
QUASI-UNITARY EQUIVALENCE

AND GENERALISED NORM RESOLVENT CONVERGENCE

OLAF POST and JAN SIMMER

The purpose of this article is to give a short introduction to the concept of quasi-
unitary equivalence of quadratic forms and its consequences. In particular, we
improve an estimate concerning the transitivity of quasi-unitary equivalence for
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1. GENERALISED NORM-RESOLVENT CONVERGENCE

In this article, we give an overview of the concept of quasi-unitary equi-

valence for non-negative and self-adjoint operators and quadratic forms acting
in di�erent Hilbert spaces. Quasi-unitary equivalence provides a sort of �dis-
tance� between two operators resp. two quadratic forms. The concept was
introduced by the �rst author in [9] and later explained in great detail in the
monograph [10, Ch. 4]. In this article, we also improve an estimate concerning
the transitivity of the notion of quasi-unitary equivalence of quadratic forms
in Proposition 1.6 (cf. [10, Proposition 4.4.16]). Moreover, we also specify the
convergence rate of functions of the operators in Theorem 1.8 which also fol-
lows from quasi-unitary equivalence and thus simplifying some earlier results
(cf. [10, Theorem 4.2.9 and following pages]). In particular, we make both
estimates more explicit.

To illustrate the strength of the concept, we give several examples. We
start with the approximation of Laplacians on post-critically �nite fractals such
as the Sierpi�nski gasket by their �nite-dimensional analogues, see Section 2;
more details can be found in [11]. In [13,14] we extend the results to magnetic

Laplacians and more general spaces such as �nitely rami�ed fractals. In [12]
we use a similar strategy to compare Laplacians on discrete graphs with metric
spaces such as metric graphs and graph-like manifolds. In particular, using the
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above-mentioned transitivity, we could show that Laplacians on a post-critically
�nite fractal can be approximated by a sequence of Laplacians on manifolds.

The concept of quasi-unitary equivalence is not restricted to such discre-
tisations: it can also be applied in other situations where the underlying spaces
change: it was originally developed for a family of thin manifolds shrinking to a
so-called metric (or quantum) graph (see [9]), but can also be applied to other
(drastic) changes of the space as in [1]. We give a �avour of such arguments
in Section 3 where we apply the concept to the case of a manifold with (small)
obstacles taken out: we show that the Neumann Laplacian on the remaining
set is close to the original (unperturbed) Laplacian.

Other applications are possible, e.g. in [7] we could apply it to homogenisa-
tion problems and show a generalised norm resolvent convergence. Typically,
results in homogenisation theory only include strong resolvent convergence.
Due to the lack of spectral exactness (the limit spectrum can suddenly shrink:
there may be approximating sequences that do not correspond to spectral values
in the limit, so-called spectral pollution). Norm resolvent convergence (and also
our generalised version of it, see De�nition 1.2) implies that the spectra con-
verge, see Subsection 1.3 for details. Our concept is also closely related to gene-
ralised norm resolvent convergence in the sense of Weidmann, see [18, Sec. 9.3].
We also refer to the recent work [2] and references therein; we deal with these
aspects in a forthcoming publication. Our results also have a link to numerical
analysis where elliptic problems are typically approximated by �nite dimensio-
nal problems. We will treat such questions also in a forthcoming publication.

We restrict our analysis to non-negative operators and forms mostly for
simplicity only. The concept of quasi-unitary equivalence for operators in Sub-
section 1.1 can be extended to any self-adjoint pair of operators using then the
resolvents in ±i, i.e., R± := (∆ ∓ i)−1. Moreover, H 2 is then the domain of
∆ together with its graph norm ‖f‖22 := ‖∆f‖2 + ‖f‖2, and similarly for ∆̃,
see also [4, Sec. 3]; for non-self-adjoint operators, see [10, Sec. 4.5�4.6]. The
concept of quasi-unitary equivalence for energy forms can be generalised to
more general forms once there is a good theory of associated operators, e.g. for
sectorial operators, see [8] or [10, Sec. 4.7] for details.

1.1. Quasi-unitary equivalence for operators

We �rst start de�ning a �distance� between two non-negative and self-
adjoint operators ∆ and ∆̃ acting in di�erent Hilbert spaces H and H̃ . The
distance is expressed in terms of a parameter δ ≥ 0, and appears in the concept
of δ-quasi-unitary equivalence, which we will explain now.
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Associated with such a ∆ we de�ne a so-called scale of Hilbert spaces

H k := dom ∆k/2 with norm ‖f‖k := ‖(∆ + 1)k/2f‖H for k ≥ 0. For nega-
tive powers, we let H −k be the completion of H under the norm ‖f‖−k :=
‖(∆ + 1)−k/2f‖H ; moreover the inner product 〈·, ·〉H extends continuously
onto the dual pairing H −k ×H k. Similarly, we have a scale of Hilbert spaces
H̃ k associated with ∆̃.

De�nition 1.1. Let δ ≥ 0.

(i) We say that a linear operator J : H −→ H̃ is δ-quasi-unitary with δ-

quasi-adjoint J ′ : H̃ −→H (for the operators ∆ and ∆̃) if

‖Jf‖ ≤ (1 + δ)‖f‖,
∣∣〈Jf, u〉−〈f, J ′u〉∣∣ ≤ δ‖f‖‖u‖ (f ∈H , u ∈ H̃ ),(1.1a)

‖f − J ′Jf‖ ≤ δ‖f‖2, ‖u− JJ ′u‖ ≤ δ‖u‖2 (f ∈H 2, u ∈ H̃ 2).(1.1b)

We call J and J ′ identi�cation operators.

(ii) We say that the operators ∆ and ∆̃ are δ-close if

(1.1c)
∣∣〈Jf, ∆̃u〉

H̃
− 〈J∆f, u〉H

∣∣ ≤ δ‖f‖2‖u‖2 (f ∈H 2, u ∈ H̃ 2).

(iii) We say that ∆ and ∆̃ are δ-(operator-)quasi-unitarily equivalent, if (1.1a)�
(1.1c) are ful�lled, i.e., we have the following equivalent operator norm
estimates

‖J‖ ≤ 1 + δ, ‖J∗ − J ′‖ ≤ δ(1.1a')

‖(idH −J ′J)R‖ ≤ δ, ‖(id
H̃
−JJ ′)R̃‖ ≤ δ,(1.1b')

‖R̃J − JR‖ ≤ δ,(1.1c')

where R := (∆ + 1)−1 and R̃ := (∆̃ + 1)−1.

Note that we also have

(1.2) ‖J ′‖ ≤ ‖J ′ − J∗‖ + ‖J∗‖ ≤ 1 + 2δ,

using ‖J∗‖ = ‖J‖ and (1.1a').

If δ = 0 in the above de�nition then J is unitary with inverse J∗ =
J ′ by (1.1a') and (1.1b'). Thus the corresponding operators ∆ and ∆̃ are
unitarily equivalent by (1.1c'). Hence, quasi-unitary equivalence generalises

unitary equivalence.

Note that quasi-unitary equivalence allows to de�ne a sort of �distance�
between two operators ∆ and ∆̃ as the in�mum of all δ ≥ 0 such that (1.1a')�
(1.1c') are ful�lled. Then the distance is 0 if and only if ∆ and ∆̃ are approxi-
mately unitarily equivalent. For more details, we refer to [15].
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De�nition 1.2. Let ∆m be a self-adjoint and non-negative operator acting
in Hm for m ∈ N̄ := N ∪ {∞}. We say that the sequence {∆m}m∈N converges

in generalised norm resolvent sense (with error estimate {δm}m∈N) to ∆∞, if
∆m and ∆∞ are δm-quasi-unitarily equivalent with δm → 0.

The notion also generalises the concept of norm resolvent convergence:
Assume that the operators all act in the same Hilbert space, i.e., that H :=
Hm = H∞ for all m ∈ N. Then the sequence {∆m}m∈N converges in norm

resolvent sense to ∆∞ if and only if

(1.3)
∥∥(∆m + 1)−1 − (∆∞ + 1)−1

∥∥ → 0 as m→∞.

If we choose J and J ′ to be the identity operator on H , then (1.1a') and (1.1b')
are ful�lled with δm = 0, and (1.1c') with δm → 0 is equivalent with (1.3). A
sequence of operators also converges in generalised norm resolvent sense if there
is a sequence of unitary operators Jm : Hm −→H∞ such that

‖Jm(∆m + 1)−1J∗m − (∆∞ + 1)−1‖ → 0.

The notion of operator-quasi-unitary equivalence is transitive in the fol-
lowing sense (the proof is similar to the one of Proposition 1.6, and we slightly
improved the error term δ̂ compared to the one given in [10, Proposition 4.2.5]):

Proposition 1.3. Assume that δ, δ̃ ∈ [0, 1]. Assume in addition that ∆
and ∆̃ are δ-quasi-unitarily equivalent with identi�cation operators J and J ′,
and that ∆̃ and ∆̂ are δ̃-quasi-unitarily equivalent with identi�cation operators

J̃ and J̃ ′. Then ∆ and ∆̂ are δ̂-quasi-unitarily equivalent with identi�cation

operators Ĵ = J̃J and Ĵ ′ = J ′J̃ ′, where δ̂ = 5δ + 5δ̃.

1.2. Quasi-unitary equivalence for energy forms

It is actually more convenient to start with the quadratic forms E and Ẽ
associated with the non-negative operators ∆ and ∆̃, and develop a slightly
more elaborated version of quasi-unitary equivalence. This approach avoids
dealing with the sometimes complicated operator domains and graph norms.
Nevertheless, in applications, the more elaborated conditions are easily veri�ed.

Let H and H̃ be two separable (complex) Hilbert spaces. We say that
E is an energy form in H if E is a closed, non-negative quadratic form in H ,
i.e., if E(f) := E(f, f) for some sesquilinear form E : H 1×H 1 −→ C, denoted
by the same symbol, if E(f) ≥ 0 and if H 1 := dom E , endowed with the norm
de�ned by

(1.4) ‖f‖2E := ‖f‖2H + E(f),
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is itself a Hilbert space and dense (as a set) in H . We call the corresponding
non-negative, self adjoint operator ∆ (see e.g. [5, Sec. VI.2]) the Laplacian

associated with E . Similarly, let Ẽ be an energy form in H̃ with Laplacian
∆̃. Note that ‖f‖1 = ‖f‖E and that ‖f‖E ≤ ‖f‖2 in the terminology of
Subsection 1.1.

We now also need identi�cation operators J1 and J ′1 acting on the form
domains.

De�nition 1.4. Let δ ≥ 0, J : H −→ H̃ and J ′ : H̃ −→ H , resp.
J1 : H 1 −→ H̃ 1 and J ′1 : H̃ 1 −→ H 1 be linear operators on the Hilbert
spaces and energy form domains.

(i) We say that J is δ-quasi-unitary with δ-quasi-adjoint J ′ (for the energy
forms E and Ẽ) if

‖Jf‖ ≤ (1 + δ)‖f‖,
∣∣〈Jf, u〉 − 〈f, J ′u〉∣∣ ≤ δ‖f‖‖u‖ (f ∈H , u ∈ H̃ ),(1.5a)

‖f − J ′Jf‖ ≤ δ‖f‖E , ‖u− JJ ′u‖ ≤ δ‖u‖Ẽ (f ∈H 1, u ∈ H̃ 1).(1.5b)

(ii) We say that J1 and J ′1 are δ-compatible (with identi�cation operators J
and J ′) if

(1.5c) ‖J1f − Jf‖ ≤ δ‖f‖E , ‖J ′1u− J ′u‖ ≤ δ‖u‖Ẽ (f ∈H 1, u ∈ H̃ 1).

(iii) We say that the energy forms E and Ẽ are δ-close if

(1.5d)
∣∣Ẽ(J1f, u)− E(f, J ′1u)

∣∣ ≤ δ‖f‖E‖u‖Ẽ (f ∈H 1, u ∈ H̃ 1).

(iv) We say that E and Ẽ are δ-quasi-unitarily equivalent, if (1.5a)�(1.5d) are
ful�lled.

We have the following relation between quasi-unitary equivalence for qua-
dratic forms and operators; the last conclusion has already been shown in [10,
Proposition 4.4.15]:

Proposition 1.5. If the forms E and Ẽ are δ-quasi-unitarily equivalent

then we have

(1.6) ‖R̃(z)J − JR(z)‖ ≤ C(z)δ,

where R(z) := (∆− z)−1 and R̃(z) := (∆̃− z)−1 for z ∈ C \ (σ(∆)∪σ(∆̃)) and

C(z) := 4
(

1 +
|z + 1|

d(z, σ(∆) ∪ σ(∆̃))

)2
.

In particular, the associated operators ∆ and ∆̃ are 4δ-quasi-unitarily
equivalent.
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Proof. For g ∈H and v ∈ H̃ , we have∣∣〈(R̃(z)J − JR(z))g, v〉
∣∣ =

∣∣〈g, J∗R̃(z)v〉 − 〈JR(z)g, v〉
∣∣

=
∣∣〈∆f, J∗u〉 − 〈Jf, ∆̃u〉∣∣

≤
∣∣〈∆f, ((J∗ − J ′) + (J ′ − J ′1)

)
u
〉∣∣ +

∣∣E(f, J ′1u)− Ẽ(J1f, u)
∣∣

+
∣∣〈(J1 − J)f, ∆̃u〉

∣∣
≤ 2δ‖f‖2‖u‖ + δ‖f‖1‖u‖1 + δ‖f‖‖u‖2 ≤ 4δ‖f‖2‖u‖2,

where f = R(z)g and u = R̃(z)v. We have ‖f‖2 = ‖(∆ + 1)R(z)g‖ ≤
‖(∆ + 1)R(z)‖‖g‖ and

‖(∆ + 1)R(z)‖ = sup
λ∈σ(∆)

λ+ 1

|λ− z|
≤ 1 + sup

λ∈σ(∆)

|z + 1|
|λ− z|

= 1 +
|z + 1|

d(z, σ(∆))

using the spectral theorem. A similar estimate holds for ‖u‖2. In particular, the
resolvent estimate follows. For the second statement, note that for z = −1 we
have C(−1) = 1, hence (1.1c) holds with 4δ. The remaining estimates (1.1a)�
(1.1b) follow from the quasi-unitary equivalence of the forms and the fact that
‖f‖1 ≤ ‖f‖2 and similarly for u. �

In particular, if we choose the rough estimate σ(∆)∪σ(∆̃) ⊂ [0,∞), then
C(z) ≤ 1+|z + 1|/d(z, [0,∞)). For Re z ≥ 0, the latter equals 1+|z + 1|/|Im z|
and for Re z < 0 the latter equals 1 + |z + 1|/|z|. Hence, we have

C(z) ≤ 1 +
|z + 1|
|Im z|

resp. C(z) ≤ 1 +
|z + 1|
|z|

for Re z ≥ 0 resp. Re z < 0.
Let us mention a special case here, namely δ = 0 in (1.5a)�(1.5c). In this

situation, J is a unitary operator with J ′ = J∗, J1 = J�H 1 and J ′1 = J∗�
H̃ 1 ;

hence without loss of generality we can assume H = H̃ , J = J ′ = idH and
dom E = dom Ẽ . In particular, E and Ẽ are δ-quasi-unitarily-equivalent if and
only if

(1.7a) |Ẽ(f, u)− E(f, u)| ≤ δ‖f‖E‖u‖Ẽ
for all f, u ∈ H 1 := dom E = dom Ẽ . Using the fact that E and Ẽ are sym-
metric, it is su�cient if (1.7a) only holds for f = u, i.e., (1.7a) is equivalent
with

(1.7b) |Ẽ(f)− E(f)| ≤ δ̂‖f‖2E
for all f ∈ H 1. For the implication (1.7a) ⇒ (1.7b) one can use δ̂ =
δ
√

(2 + δ)/(2− δ) (provided δ < 2) and for (1.7b)⇒(1.7a) one can use δ =

δ̂/
√

1− δ̂ (provided δ̂ < 1). This situation has also been studied in [3]1; basi-

1In memoriam Johannes Brasche, who suddenly passed away in December 2018.
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cally, their Theorem 2 is the implication (1.7b)⇒(1.7a) together with Proposi-
tion 1.5 (with z = −1 and 4δ replaced by δ, as δ = 0 in (1.5a)�(1.5c)).

In particular, if {Em}m∈N is a sequence of energy forms acting in the same

Hilbert space as E∞, i.e., Hm = H∞ with the same domain dom Em = dom E∞
for all m ∈ N, then (with all identi�cation operators being the correspon-
ding identity operators) (1.5a)�(1.5c) are trivially ful�lled with δ = 0. Moreo-
ver, (1.5d) with δ = δm → 0 is equivalent with∣∣E∞(f)− Em(f)

∣∣ ≤ δ̂m‖f‖2E∞
for all f ∈ dom E∞ with δm and δ̂m related as above. This is the classical situa-
tion of Kato [5, Theorem VI.3.6] or [16, Theorem VIII.25(c)], and we conclude
(using Proposition 1.5) that the operators ∆m associated with Em converge to
∆∞ in norm resolvent sense, see (1.3). Note that both classical results do not
state the convergence speed of the norm of the resolvent di�erence.

Another useful implication is the transitivity of quasi-unitary equivalence
for energy forms; it was originally proved in [10, Proposition 4.4.16]; we give
here a simpler proof.

Proposition 1.6. Let δ, δ̃ ∈ [0, 1]. Assume that E and Ẽ are δ-quasi-
unitarily equivalent with identi�cation operators J , J1, J ′ and J ′1. Moreover,

assume that Ẽ and Ê are δ̃-quasi-unitarily equivalent with identi�cation opera-

tors J̃ , J̃1, J̃ ′ and J̃ ′1. Assume in addition that, for all f ∈H 1 and w ∈ Ĥ 1,

‖J1f‖Ẽ ≤ (1 + δ)‖f‖E and ‖J̃ ′1w‖Ẽ ≤ (1 + δ̃)‖w‖Ê .

Then E and Ê are δ̂-quasi-unitarily equivalent with δ̂ = 14(δ + δ̃).

Proof. We de�ne the identi�cation operators by Ĵ := J̃J , Ĵ1 := J̃1J1,
Ĵ ′ := J ′J̃ ′ and Ĵ ′1 := J ′1J̃ ′1 and we set R := (∆ + 1)−1, R̃ := (∆̃ + 1)−1 and
R̂ := (∆̂ + 1)−1. Then Ĵ is bounded, because

‖Ĵ‖ = ‖J̃J‖ ≤ (1 + δ)(1 + δ̃) ≤ 1 +
3

2
(δ + δ̃).

The second inequality in (1.5a) follows from

‖Ĵ∗ − Ĵ ′‖ ≤ ‖J∗(J̃∗ − J̃ ′)‖ + ‖(J∗ − J ′)J̃ ′‖ ≤ (1 + δ)δ̃ + δ(1 + 2δ̃) ≤ 5

2
δ +

5

2
δ̃

as ‖J̃ ′‖ ≤ 1 + 2δ by (1.2). The �rst inequality in (1.5b) is also satis�ed because

‖f − Ĵ ′Ĵf‖ ≤ ‖f − J ′Jf‖ + ‖J ′(J − J1)f‖ + ‖J ′(id
H̃
−J̃ ′J̃)J1‖

+ ‖J ′J̃ ′J̃(J1 − J)f‖ ≤
(
δ + (1 + 2δ)

(
δ + δ̃(1 + δ) + (1 + 2δ̃)(1 + δ̃)δ

))
‖f‖E

≤ 14(δ + δ̃)‖f‖E
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and the second one follows by similar arguments. Next we prove that the two
inequalities in (1.5c) also hold. We estimate

‖(Ĵ1 − Ĵ)f‖ ≤ ‖(J̃1 − J̃)J1f‖ + ‖J̃(J1 − J)f‖

≤
(
δ̃(1 + δ) + (1 + δ̃)δ

)
‖f‖E ≤ 2(δ + δ̃)‖f‖E

and

‖(Ĵ ′1 − Ĵ ′)w‖ ≤ ‖(J ′1 − J ′)J̃ ′1w‖ + ‖J ′(J̃ ′1 − J̃ ′)w‖

≤
(
δ(1 + δ̃) + (1 + 2δ)δ̃

)
‖w‖Ê ≤

5

2
(δ + δ̃)‖w‖Ê .

For inequality (1.5d) we estimate∣∣Ê(Ĵ1f, w)− E(f, Ĵ ′1w)
∣∣

≤
∣∣Ê(J̃1J1f, w)− Ẽ(J1f, J̃ ′1w)

∣∣ +
∣∣Ẽ(J̃1f, J̃ ′1w)− E(f, J ′1J̃ ′1w)

∣∣
≤ δ̃‖J1f‖Ẽ‖w‖Ê + δ‖f‖E‖J̃ ′1w‖Ẽ
≤
(
δ̃(1 + δ) + δ(1 + δ̃)

)
‖f‖E‖w‖Ê ≤ 2(δ + δ̃)‖f‖E‖w‖Ê . �

It is a useful feature of De�nition 1.4 that it provides us with some �ex-
ibility in terms of the inequalities. The next lemma is one example. In [11] it
was applied to avoid a Poincar�e-type estimate, i.e., to bypass an estimate of
the �rst non-zero eigenvalue.

Lemma 1.7 ([11, Lem. 2.4]). Assume that (1.5a) is ful�lled with δa > 0
and (1.5c) with δc > 0. If

(1.5b') ‖u− JJ ′1u‖ ≤ δ′‖u‖Ẽ (u ∈ H̃ 1)

holds, then the second inequality in (1.5b) is ful�lled with δ = δ′ + (1 + δa)δc.

In particular, if all conditions (1.5) are ful�lled for some δ > 0, except
for the second one in (1.5b) which is replaced by (1.5b'), then E and Ẽ are

δ̃-quasi-unitarily equivalent with δ̃ = δ′ + (1 + δ)δ.

1.3. Consequences of quasi-unitary equivalence

Let ∆ be non-negative and self-adjoint and R(z) := (∆ − z)−1 be its
resolvent. Let U be an open neighbourhood of σ(∆) ⊂ C such that ∂U is locally
the graph of a Lipschitz continuous function and such that ∂U ∩ σ(∆) = ∅.
Moreover, let η : U −→ C be a holomorphic function. Then the integral

(1.9) η(∆) := − 1

2πi

∫
∂U
η(z)R(z) dz
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is de�ned in the operator norm topology provided

Cη,σ :=
1

2π

∫
∂U

|η(z)|
d(z, σ)

d|z| <∞

for σ := σ(∆). For example, if U encloses a compact subset K of σ(∆), then
1U (∆) (de�ned with η = 1U in (1.9)) is the spectral projection onto K.

Theorem 1.8. Assume that the forms E and Ẽ corresponding to the ope-

rators ∆ and ∆̃ are δ-quasi-unitarily equivalent (or that (1.6) holds), and that

U is an open subset such that ∂U is locally Lipschitz and such that ∂U∩(σ(∆)∪
σ(∆̃)) = ∅ then

(1.10) ‖η(∆̃)J − Jη(∆)‖ ≤ Cηδ,

where Cη is de�ned in (1.11).

Proof. Since the integrals for η(∆) and η(∆̃) exist in operator norm, we
have

η(∆̃)J − Jη(∆) = − 1

2πi

∫
∂U
η(z)

(
R̃(z)J − JR(z)

)
dz.

Taking the operator norm on both sides and using (1.6), we obtain
(1.11)

‖η(∆̃)J − Jη(∆)‖ ≤ 1

2π

∫
∂U
|η(z)|4

(
1 +

|z + 1|
d(z, σ(∆) ∪ σ(∆̃))

)2
d|z|︸ ︷︷ ︸

=:Cη

·δ. �

Note that Cη <∞ implies that Cη,σ(∆) <∞ and C
η,σ(∆̃)

<∞.

Remark 1.9. Note that we have also a functional calculus for measurable
functions continuous in a neighbourhood of σ(∆). Then the error Cηδ has to
be replaced by a function Φη(δ) with the property that Φη(δ) → 0 as δ → 0;
in particular, we lose the information about the convergence speed (see [9,
Theorem A.8] for details). Nevertheless, the following result remains true (with
a modi�ed error term, see [9, Theorem A.10].

Proposition 1.10 ([10, Lem. 4.2.13]). Assume that (1.10) holds. Then

‖η(∆̃)− Jη(∆)J ′‖ ≤ C ′ηδ and ‖η(∆)− J ′η(∆̃)J‖ ≤ C ′ηδ

with

C ′η := 5 sup
λ∈[0,∞)∩U

|η(λ)(λ+ 1)1/2| + 3Cη

for all energy forms E and Ẽ (with corresponding operators ∆ and ∆̃, respecti-

vely) being δ-quasi-unitarily equivalent with identi�cation operators J and J ′

and δ ∈ [0, 1].
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Let us calculate explicitly the constants Cη and C ′η for two examples of
the function η:

Example 1.11.

(i) Spectral projections. Let I := (a, b) such that −1 < a < b and a, b /∈
σ(∆) ∪ σ(∆̃) =: S with d({a, b}, S) ≥ ε for some ε > 0.2 We want to
compare the spectral projections 1I(∆) and 1I(∆̃), de�ned via the functi-
onal calculus for self-adjoint operators. Let U := I × i(−ε, ε) ⊂ C be a
rectangle enclosing I. Note that we have 1I(∆) = η(∆) with η = 1U

where the latter operator function is de�ned via the holomorphic functi-
onal calculus (1.9); a similar statement holds for ∆̃. A straightforward
estimate shows that

Cη =
4

π

(
b− a+ ε

)(
1 +

√
1 +

(b+ 1

ε

)2)2
= O(b).

Moreover, C ′η = 5
√
b+ 1 + 3Cη = O(b).

(ii) Heat operator. For the heat operator, we have ηt(λ) = e−tλ for t ≥ 0. As
open neighbourhood of the spectrum we let U be the open sector with
half-angle θ ∈ (0, π/2) and vertex at −1, and symmetric with respect to
the real axis. Then we have

Cηt ≤
4

π

∫ ∞
0

e−tr cos θ
(

1 +
1

sin θ

)2
dr =

4

π cos θ

(
1 +

1

sin θ

)2
· 1

t
,

since d(z, σ(∆) ∪ σ(∆̃)) ≥ |z + 1| sin θ. Now, the minimum of the right
hand side over θ ∈ (0, π/2) is achieved when θ = π/4, and hence is
4(4 + 3

√
2)/π · 1/t ≤ 11/π. Moreover, as

sup
λ∈[0,∞)

|e−tλ(λ+ 1)1/2| ≤

{
1, t ≥ 1/2,

1/(2t)1/2, t ∈ [0, 1/2],

we conclude that a rough estimate is

(1.12) C ′ηt =
39

t
+ 5.

In particular, we conclude the following convergence result for the solution
of the heat equation:

2If we aim in operator convergence of spectral projections, it is a standard assumption
that ∂I is in the resolvent set of at least one of the operators; if δ is small enough, it
can then be shown that ∂I is also in the resolvent set of the other operator, see e.g. [16,
Theorem VIII.23 (b)]. For strong convergence, the assumption can be weakened to exclude
that ∂I are eigenvalues.
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Corollary 1.12. Let E and Ẽ be two δ-quasi-unitarily equivalent energy

forms with associated operators ∆ and ∆̃. Assume that E and Ẽ are δ-quasi-
unitarily equivalent. Let ft resp. ut be the solution of the heat equations

∂tft + ∆ft = 0 resp. ∂tut + ∆̃ut = 0

for t > 0. If f0 = J ′u0, then for any T > 0 we have

‖ut − Jft‖H̃ ≤ CηT δ‖u0‖H̃
for all t ∈ [T,∞) with C ′ηT = O(1/T ) (T → 0) given in (1.12).

Proof. We have ut = e−t∆̃u0 and ft = e−t∆J ′u0. Then

‖ut − Jft‖H̃ = ‖(e−t∆̃ − Je−t∆J ′)u0‖H̃ ≤ C
′
ηtδ‖u0‖H̃

We apply Proposition 1.10 and the concrete estimate for C ′ηt to conclude the
desired estimate. �

As in the case of usual norm convergence the operator norm convergence
of spectral projections implies the convergence of spectra (also called spectral

exactness):

Corollary 1.13 ([10, Theorem 4.3.3]). If ∆m converges in generalised

norm resolvent sense to ∆∞, then

d̄(σ(∆m), σ(∆∞))→ 0

as m→∞, where

d̄(A,B) := max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}

de�nes a weighted Hausdor� metric between two closed sets A,B ⊂ [0,∞).
Here, d(a, b) := |(a+ 1)−1 − (b+ 1)−1| is a weighted metric on [0,∞).

If the operators have purely discrete spectrum, we can specify the error
estimate:

Corollary 1.14. Let λk(∆m) resp. λk(∆∞) denote the kth eigenvalue of

∆m resp. ∆∞ (in increasing order and repeated according to their multiplicity).

Then ∣∣λk(∆m)− λk(∆∞)
∣∣ ≤ Ckδm

for all m ∈ N such that dim Hm ≥ k, where Ck depends only on λk(∆∞).

In the case of purely discrete spectrum (or isolated eigenvalues) we can
approximate an eigenfunction also in energy norm:

Proposition 1.15 ([11, Proposition 2.6]). Let E and Ẽ be two δ-quasi-
unitarily equivalent energy forms with associated operators ∆ and ∆̃. Assume
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that Φ̃ is an eigenvector of ∆̃, such that its eigenvalue λ̃ is discrete in σ(∆̃),
i.e., there is an open disc D in C such that σ(∆̃)∩D = {λ̃}. Then there exists

a normalised eigenvector Φ of ∆ with Φ ∈ ran1D(∆) and a universal constant

C depending only on λ̃ (and the radius of D) such that

‖J1Φ− Φ̃‖Ẽ ≤ Cδ.

Note that the eigenvalue λ̃ does not necessarily need to have �nite multi-
plicity.

2. POST-CRITICALLY FINITE SELF-SIMILAR FRACTALS

In [11] the authors applied the quasi-unitary equivalence to the case of
certain fractals called post-critically �nite self-similar fractals (which supports
a regular resistance form in the sense of [6]; see also [17]). Here, we will simply
discuss two examples. For the general case, we refer to [11] and for a further
generalisation to magnetic energy forms on �nitely rami�ed fractals, we refer
to [14].

2.1. The unit interval

At the �rst glance it might look a bit odd to call the unit interval K =
[0, 1] a fractal, but it will turn out that this approach is quite elegant for the
approximation. We begin by de�ning two contractions F1, F2 : R → R with
contraction ratio 1/2 and �xed points 0 and 1 by

F1(t) =
t

2
and F2(t) =

1 + t

2
.

Then, we have K = F1(K) ∩ F2(K) and K is the unique non-empty compact
subset of R with that property. We call K the self-similar fractal with respect
to F = {F1, F2}. Moreover, the maps Fj describe a cell structure on K via

w 7→ Fw(K) := (Fw1 ◦ · · · ◦ Fwm)(K)

where w = w1 . . . wm ∈ Wm := {1, 2}m is a word of length m. We refer to
Fw(K) as an m-cell whenever w ∈Wm.

Next, we de�ne the (vertex) boundary by V0 = {0, 1}. Note that in the
special case of the interval, the topological boundary and the vertex boundary
coincide but that is not necessarily the case (see e.g. the Sierpi�nski gasket).
Then, we de�ne the approximating sequence of (�nite weighted discrete) graphs
as follows: Let G0 = (V0, E0) be the complete graph with two vertices V0 =
{0, 1} and one edge. Moreover, de�ne Gm = (Vm, Em) inductively, where Vm =
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{ k2−m | k = 0, . . . , 2m } are the m-dyadic numbers and where we have an edge
between (distinct) vertices x and y in Vm if and only if |x− y| = 2−m.

Let us specify the Hilbert spaces and energy forms now. As a measure on
K = [0, 1] we �x the Lebesgue measure µ and our Hilbert space is the usual
space of square integrable function with respect to the Lebesgue measure, i.e.,
H̃ = L2(K,µ).

The approximating measure µm = {µm(x)}x∈Vm on Gm is de�ned by

(2.1) µm(x) =

∫ 1

0
ψx,m(t) dµ(t) =

1

2m

{
1 x ∈ Vm \ V0

1/2 x ∈ V0,

where ψx,m : K → [0, 1] is given by 1{x} on Vm and extended to K by linear
interpolation. Hence, our Hilbert space on the graph Gm is Hm = `2(Vm, µm)
with norm

‖f‖2`2(Vm,µm) =
∑
x∈Vm

µm(x)|f(x)|2.

On each graph Gm we now de�ne a discrete energy form Em in `2(Vm, µm).
For each f ∈ `(Vm) := { f | f : Vm → C }, we set

(2.2) Em(f) =
∑

{x,y}∈Em

c{x,y},m|f(y)− f(x)|2,

where the conductances c{x,y},m ≥ 0 are chosen such that

(2.3) Em(ϕ) = min
{
Em+1(f)

∣∣ f ∈ `(Vm+1), f�Vm = ϕ
}
,

for all ϕ ∈ `(Vm). Working this out, we see that c{x,y},m = 2m. A sequence
{Em}m∈N0 of energy forms that satis�es (2.3) for all m is called compatible

sequence.
From the classical theory of calculus it is well-known that the limit form

is given by

E(u) =

∫ 1

0
|u′(t)|2 dµ(t)

for each weakly di�erentiable u ∈ L2(K,µ) with u′ ∈ L2(K,µ), i.e., we have
dom E = H1(K,µ).

Theorem 2.1 ([11]). The energy form (E ,H1(K,µ)) in L2(K,µ) and the

discrete energy form Em in `2(Vm, µm) are δm-quasi-unitarily equivalent, where

the error is

δm = (1 +
√

2) · 1

2m
.

Let us brie�y discuss the idea of the proof: First, we need to choose the
identi�cation operators from De�nition 1.4. On the Hilbert space level, we
de�ne Jm : Hm → H̃ and J ′m = J∗m : H̃ →Hm by

Jmf :=
∑
x∈Vm

f(x)ψx,m resp. J ′mu(y) =
1

µm(y)
〈u, ψy,m〉H̃ ,
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where f ∈ Hm, u ∈ H̃ and y ∈ Vm. Moreover, we de�ne J1
m : H 1

m → H̃ 1

by J1
mf := Jmf . Note that this is well-de�ned because ψx,m ∈ dom E . The

last operator J ′1m is chosen to be the evaluation in points of Vm, i.e., J
′1
mu(x) =

u(x). Again, this choice makes sense because functions in the domain of E are
continuous on K. That is because

(2.4) |u(x)− u(y)|2 ≤ E(u)R(x, y),

for x, y ∈ K, where R is the resistance metric associated with E , given by

R(x, y) :=
(

min
{
E(u)

∣∣u ∈ dom E , u(x) = 1 and u(y) = 0
})−1

and since R(x, y) = |x− y|, the relative topology of K coincides with the R-
topology (see [6, Sec. 3.4] for a more general result).

Now, we need to verify the validity of the inequalities in De�nition 1.4.
This is done in [11, Sec. 4] in greater details but let us discuss the key steps
here:

Applying the Cauchy-Young inequality in the �rst inequality of (1.5a) we
see that ‖Jf‖

H̃
≤ ‖f‖Hm for each f ∈ Hm and the second one is ful�lled

because J ′m = J∗m.

The inequalities in (1.5b) follow by applying the Cauchy-Schwarz inequa-
lity and by using the improved H�older inequality (2.4). For the �rst one, we
rewrite

f(y) =
1

µm(y)

∑
x∈Vm

f(x)〈ψx,m, ψy,m〉H̃

using the fact that {ψx,m}x∈Vm is a partition of unity on K and

J ′mJmf(y) =
∑
x∈Vm

f(x)J ′mψx,m(y) =
1

µm(y)

∑
x∈Vm

f(x)〈ψx,m, ψy,m〉H̃ .

Hence, by applying the above mentioned inequalities and some standard argu-
ments, we can estimate f − J ′mJmf in norm.

Note, that the �rst inequality from (1.5c) is trivially ful�lled by the choice
of Jm and J1

m. Instead of verifying the second one, we apply Lemma 1.7.
This is particularly useful here because it helps us to skip a discussion about
eigenvalues, we would otherwise have (see e.g. [12]).

The particular choice of the identi�cation operators becomes clear now:
The last inequality (1.5d) holds actually with equality because the {ψx,m} mi-
nimise the energy, i.e. as above, E(ψx,m) = Em(ψx,m�Vm) = Em(1{x}) where
1{x} is the characteristic function of the set {x} ⊂ Vm. Note that the letter
expression can be computed explicitly using (2.2).
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2.2. The Sierpi�nski gasket

A more illustrative example for a post-critically �nite self-similar fractal is
the Sierpi�nski gasket which is described by the family of contractions F , given
by

Fj : R2 → R2, Fj(x) =
1

2
(x− pj) + pj (j = 1, 2, 3)

where the �xed points pj are chosen such that {p1, p2, p3} are the vertices of
an equilateral triangle in R2. Then, as in the case of the unit interval, the
Sierpi�nski gasket is de�ned as the unique non-empty compact subset K of R2

that satis�es

K = F (K) := F1(K) ∪ F2(K) ∪ F3(K).

Again, the family of contractions {F1, F2, F3} describes a cell structure on the
Sierpi�nski gasket via the map w 7→ Fw(K) where w ∈ Wm = {1, 2, 3}m. The
vertex boundary is de�ned as V0 = {p1, p2, p3}. Note that in contrast to the
situation in the example of the unit interval, V0 does not coincide with the
topological boundary of K which is actually K itself.

We de�ne our approximating sequence of graphs in the same way as before:
Let G0 = (V0, E0) be the complete graph and let Gm = (Vm, Em) be given by

Vm :=
3⋃
j=1

Fj(Vm−1) and Em :=
{
e
∣∣ e = x, y ⊂ Vm and x ∼m y

}
,

where we write x ∼m y if and only if x and y are two distinct vertices in Vm
and there exists a word w ∈ Wm such that x, y ∈ Fw(K). Moreover, we de�ne
an energy form on Gm by

Em(f) =
∑
x∼my

(5

3

)m
|f(x)− f(y)|2,

for each f ∈ `(Vm). Here we sum over all vertices x ∈ Vm and their neighbours
y in the level m graph and, as in the case of the interval, the conductances
c{x,y},m = (5/3)m are chosen such that the sequence of energy forms {Em}m∈N0

is compatible.

Then the limit form exists and we de�ne an energy form on the Sierpi�nski
gasket by

E(u) := lim
m→∞

Em(u�Vm), u ∈ dom E :=
{
u
∣∣u : K → C, E(u) <∞

}
(see [6, 17]).

As a (canonical) measure µ on the Sierpi�nski gasket we choose the homo-
geneous self-similar measure, i.e., the uniquely determined probability measure
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µ that satis�es

µ =
1

3

(
µ ◦ F−1

1 + µ ◦ F−1
2 + µ ◦ F−1

3

)
.

That is, µ is the Hausdor� measure of dimension log 3/ log 2 and every m-cell
Fw(K) has measure 1/3m (we would like to stress that our approach works for a
general Borel regular probability measure on K; see [11] for details). As Hilbert

space structure on the fractal K, we choose H̃ = L2(K,µ). Then (E ,dom E)

is a closed quadratic form in H̃ .
On the graphs Gm we de�ne a measure as in (2.1) but here we choose

the functions ψx,m : K → [0, 1] to be the unique solution of the minimisation
problem

Em(1{x}) = min
{
E(u)

∣∣u ∈ dom E , u�Vm = 1{x}
}
.

These functions exist and are called m-harmonic functions with boundary va-
lues 1{x} on Vm (cf. [6]). The values of ψx,m can be computed explicitly by
iteration: If the values in the vertices of Vm are known, then, for each vertex
y ∈ Vm+1 \ Vm, there exists a unique m-cell that contains y; the value ψx,m(y)
is given by 1/5 times the value at the vertex in Vm opposite to y in the m-cell
plus 2/5 times the values of ψx,m at the vertices (of Vm) adjacent to y in the
same m-cell (cf. [17, Sec. 1.3]).

By the symmetry of the Sierpi�nski gasket and the functions {ψx,m}x∈Vm ,
which de�ne a partition of unity on K, we can specify µm also in this example
as

µm(x) =

∫
K
ψx,m dµ =

1

3m

{
1/3 x ∈ V0

2/3 x ∈ Vm \ V0.

The Hilbert space, we consider on the approximating sequence of graphs is
again given by Hm = `2(Vm, µm) and we conclude:

Theorem 2.2 ( [11]). The energy form (E ,dom E) in L2(K,µ) and the

discrete energy form Em in `2(Vm, µm) are δm-quasi-unitarily equivalent where

the error is

δm =
(1 +

√
3)
√

2√
3

· 1

5m/2
.

The idea of the proof is the same as described above in the case of the
unit interval (see [11]).

3. NEUMANN OBSTACLES

In this section, we brie�y present another class of examples. For details, we
refer to [1]. Let X be a complete Riemannian manifold of bounded geometry
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(i.e., its Ricci curvature is bounded from below and its injectivity radius is
bounded from below by a positive constant); a simple example is X = Rn. We
denote by L2(X) the Hilbert space of square-integrable functions with respect
to the standard volume measure, and by Hk(X) the Sobolev space of k-times
weakly di�erentiable and square integrable functions. Denote its Laplacian
by ∆X ≥ 0 (de�ned via its quadratic form EX(f) =

∫
X |df |

2 d vol). Under the
above assumptions (completeness and bounded geometry) it can then be shown
using the Bochner-Lichnerowicz-Weitzenb�ock formula that there is a constant
Cell.reg ≥ 1 such that

(3.1) ‖f‖H2(X) ≤ Cell.reg‖(∆X + 1)f‖L2(X)

for all f ∈ dom ∆X = H2(X), see e.g. [1, Proposition 3.2] and references therein.

We assume that B ⊂ X is a closed subset such that the following holds:

(i) there is δ ≥ 0 such that

‖f‖L2(B) ≤ δ‖f‖H1(X)

for all f ∈ H1(X);

(ii) there is a bounded extension operator, i.e., there is E : H1(X \B) −→
H1(X) such that Eu�X\B = u with operator norm bounded by Cext ≥ 1.

One can think of B as the disjoint union of small balls or other obsta-
cles. Denote by ∆N

X\B the Neumann Laplacian de�ned via its quadratic form

EN
X\B(u) :=

∫
X\B|du|

2 d vol. It can be seen that the �rst estimate extends to

‖df‖L2(B) ≤ δ‖f‖H2(X)

for f ∈ H2(X) without any assumption on the manifold (cf. [1, Proposition 3.7]).
We have the following result:

Theorem 3.1 ([1, Theorem 4.3]). Under the above assumptions, the Lap-

lacian ∆X and the Neumann Laplacian ∆N
X\B are CextCell.regδ-quasi-unitarily

equivalent.

Proof. We are showing a slightly modi�ed version of quasi-unitary equi-
valence for the corresponding energy forms. We �rst de�ne the following iden-
ti�cation operators as follows:

J : H := L2(X) −→ H̃ := L2(X \B), f 7→ f�X\B,

J1 : H 1 := H1(X) −→ H̃ 1 := H1(X \B), f 7→ f�X\B, J
′ = J∗ (hence J ′u is

the extension of u by 0 onto B) and

J ′1 : H̃ := H1(X \B) −→H 1 = H1(X), u 7→ Eu.
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In particular, J1f = Jf for f ∈ H1(X), JJ ′u = u, ‖J‖ = 1 and J ′ = J∗.
It remains to check the �rst inequality of (1.5b), the second of (1.5c) and a
modi�ed version of (1.5d): the �rst estimate is ful�lled with δ since

‖f − J ′Jf‖L2(X) = ‖f‖L2(B) ≤ δ‖f‖H1(X)

by our assumption. For the second, we argue

‖J ′1u− J ′u‖L2(X) = ‖Eu‖L2(B) ≤ δ‖Eu‖H1(X) ≤ Cextδ‖u‖H1(X\B),

hence the estimate is ful�lled with Cextδ ≥ δ. Instead of (1.5d), we show the
slightly stronger estimate

(3.2)
∣∣Ẽ(J1f, u)−E(f, J ′1u)

∣∣≤δ‖(∆X + 1)f‖L2(X)‖u‖Ẽ
for (f ∈H 2 := dom ∆,u ∈ H̃ 1),

i.e., we use the operator graph norm instead of the energy norm for f . In
particular, we have∣∣Ẽ(J1f, u)− E(f, J ′1u)

∣∣ =
∣∣∫
B
〈df, d(Eu)〉 d vol

∣∣
≤ ‖df‖L2(B)‖d(Eu)‖L2(B) ≤ ‖f‖H2(X)‖Eu‖H1(X)

≤ Cell.reg‖(∆X + 1)f‖L2(X)Cext‖u‖H1(X\B)

using the assumptions. The quasi-unitary equivalence for the operators follows
then similarly as in Proposition 1.5. �

Note that if B =
⋃
x∈Iε Bε(x) is the disjoint union of balls of radius

ε > 0 with centres x ∈ Iε separated by 2εα (i.e., x, y ∈ Iε and x 6= y, implies
d(x, y) > 2εα) with 0 < α < 1, then one can show that the extension operator is
uniformly bounded, i.e., Cext can be chosen to be independent of ε. Moreover,
one can choose δ = δε to be of order ε1−α in dimension n ≥ 3 (resp. ε1−α log|ε|
in dimension n = 2). Note that the sets Iε for di�erent values of ε may be
totally unrelated, see [1, Sec. 4.2] for details.
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