refer to [11]| and for a further
generalisation to magnetic energy forms on finitely ramified fractals, we refer
to [14].

2.1. The unit interval

At the first glance it might look a bit odd to call the unit interval K =
[0,1] a fractal, but it will turn out that this approach is quite elegant for the
approximation. We begin by defining two contractions Fi, F5: R — R with
contraction ratio 1/2 and fixed points 0 and 1 by
t 14t

Fi(t) = 2 and Fy(t) 5

Then, we have K = F1(K) N F»(K) and K is the unique non-empty compact
subset of R with that property. We call K the self-similar fractal with respect
to F' = {F1, F5}. Moreover, the maps F}; describe a cell structure on K via

W Fy(K) = (Fy, 0+ 0 Fy,,)(K)

where w = wy ... wy, € Wy, := {1,2}" is a word of length m. We refer to
F,(K) as an m-cell whenever w € W,.

Next, we define the (vertex) boundary by Vo = {0,1}. Note that in the
special case of the interval, the topological boundary and the vertex boundary
coincide but that is not necessarily the case (see e.g. the Sierpinski gasket).
Then, we define the approximating sequence of (finite weighted discrete) graphs
as follows: Let Gy = (Vp, Ep) be the complete graph with two vertices Vy =
{0,1} and one edge. Moreover, define Gy, = (V,, Ey,) inductively, where V,,, =
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{k27™ |k =0,...,2™} are the m-dyadic numbers and where we have an edge
between (distinct) vertices z and y in V,, if and only if |z — y| =27

Let us specify the Hilbert spaces and energy forms now. As a measure on
K = [0,1] we fix the Lebesgue measure p and our Hilbert space is the usual
space of square integrable function with respect to the Lebesgue measure, i.e.,
H = L2 (K ’ /L)'

The approximating measure fi,, = {m(x)}zev,, on Gy, is defined by

x €V \ W
(21) /wm ) du(t) {1/2 oy

where 9z m: K — [0,1] is given by 1,3 on Vp, and extended to K by linear
interpolation. Hence, our Hilbert space on the graph Gy, is 74, = ly(Vin, fim)

with norm ) )
IFIZ, (Vi) = > (@)l f ()

€V
On each graph G, we now define a discrete energy form &, in £o(Vin, tim)-
For each f € £(Vy,) :={f|f: Vo = C}, we set

(2.2) En(H)=" D ClagpmlfW) = (@),
{z,y}€Em

where the conductances cg; ), > 0 are chosen such that

(2.3) Em () = min{ Eny1(f) | f € €(Vins1), =¢}

for all ¢ € £(V,,). Working this out, we see that C{mvy}vm = 2™. A sequence
{Em}men, of energy forms that satisfies (2.3) for all m is called compatible
sequence.

From the classical theory of calculus it is well-known that the limit form

is given by .

E(u) = ; [/ (t)]? dpu(t)
for each weakly differentiable v € Ly (K, u) with v’ € Ly(K, p), i.e., we have
dom & = HY(K, p).

THEOREM 2.1 ([11]). The energy form (€, HY(K, pn)) in Ly(K, 1) and the
discrete energy form Ep, in ly(Vin, i) are dm-quasi-unitarily equivalent, where

the error is 1

Let us briefly discuss the idea of the proof: First, we need to choose the
identification operators from Definition 1.4. On the Hilbert space level, we
define Jy,: 5, — H and J|, = J}: H — H;, by

mf = Z f wxm resp. J,'nu(y) =

z€Vm

,UT(Z/) <U> wy,m>jg77
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where f € J,, u € A and y € V. Moreover, we define J\ : 52} — Vs

JLf = Jnf. Note that this is well-defined because v, € dom&. The
last operator J'} is chosen to be the evaluation in points of V,, i.e., Jiu(x) =
u(z). Again, this choice makes sense because functions in the domain of £ are
continuous on K. That is because

(2.4) u(z) = u(y)* < E(u)R(z,y),

for x,y € K, where R is the resistance metric associated with &, given by
R(z,y) := (min{g(u)‘uedomg,u( ) =1 and u(y —0})

and since R(z,y) = |x — y|, the relative topology of K coincides with the R-
topology (see [6, Sec. 3.4] for a more general result).

Now, we need to verify the validity of the inequalities in Definition 1.4.
This is done in [11, Sec. 4] in greater details but let us discuss the key steps
here:

Applying the Cauchy-Young inequality in the first inequality of (1.5a) we
~ < ||fllz, for each f € 5, and the second one is fulfilled

because J,, = J .

The inequalities in (1.5b) follow by applying the Cauchy-Schwarz inequa-
lity and by using the improved Hélder inequality (2.4). For the first one, we
rewrite

wx,m, wy,m>jgo"

xEVm
using the fact that {¢m,m}xevm is a partition of unity on K and

y):Zf( wcsm =

€V, IEGVm

¢:r,mv wy,m>§fv

Hence, by applying the above mentioned inequalities and some standard argu-
ments, we can estimate f — J/ J,, f in norm.

Note, that the first inequality from (1.5¢) is trivially fulfilled by the choice
of J,, and J}. Instead of verifying the second one, we apply Lemma 1.7.
This is particularly useful here because it helps us to skip a discussion about
eigenvalues, we would otherwise have (see e.g. [12]).

The particular choice of the identification operators becomes clear now:
The last inequality (1.5d) holds actually with equality because the {1, } mi-
nimise the energy, i.e. as above, £(Yem) = Em(Vamly,) = Em(]l{x}) where
I, is the characteristic function of the set {x} C Vj,. Note that the letter
expression can be computed explicitly using (2.2).
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2.2. The Sierpiriski gasket

A more illustrative example for a post-critically finite self-similar fractal is
the Sierpiniski gasket which is described by the family of contractions F', given
by

1 .
Fj: R* - R?, Fj(x)zi(a:—pj)erj (j=1,2,3)

where the fixed points p; are chosen such that {pi,p2,p3} are the vertices of
an equilateral triangle in R?. Then, as in the case of the unit interval, the
Sierpinski gasket is defined as the unique non-empty compact subset K of R?
that satisfies

K =F(K):= Fi(K)UF)(K)UF;3(K).

Again, the family of contractions {F}, Fy, F3} describes a cell structure on the
Sierpiriski gasket via the map w — Fy,(K) where w € W,,, = {1,2,3}"™. The
vertex boundary is defined as Vy = {p1,p2,ps}. Note that in contrast to the
situation in the example of the unit interval, V{; does not coincide with the
topological boundary of K which is actually K itself.

We define our approximating sequence of graphs in the same way as before:
Let Gy = (W, Ep) be the complete graph and let G, = (Vin, Eiy) be given by

3
Vi ;:UFj(Vm,l) and E,, ::{e}ezm,yCVm aﬂdeNmy}a
j=1

where we write & ~,, y if and only if x and y are two distinct vertices in Vi,
and there exists a word w € W, such that =,y € F,(K). Moreover, we define
an energy form on G,, by

m
en(f) = 32 (2) 1) - F)2
~my

for each f € £(V,,). Here we sum over all vertices x € V,,, and their neighbours
y in the level m graph and, as in the case of the interval, the conductances
Cizyt,m = (5/3)™ are chosen such that the sequence of energy forms {& fmen,
is compatible.

Then the limit form exists and we define an energy form on the Sierpiriski
gasket by

E(u) :z%i_r}noogm(u[vm), u€domé :={u|u: K= C,E(u)<oo}
(see [6,17]).

As a (canonical) measure p on the Sierpinski gasket we choose the homo-
geneous self-similar measure, i.e., the uniquely determined probability measure



388 Olaf Post and Jan Simmer 16

1 that satisfies

1 _ _ _
Nzg(ﬂoﬂ Yhpo Byt po By ).

That is, u is the Hausdorff measure of dimension log3/log2 and every m-cell
F,(K) has measure 1/3™ (we would like to stress that our approach works for a
general Borel regular probability measure on K; see [11] for details). As Hilbert
space structure on the fractal K, we choose J# = Ly (K, p). Then (€,dom&)
is a closed quadratic form in Yz

On the graphs G,, we define a measure as in (2.1) but here we choose
the functions vy, : K — [0, 1] to be the unique solution of the minimisation
problem

Em(Lizy) = min{ E(u) |u € dom &, uly, =1, }.

These functions exist and are called m-harmonic functions with boundary va-
lues T,y on Vi, (cf. [6]). The values of v, can be computed explicitly by
iteration: If the values in the vertices of V,,, are known, then, for each vertex
Y € Ving1 \ Vi, there exists a unique m-cell that contains y; the value 9, n(y)
is given by 1/5 times the value at the vertex in V,,, opposite to y in the m-cell
plus 2/5 times the values of ¢, at the vertices (of V},,) adjacent to y in the
same m-cell (cf. [17, Sec. 1.3]).

By the symmetry of the Sierpinski gasket and the functions {¥g m }zev,
which define a partition of unity on K, we can specify p,, also in this example

as
1/3 z eV

1
pom () :/K%’md”: 3’"{2/3 € Vin \ V.

The Hilbert space, we consider on the approximating sequence of graphs is
again given by 74, = ly(Vi,, 1) and we conclude:

THEOREM 2.2 (|11]). The energy form (£,dom&) in Ly(K, 1) and the
discrete energy form Ep, in by(Vi, tim) are Om-quasi-unitarily equivalent where

the error is
1+v3)v2 1
\/g 5m/2°
The idea of the proof is the same as described above in the case of the
unit interval (see [11]).

Om =

3. NEUMANN OBSTACLES

In this section, we briefly present another class of examples. For details, we
refer to [1]. Let X be a complete Riemannian manifold of bounded geometry
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(i.e., its Ricci curvature is bounded from below and its injectivity radius is
bounded from below by a positive constant); a simple example is X = R™. We
denote by Ly(X) the Hilbert space of square-integrable functions with respect
to the standard volume measure, and by H¥(X) the Sobolev space of k-times
weakly differentiable and square integrable functions. Denote its Laplacian
by Ax > 0 (defined via its quadratic form Ex(f) = [y |df|? dvol). Under the
above assumptions (completeness and bounded geometry) it can then be shown
using the Bochner-Lichnerowicz-Weitzenbock formula that there is a constant
Cell.reg = 1 such that

(3~1) Hf||H2(X) < Cell.reg”(AX + 1)f||L2(X)

for all f € dom Ax = H?(X), see e.g. [1, Proposition 3.2] and references therein.
We assume that B C X is a closed subset such that the following holds:
(i) there is § > 0 such that

£l By < Ol fllnrx)

for all f € H(X);
(ii) there is a bounded extension operator, i.e., there is E: H'(X \ B) —
H!(X) such that Eu [ x\p = u with operator norm bounded by Cex > 1.
One can think of B as the disjoint union of small balls or other obsta-
cles. Denote by A)N(\ p the Neumann Laplacian defined via its quadratic form

E)I\(I\B(u) = fX\B|du\2 dvol. It can be seen that the first estimate extends to

ldf(lL,B) < Ol fllnz(x)

for f € H?(X) without any assumption on the manifold (cf. |1, Proposition 3.7]).
We have the following result:

THEOREM 3.1 ([1, Theorem 4.3|). Under the above assumptions, the Lap-
lacian Ax and the Neumann Laplacian Aﬁ\B are Cext Cell.reg -quasi-unitarily
equivalent.

Proof. We are showing a slightly modified version of quasi-unitary equi-
valence for the corresponding energy forms. We first define the following iden-
tification operators as follows:

J: A= 1y(X) — A = Ly(X \ B), f= flx\B

T A = HY(X) — A = HY(X\B), f > flx\p, J' = J* (hence J'u is
the extension of u by 0 onto B) and

JV A =H X\ B) — #' =H (X), uw~ Eu
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In particular, J'f = Jf for f € HY(X), JJ'u = u, ||J|| = 1 and J' = J*.
It remains to check the first inequality of (1.5b), the second of (1.5¢) and a
modified version of (1.5d): the first estimate is fulfilled with ¢ since

1f =T Tfll,x) = Il < 0l Flln o
by our assumption. For the second, we argue
1T = Julle, x) = 1Bulle, ) < Sl|Eulln:x) < Coxtdllullnrx\p),

hence the estimate is fulfilled with Ceytd > d. Instead of (1.5d), we show the
slightly stronger estimate

(32) [E(W fu)=E(f, T )] <8ll(Ax + Dl llullg
for (f € A% :=domAu € A,

i.e., we use the operator graph norm instead of the energy norm for f. In
particular, we have

|E(T ) — E(f, T )| = |/ (df ,d(Eu)) dvol|
B

< df I, ld(EW) L, By < If n2x) [ Eullin x
< Cenregl(Ax + 1) fllL, (x) Cext[|ulli (x\B)

using the assumptions. The quasi-unitary equivalence for the operators follows
then similarly as in Proposition 1.5. O

Note that if B = (J,c; Be(v) is the disjoint union of balls of radius
e > 0 with centres x € I, separated by 2% (i.e., x,y € I. and x # y, implies
d(x,y) > 2¢“) with 0 < a < 1, then one can show that the extension operator is
uniformly bounded, i.e., Cext can be chosen to be independent of €. Moreover,
one can choose § = §. to be of order !~ in dimension n > 3 (resp. e!~*log|e]
in dimension n = 2). Note that the sets I. for different values of £ may be

totally unrelated, see [1, Sec. 4.2] for details.
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