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Let M be a smooth manifold with boundary and bounded geometry, ∂DM ⊂
∂M be an open and closed subset of the boundary of M , P be a second order
di�erential operator onM , and b be a �rst order di�erential operator on ∂M . Our
operators act on sections of a vector bundle E → M with bounded geometry.
We prove the regularity and well-posedness in the Sobolev spaces Hs(M ;E),
s ≥ 0, of the mixed Dirichlet-Robin boundary value problem

Pu = f in M, u = 0 on ∂DM, ∂Pν u+ bu = 0 on ∂M \ ∂DM

under the following four natural assumptions. First, we assume that P satis�es
the strong Legendre condition and the �rst order terms are small. (In the scalar
case, the strong Legendre condition reduces to the uniformly strong ellipticity
condition.) Second, we assume that all the coe�cients of P and all their covariant
derivatives are bounded. Third, we assume that < b ≥ 0 and that there is ε > 0
and an open and closed subset ∂RM ⊂ ∂M \ ∂DM such that < b ≥ εI on ∂RM .
Finally, we assume that the distance to ∂RM ∪∂DM is uniformly bounded onM
and that ∂RM ∪ ∂DM intersects all components of ∂M (i.e. (M,∂RM ∪ ∂DM)
has �nite width).

We include also some extensions of our main result in di�erent directi-
ons. First, the �nite width assumption is required for the Poincar�e inequality
on manifolds with bounded geometry, a result for which we give a new, more
general proof. Second, we consider also the case when we have a decomposition
of the vector bundle E (instead of a decomposition of the boundary). Third, we
also consider operators with non-smooth coe�cients, but, in this case, we need
to limit the range of s. Finally, we also consider the case of uniformly strongly
elliptic operators and discuss the equivalence between the uniform Agmon con-
dition and the G�arding inequality. The main novelty of our results is that they
are formulated on a non-compact manifold.
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1. INTRODUCTION

This is the third paper in a series of papers devoted to the spectral and
regularity theory of di�erential operators on a suitable non-compact manifold
with boundary M using analytic and geometric methods. In this paper, we
extend the well-posedness result of [7], the �rst paper of the series, from the
case of the Laplace operator to that of operators (or systems) with non-smooth
coe�cients satisfying the strong Legendre condition. Considering systems is
important in practical applications. We also take advantage of the general re-
gularity results in [33], the second paper in this series, to obtain results on
Robin boundary conditions. The Robin boundary conditions �interpolate� be-
tween Dirichlet and Neumann boundary conditions, so are natural to consider.

We have made an extra e�ort to make this paper readable independently
of the previous two papers by recalling the main de�nitions and results from
those papers.

1.1. Geometric and analytic settings

We make several assumptions on the geometry and on the operators.
Let us begin by describing our geometric setting. We �x in what follows a
smooth m-dimensional Riemannian manifold with boundary and bounded geo-

metry (M, g), see De�nition 2.6. In particular, ∂M is smooth and a manifold
with bounded geometry in its own right. Also, we �x a vector bundle E →M
with a metric and a compatible connection ∇E . We let RE denote the curva-
ture of the connection ∇E . We assume that all the covariant derivatives ∇kRE
are bounded. Moreover, we assume our boundary to be partitioned, that is,
that we are given a disjoint union decomposition

(1) ∂M = ∂DM t ∂NM t ∂RM

where ∂DM , ∂NM and ∂RM are (possibly empty) open and closed subsets
of ∂M and t is the disjoint union. The indices of the notation re�ect that
these will become the parts of the boundary where we will impose Dirichlet,
Neumann, and Robin boundary conditions, respectively. Let A ⊂ ∂M . Recall
from [7] that (M,A) is said to have �nite width if, in addition to the bounded
geometry assumption on (M, g), dist(p,A) is uniformly bounded in p ∈M and
A intersects all boundary components of ∂M .

Let us now describe our analytic setting, which, in particular, will des-
cribe our operators. All the di�erential operators considered in this paper will
be assumed to have bounded, measurable (i.e. L∞) coe�cients. The most
important ingredients are a bounded sesquilinear form a on T ∗M ⊗ E and
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a �rst order di�erential operator b on E|∂M . They give rise to an operator
P̃(a,b) : H1(M ;E)→ H1(M ;E)∗ by

(2) 〈P̃(a,b)(u), v〉 :=

∫
M
a(∇u,∇v) dvolg +

∫
∂RM

(bu, v)E dvol∂g,

where dvol denotes the volume form with respect to the underlying metric and
〈 , 〉 denotes the pairing between a space V and its conjugate dual V ∗. (The
spaces H1 are recalled in the main body of the paper). See Section 2.2.2 for
more details. We note that Gesztesy and Mitrea have considered also non-local
operators b, see [31] and the references therein. Let also Q and Q1 be �rst
order di�erential operators acting on sections of E. They de�ne linear maps
Q̃, Q̃∗1 : H1(M ;E)→ H1(M ;E)∗. First, we let

(3) H1
D(M ;E) := {u ∈ H1(M ;E) | u = 0 on ∂DM }.

Our regularity and well-posedness results will be for the second order di�erential
operator

(4) P̃ := P̃(a,b) + Q̃+ Q̃∗1 : H1
D(M ;E)→ H1

D(M ;E)∗,

which encodes also the Robin boundary conditions. Ignoring these boundary
conditions via the restriction H1

D(M ;E)∗ → H1
0 (M ;E)∗, we obtain the �typi-

cal� second order di�erential operator (in divergence form)

(5) P := P(a,b) +Q+Q∗1 : H1
D(M ;E)→ H−1(M ;E) ' H1

0 (M ;E)∗.

This operator is hence independent of b, unlike P̃ .
We will use the operator P̃ to study mixed Dirichlet-Robin boundary con-

ditions, as follows. Let ν be the outward unit vector �eld at the boundary and
∂Pν the conormal derivative associated to P . We consider the mixed Dirichlet-

Robin boundary value problem:

(6)


Pu = f in M,
u = 0 on ∂DM,

∂Pν u+ bu = 0 on ∂NM t ∂RM.

The relation between this boundary value problem and P̃ is that, in a certain
sense that will be made precise below using the maps jk of Equation (19), we
have that P̃ (u) = (Pu, ∂Pν u + bu). (See [33] for a more detailed discussion of
the di�erence between P and P̃ and the role of boundary conditions and [22,30]
for some related results.) We note that the operator ∂Pν of the last equation of
(6) depends only on a and Q1. If P = ∆, the Laplacian, then ∂Pν = ∂ν is the
usual normal derivative.

As in [11, 31], we shall typically assume for our main results that P sa-
tis�es the strong Legendre condition, which is the condition that the bilinear
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form a de�ning the principal part P(a,b) of the operator P be strongly coercive
(De�nition 4.1). For scalar operators, the strong Legendre condition is equi-
valent to the uniform strong ellipticity condition, but, for systems, the strong
Legendre condition is more restrictive.

If T is a (possibly unbounded) operator on a Hilbert space H, we shall
write T ≥ ε if (Tξ, ξ) ≥ ε(ξ, ξ) for all ξ in the domain of T and denote <T :=
1
2(T + T ∗). Recall that t denotes the disjoint union. Our main result is the
following well-posedness result.

Theorem 1.1. Let ` ∈ N, ` ≥ 1, and assume that:

(i) (M,∂DM t ∂RM) has �nite width;

(ii) P := P(a,b) + Q + Q∗1 has coe�cients in W `,∞(M ; End(E)) and satis�es

the strong Legendre condition;

(iii) < b ≥ 0 and there is ε > 0 such that < b ≥ ε on ∂RM .

(iv) There is δ > 0 depending on ε, a, b, and (M, g) such that < (Q+Q∗1) ≥ −δ.
Then, for all k ∈ N, 1 ≤ k ≤ `, P̃ u := (Pu, (∂Pν u + bu)|∂M\∂DM ) de�nes an

isomorphism

P̃ : Hk+1(M ;E) ∩ {u|∂DM = 0 } → Hk−1(M ;E)⊕Hk−1/2(∂M \ ∂DM ;E).

This theorem follows directly from Theorem 4.7 and 4.8. In fact, it does
not matter what b is on ∂DM . In particular, the condition < b ≥ 0 is necessary
only on ∂M r ∂DM .

1.2. Comments

The proof of our main result, Theorem 1.1 combines the Poincar�e inequa-
lity with regularity. More precisely, by replacing Hk−1(M ;E) ⊕ Hk−1/2(M \
∂DM ;E) with H1

D(M ;E)∗ as the range for P̃ , our theorem makes sense also for
k = 0. This pattern of proof follows the classical case [4,7,18,23,38,40,43,51,53].
Using the trace theorem [34], we can also consider non-homogeneous Dirichlet
boundary conditions in Hk+1/2(∂DM ;E). What is essentially di�erent in the
non-compact case is how these two steps (Poincar�e inequality and regularity)
are dealt with.

For instance, the Poincar�e inequality follows from the �nite width as-
sumption, using the results from [7]. We moreover know, from that paper, that
the assumption that (M,∂DM t ∂RM) has �nite width is necessary in general.
Indeed, if M is a subset of Rn with the induced metric such that (M,∂M) is
not of �nite width, then the theorem is not true anymore. A counterexample is
provided by a domain that coincides with a cone in a neighborhood of in�nity.
The �nite width assumption on (M,∂DM t ∂RM) is needed in order to obtain
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the Poincar�e inequality, which implies the special case k = 0 of our theorem,
see Theorem 4.7 (and is essentially equivalent to it).

For regularity, we can use either positivity (or coercivity) or a uniform
version of the Shapiro-Lopatinski conditions. We refer the reader to [33], where
this issue is dealt with in detail.

The reader may have wondered what happens in the strongly elliptic case
(for systems). In that case, the coercivity (i.e. the G�arding inequality) is equi-
valent to the uniform Agmon condition for the boundary conditions, see Sub-
section 4.3.5. If the uniform Agmon condition is satis�ed, then one obtains the
analog of Theorem 1.1 for P replaced with P +R, for some real, large enough
R > 0.

1.3. Earlier results and novelty of our results

Recently, many results on Robin boundary conditions were obtained, al-
most all devoted to bounded domains with non-smooth boundaries. This is the
case with the nice papers by Dancer and Daners [21], Daners [22], and Gesztesy
and Mitrea [30, 31], to which we refer for more references. As seen from our
result, our focus is rather on unbounded domains, but we assume a smooth
boundary. This allows us also to obtain certain regularity results for our pro-
blem that do not make sense in the Lipschitz case. In fact, our main theorem,
Theorem 1.1, is new even in the case of pure Dirichlet or pure Neumann boun-
dary conditions.

One of the new issues that one has to deal with in the case of unboun-
ded domains is the Poincar�e inequality. The L1�Poincar�e inequality for scalar
functions and for ∂DM = ∂M was proved in [47]. The form that we need is
in [7]. In view of its importance and for further applications, we extended the
Poincar�e inequality from [7] to functions vanishing on suitable subsets A ⊂ ∂M
by using a new proof based on uniform coverings. The extension is that we no
longer assume that A be an open and closed subset of ∂M , but we need a
slightly stronger condition than that of (M,A) being of �nite width.

Theorem 1.1 was proved in [7] for P = P(g,0) = ∆g ≥ 0, where g is the
metric and P(a,b) is as de�ned in Equation (2) above. If P = P(a,0) with E = C
(the one dimensional trivial bundle) and a is real and smooth, Theorem 1.1
then follows also from the results of [7] by replacing the metric g with the
equivalent metric a, since in the scalar case the strong Legendre condition is
equivalent to the condition that P be uniformly strongly elliptic. The general
case, namely P = P(a,b) + Q + Q∗1, where Q and Q1 are �rst order di�erential
operators, presents the following additional di�culties:

(i) If Q+Q∗1 6= 0, we cannot reduce P to a Laplacian, even if a is smooth;



90 B. Ammann, N. Große and V. Nistor 6

(ii) a may be not real;

(iii) a may not be smooth;

(iv) the bundle E may be topologically non-trivial or of higher dimension.

The �rst three extensions are relatively easy to deal with. We deal with Q 6= 0
or Q1 6= 0 by assuming that the negative part of Q + Q∗ + Q1 + Q∗1 is small
enough (Condition (iv) of Theorem 1.1). The case when a is not real simply
requires to use a complex version of the Lax-Milgram Lemma. In the case a is
not smooth, we simply restrict the regularity of the resulting solution. These
three extensions of the results in [7] do not follow from the results of that paper,
but can be obtained using the methods of that paper and those in [33], once
the additional background material in Section 2 is taken into account.

The last extension, ((iv)), (to E non-trivial, that is, to systems) causes the
most headaches and, so far, to the best of our knowledge, is not dealt with in
a completely satisfactory way anywhere. To extend our results to systems, we
chose to consider the condition that P satis�es the strong Legendre condition.
This condition is satis�ed by the Hodge Laplacian dd∗ + d∗d, but is often too
restrictive for applications. The weaker condition (that P be uniformly strongly
elliptic) is satis�ed in many applications, but it seems that for systems it does
not provide results as strong as the ones that one obtains for scalar equations.
Nevertheless, one can obtain coercivity under some additional assumptions,
see 4.3.5.

We have also included Robin boundary conditions. Except for a few re-
sults and de�nitions that we recall from [7,33], the �rst two papers of this series,
our paper can be read independently of those papers, as we recall in Section 2
the most important de�nitions and results from those papers.

1.4. Contents of the article

The article is organized as follows. Section 2 is devoted to preliminaries,
including a discussion of Sobolev spaces, of di�erential operators on Riemannian
manifolds from a global point of view, and to some background material on
manifolds with bounded geometry from [7]. The proof of the Poincar�e inequality
is in Section 3. The last section contains the proofs of our main results, which,
in turn, yield Theorem 1.1. We also discuss there some extensions of our results
in Subsection 4.3, including the uniform Agmon condition.

2. BACKGROUND, NOTATION, AND PRELIMINARY RESULTS

We recall here some basic material, for the bene�t of the reader. We also
use this opportunity to �x the notation. For instance, M will always denote
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a smooth m-dimensional Riemannian manifold, possibly with boundary. The
metric of M will be denoted by g and the associated volume form will be
denoted by dvolg. The boundary is denoted by ∂M , and is assumed to be
smooth, for simplicity, although some intermediate results may hold in greater
generality. We assume that the boundary is partitioned as in Equation 1. See [7]
or [33] for concepts and notation not fully explained here.

2.1. General notations and de�nitions

We begin with the most standard concepts and some notation.

2.1.1. VECTOR BUNDLES

Let E → M be a smooth real or complex vector bundle endowed with
metric (., .)E and a connection

∇E : Γ(M ;E)→ Γ(M ;E ⊗ T ∗M).

We assume that ∇E is metric preserving, which means that

X(ξ, η)E = (∇Xξ, η)E + (ξ,∇Xη)E .

We endow the tangent bundle TM →M with the Levi-Civita connection.

De�nition 2.1. A vector bundle E →M with given connection has totally

bounded curvature if its curvature and all its covariant derivatives are bounded
(that is, ‖∇kRE‖∞ < ∞ for all k). If TM has totally bounded curvature, we
shall then say that M has totally bounded curvature.

2.1.2. SOBOLEV SPACES

Let us recall the basic de�nitions related to Sobolev spaces. See [6,10,24,
35,37,52] for related results. The Lp-norm ‖u‖Lp(M ;E) of a measurable section
of u of E is then

‖u‖pLp(M ;E) :=

∫
M
|u(x)|pE dvolg(x) , if 1 ≤ p <∞ , and

‖u‖L∞(M ;E) := ess-sup
x∈M

|u(x)|E ,

as usual. Let ` ∈ Z+ = N∪ {0}. We de�ne Lp(M ;E) := {u | ‖u‖Lp(M ;E) <∞}
and

W `,p(M ;E) := {u | ∇ju ∈ Lp(M ;E ⊗ T ∗⊗jM) , ∀ j ≤ ` }.
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We let W∞,p :=
⋂
`W

`,p.
If M has a smooth boundary ∂M and ∂DM ⊂ ∂M is an open and closed

subset of ∂M , we de�ne

W `,p
D (M ;E) := closureW `,p(M ;E)C

∞
c (M \ ∂DM ;E) ,(7)

the closure in W `,p(M ;E) of the space of smooth sections of E →M that have
compact support not intersecting ∂DM . As usual, we shall use the notation

H`(M ;E) := W `,2(M ;E) and H`
D(M ;E) := W `,2

D (M ;E)(8)

in the Hilbert space case (p = 2). If ∂DM = ∂M , we simply write W `,p
0 (M ;E)

:= W `,p
D (M ;E) and H`

0(M ;E) := W `,2
0 (M ;E). For manifolds with bounded

geometry, these spaces can be characterized using the trace theorem, see [34].
As in [30,33], we denote by V ∗ the complex conjugate dual of the Banach

space V . If −s ∈ N, we de�neHs(M ;E) ' H−s0 (M ;E)∗. IfM has no boundary
and s ∈ R, then the spaces Hs(M ;E) are de�ned by interpolating the spaces
H`(M ;E), ` ∈ Z. See [18,36,40,51] for the case of manifolds with boundary.

2.2. Di�erential operators

We recall now di�erential operators on manifolds from a global point of
view.

2.2.1. GENERAL DEFINITIONS

A di�erential operator of order k is an expression of the form P :=∑k
j=0 aj∇j , with aj a section of End(E) ⊗ TM⊗j . A di�erential operator

P =
∑k

j=0 aj∇j will be said to have coe�cients in W `,∞ for ` ∈ Z+ ∪ {∞} if
aj ∈ W `,∞(M ; End(E)⊗ TM⊗j) for all 0 ≤ j ≤ k. If ` = 0, we shall say that
P has bounded coe�cients. If ` = ∞, we shall say that P has totally bounded

coe�cients. We then obtain a bounded operator

P =

k∑
j=0

aj∇j : W `+k,p(M ;E) → W `,p(M ;E), ` ≥ 0.

2.2.2. BILINEAR FORMS AND OPERATORS IN DIVERGENCE FORM

We now consider di�erential operators in divergence form, which will allow
us to treat the Robin boundary conditions on same footing as the Dirichlet
boundary conditions. See [33] for more details. See also [22, 31]. Assume that,
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for each x ∈M , we have a sesquilinear map ax : T ∗xM ⊗Ex × T ∗xM ⊗Ex → C.
The family (ax) de�nes a section a of the bundle ((T ∗M ⊗E)⊗ (T ∗M ⊗E))′.
We say that the section a = (ax)x∈M is a bounded, measurable sesquilinear form

on T ∗M ⊗E if it is an L∞-section of ((T ∗M ⊗E)⊗ (T ∗M ⊗E))′. Let us also
consider a �rst order di�erential operator b on E|∂M . The Dirichlet form B(a,b)

on H1
D(M ;E) associated to such a bounded family of sesquilinear forms a and

endomorphism section b is then

B(a,b)(u, v) := Bg
(a,b)(u, v) :=

∫
M
a(∇u,∇v) dvolg +

∫
∂Mr∂DM

(bu, v)E dvol∂g .

(9)

Note that 〈P̃(a,b)(u), v〉 = B(a,b)(u, v) by (2). If Q is a �rst order di�eren-
tial operator with bounded coe�cients, then it also de�nes a continuous map
Q̃ : H1

D(M ;E)→ L2(M ;E) ⊂ H1
D(M ;E)∗. The adjoint Q̃∗ of Q̃ will then map

Q̃∗ : H1
D(M ;E) → H1

D(M ;E)∗ as well. The sesquilinear form B(a,b) and the

di�erential operators Q and Q1 then de�ne the di�erential operators P̃(a,b), P̃ ,
and P of Equations (2�5).

De�nition 2.2. We shall say that P̃ = P̃(a,b) + Q̃ + Q̃∗1 : H1
D(M ;E) −→

H1
D(M ;E)∗ and P := P(a,b) +Q+Q∗1 are second order di�erential operators in

divergence form if a is a bounded, measurable sesquilinear form on T ∗M ⊗ E,
b = b1 + b2 is a �rst order di�erential operator on E|∂M , with b1 with W 1,∞

coe�cients and b2 a bounded, measurable endomorphism of E|∂M , and Q and
Q1 are �rst order di�erential operators with bounded coe�cients. In particular,
P will have bounded coe�cients.

Remark 2.3. We have by de�nition

(10) 〈P̃ u, v〉 := B(u, v) := (∇u,∇v) + (bu, v)∂Mr∂DM + (Qu, v) + (u,Q1v)

where, we recall, 〈., .〉 denotes the dual pairing and (., .)N denotes the L2-
product on the manifold N (in case N = M we omit the index).

2.2.3. BOUNDARY VALUE PROBLEMS

We are interested in di�erential operators in divergence form P̃ : H1
D(M ;E)

→ H1
D(M ;E)∗ because we have the equivalence of the following two problems

(i) The operator P̃ : H1
D(M ;E)→ H1

D(M ;E)∗ is an isomorphism.

(ii) For each F ∈ H1
D(M ;E)∗ and h ∈ H1/2(∂DM ;E), the �weak� problem{
P̃ (u)(v) = F (v) for all v ∈ H1

D(M ;E)

u = h on ∂DM
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has a unique solution u ∈ H1(M ;E), depending continuously on F and
h.

The well-posedness of these problems implies then the well-posedness of

(iii) Let f ∈ L2(M ;E), h ∈ H3/2(∂DM ;E), and h1 ∈ H1/2(∂M \ ∂DM ;E).
The boundary value problem

Pu = f in M

u = h on ∂DM

∂Pν u+ bu = h1 on ∂M \ ∂DM
(11)

has a unique solution u ∈ H2(M ;E), depending continuously on f , h,
and h1. This is obtained by taking F (v) :=

∫
M (f, v)E dvolg +

∫
∂M\∂DM

(g, v)E dvol∂g and using higher regularity. See Corollary 4.10 below.

For higher regularity of the data, we obtain the usual formulation of mixed
boundary value problems. See Subsection 4.2. In particular, see [22, 31, 33] for
the need of Q∗1 in the statement of the main theorem (Theorem 1.1) and for
how Q∗1 a�ects the boundary conditions (i.e. the boundary operator ∂Pν ). Note
that the well-posedness of Problem (11) implies right away that of Problem (6).
The converse is also true in view of the trace theorem of [34], since ∂M was
assumed to be smooth.

The best way to understand the operator ∂Pν is using boundary triples
[15,46]. See [22,33] for explicit de�nitions of ∂Pν in local coordinates.

2.3. Manifolds with boundary and bounded geometry

We �rst recall some basic material on manifolds with boundary and boun-
ded geometry from [7], to which we refer for more details (see also [26,48]). As
in [7], we will only assume that our manifolds are paracompact (thus we will
not require our manifolds to be second countable).

If x, y ∈ M , then dist(x, y) denotes the distance between x and y with
respect to the metric g. If N ⊂M , then

(12) Ur(N) := {x ∈M | ∃y ∈ N, dist(x, y) < r }

will denote the r-neighborhood of N , that is, the set of points of M at distance
< r to N . Thus, if E is a Euclidean space, then BE

r (0) := Ur({0}) ⊂ E is
simply the ball of radius r centered at 0.

LetN be a hypersurface inM , i.e. a submanifold with dimN = dimM−1.
We assume that N carries a globally de�ned normal vector �eld ν of unit
length, simply called a unit normal �eld, which will be �xed from now on.
The Levi�Civita connection for the induced metric on N will be denoted by
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∇N . The symbol IIN will denote the second fundamental form of N (in M :
IIN (X,Y )ν := ∇XY −∇NXY ).

Let expMp : TpM → M be the exponential map at p associated to the
metric and

rinj(p) := sup{r | expMp : B
TpM
r (0)→M is a di�eomorphism onto its image}
rinj(M) := inf

p∈M
rinj(p).

De�nition 2.4. A Riemannian manifold without boundary (M, g) is said
to be of bounded geometry if rinj(M) > 0 and ifM has totally bounded curvature.

If M has boundary, then rinj(M) = 0. Let exp⊥(x, t) := expMx (tνx).

De�nition 2.5. Let (Mm, g) be a Riemannian manifold of bounded geome-
try with a hypersurface H = Hm−1 ⊂ M and a unit normal �eld ν on H. We
say that H is a bounded geometry hypersurface in M if the following conditions
are ful�lled:

(i) H is a closed subset of M ;

(ii) ‖(∇H)kIIH‖L∞ <∞ for all k ≥ 0;

(iii) exp⊥ : H × (−δ, δ) → M is a di�eomorphism onto its image for some
δ > 0.

As we have shown in [7], we have that the Riemannian manifold (H, g|H)
in the above de�nition is then a manifold of bounded geometry. See also [25,26]
for a larger class of submanifolds of manifolds with bounded geometry. We
shall denote by r∂ the largest value of δ satisfying the last condition of the last
de�nition. Recall from [48] the following de�nition (the precise form below is
from [7]):

De�nition 2.6. A Riemannian manifold M with (smooth) boundary has

bounded geometry if there is a Riemannian manifold M̂ with bounded geometry
satisfying

(i) M is contained in M̂ ;

(ii) ∂M is a bounded geometry hypersurface in M̂ .

Example 2.7. Lie manifolds have bounded geometry [8, 9]. It follows that
Lie manifolds with boundary are manifolds with boundary and bounded geo-
metry.

For our well-posedness results, we shall also need to assume that M ⊂
UR(∂DM ∪ ∂RM), for some 0 < R <∞, and hence, in particular, that ∂DM ∪
∂RM 6= ∅.
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De�nition 2.8. If M is a manifold with boundary and bounded geometry,
if A ⊂ ∂M and M ⊂ UR(A), for some 0 < R < ∞, we shall say that (M,A)
has �nite width.

Since we let dist(x, y) = ∞ if x and y belong to di�erent components of
M , the condition that (M,A) have �nite width then implies, in particular, that
A intersects every component of M . See [5,13,14,26,28,29,39] for applications
of manifolds of bounded geometry.

Vector bundles with totally bounded curvature de�ned on manifolds with
bounded geometry are called vector bundles with bounded geometry.

3. THE POINCAR�E INEQUALITY

We now give a new proof of the Poincar�e inequality in [7,47] and generalize
it by allowing more general subsets of the boundary where the function vanishes.
We assume from now on that M is a Riemannian manifold with boundary and
bounded geometry.

3.1. A uniform Poincar�e inequality for bounded domains

We shall need the following extension of the Poincar�e inequality (see [17,
20] or [27, �5.8.1]), which is proved (essentially) in the same way as the classical
result.

Proposition 3.1. Assume that Ω is a connected domain of �nite volume

in a Riemannian manifold (M, g) such that H1(Ω) → L2(Ω) is a compact

operator. Let K ⊂ L2(Ω)∗ be a bounded, weakly closed set of continuous linear

functionals such that L(1) 6= 0 for all L ∈ K. Then there is C > 0 such that,

for any f ∈ H1(Ω) and any L ∈ K, we have∫
Ω
|f |2 dvolg ≤ C

( ∫
Ω
|∇f |2d volg +|L(f)|2

)
.

Proof. Let us assume, by contradiction, that the contrary is true. Then
we can �nd a sequence fn ∈ H1(Ω) and a sequence Ln ∈ K such that

(13)

∫
Ω
|fn|2d volg > n

( ∫
Ω
|∇fn|2d volg +|Ln(fn)|2

)
.

By replacing fn with ‖fn‖−1
H1(Ω)

fn, we may assume that ‖fn‖H1(Ω) = 1. Then

Equation (13) gives that ∇fn → 0 in L2(Ω) in norm and that Ln(fn)→ 0.
Since the unit ball in a Hilbert space is a weakly compact set (by the

Alaoglu-Bourbaki theorem) and we are dealing with a separable Hilbert space
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(so the weak topology on the unit ball of H1(Ω) is metrisable), the sequence fn
has a subsequence weakly converging in H1(Ω) to some v ∈ H1(Ω). We replace
the original sequence with that sequence. Then ∇fn converges weakly to ∇v
in L2(Ω), since ∇ : H1(Ω) → L2(Ω) is continuous. Therefore ∇v = 0 since we
have seen that ∇fn → 0 in L2(Ω) in norm. Since Ω is connected, it follows
that v is a constant.

Since H1(Ω)→ L2(Ω) is a compact operator (by assumption), we obtain
that fn converges to v in norm in L2(Ω). Since K was assumed to be bounded
and weakly closed, it is weakly compact. We thus have that, by passing to a
subsequence, we may also assume that Ln converges weakly to some L ∈ K.
We thus obtain that Ln(fn)→ L(v), and hence L(v) = 0. Since v is a constant
and L(1) 6= 0 (since L ∈ K), we obtain v = 0. This gives

1 = ‖fn‖2H1(Ω) = ‖fn‖2L2(Ω) + ‖∇fn‖2L2(Ω) → ‖v‖
2
L2(Ω) + 0 = 0,

which is a contradiction. �

We can replace the assumption that K ⊂ L2(Ω)∗ be a bounded, we-
akly closed set of continuous linear functionals with the assumption that K ⊂
H1(Ω)∗ be a (norm) compact subset. We shall need the following two corolla-
ries (which hold in greater generality, but, for simplicity, we state the case that
we need).

Corollary 3.2. Let Ω be an open ball in Rn and ε > 0. Then there exists

C > 0 such that, for any B ⊂ Ω a subset of measure ≥ ε, we have∫
Ω
|f |2dx ≤ C

( ∫
Ω
|∇f |2dx+

∫
B
|f |2dx

)
for all f ∈ H1(Ω).

Proof. We consider K := {L ∈ L2(Ω)∗ | ‖L‖ ≤ vol(Ω)
1
2 , L(1) ≥ ε} which

is norm closed, convex, and bounded. Hence it is weakly compact. Then
L(u) :=

∫
B udvolg is in K, whenever B ⊂ Ω is a subset of measure ≥ ε.

Proposition 3.1 then gives∫
Ω
|f |2dx ≤ C

( ∫
Ω
|∇f |2dx+

∣∣ ∫
B
fdx

∣∣2 ),
for some C independent of f ∈ H1(Ω) and of B (of measure ≥ ε). The result
then follows from the Cauchy-Schwarz inequality applied to f and the charac-

teristic function of B: |
∫
B fdx|

2 ≤
( ∫

B dx
) ∫

B |f |
2dx ≤ vol(Ω)

∫
B |f |

2dx. �

Similarly, we obtain the following corollary.
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Corollary 3.3. Let Ω be an open ball in Rn, Ω = Ω′ × [0, r], and ε > 0.
Then there exists C > 0 such that, for any B ⊂ Ω × {0} a subset of measure

≥ ε, we have ∫
Ω
|f |2dx ≤ C

( ∫
Ω
|∇f |2dx+

∫
B
|f |2dx′

)
.

3.2. Proof of the Poincar�e inequality

Next we globalize the above inequalities to manifolds M with boundary
and bounded geometry. We assume � following De�nition 2.6 � that M is
embedded in a boundaryless manifold M̂ of the same dimension, of bounded
geometry and without boundary, such that ∂M is a bounded geometry hyper-
surface in M̂ . Recall that Ur(A) denotes the set of points of M at distance
< r to A. We use the notation in [7], which we recall now: Let {pγ}γ∈I be a
subset of M and 0 < 3r < min{rinj(M), rinj(∂M), r∂}, where r∂ is the largest
value of δ satisfying the last condition of De�nition 2.5 for H = ∂M and for
M replaced with M̂ . We let Wγ := Wγ(r) := Ur(pγ), if pγ is an interior point
of M ; otherwise we let Wγ := Wγ(r) := exp⊥(BT∂M

r (0)× [0, r)).

De�nition 3.4. Let (Mm, g) be a manifold with boundary and bounded
geometry and assume 0 < 3r < min{rinj(M), rinj(∂M), r∂} as above. A subset
{pγ}γ∈I is called an r-covering subset of M if the following conditions are
satis�ed:

(i) For each R > 0, there exists NR ∈ N such that, for each p ∈ M , the set
{γ ∈ I| dist(pγ , p) < R} has at most NR elements.

(ii) For each γ ∈ I, we have either pγ ∈ ∂M or d(pγ , ∂M) ≥ r.
(iii) M ⊂

⋃∞
γ=1Wγ(r).

We have the following Poincar�e-type inequality, which allows us to consi-
der more general Dirichlet boundary conditions.

Theorem 3.5. Let (M, g) be a Riemannian manifold with boundary of

bounded geometry, E →M be a hermitian vector bundle with a metric preser-

ving connection, and A ⊂ ∂M be a measurable subset. We assume that there

exists an r-covering subset {pγ}γ∈I and S ⊂ {γ ∈ I | pγ ∈ ∂M} satisfying the

following properties:

(i) dist(x, S) is bounded on M ;

(ii) there exists ε > 0 such that, for any γ ∈ S, vol∂M (A∩Wγ) ≥ ε vol∂M (Wγ).

Then there exists CM,A > 0 such that∫
M
|f |2 dvolg ≤ CM,A

(∫
M
|∇f |2 dvolg +

∫
A
|f |2 dvol∂g

)
,

for any smooth, compactly supported section f of E.
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Proof. The vector bundle case follows from the scalar case by Kato's ine-
quality, see the end of the proof. So let us assume in the beginning that E is
the trivial real line bundle and hence that f is a smooth, real-valued, compactly
supported function on M .

Let us assume, for the simplicity of notation, that we have a countable
set of indices γ for our r-covering set, which is equivalent to having a countable
basis of topology. We �rst enlarge the given set {pγ} to be an r/3-covering set
(but still use r to de�ne the sets Wγ ; we need that in order to ensure that two
neighboring Wγ 's will meet in a large enough set). Let S0 := S ⊂ N. De�ne,

by induction, S`+1 to be the set of γ ∈ N \
⋃`
j=0 Sj such that pγ is at distance

at most 2r/3 to S`. Then, for N large enough, we have N = S0 ∪S1 ∪ . . .∪SN ,
since there exists (by assumption) R > 0 such that dist(x, S) ≤ R, for all
x ∈M . For each γ ∈ S`+1, ` ≥ 0, we choose a predecessor π(γ) ∈ S` such that
dist(pγ , pπ(γ)) ≤ 2r/3.

Below, C > 0 is a constant (close to 1) that yields a comparison of the
volume elements on M and on the coordinate charts κγ := κpγ corresponding
to the r-covering de�ned by the r-covering set {pγ}γ∈N:

{
κp : Bm−1

r (0)× [0, r)→M, κp(x, t) := exp⊥(exp∂Mp (x), t), if p ∈ ∂M
κp : Bm

r (0)→M, κp(v) := expMp (v), otherwise.

(14)

(So Wγ is the image of κpγ .) The constant C depends only on r and M ,
but not on γ ∈ N, since M has bounded geometry and we have chosen r less
than the injectivity radius of M . If γ ∈ S0 := S, then Corollary 3.3 gives for
Ω := Bm−1

r (0)× [0, r) and B := κ−1
γ (A ∩Wγ) ⊂ Bm−1

r (0)× {0}

(15)

∫
Wγ

|f |2 dvolg ≤ C
∫

Ω
|f ◦ κγ |2dx ≤ CCΩ

(∫
Ω
|∇E(f ◦ κγ)|2dx

+

∫
B
|f ◦ κγ |2 dvol∂g

)
≤ CC ′CΩ

(∫
Wγ

|∇f |2dx+

∫
Wγ∩A

|f |2 dvol∂g

)
.

Here ∇E is the covariant derivative with respect to the euclidean metric and
C ′ is the constant in the equivalence of the local H1-norms with respect to
the euclidean metric and g. Again, since (M, g) is of bounded geometry, this
constant does not depend on γ. On the other hand, by the bounded geometry
assumption and the choice of the Wγ , if γ /∈ S0, the sets Wγ and Wβ will
intersect in a set of volume (or measure) ≥ ε for some ε > 0 independent of γ
and β if dist(pγ , pβ) ≤ 2r/3. Then using Corollary 3.2 (for Ω := Bm

r (0) and
B := κ−1

γ (Wγ ∩Wβ) ⊂ Bm
r (0), and β = π(γ)) and similar calculations to (15)
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we obtain

(16)

∫
Wγ

|f |2 dvolg ≤ C
(
CΩ

∫
Wγ

|∇f |2 dvolg +

∫
Wπ(γ)

|f |2 dvolg

)
.

Iterating Equation (16) and using Equation (15) we obtain that there
exists Ck > 0 such that for γ ∈ Sk we have

(17)

∫
Wγ

|f |2 dvolg ≤ Ck
( k∑
j=0

∫
W
πj(γ)

|∇f |2 dvolg +

∫
W
πk(γ)

∩A
|f |2 dvol∂g

)
.

(This equation reduces to Equation (15) if k = 0.) Since our cover is uniform,
there exists N0 ∈ N such that no point in M belongs to more than N0 sets of
the formWγ . We can also assume that the C0 ≤ C1 ≤ . . . ≤ CN (recall that we
stop at N). Using these observations and summing up (17) over γ, we obtain∫

M
|f |2 dvolg ≤

∞∑
γ=1

∫
Wγ

|f |2 dvolg

≤ CN
∞∑
γ=1

( k∑
j=0

∫
W
πj(γ)

|∇f |2 dvolg +

∫
W
πk(γ)

∩A
|f |2 dvol∂g

)
≤ (N + 1)N0CN

(∫
M
|∇f |2 dvolg +

∫
A
|f |2 dvol∂g

)
,

which is the desired inequality in the scalar case where CM,A = (N + 1)N0CN
(note that k depends on x, but we have k ≤ N , which explains the factor N+1
in CM,A).

For general vector bundles E with metric connection, we have the Kato in-
equality |∇|f |E | ≤ |∇f |E . Using then the inequality just proved for f replaced
by |f | we have∫

M
|f |2 dvolg ≤ CM,A

(∫
M
|∇|f ||2 dvolg +

∫
A
|f |2 dvol∂g

)
≤ CM,A

(∫
M
|∇f |2 dvolg +

∫
A
|f |2 dvol∂g

)
.

This completes the proof. �

Example 3.6. Let M = [0, 1] × R. Then A =
⋃
k∈Z {0} × [2k, 2k + 1]

satis�es the assumptions of our theorem, however, that would not be the case
if we replaced A with {0} × [0,∞).

We obtain the following result (proved for A = ∂M in [47] and, in general,
for A = ∂DM in [7])
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Corollary 3.7. Let (M, g) be a Riemannian manifold with boundary of

bounded geometry, let A ⊂ ∂M be an open and closed subset such that (M,A)
has �nite width. Moreover, let E → M be a hermitian vector bundle with a

metric preserving connection. Then there exists CM,A > 0 such that∫
M
|f |2 dvolg ≤ CM,A

(∫
M
|∇f |2 dvolg +

∫
A
|f |2 dvol∂g

)
,

for any smooth, compactly supported section f of E.

Proof. This follows right away from Theorem 3.5 by taking any r-covering
set {pγ} and S = {γ | pγ ∈ A}. �

We have the following extension of the Poincar�e inequality

Corollary 3.8. Let us keep the assumptions of Corollary 3.7. Then∫
M
|f |2 dvolg ≤ CkM,A

∫
M
|∇kf |2 dvolg,

for any f ∈ Hk(M ;E), vanishing of order k at A.

Proof. Both the left hand side and the right hand side are continuous
with respect to the Hk-norm. We have that C∞c (M \ A;E) is dense in {f ∈
Hk(M ;E) | ∂jνu = 0 on A, j ≤ k − 1} (see [7] and the references therein, for
instance). The proof is then obtained by iterating Corollary 3.7. �

4. WELL-POSEDNESS

We now prove our well-posedness results, under the assumption that P
satis�es the strong Legendre condition, that (M,∂DM ∪∂RM) has �nite width,
and that E → M has totally bounded curvature (in which case, we recall, E
is said to have bounded geometry). See Subsection 4.3 for an extension of our
results to the case when we have a decomposition E|∂M = ED ⊕ ER ⊕ EN of
the vector bundle E|∂M , instead of a decomposition of the boundary ∂M .

Recall that, by the de�nition of �nite width, our assumption that (M,∂D
M ∪∂RM) has �nite width implies, in particular, thatM is of bounded geome-
try. Also, recall that we assume that all our di�erential operators have bounded
coe�cients.

4.1. Coercivity

In order to study the invertibility of operators like P̃ , one often uses
�strong coercivity.� An easy way to obtain strongly coercive operators is to
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combine the �strong Legendre condition� with the Poincar�e inequality. See,
however, Subsection 4.3 for a discussion of uniformly strongly elliptic operators
and of the G�arding's inequality. We now recall the needed concepts, using the
terminology of [1, 19]. See also [30, 31,41,51].

De�nition 4.1. Let a be a bounded, measurable sesquilinear form on T ∗M
⊗E. We say that a satis�es the strong Legendre condition if there exists γa > 0
such that

< a(ζ, ζ) ≥ γa|ζ|2, for all ζ ∈ T ∗M ⊗ E .(18)

Note that this is a condition at every T ∗xM ⊗Ex and that it is uniform in
x. It would be more appropriate then to say that a satis�es the uniform strong

Legendre condition. For simplicity, we have chosen not to do that. However,
in agreement with the standard terminology, we use the terminology uniformly

strongly elliptic for operators that are strongly elliptic with uniform constants.
We can now introduce the operators in which we are interested.

De�nition 4.2. Let P̃ = P̃(a,b) +Q̃+Q̃∗1 be a second order (linear) di�eren-
tial operator in divergence form on the vector bundle E →M (De�nition 2.2),
with Q and Q1 �rst order di�erential operators (as usual). We shall say that
P̃ (or P ) satis�es the strong Legendre condition if a does. (Recall that it is a
standing assumption that P̃ has bounded coe�cients.)

Thus P satis�es the strong Legendre condition if, and only if, P(a,b) does.
Moreover, if P satis�es the strong Legendre condition, then it is uniformly
strongly elliptic. One of our results next amounts to the fact that, if the Poin-
car�e inequality is satis�ed, if P = P(a,b) satis�es the strong Legendre condition,
if < b ≥ ε, ε > 0 on ∂RM and < b ≥ 0 on ∂M , and if condition (iii) of Theo-
rem 1.1 is ful�lled, then P will also be �strongly coercive,� a concept that we
now recall.

De�nition 4.3. Let V be a Hilbert space and let S : V → V ∗ be a bounded
operator. We say that S is strongly coercive (on V ) if there exists γ > 0 such
that

< 〈Su, u〉 ≥ γ‖u‖2V .
In other words, the smooth family (ax)x∈M of sesquilinear forms ax : T ∗xM

⊗E × T ∗xM ⊗E → C satis�es the strong Legendre condition if, and only if, it
is uniformly strongly coercive.

Lemma 4.4. Let us assume that (M,∂DM t∂RM) has �nite width. Then

the semi-norm

|||u|||2 := ‖∇u‖2L2(M ;E) +

∫
∂RM
|u|2E dvol∂g

is a norm on H1
D(M ;E) that is equivalent to the H1-norm.
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Proof. Using the trace theorem [34], there is c > 0 such that |||u||| ≤
c‖u‖H1 . The reverse inequality is obtained as follows: Let c2 be the best
constant in the Poincar�e inequality of Corollary 3.7 for A = ∂DM ∪ ∂RM and
sections vanishing on ∂DM . Then ‖u‖2H1 ≤ (1 + c2)|||u|||2. �

The strong Legendre condition and Poincar�e's inequality combine to yield
strong coercivity:

Proposition 4.5. Let P = P(a,b) be a second order (linear) di�erential

operator in divergence form on the vector bundle E →M (see De�nition 2.2).

Assume that (M,∂DM t ∂RM) has �nite width, that P satis�es the strong

Legendre condition, that < b := 1
2(b + b∗) ≥ 0 on ∂M (as operators), and that

there exists ε > 0 such that < b ≥ ε on ∂RM , then P is strongly coercive on

H1
D(M ;E). (So Q = Q1 = 0 in this result.)

Proof. The de�nition of P̃(a,b), Equation (2), gives for all u ∈ H1
D(M ;E)

that

< (P̃(a,b)u)(u) =

∫
M
< a(∇u,∇u) dvolg +

∫
∂Mr∂DM

< (bu, u) dvol∂g

≥ γa‖∇u‖2+ε

∫
∂RM
|u|2 dvol∂g ≥ min{γa, ε}|||u|||2 ≥

min{γa, ε}
1 + c2

γa‖u‖2H1 ,

where the last step is by Lemma 4.4. The proof is complete. �

The relation <b := 1
2(b+ b∗) ≥ ε, as operators, means, as customary, that

<(bζ, ζ) = (<bζ, ζ) ≥ ε‖ζ‖2L2 ,

for all ζ ∈ H1(∂RM ;E).
We are interested in strongly coercive operators in view of the Lax-Milgram

Lemma (see, for example, [32, Section 5.8]).

Lemma 4.6 (Lax�Milgram lemma). Let S : V → V ∗ be a strongly coercive

map with <〈Su, u〉 ≥ γ‖u‖2V . Then S is invertible and ‖S−1‖ ≤ γ−1.

Combining the above results (Proposition 4.5 and the Lax-Milgram
Lemma 4.6), we immediately obtain the following theorem which is the analog
result of Theorem 1.1 for k = 0.

The theorem uses the de�nitions of P and P̃ explained in De�nition 2.2.
Recall that P̃(a,b) is de�ned by the sesquilinear form a, by the �rst order dif-
ferential operator b acting on E∂RM , by the �rst order di�erential operators Q
and Q1, and, �nally, by the relation P̃ = P̃(a,b) + Q̃ + Q̃∗1. All operators are
assumed to have bounded coe�cients. Moreover, P(a,b) is the associated second

order operator obtained by partial integration from P̃(a,b) ignoring boundary
terms, that is, P = P(a,b) +Q+Q∗1.
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Theorem 4.7. Let (M, g) be a Riemannian manifold with boundary. As-

sume that:

(i) (M,∂DM t ∂RM) has �nite width.

(ii) P = P(a,b) + Qu + Q∗1 satis�es the strong Legendre condition and has

bounded coe�cients, as usual;

(iii) < b ≥ 0 and there is ε > 0 such that <b ≥ ε on ∂RM .

(iv) there is δ = δ(a, b, g) ≥ 0 small enough such that <(Q+Q1) ≥ −δ.
Then P̃ : H1

D(M ;E)→ H1
D(M ;E)∗ is an isomorphism.

Note that <(Q + Q∗1) = <(Q + Q1). In particular, the condition <(Q +
Q1) ≥ −δ means that

<((Q+Q1)ξ, ξ) = <
(
(Qξ, ξ) + (ξ,Q1ξ)

)
≥ −δ‖ξ‖2H1 ,

for all ξ ∈ H1
D(M ;E).

4.2. Higher regularity

We continue to assume that M is a smooth manifold with smooth boun-
dary and bounded geometry. In this section, we record what is one of our main
applications of the Poincar�e inequality, that is, the well-posedness of the mixed
Dirichlet-Robin problem on manifolds with �nite width in higher Sobolev spa-
ces. Even the particular case of the Poisson problem with Neumann or Dirichlet
boundary conditions is new in the setting of manifolds with bounded geometry.
These results extend the well-posedness result in energy spaces of the previous
subsection to higher regularity Sobolev spaces. They follow by combining the
well-posedness in energy spaces with the regularity results in [33].

To this end, we assume that P has coe�cients in W k,∞, for some �xed
k ≥ 1. We also continue to assume that P̃ = P̃(a,b) + Q̃+ Q̃∗1 (again with P and

P̃ de�ned as in De�nition 2.2) satis�es the strong Legendre condition and < b
is strictly positive on ∂R and nonnegative everywere. We have seen then that
P̃(a,b) is strongly coercive.

Let us de�ne

(19) jk : Hk−1(M ;E)⊕Hk−1/2(M \ ∂DM ;E)→ H1
D(M ;E)∗

by jk(f, g)(w) :=
∫
M (f, w) dvolg +

∫
∂Mr∂DM (g, w) dvol∂g, if k ≥ 1, j0 = id, if

k = 0. Note, however, that, for k = 0, we have an exact sequence

0→ H−1/2(M \ ∂DM ;E)→ H1
D(M ;E)∗ → H−1(M ;E)→ 0,

which explains our notation. If P̃ u = jk(f, g), we shall write ∂Pν u + bu = g
and Pu = f . This explains the di�erence between P̃ and P . See [33] for more
details.
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The following result was proved in [33, Corollary 7.5], using that the
Neumann and Robin problems satisfy regularity. See also [2, 3, 41, 44].

Theorem 4.8 ([33]). Assume that the operator P = P(a,b)+Q+Q1 satis�es

the strong Legendre condition, that it has coe�cients in W k,∞, k ≥ 1, and < b
is an order zero operator. Then there exists c > 0 such that

‖u‖Hk+1(M ;E) ≤ c
(
‖Pu‖Hk−1(M ;E) + ‖u‖H1(M ;E)

+ ‖u|∂DM‖Hk+1/2(∂DM ;E) + ‖∂Pν u+ bu‖Hk−1/2(M\∂DM ;E)

)
,

for any u ∈H1(M ;E) such that P̃ u ∈ jk(Hk−1(M ;E)⊕Hk−1/2(∂M\∂DM ;E)).
For k = 0 the statement is trivial (once suitably reformulated).

The meaning of this result is also that, if u ∈ H1(M ;E), u|∂DM ∈
Hk+1/2(∂DM ;E), and P̃ u ∈ Im(jk) = jk(H

k−1(M ;E)⊕Hk−1/2(M \∂DM ;E))
with ∂Pν u+ bu ∈ Hk−1/2(M \ ∂DM ;E), then, in fact, u ∈ Hk+1(M ;E).

To prove Theorem 1.1, we �rst notice that the assumption that < b ≥ 0
implies that <b := 1

2(b + b∗) is of order zero, since b is of order (at most) one.
Theorem 1.1 is therefore a consequence of Theorems 4.7 and 4.8.

4.3. Applications and extensions

We include now some consequences and extensions of our main result,
Theorem 1.1. For simplicity, we assume here that our di�erential operators
have totally bounded coe�cients.

4.3.1. SPLITTING OF E

Let us assume that we are given a splitting

(20) E|∂M = ED ⊕ ER ⊕ EN

as a direct sum of three smooth vector bundles with bounded geometry. We
denote by pD, pR, pN the associated orthogonal projections E → ED, ER, EN .
We then replace the space H1

D(M ;E) with

(21) V := {u ∈ H1(M ;E) | pDu = 0}.

Up until this point, we had ED := E|∂DM , ER := E|∂RM , and EN := E|∂NM .
The more general framework introduced here is needed in order to treat the
Hodge-Laplacian.
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4.3.2. ASSUMPTIONS UNDER THE SPLITTING OF E

In general, here is how the assumptions change in the new setting:

(i) The Poincar�e inequality becomes the assumption that the modi�ed norm

|||u|||2 := ‖∇u‖2M + ‖pRu‖2∂M
is equivalent to the H1-norm on V .

(ii) We continue to assume that P has coe�cients in W `,∞.

(iii) The di�erential operator b is then assumed to satisfy <b ≥ εpR for some
ε > 0.

(iv) Also, we continue to assume that <(Q + Q∗1) ≥ −δ, for some δ small
enough, with δ depending on a, ε, and (M, g).

Then Theorem 1.1 remains valid in this setting. This is equivalent to
Corollary 4.10 formulated in detail below. Before discussing this theorem, let
us notice that condition (i) replacing the Poincar�e inequality is somewhat tricky,
as seen in the following example.

Example 4.9. Let M = [0, 1] with the standard, euclidean metric. Then
both (M, {0}) and (M, {1}) are of �nite width, so they satisfy the Poincar�e
inequality (for scalar functions, that is, for E = C). Let now E = C2. It
is enough to take ER = {0}, but V as in (21). We thus need to specify ED
above ∂M = {0, 1}. Two seemingly similar choices will give completely di�erent
results.

Indeed, let ED = {0} ⊕ C above {0}. Then Assumption (i) on the equi-
valence of norms is satis�ed if ED = C ⊕ {0} above {1}, but is not satis�ed
if ED = {0} ⊕ C above {1}. The �rst case corresponds to putting together
(M, {0}) and (M, {1}), whereas the second case corresponds to putting toget-
her (M, {0, 1}) and (M, ∅). In the second case, the Poincar�e inequality is clearly
not satis�ed (since u = 1 is allowed).

4.3.3. BOUNDARY VALUE PROBLEMS

Recall the discussion on boundary value problems in Section 2.2.3. As
usual, Theorem 1.1 gives results on boundary value problems. We formulate,
nevertheless, the result in the more general framework relying on a decomposi-
tion of E as in Equation (20).

Corollary 4.10. We consider the setting of Section 4.3.2. Then the

boundary value problem
Pu = f ∈ H`−1(M ;E) in M

pDu = h0 ∈ H`+1/2(∂M ;ED) on ∂M

(1− pD)(∂Pν u+ bu) = h1 ∈ H`−1/2(∂M ;ER ⊕ EN ) on ∂M

(22)
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is well-posed ( i.e. it has a unique solution u ∈ H`+1(M ;E) that depends conti-

nuously on h0 and h1).

4.3.4. SELF-ADJOINTNESS

As in [7], we obtain the following corollary.

Corollary 4.11. Let us assume that P is as in Section 4.3.2 and, more-

over, that it has coe�cients in W 1,∞ and is formally self-adjoint, that is, that

(Pu, v) = (u, Pv) for u, v ∈ C∞
c

(M r ∂M ;E). Then P with domain

D(P ) := {u ∈ H2(M ;E) | pDu = 0, (1− pD)(∂Pν u+ bu) = 0}

is self-adjoint.

See also [21, 22, 30, 31], where bounded domains, but with Lipschitz or
more general boundaries, were considered. As in those papers, one obtains also
consequences for the corresponding parabolic equations.

4.3.5. COERCIVITY IN GENERAL AND G�ARDING'S INEQUALITY

As is well known, results such as Corollary 4.11 are closely related to
G�arding's inequality. This inequality is usually obtained for uniformly strongly
elliptic operators. Indeed, following [1], we can extend our results to uniformly
strongly elliptic operators as follows.

Recall that an operator P is coercive on V ⊂ H1(M ;E) if it satis�es the
G�arding inequality, that is, if there exist γ > 0 and R ∈ R such that for all
u ∈ V

(23) <(Pu, u) ≥ γ‖u‖2H1(M ;E) −R‖u‖
2
L2(M ;E).

Then P + λ is strongly coercive for <(λ) > R, and hence Theorems 1.1 and
4.7 remain true for P replaced with P + λ. Coercive operators on bounded

domains were characterized by Agmon in [1] as strongly elliptic operators sa-
tisfying suitable conditions at the boundary (which we shall call the �Agmon
condition.�). We shall need a uniform version of this condition, to account for
the non-compactness of the boundary.

Let P
(0)
x be the principal part of the operator P and C

(0)
x be the principal

part of the boundary conditions (pD, (1− pD)(∂Pν + b)) with coe�cients frozen

at some x ∈ ∂M , as in [33]. Let B
(0)
x be the associated Dirichlet bilinear form

to P
(0)
x equipped with the above boundary conditions (again with coe�cients

frozen at x). This is as in Equation (9). In particular, we have the projection

p
(0)
D,x : Ex → (ED)x that enters in the boundary conditions de�ned by C

(0)
x .
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This de�nes a boundary value problem on the half-space T+
x M and a bilinear

form on T+
x M that is continuous in the H1-seminorm |u|H1 := ‖∇u‖L2 .

De�nition 4.12. We say that P (or the form B of Equation (10)) satis�es
the uniform Agmon condition (on ∂M) if it is uniformly strongly elliptic and
if there exists C > 0 such

B(0)
x (u, u) := (P (0)

x u, u) +

∫
Tx∂M

(b(0)u, u)dx′ ≥ C|u|2H1 ,

for all x ∈ ∂M and all u ∈ C∞c (T+
x M) that satis�es p

(0)
D,xu = 0 (on Tx∂M =

∂T+
x M).

We have then the following result that is proved, mutatis mutandis, as the
regularity result in [33], to which we refer for more details.

Theorem 4.13. We use the notation in 4.3.1, in particular,

V := {u ∈ H1(M ;E) | pDu = 0}.

We have that P̃ (equivalently, the form B of Equation (10)) is coercive on V
if, and only if, it satis�es the uniform Agmon condition on ∂M .

The idea of the proof, in one direction, is to consider u with a shrinking
supports towards x using dilations and to retain the dominant terms. In the
other direction, one uses the standard partitions of unity on manifolds with
(boundary and) bounded geometry. See [33,51] for details of this method.

Remark 4.14. The reader may have noticed that our Robin boundary con-
ditions are of the form ∂Pν + b. It makes sense, of course, to consider boundary
conditions of the form a∂Pν + b, where a is an endomorphism of ER ⊕EN . If a
is invertible, this changes nothing. However, signi�cant di�erences arise if a is
singular. See, for instance, the recent preprint [42] and the references therein.

See [12,16,45,49,50] for an approach to boundary value problems on non-
compact manifolds using pseudodi�erential operators and for related recent
results.
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