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We introduce a new class of groupoids, called boundary action groupoids, which
are obtained by gluing reductions of action groupoids. We show that such grou-
poids model the analysis on many singular spaces, and we give several exam-
ples. Under some conditions on the action of the groupoid, we obtain Fredholm
criteria for the pseudodi�erential operators generated by boundary action grou-
poids. Moreover, we show that layer potential groupoids for conical domains
constructed in an earlier paper [9] are both Fredholm groupoids and boundary
action groupoids, which enables us to deal with many analysis problems on sin-
gular spaces in a uni�ed way. As an application, we obtain Fredholm criteria for
operators on layer potential groupoids.
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1. INTRODUCTION

The aim of this paper is to study some algebras of pseudodi�erential
operators on open manifolds that are �regular enough at in�nity� (in that they
can be compacti�ed to a �nice� manifold with corners). More speci�cally, we
look for a full characterization of the Fredholm operators, meaning those that
are invertible modulo a compact operator.

1.1. Background

Let M0 be a smooth manifold and P : Hs(M0) → Hs−m(M0) a di�eren-
tial operator of order m, acting between Sobolev spaces. When M0 is a closed
manifold, it is well-known that P is Fredholm if, and only if, it is elliptic [26].
This is an important result, that has many applications to partial di�erential
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equations, spectral theory and index theory. A great deal of work has been
done to obtain such conditions when M0 is not compact, because in that case,
being elliptic is no longer a su�cient condition to be Fredholm.

A possible approach is to consider manifolds M0 that embed as the in-
terior of a compact manifold with corners M and di�erential operators that
are �regular� near ∂M . This is the approach followed by Melrose, Monthubert,
Nistor, Schulze and many others: see for instance [17,31,38,62]. A di�erential
operator P in this setting is Fredholm if, and only if, it is elliptic and a family
of limit operators (Px)x∈∂M is invertible; we shall give more details below.

Lie groupoids have been proven to be an e�ective tool to obtain Fred-
holmness results and to model analysis on singular spaces in general (see for
instance [1, 2, 15, 16, 31, 41, 43, 46] and the references therein for a small sam-
ple of applications). One general advantage of this strategy is that, by as-
sociating a Lie groupoid to a given singular problem, not only are we able
to use groupoid techniques, but we also get automatically a groupoid C∗-
algebra and well-behaved pseudodi�erential calculi naturally a�liated to this
C∗-algebra [3,30,31,42,53,64]. In many situations, the family of limit operators
can be obtained from suitable representations of the groupoid C∗-algebra, so
Fredholmness may be studied through representation theory.

Recently [6], the concept of Fredholm groupoids was introduced as, in some
sense, the largest class of Lie groupoids for which such Fredholm criteria hold
with respect to a natural class of representations, the regular representations
(see Section 2 for the precise de�nitions). A characterization of such grou-
poids is given relying on the notions of strictly spectral and exhaustive families
of representations, as in [52, 61]. The associated non-compact manifolds are
named manifolds with amenable ends, since certain isotropy groups at in�nity
are assumed to be amenable. This is the case for manifolds with cylindrical
and poly-cylindrical ends, for manifolds that are asymptotically Euclidean, and
for manifolds that are asymptotically hyperbolic, and also manifolds obtained
by iteratively blowing-up singularities. In [7], we discuss these examples ex-
tensively, and show how the Fredholm groupoid approach provides a uni�ed
treatment for many singular problems.

Many interesting Fredholm groupoids are action groupoids: this approach
has been followed by Georgescu, Iftimovici and their collaborators [22,23,45,49].
These authors considered the smooth action of a Lie group G on a compact
manifold with corners M . In this setting, the limit operators (Px)x∈∂M are
obtained as �translates at in�nity� of P under the action of G. This point
of view allows the study of operators with singular coe�cients, such as those
occurring in the N -body problem.

The �rst part of our work studies a special class of groupoids, named
boundary action groupoids, which is obtained by gluing action groupoids (in a
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sense made precise in the paper). Boundary action groupoids have a simple
local structure, and occur naturally in many of the examples discussed above.

In the second part of the paper, we consider conical domains. Our ori-
ginal motivation comes here from the study of boundary problems for elliptic
di�erential equations, namely by applications of the classical method of layer
potentials, which reduces di�erential equations to boundary integral equati-
ons [21,37,63]. One typically wants to invert an operator of the form � 1

2 +K�
on suitable function spaces on the boundary of some domain Ω. If the boundary
is C1, then the integral operator K is compact on L2(∂Ω) [20], so the operator
1
2 + K is Fredholm and we can apply the classical Fredholm theory to solve
the Dirichlet problem. But if there are singularities on the boundary, as in the
case of conical domains, this result is not necessarily true [18, 19, 32, 66]. Suit-
able groupoid C∗-algebras and their representation theory are then a means
to provide the right replacement for the compact operators, and the theory of
Fredholm groupoids is suited to yield the desired Fredholm criteria.

In [8], we associated to Ω, or more precisely to ∂Ω, a layer potentials

groupoid over the (desingularized) boundary that aimed to provide the right
setting to study invertibility and Fredholm problems as above. As a space, we
have

G :=

(⊔
i

(∂ωi × ∂ωi)× R+

)⊔
Ω0×Ω0 ⇒ M :=

(⋃
i

∂ωi × [0, 1)

)⋃
Ω0,

where
⊔

is the disjoint union, Ω0 is the smooth part of ∂Ω, and the local cones
have bases ωi ⊂ Sn−1, where ωi's are domains with smooth boundary, i =
1, ..., l. The space of unitsM can be thought of as a �desingularized boundary�.
The limit operators in this case, that is, the operators overM \Ω0, have dilation
invariant kernels on (∂ωi×∂ωi)×R+, which eventually yield a family of Mellin
convolution operators on (∂ωi) × R+, one for each local cone. This fact was
one of the original motivations in our de�nition. In [8], we were able to obtain
Fredholm criteria making use of the machinery of pseudodi�erential operators
on Lie manifolds. These Fredholm criteria are formulated on weighted Sobolev
spaces, we refer the reader to [29, 35] and references therein for some details.
Let us state their de�nition here: let rΩ be the smoothed distance function to
the set of conical points of Ω and let Ω0 be the smooth part of ∂Ω. Recall that
the m-th Sobolev space on ∂Ω with weight rΩ and index a is de�ned by

Kma (∂Ω) = {u ∈ L2
loc(∂Ω), r

|α|−a
Ω ∂αu ∈ L2(Ω0), for all |α| ≤ m}.

We have the following isomorphism [4]:

Kmn−1
2

(∂Ω) ' Hm(∂′Σ(Ω), g), for all m ∈ R,
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where Σ(Ω) is a desingularization of Ω and g = r−2
Ω ge, with ge the standard

Euclidean metric, and ∂′Σ(Ω) is the union of the hyperfaces that are not at
in�nity in ∂Σ(Ω), which can be identi�ed with a desingularization of ∂Ω (see
Section 4).

1.2. Overview of the main results

The purpose of the present paper is two-fold. The �rst part of the paper
introduces the class of boundary action groupoids, that are obtained by gluing

a family of action groupoids (Gi oMi)i∈I (in a sense made precise below). We
will show that this setting recovers many interesting algebras of pseudodi�e-
rential operators. Moreover, we rely on the results in [7] to obtain the following
Fredholm condition:

Theorem 1.1. Let G ⇒ M be a boundary action groupoid with unique

dense orbit U ⊂M , and let P ∈ Lms (G) ⊃ Ψm(G). Assume that the action of G
on ∂M is trivial and that, for each x ∈ ∂M , the isotropy group Gxx is amenable.

Then P : Hs(U)→ Hs−m(U) is Fredholm if, and only if

(1) P is elliptic, and

(2) Px : Hs(Gxx)→ Hs−m(Gxx) is invertible for all x ∈ ∂M .

Here Lms (G) is the completion of the space Ψm(G) of order-m pseudodif-
ferential operators on G in the topology of L(Hs, Hs−m), which act on U in a
natural way (see Subsection 2.3). The notion of ellipticity for P is the usual
one: its principal symbol σ(P ) ∈ Γ(T ∗U) should be invertible outside the zero-
section. Theorem 1.1 extends directly to pseudodi�erential operators acting
between sections of vector bundles.

We will show that the assumptions of Theorem 1.1 are satis�ed in many
natural situations, for instance when one wishes to study geometric operators
on asymptotically Euclidean or asymptotically hyperbolic manifolds. The limit
operators Px are right-invariant di�erential operators on the groups Gxx and are
of the same type as P . For example, if P is the Laplacian on M0, then Px is
also the Laplacian for a right-invariant metric on the group Gxx .

For the second part of the paper, we relate both the Fredholm groupoid
and boundary groupoid approaches to the study of layer potential operators on
domains with conical singularities. We consider here bounded domains with
conical points Ω in Rn, n ≥ 2, that is, Ω is locally di�eomorphic to a cone
with smooth, possibly disconnected, base. (If n = 2, we allow Ω to be a domain
with cracks. See Section 4 for the precise de�nitions.) We consider the layer
potentials groupoid de�ned in [8], which is a groupoid over a desingularization
of the boundary, and we place it in the setting of boundary action groupoids.
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Moreover, we show independently that the layer potentials groupoid associated
to the boundary of a conical domain is indeed a Fredholm groupoid (Theo-
rem 4.8). We obtain Fredholm criteria naturally and are able to extend them
to a space of operators that contains L2-inverses.

Applying the results of [7] for Fredholm groupoids, we obtain our main
result (Theorems 4.9). As above, the space Lms (G) is the completion of the space
of order-m pseudodi�erential operators Ψm(G) with respect to the operator
norm on Sobolev spaces (see Section 2.3).

Theorem 1.2. Let Ω ⊂ Rn be a conical domain without cracks with the

set of conical points Ω(0) = {p1, p2, · · · , pl}, with possibly disconnected cone

bases ωi ⊂ Sn−1.

Let G ⇒M = ∂′Σ(Ω) be the layer potential groupoid as in De�nition 4.2.

Let P ∈ Lms (G) ⊃ Ψm(G) and s ∈ R. Then P : Ksn−1
2

(∂Ω) → Ks−mn−1
2

(∂Ω) is

Fredholm if, and only if,

(1) P is elliptic, and

(2) the Mellin convolution operators

Pi := πpi(P ) : Hs(R+ × ∂ωi; g)→ Hs−m(R+ × ∂ωi; g) ,

are invertible for all i = 1, ..., l, where the metric g := r−2
Ω ge with ge the

Euclidean metric.

The above theorem also holds, with suitable modi�cations, for polygonal
domains with rami�ed cracks.

The layer potentials groupoid constructed here is related to the so-called
b-groupoid (Example 2.16) associated to the manifold with smooth boundary
∂′Σ(Ω). The b-groupoid can be used to recover Melrose's b-calculus [38]. If
the boundaries of the local cones bases are connected, then the two groupoids
coincide (note that it is often the case that the boundaries are disconnected,
for instance take n = 2). In general, our pseudodi�erential calculus contains
the compactly supported b-pseudodi�erential operators, in that our groupoid
contains the b-groupoid as an open subgroupoid. The main di�erence at the
groupoid level is that in the usual b-calculus there is no interaction between the
di�erent faces at each conical point.

In [56], Li and the third-named author applied the techniques of pseu-
dodi�erential operators on Lie groupoids to the method of layer potentials on
plane polygons (without cracks) to obtain the invertibility of operators I ±K
on suitable weighted Sobolev spaces on the boundary, where K is the double
layer potential operators (also called Neumann-Poincar�e operators) associated
to the Laplacian and the polygon. The Lie groupoids used in that paper are
exactly the groupoids we constructed in [8], which will be shown to be Fredholm
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in this paper. Moreover, the third-named author used a similar idea to make a
connection between the double layer potential operators on three-dimensional
wedges and (action) Lie groupoids in [55].

However, for domains with cracks, the resulting layer potential operators
are no longer Fredholm. These issues will be addressed in a forthcoming paper.

1.3. Contents of the paper

We start in Sections 2.1 to 2.4 by reviewing some relevant facts about
Lie groupoids, including Lie algebroids, groupoid C∗-algebras and pseudodif-
ferential operators on Lie groupoids. We discuss the necessary facts about Lie
groupoids and their algebroids, and give several important examples.

In Section 2.5, we review the de�nition of Fredholm groupoids and their
characterization, relying on exhaustive families of representations, resulting on
Fredholm criteria for operators on Fredholm groupoids.

Section 3 introduces one of the main constructions of the paper, which
is the gluing of a family of locally compact groupoids (Gi)i∈I . We give two
di�erent conditions that are su�cient to de�ne a groupoid structure on the
gluing G =

⋃
i∈I Gi, and show some properties of the gluing. When each Gi is a

Lie groupoid, we describe the Lie algebroid of the glued groupoid G.
We de�ne the class of boundary action groupoids in Subsection 3.3. We

give some examples of boundary action groupoids which occur naturally when
dealing with analysis on open manifolds. We then explain the construction of
the algebra of di�erential operators generated by a Lie groupoid G, and prove
the Fredholm condition given by Theorem 1.1.

In the remaining sections, we consider the case of layer potential grou-
poids on conical domains. In Section 4, we describe the construction of the
relevant groupoids and give their main properties in the case with no cracks
(Section 4.2).

In Section 4.4, we start with checking that the layer potential groupoid
is always a boundary action groupoid. We show moreover that such groupoids
are Fredholm and obtain Fredholm criteria for operators on layer potential
groupoids.

2. FREDHOLM GROUPOIDS

The aim of this section is to recall some basic de�nitions and constructi-
ons regarding groupoids, and especially Lie groupoids (we refer to Renault's
book [58] for locally compact groupoids, and Mackenzie's books [33,34] for Lie
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groupoids). In Subsection 2.5, we recall the de�nitions and results concerning
Fredholm Lie groupoids as in [6].

2.1. Lie groupoids and Lie algebroids

Let us begin with the de�nition of a groupoid, as in [34,58].

De�nition 2.1. A groupoid is a small category in which every morphism
is invertible.

Remark 2.2. It is often more useful to see a groupoid G as a set of objects
G(0) and a set of morphisms G(1). We will often identify G with its set of
morphisms G(1). Any element g ∈ G has a domain d(g) and range r(g) in G(0),
as well as an inverse ι(g) := g−1 ∈ G. To every object x ∈ G(0) corresponds a
(unique) unit map u(x) ∈ G. Finally, the product of two morphisms de�nes a
map µ from the set of composable arrows

G(2) := {(g, h) ∈ G × G, d(g) = r(h)}

to G. The groupoid G is completely determined by the pair (G(0),G(1)), together
with the �ve structural maps d, r, ι, u and µ [34, 58].

We now �x some notations for later. When (g, h) ∈ G(2), the product will
be written simply as gh := µ(g, h). We shall also write G ⇒M for a groupoid
G with objects G(0) = M . Finally, let A ⊂ M , and put GA := d−1(A) and
GA := r−1(A). The groupoid G|A := GA ∩ GA will be called the reduction of G
to A. The saturation of A is the subset of M de�ned by

G ·A = {r(g) | g ∈ G, d(g) ∈ A} = r
(
d−1(A)

)
.

In particular, if A is a point {x} ⊂M , then G · x is the orbit of x in M .

De�nition 2.3. A locally compact groupoid is a groupoid G ⇒ M such
that:

(1) G and M are locally compact spaces, with M Hausdor�,

(2) the structural morphisms d, r, ι, u and µ are continuous, and

(3) d : G →M is surjective and open.

Note that these conditions imply that r : G → M is surjective and open
as well. Only the unit space M is required to be Hausdor� in the general
de�nition, so G may be non-Hausdor�. In this paper, we will not assume the
space G to be Hausdor�, and we will always specify when it is so. We give
several examples of groupoids in Subsection 2.4 below.
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Lie groupoids are groupoids with a smooth structure. In the analysis of
problems on singular spaces, it is crucial to distinguish between smooth mani-
folds without corners and manifolds with boundary or corners. The manifolds
we consider here may have corners, which occur in many applications; for ex-
ample, this is the case when one has to remove a singularity by blowing-up a
submanifold [50, 65]. Thus, in our setting, a manifold M is a second-countable

space that is locally modelled on open subsets of [0,∞[n, with smooth coor-
dinate changes [50]. Note that M is not necessarily Hausdor�, unless stated
explicitly. By a smooth manifold, we shall mean a manifold without corners.

By de�nition, every point p ∈M of a manifold with corners has a coordi-
nate neighborhood di�eomorphic to [0, 1)k×(−1, 1)n−k such that the transition
functions are smooth. The number k is called the depth of the point p. The set
of inward pointing tangent vectors v ∈ Tp(M) de�nes a closed cone denoted by
T+
p (M).

A smooth map f ;M1 →M2 between two manifolds with corners is called
a tame submersion provided that df(v) is an inward pointing vector of M2 if
and only if v is an inward pointing vector of M1. Lie groupoids are de�ned as
follows.

De�nition 2.4. A Lie groupoid is a groupoid G ⇒M such that

(1) G and M are manifolds with corners, with M Hausdor�,

(2) the structural morphisms d, r, ι and u are smooth,

(3) the range d is a tame submersion, and

(4) the product µ is smooth.

We remark that (3) implies that each �ber Gx = d−1(x) ⊂ G is a smooth
manifold (without corners) [7, 51]. In particular, the Lie groupoids we use
are locally compact and second countable spaces, but they are not necessarily
Hausdor� (and many important examples, coming in particular from foliation
theory [9], yield non Hausdor� groupoids). A slightly more general class of
groupoids, also useful in applications, is that of continuous family groupoids,
for which we assume smoothness along the �bers only, and continuity along the
units [30,54].

If G is a Lie group (which is a particular example of Lie groupoid, see
Example 2.11), then its tangent space over the identity element has a structure
of Lie algebra, induced by the correspondence with right-invariant vector �elds
on G. The corresponding construction for a general Lie groupoid is that of a
Lie algebroid [33, 34].

De�nition 2.5. Let M be a manifold with corners and A → M a smooth
vector bundle. We say that A is a Lie algebroid if there is a Lie algebra structure
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on the space of sections Γ(A), together with a vector bundle morphism ρ : A→
TM covering the identity, and such that the induced morphism

ρ : Γ(A)→ Γ(TM)

is a Lie algebra morphism. In that case, the map ρ is called the anchor of A.

Example 2.6. Let G ⇒ M be a Lie groupoid. Then u : M → G is an
embedding and we can consider

AG := (ker d∗)|M =
⊔
x∈M

TxGx,

which is a vector bundle over M . The smooth sections of AG are in one-to-one
correspondence with the right-invariant vector �elds on ker d∗, which form a
Lie algebra. This gives AG a Lie algebroid structure, whose anchor is given
by r∗.

The de�nition of Lie algebroid morphism was given for instance in [33,34].

De�nition 2.7. Let A → M and B → N be two Lie algebroids. A mor-

phism of Lie algebroids from A to B is pair (Φ, φ) such that

(1) φ : M → N is a smooth map and Φ : A → B a vector bundle morphism
covering φ,

(2) Φ induces a Lie algebra morphism Γ(A)→ Γ(B), and

(3) the following diagram is commutative:

A B

TM TN,

Φ

ρA ρB

φ∗

with ρA and ρB the respective anchor maps.

A Lie algebroid A → M is said to be integrable whenever there is a Lie
groupoid G ⇒M such that AG is isomorphic to A. Not every Lie algebroid is
integrable: the relevant obstruction is discussed in [10]. However, some classical
results of Lie algebra theory remain true in this more general case. In order to
state those, we shall say that a Lie groupoid G →M is d-connected (respectively
d-simply-connected) if each of its d-�bers Gx is connected (respectively simply-
connected), for every x ∈M . A proof of the following two results may be found
in [40,51].

Theorem 2.1 (Lie I). Let A → M be a Lie algebroid. If A is integrable,

then there is a (unique) d-simply-connected groupoid integrating A.
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Theorem 2.2 (Lie II). Let φ : A → B be a morphism of integrable Lie

algebroids, and let G and H be integrations of A and B. If G is d-simply-

connected, then there is a (unique) morphism of Lie groupoids Φ : G → H such

that φ = Φ∗.

2.2. Groupoid C∗-algebras

We assume all our locally compact groupoids G ⇒M to be endowed with
a �xed (right) Haar system, denoted (λx)x∈M . Here λx is a measure on the
d-�ber Gx, and the family (λx)x∈M should be invariant under the right action
of G and satisfy a continuity condition [58]. All Lie groupoids have well-de�ned
(right) Haar systems. For simplicity, we also assume that all our groupoids
are Hausdor� (some adjustments to the de�nition must be considered in the
non-Hausdor� case [9]).

To any locally compact groupoid G (endowed with a Haar system), there
are associated two basic C∗-algebras, the full and reduced C∗-algebras C∗(G)
and C∗r (G), whose de�nitions we recall now. Let Cc(G) be the space of conti-
nuous, complex valued, compactly supported functions on G. We endow Cc(G)
with the convolution product

ϕ ∗ ψ(g) =

∫
Gd(g)

ϕ(gh−1)ψ(h)dλd(g)(h)

and the usual involution ϕ∗(g) := ϕ(g−1), thus de�ning an associative
∗-algebra structure [58].

There exists a natural algebra norm on Cc(G) de�ned by

‖ϕ‖1 := max
{

sup
x∈M

∫
Gx
|ϕ|dλx, sup

x∈M

∫
Gx
|ϕ∗|dλx

}
.

The completion of Cc(G) with respect to the norm ‖ · ‖1 is denoted L1(G).
For any x ∈M , the algebra Cc(G) acts as bounded operators on L2(Gx, λx).

De�ne for any x ∈ M the regular representation πx : Cc(G) → L(L2(Gx, λx))
by

(πx(ϕ)ψ)(g) := ϕ ∗ ψ(g) :=

∫
Gd(g)

ϕ(gh−1)ψ(h)dλd(g)(h) , ϕ ∈ Cc(G) .

We have ‖πx(ϕ)‖L2(Gx) ≤ ‖ϕ‖1.

De�nition 2.8. We de�ne the reduced C∗-algebra C∗r (G) as the completion
of Cc(G) with respect to the norm

‖ϕ‖r := sup
x∈M
‖πx(ϕ)‖
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The full C∗-algebra associated to G, denoted C∗(G), is de�ned as the completion
of Cc(G) with respect to the norm

‖ϕ‖ := sup
π
‖π(ϕ)‖ ,

where π ranges over all contractive ∗-representations of Cc(G), that is, such that
‖π(ϕ)‖ ≤ ‖ϕ‖1, for all ϕ ∈ Cc(G).

The groupoid G is said to bemetrically amenable if the canonical surjective
∗-homomorphism C∗(G) → C∗r (G), induced by the de�nitions above, is also
injective.

Let G ⇒M be a second countable, locally compact groupoid with a Haar
system. Let U ⊂M be an open G-invariant subset, F := M rU . Then, by the
classic results of [47, 48, 60], C∗(GU ) is a closed two-sided ideal of C∗(G) that
yields the short exact sequence

(1) 0→ C∗(GU )→ C∗(G)
ρF−→C∗(GF )→ 0 ,

where ρF is the (extended) restriction map. If GF is metrically amenable, then
one also has the exact sequence

(2) 0→ C∗r (GU )→ C∗r (G)
(ρF )r
−−−−→C∗r (GF )→ 0 .

It follows from the Five Lemma that if the groupoids GF and GU (respecti-
vely, G) are metrically amenable, then G (respectively, GU ) is also metrically
amenable. We notice that these exact sequences correspond to a disjoint union
decomposition G = GF t GU .

2.3. Pseudodi�erential operators on Lie groupoids

We recall in this subsection the construction of pseudodi�erential opera-
tors on Lie groupoids [30, 31, 41, 42, 44, 53]. Let P = (Px)x∈M be a smooth
family of pseudodi�erential operators acting on Gx := d−1(x). The family P is
called right-invariant if Pr(g)Ug = UgPd(g), for all g ∈ G, where

Ug : C∞(Gd(g))→ C∞(Gr(g)), (Ugf)(g′) = f(g′g).

Let kx be the distributional kernel of Px, x ∈M . The support of P is

supp(P ) :=
⋃
x∈M

supp(kx) ⊂ {(g, g′), d(g) = d(g′)} ⊂ G × G,

since supp(kx) ⊂ Gx × Gx. Let µ1(g′, g) := g′g−1. The family P = (Px) is
called uniformly supported if its reduced support suppµ(P ) := µ1(supp(P )) is a
compact subset of G.
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De�nition 2.9. The space Ψm(G) of pseudodi�erential operators of order

m on a Lie groupoid G with units M consists of smooth families of pseudo-

di�erential operators P = (Px)x∈M , with Px ∈ Ψm(Gx), which are uniformly

supported and right-invariant.

We also denote Ψ∞(G) :=
⋃
m∈R Ψm(G) and Ψ−∞(G) :=

⋂
m∈R Ψm(G). If

kx denotes the distributional kernel of Px, x ∈M , then the formula

kP (g) := kd(g)(g, d(g))

de�nes a distribution on the groupoid G, with supp(kp) = suppµ(P ) compact,

smooth outside M and given by an oscillatory integral on a neighborhood of

M . If P ∈ Ψ−∞(G), then P is a convolution operator with smooth, compactly

supported kernel. Thus Ψ−∞(G) identi�es with the smooth convolution algebra

C∞c (G). In particular, we can de�ne

‖P‖L1(G) := sup
x∈M

{ ∫
Gx
|kP (g−1)| dµx(g),

∫
Gx
|kP (g)| dµx(g)

}
.

The algebra Ψ∞(G) is �too small� to contain resolvents of di�erential

operators. Thus we consider suitable closures. For each x ∈ M , the regular

representation πx extends to Ψ∞(G), by de�ning by πx(P ) = Px. If P ∈
Ψ−n−1(G), then P has a continuous distribution kernel and

‖πx(P )‖L2(Gx) ≤ ‖P‖L1(G).

If P ∈ Ψ0(G), then πx(P ) ∈ B(L2(Gx)). We de�ne the reduced C∗�norm by

‖P‖r = sup
x∈M
‖πx(P )‖ = sup

x∈M
‖Px‖.

Let L0
0(G) be the completion of Ψ0(G) for the reduced norm. Note that C∗r (G)

is the completion of Ψ−∞(G) for ‖.‖r, hence C∗r (G) embeds as an ideal of L0
0(G).

We consider similar completions for operators of arbitrary order. To that

end, we endow the �bers (Gx)x∈M with a right-invariant metric and consider

the associated Laplacian ∆ ∈ Ψ2(G). The Sobolev space Hs(Gx) is de�ned as

the domain of (1 + ∆x)
s
2 if s ≥ 0 (and by duality for s < 0). We set Lms (G) to

be the completion of Ψm(G) with respect to the norm

‖P‖m,s := sup
x∈M
‖Px‖,

where Px is seen as a bounded operator from Hs(Gx) to Hs−m(Gx) [24, 31].

Moreover, let

Wm(G) := Ψm(G) +
⋂
s∈R

L−∞s (G) .
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ThenWm(G) ⊂ Lms (G) andW∞(G) is an algebra of pseudodi�erential operators

that contains the inverses of its L2-invertible operators.

Assume now that there is an open, dense and G-invariant subset U ⊂ M
such that G|U ' U ×U ; this will be a natural requirement in Subsection 2.5. In
that case each �bers Gx, for x ∈ U is di�eomorphic to U . Therefore any right-
invariant metric on the �bers (Gx)x∈M induces a metric on U . The regular
representations πx are all equivalent when x ∈ U , so we de�ne the vector

representation

π0 : C∗r (G)→ B(L2(U))

as the equivalence class of all πx, where x ∈ U . Then π0 extends as a C
∗-algebra

morphism
π0 : L0

0(G)→ B(L2(U)),
and as a bounded linear map

π0 : Lms (G)→ B(Hs(U), Hs−m(U)).

Remark 2.10. When G is Hausdor�, which will be the case below, a result
of Khoshkam and Skandalis [28] implies that the vector representation π0 :
Cr(G) → B(L2(U)) is injective. In that case, the algebra L0

0 embeds as a
subalgebra of B(L2(U)).

2.4. Examples of Lie groupoids

Let us now give a few common examples of Lie groupoids that will have
a role in our constructions.

Example 2.11 (Bundles of Lie groups). Any Lie group G can be regarded
as a Lie groupoid G = G with exactly one unitM = {e}, the identity element of
G, and obvious structure maps. Its Lie algebroid is the Lie algebra of the group.
In that case Ψm(G) ' Ψm

prop(G)G, the algebra of right translation invariant and
properly supported pseudodi�erential operators on G.

More generally, we can let G ⇒ B be a locally trivial bundle of groups,
with �ber a Lie group G. In that case d = r, and G is metrically amenable if,
and only if, the group G is amenable.

The following examples are more involved, and will be useful in what
follows.

Example 2.12 (The pair groupoid). Let M be a smooth manifold, and
consider the Lie groupoid G = M×M as the groupoid having exactly one arrow
between any two units, with structural morphisms as follows: the domain is
d(x, y) = y, the range r(x, y) = x, and the product is given by (x, y)(y, z) =
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(x, z). Thus u(x) = (x, x) and ι(x, y) = (y, x). This example is called the pair

groupoid of M . The Lie algebroid of G is isomorphic to TM .

In this case, we have Ψm(G) ' Ψm
comp(M), the algebra of compactly sup-

ported pseudodi�erential operators on M . For any x ∈ M , the regular re-
presentation πx de�nes an isomorphism between C∗(M ×M) and the ideal of
compact operators in L(L2(M)). In particular, all pair groupoids are metrically
amenable.

Example 2.13 (Action groupoids). Let X be a smooth manifold and G
a Lie group acting on X smoothly and from the right. The action groupoid

generated by this action is the graph of the action, denoted by X o G. Its
set of arrows is X × G, together with the structural morphisms r(x, g) := x,
d(x, g) := x · g−1 and (x, h)(x · h−1, g) := (x, gh).

The Lie algebroid of X oG is denoted by X o g. As a vector bundle, it is
simply X×g, where g is the Lie algebra of G. Its Lie bracket is generated by the
one of g: namely, if ξ̃, η̃ are constant sections of X × g such that ξ̃(x) = ξ and
η̃(x) = η for all x ∈ ξ, then [ξ̃, η̃]Xog is the constant section on ξ everywhere
equal to [ξ, η]g. The anchor ρ : Xog→ TX is given by the fundamental vector

�elds generated by the action:

ρ(x, ξ) =
d

dt

∣∣∣∣
t=0

(x · exp(tξ))

for all x ∈ X and ξ ∈ g. The study of such groupoids relates to that of
crossed-product algebras, which have been much studied in the literature [67]
(see also [22,45]).

One case of interest here is when G := [0,∞) o (0,∞) is the transfor-
mation groupoid with the action of (0,∞) on [0,∞) by dilation. Then the
C∗-algebra associated to G is the algebra of Wiener-Hopf operators on R+, and
its unitalization is the algebra of Toeplitz operators [46].

Example 2.14 (Fibered pull-back groupoids). LetM,N be manifolds with
corners, and f : M → N a surjective tame submersion. Assume that we have a
Lie groupoid H⇒ N . An important generalization of the pair groupoid is the
�bered pull-back of H along f , de�ned by

f�(H) = {(x, g, y) ∈M × G ×M, r(g) = f(x), d(g) = f(y)}

with unitsM . The domain and range are given by d(x, g, y) = y and r(x, g, y) =
x. The product is (x, g, y)(y, g′, y′) := (x, gg′, y′).

The groupoid f�(H) is a Lie groupoid, which is a subgroupoid of the
product of the pair groupoid X ×X and H, and whose Lie algebroid is given
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by the thick pull-back

f�(AH) := {(ξ,X) ∈ AH× TM, ρ(ξ) = f∗(X)} .

See [7, 33,34] for more details.

Let H ⇒ B be a locally trivial bundle of groups (so d = r) with �ber a
locally compact group G. Also, let f : M → B be a continuous map that is a
local �bration. Then f↓↓(H) is a locally compact groupoid with a Haar system.
If G is a Lie group, M is a manifold with corners and f is a tame submersion,
then f↓↓(H) is a Lie groupoid. Again, it is metrically amenable if, and only if,
the group G is amenable.

Example 2.15 (Disjoint unions). LetM be a smooth manifold and let P =
{Mi}pi=1 be a �nite partition of M into smooth disjoint, closed submanifolds
Mi ⊂ M (since P is �nite, Mi is also open, i = 1, ..., p, and the sets Mi are
always given by unions of connected components of M). Let f : M → P,
x 7→Mi, with x ∈Mi, be the quotient map. Then P is discrete and f is locally
constant, so any Lie groupoid H ⇒ P yields a Lie groupoid f↓↓(H) ⇒ M .
In particular, if H = P as a (smooth, discrete) manifold, then f↓↓(P) is the
topological disjoint union

f↓↓(P) =

p⊔
i=1

(Mi ×Mi).

Let G be a Lie group and H := B × G, the product of a manifold and a Lie
group, then

f↓↓(H) =

p⊔
i

(Mi ×Mi)×G.

Example 2.16 (b-groupoid). Let M be a manifold with smooth boundary
and let Vb denote the class of vector �elds on M that are tangent to the boun-
dary. The associated groupoid was de�ned in [38,42,53]. Let

Gb :=
(⋃

j

R+ × (∂jM)2
)
∪ M2

0 ,

where M2
0 denotes the pair groupoid of M0 := int(M) and ∂jM denote the

connected components of ∂M . Then Gb can be given the structure of a Lie
groupoid with units M , given locally by a transformation groupoid. It integra-
tes the so-called b-tangent bundle bTM , that is, A(Gb) = bTM , the Lie algebroid
whose space of sections is given by vector �elds tangent to the boundary. The
pseudodi�erential calculus obtained is Melrose's small b-calculus with compact
supports. See [38,42,44,53] for details.
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2.5. Fredholm groupoids

The classes of examples we have seen in the previous section, as wide
ranging as they are, all share one common property: they fall in the framework
of Fredholm groupoids (under certain suitable conditions for each case). Fred-
holm groupoids were introduced in [6] as groupoids for which an operator is
Fredholm if, and only if, its principal symbol and all its �boundary restrictions�
are invertible (in a sense to be made precise below). We review their de�nition
and properties in this subsection.

Let G ⇒M be a Lie groupoid with M compact, and assume that U ⊂M
is an open, G-invariant subset such that GU ' U × U (the pair groupoid,
see Example 2.12). Recall from Subsection 2.3 the de�nition of the vector
representation π0 : C∗r (G) → L(L2(U)). We recall the following de�nition
from [7]:

De�nition 2.17. A Lie groupoid G ⇒M is called a Fredholm Lie groupoid

if

(1) there exists an open, dense, G-invariant subset U ⊂ M such that GU '
U × U ;

(2) for any a ∈ C∗r (G), we have that 1 + π0(a) is Fredholm if, and only if, all
1 + πx(a), x ∈ F := M\U are invertible.

As an open dense G-orbit, the set U is uniquely determined by G. Moreo-
ver, a simple observation is that F := M\U is closed and G-invariant. We shall
keep this notation throughout the paper. Note also that two regular represen-
tations πx and πy are unitarily equivalent if, and only if, there is g ∈ G such
that d(g) = x and r(g) = y, that is, if x, y are in the same orbit of G acting on
M . In particular, one only needs to verify (2) for a representative of each orbit
of GF .

In [6], we gave easier-to-check conditions for a groupoid G to be Freholm,
depending on properties of representations of C∗r (G). We review brie�y the
main notions, see [52,61] for details.

Let A be a C∗-algebra. Recall that a two-sided ideal I ⊂ A is said to be
primitive if it is the kernel of an irreducible representation of A. We denote by
Prim(A) the set of primitive ideals of A and we equip it with the hull-kernel
topology (see [13, 67] for more details). Let φ be a representation of A. The
support supp(φ) ⊂ Prim(A) is de�ned to be the set of primitive ideals of A that
contain ker(φ).

The following de�nition appeared in [52] :

De�nition 2.18. A set of F of representations of a C∗-algebra A is said to
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be exhaustive if Prim(A) =
⋃
φ∈F supp(φ), that is, if any irreducible represen-

tation is weakly contained in some φ ∈ F .

If A is unital, then a set F of representations of A is called strictly spectral

if it characterizes invertibility in A, in that a ∈ A is invertible if, and only if,
φ(a) is invertible for all φ ∈ F . If A does not have a unit, we replace A with
A+ := A⊕C and F with F+ := F ∪ {χ0 : A+ → C}, where F is regarded as a
family of representations of A+ and χ0 is the representation de�ned by χ0|A = 0
and χ0(1) = 1. Note that strictly spectral families of representations consist
of non-degenerate representations, and any non-degenerate representation of a
(closed, two-sided) ideal in a C∗-algebra always has a unique extension to the
whole algebra [52].

It was proved in [52,61] that, if F is exhaustive, then F is strictly spectral,
and the converse also holds if A is separable. That is, in the separable case,
exhaustive families su�ce to characterize invertibility in A. In this paper,
we shall work mainly with the notion of exhaustive families and assume this
equivalence throughout.

The next result was given in [6] and gives a characterization of Fredholm
groupoids. For a groupoid G, we usually denote by R(G) the set of its regular
representations.

Theorem 2.19. Let G ⇒M be a Hausdor� Lie groupoid and U an open,

dense, G-invariant subset such that GU ' U×U , F = M\U . If G is a Fredholm

groupoid, we have:

(i) The canonical projection induces an isomorphism C∗r(G)/C∗r (GU )'C∗r(GF ),
that is, we have the exact sequence

0 −→ C∗r (GU ) ∼= K −→ C∗r (G)
(ρF )r
−−−−→C∗r (GF ) −→ 0 .

(ii) R(GF ) = {πx, x ∈ F} is an exhaustive set of representations of C∗r (GF ).

Conversely, if G ⇒M satis�es (i) and (ii), then, for any unital C∗-algebra
Ψ containing C∗r (G) as an essential ideal, and for any a ∈ Ψ, we have that a
is Fredholm on L2(U) if, and only if, πx(a) is invertible for each x /∈ U and

the image of a in Ψ/C∗r (G) is invertible.

In [6], we dubbed condition (ii) as Exel's property (for GF ). If R(GF ) =
{πx, x ∈ F} is an exhaustive set of representations of C∗(GF ), then GF is said
to have the strong Exel property. In this case, it is metrically amenable. We
will use the su�cient conditions in Theorem 2.19 in the following form:

Proposition 2.20. Let G ⇒ M be a Hausdor� Lie groupoid and U an

open, dense, G-invariant subset such that GU ' U×U . Let F = M\U . Assume
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R(GF ) = {πx, x ∈ F} is an exhaustive set of representations of C∗(GF ). Then
G is Fredholm and metrically amenable.

This characterization of Fredholm groupoids, together with the proper-
ties of exhaustive families, allows us to show that large classes of groupoids
are Fredholm. See for instance Corollary 2.25 below and all the examples in
Subsection 3.3, and more generally [7].

Proof. Condition (ii) in Theorem 2.19 holds by assumption. If R(GF )
is a strictly spectral set of representations of C∗(GF ) then, by de�nition, the
reduced and full norms on Cc(GF ) coincide, hence GF is metrically amenable.
It follows from the exact sequences (1) and (2), since GU ' U ×U is metrically
amenable, that G is metrically amenable and that condition (i) in Theorem 2.19
also holds. Taking the unitalization Ψ := (C∗(G))+, we have then that G is
Fredholm. �

Representations are extended to matrix algebras in the obvious way, which
allows us to treat operators on vector bundles.

Remark 2.21. The notion of exhaustive family can be linked to that of
EH-amenability and to the E�ros-Hahn conjecture [6, 52]. Let G ⇒ F be an
EH-amenable locally compact groupoid. Then the family of regular represen-
tations {πy, y ∈ F} of C∗(G) is exhaustive, hence strictly spectral. Hence if U
is a dense invariant subset such that GU is the pair groupoid and GF is EH-
amenable, then G is Fredholm. Combining with the proof of the generalized
EH conjecture [27,59,60] for amenable, Hausdor�, second countable groupoids,
we get a set of su�cient conditions for G to be Fredholm.

Example 2.22. Let H = [0,∞] o (0,∞) be the transformation groupoid
with the action of (0,∞) on [0,∞] by dilation, (that is, H is the extension
of the groupoid in Example 2.13 to the one point compacti�cation of [0,∞)).
Then H is Fredholm. Indeed, it is clear that (0,∞) ⊂ [0,∞] is an invariant
open dense subset, and H|(0,∞) ' (0,∞)2, the pair groupoid of (0,∞). Then

F = {0,∞}, HF ∼= (0,∞) t (0,∞), the disjoint union of two amenable Lie
groups, and C∗(HF ) ∼= C0(R+) ⊕ C0(R+). Hence HF has Exel's property (the
regular representations at 0 and∞ are induced from the regular representation
of the group, which is just convolution). So H is Fredholm.

Note that if we have a convolution operatorK on the abelian group (0,∞),
for instance the double layer potential operator, we can identify K with a
family of convolution operators Kx, x ∈ (0,∞) (we use the fact that the action
groupoid (0,∞) o (0,∞) is isomorphic to the pair groupoid of (0,∞).) Since
each Kx is a convolution operator, we can always extend by continuity the
family Kx, x ∈ (0,∞) to the family Kx, x ∈ [0,∞] (two endpoints included).
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In this way, we identifyK with an operator on the groupoid [0,∞]o(0,∞) (note
however, that the reduced support of K may not be compact, so it might not
be a pseudodi�erential operator on the groupoid H, according to our previous
de�nition).

In the next example, we study an important class of Lie groupoids for
which the set of regular representations is an exhaustive set of representations
of C∗(G). The point is that locally, our groupoid is the product of a group
G and a space, so its C∗-algebra is of the form C∗(G) ⊗ K, where K are the
compact operators. See [7, Proposition 3.10] for a complete proof.

Example 2.23. Let H⇒ B be a locally trivial bundle of groups, so d = r,
with �ber a locally compact group G. Then H has Exel's property, that is,
the set of regular representations R(H) is exhaustive for C∗r (H), since any
irreducible representation of C∗r (H) factors through evaluation at Hx ∼= G, and
the regular representations of H are obtained from the regular representation
of G. It is exhaustive for the full algebra C∗(H) if, and only if, the group G is
amenable.

More generally, let f : M → B be a continuous surjective map. Then
G = f↓↓(H) is a locally compact groupoid with a Haar system that also has
Exel's property, and R(G) is exhaustive for C∗(G) if, and only if, the group G
is amenable (note that G is isomorphic to the isotropy group Hxx, for x ∈ M).
This stems from the fact that H and f↓↓(H) are Morita equivalent groupoids,
hence have homeomorphic primitive spectra [7].

Remark 2.24. In fact, f↓↓(H) satis�es the generalized EH conjecture, and
hence it has the weak-inclusion property. It will be EH-amenable if, and only
if, the group G is amenable (see [6]).

Putting together the previous example and Proposition 2.20, we conclude
the following:

Corollary 2.25. Let G ⇒ M is a Hausdor� Lie groupoid with U ⊂ M
an open, dense, invariant subset. Set F = M \ U and assume that we have a

decomposition GU ' U × U and GF ' f↓↓(H); in particular,

G = (U × U) t f↓↓(H),

where f : F → B is a tame submersion and H ⇒ B is a bundle of amenable

Lie groups. Then G is Fredholm.

Corollary 2.25 is enough to obtain the Fredholm property for many grou-
poids used in applications. Several examples can be found in [7, Section 5] (see
also [6]). They include the b-groupoid modelling manifolds with poly-cylindrical
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ends, groupoids modelling analysis on asymptotically Euclidean spaces, asymp-
totically hyperbolic spaces, and the edge groupoids. Some of these examples
will be discussed in Subsection 3.3.

We consider Fredholm groupoids because of their applications to Fredholm
conditions. Let Ψm(G) be the space of order m, classical pseudodi�erential
operators P = (Px)x∈M on G, as in Subsection 2.3. Recall that Px ∈ Ψm(Gx),
for any x ∈ M and that Px = πx(P ), with πx the regular representation of G
at x ∈ M . The operator P acts on U via the (injective) vector representation
π0 : Ψm(G) → L(Hs(U), Hs−m(U)) and that Lms (G) is the norm closure of
Ψm(G) in the topology of continuous operators Hs(U)→ Hs−m(U).

Recall that a di�erential operator P : C∞(U)→ C∞(U) is called elliptic

if its principal symbol σ(P ) ∈ Γ(T ∗U) is invertible outside the zero-section [26].
The following Fredholm condition is one of the main results of [7].

Theorem 2.26 (Carvalho, Nistor, Qiao [7, Theorem 4.17]). Let G ⇒ M
be a Fredholm Lie groupoid and let U ⊂ M be the dense, G-invariant subset
such that GU ' U × U . Let s ∈ R and P ∈ Lms (G) ⊃ Ψm(G). We have

P : Hs(U)→ Hs−m(U) is Fredholm ⇔ P is elliptic and

Px : Hs(Gx)→ Hs−m(Gx) is invertible for all x ∈ F := M r U .

Proof. This theorem is proved by considering a := (1 + ∆)(s−m)/2P (1 +
∆)−s/2, which belongs to the C∗-algebra Ψ(G) =: L0

0(G) by the results in
[30,31]. Since Ψ(G) contains C∗r (G) as an essential ideal, the conclusion follows
from Theorem 2.19. See [7] for more details. �

Theorem 2.26 extends straightforwardly to operators acting between secti-
ons of vector bundles. The operators Px, for x ∈M\U , are called limit operators

of P . Note that Px is invariant under the action of the isotropy group Gxx on
the �ber Gx. Similar characterizations of Fredholm operators were obtained in
di�erent contexts in [12,17,22,38,62], to cite a few examples.

3. BOUNDARY ACTION GROUPOIDS

We describe in this section a procedure for gluing locally compact grou-
poids. This extends a construction of Gualtieri and Li that was used to classify
the Lie groupoids integrating certain Lie algebroids [25] (see also [50]).

3.1. The gluing construction

Let X be a locally compact Hausdor� space, covered by a family of open
sets (Ui)i∈I . Recall that, if G ⇒ X is a locally compact groupoid and U ⊂ X
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an open set, then the reduction of G to U is the open subgroupoid G|U := GUU =
d−1(U) ∩ r−1(U).

Now, for each i ∈ I, let Gi ⇒ Ui be a locally compact groupoid with
domain di and range ri. Assume that we are given a family of isomorphisms
between all the reductions

φji : Gi|Ui∩Uj → Gj |Ui∩Uj ,

such that φij = φ−1
ji and φijφjk = φik on the common domains. Our aim is to

glue the groupoids Gi to build a groupoid G ⇒ X such that, for all i ∈ I,

G|Ui ' Gi.

As a topological space, the groupoid G is de�ned as the quotient

(3) G =
⊔
i∈I
Gi
/
∼,

where ∼ is the equivalence relation generated by g ∼ φji(g), for all i, j ∈ I and
g ∈ Gi. Since each Gi is a locally compact space, the space G is also locally
compact for the quotient topology. If g ∈ G is the equivalence class of a gi ∈ Gi,
we de�ne

d(g) = di(gi) and r(g) = ri(gi).

Because the groupoids Gi are isomorphic on common domains Ui ∩ Uj , for
i, j ∈ I, this de�nition is independent on the choice of the representative gi.
The unit u : X → G and inverse maps are de�ned in the same way. Therefore,
the subsets G|Ui = r−1(Ui) ∩ d−1(Ui) are well de�ned, for each i ∈ I.

Lemma 3.1. For each i ∈ I, the quotient map πi : Gi → G induces a

homeomorphism (of topological spaces)

πi : Gi → G|Ui .

Proof. The topology on G is the coarsest one such that each quotient
map πi is open and continuous, for every i ∈ I. Moreover, for any i ∈ I,
the de�nition of the equivalence relation ∼ in Equation (3) implies that πi is
injective. Therefore, the map πi is a homeomorphism onto its image, which is
obviously contained in G|Ui .

To prove that πi(Gi) = G|Ui , let g ∈ G|Ui be represented by an element
gj ∈ Gj , for j ∈ I. Then gj ∈ Gj |Ui∩Uj , which is isomorphic to Gi|Ui∩Uj through
φij : thus g also has a representative in Gi. This shows that πi(Gi) = G|Ui . �

In particular, Lemma 3.1 implies that the structural maps d, r, u and ι are
continuous and that the domain and range maps d, r : G → X are open. With
Remark 2.2 in mind, the only missing element to have a groupoid structure on
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G is a well-de�ned product. Therefore, de�ne the set of composable arrows by

G(2) = {(g, h) ∈ G, d(g) = r(g)}.

A problem is that there are a priori no relations between the two groupoids Gi
and Gj , for i 6= j. Thus, if (gi, gj) ∈ G(2) with gi ∈ Gi and gj ∈ Gj , then there
is a priori no obvious way of de�ning the product gigj in G. A way around
this issue is to introduce a �gluing condition�, so that any composable pair
(g, h) ∈ G(2) is actually contained in a single groupoid Gk, for a k ∈ I.

De�nition 3.2. We say that a family (Gi ⇒ Ui)i∈I of locally compact
groupoids satisfy the weak gluing condition if for every composable pair (g, h) ∈
G(2), there is an i ∈ I such that both g and h have a representative in Gi.

An equivalent statement of De�nition 3.2 is to say that the family (G(2)
i )i∈I

is an open cover of the space of composable arrows G(2).

Lemma 3.3. Assume that the family (Gi)i∈I satisfy the weak gluing condi-

tion. Then there is a unique groupoid structure on

G =
⊔
i∈I
Gi/ ∼

such that the projection maps πi : Gi → G|Ui are isomorphisms of locally compact

groupoids, for every i ∈ I.

Proof. Let (g, h) ∈ G(2) be a composable pair. The weak gluing condition
implies that there is an i ∈ I such that g and h have representatives gi and hi in
Gi. We thus de�ne the product gh as the class of gihi in G, and we check at once
that this does not depend of a choice of representative for g and h. Lemma 3.1
and the de�nition of the structural maps on G imply that each πi : Gi → G|Ui

is an isomorphism of locally compact groupoids, for each i ∈ I.
To show the uniqueness of the groupoid structure on G, let us assume

conversely that each map πi : Gi → G|Ui is a groupoid isomorphism. Since
the reductions (G|Ui)i∈I cover G, the domain, range, identity and inverse maps
of G are prescribed by those of each Gi. Moreover, the weak gluing condition
implies that, for each composable pair (g, h) ∈ G(2), both g and h lie in a same
reduction G|Ui . Thus the product on G is also determined by those of each
groupoid Gi, for i ∈ I. �

De�nition 3.4. The groupoid G of Lemma 3.3 de�nes the gluing (or glued
groupoid) of a family of locally compact groupoids (Gi)i∈I satisfying the gluing
condition. We denote it

G =
⋃
i∈I
Gi,
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when there is no ambiguity about the family of isomorphisms (φij)i,j involved.

Remark 3.5. The glued groupoid can also be de�ned by a universal pro-
perty. Assume we only have two groupoids G1 ⇒ U1 and G2 ⇒ U2, and let
G12 := G1|U1∩U2 ' G2|U1∩U2 . Then G = G1 ∪ G2 is the pushout of the inclusions
morphisms ji : G12 ↪→ Gi, for i = 1, 2. It is the �smallest� groupoid such that
there is a commutative diagram

G G2

G1 G12.

oo
OO

j2

OO

j1
oo

When we have a general family (Gi)i∈I satisfying the gluing condition, the
glued groupoid can similarly be de�ned as the colimit relative to the inclusions
G|Ui∩Uj ↪→ Gi, for all i, j ∈ I.

Remark 3.6. It is possible for a family (Gi)i∈I to satisfy the weak gluing
condition, even though there is a pair (Gi0 ,Gj0) that does not satisfy the gluing
condition, for some i0, j0 ∈ I. For instance, let X be a locally compact, Haus-
dor� space and U1, U2 two distinct open subsets in X with non-empty inter-
section U12. Let

G0 = X ×X, G1 = U1 × U1 and G2 = U2 × U2

be pair groupoids over X, U1 and U2 respectively. The family (G0,G1,G2)
satis�es the weak gluing condition of De�nition 3.2, and may be glued to obtain
the groupoid G = X ×X = G0. However, the pair (G1,G2) does not satisfy the
weak gluing condition.

Lemma 3.7. Let (Gi) be a family of groupoids satisfying the weak gluing

condition. If each Gi, for i ∈ I, is a Hausdor� groupoid, then the gluing G =⋃
i∈I Gi is also Hausdor�.

Proof. Let g, h ∈ G. There are two cases.

• Assume d(g) = d(h) and r(g) = r(h). Then, because of the gluing con-
dition, there is an i ∈ I such that g and h are both in the Hausdor�
groupoid G|Ui .

• Otherwise, either d(g) 6= d(h) or r(g) 6= r(h). Let us assume the former.
Then, since X is Hausdor�, there are open sets U, V ⊂ X such that
d(g) ∈ U , d(h) ∈ V and U ∩ V = ∅. Thus g ∈ GU and h ∈ GV , which are
disjoint open subsets of G. �
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We also introduce the strong gluing condition, which is often easier to
check.

De�nition 3.8. We say that the family (Gi ⇒ Ui)i∈I of locally compact
groupoids satisfy the strong gluing condition if, for each x ∈ X, there is an
ix ∈ I such that

Gi · x ⊂ Uix
for all i ∈ I.

In other words, the orbit of a point through the action of G should always
be induced by a single element of the family (Gi)i∈I .

Lemma 3.9. Let (Gi)i∈I be a family of groupoids which satis�es the strong

gluing condition. Then the family (Gi)i∈I also satis�es the weak gluing condi-

tion.

Proof. Let (g, h) ∈ G(2), and assume that g has a representative gi ∈ Gi
and h a representative hj ∈ Gj . Let x = d(g) = r(h). The gluing condition
implies that there is an ix ∈ I such that Gi · x ⊂ Uix and Gj · x ⊂ Uix . Thus
ri(gi) ∈ Uix , so gi ∈ Gi|Ui∩Uix

. But there is an isomorphism

φixi : Gi|Ui∩Uix
→ Gix |Ui∩Uix

so that g actually has a representative gix in Gix . The same arguments show
that h also has a representative hix ∈ Gix . �

We conclude this subsection with a condition for which a groupoid G ⇒ X
may be written as the gluing of its reductions. This de�nition was introduced
by Gualtieri and Li for Lie algebroids [25].

3.2. Gluing Lie groupoids

Let M be a manifold with corners, and (Ui)i∈I an open cover of M . Let
(Gi)i∈I be a family of Lie groupoids satisfying the weak gluing condition of
De�nition 3.2. Assume that the morphisms φji : Gi|Ui∩Uj → Gj |Ui∩Uj are Lie
groupoid morphisms, and let G :=

⋃
i∈I Gi be the glued groupoid over M .

Lemma 3.10. If each Gi, for i ∈ I, is a Lie groupoid, then there is a unique

Lie groupoid structure on G such that πi : Gi → G|Ui is an isomorphism of Lie

groupoids, for all i ∈ I.

Proof. By De�nition 3.4, the reductions G|Ui ' Gi, for i ∈ I, provide an
open cover of G. Since each Gi is a Lie groupoid, and all φij are smooth, this
induces a manifold structure on G. Each structural map of G coincides locally
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with a structural map of one of the groupoids Gi, hence is smooth. This gives
the Lie groupoid structure. �

Remark 3.11. A similar statement holds when each Gi is a continuous
family groupoids, for all i ∈ I: then G is also a continuous family groupoid
[30,54].

To specify the Lie algebroid of G, we need �rst study the gluing of Lie
algebroids. For each i ∈ I, let Ai → Ui be a Lie algebroid. Assume that there
are Lie algebroid isomorphisms ψij : Ai|Ui∩Uj → Aj |Ui∩Uj covering the identity,

such that ψ−1
ij = ψji and ψijψjk = ψik on common domains. As vector bundles,

the family (Ai)i∈I is in particular a family of groupoids that satis�es the strong
gluing condition of De�nition 3.8 (the orbit of any x ∈ M is reduced to {x}).
Thus, the gluing A =

⋃
i∈I Ai is a smooth vector bundle on M , with inclusion

maps πi : Ai ↪→ A.

Lemma 3.12. There is a unique Lie algebroid structure on A =
⋃
i∈I Ai

such that each map πi : Ai → A is a morphism of Lie algebroids.

Proof. By de�nition, the Lie algebroids A|Ui ' Ai, for all i ∈ I, provide
an open cover of A. Let X,Y ∈ Γ(A), and de�ne [X,Y ] ∈ Γ(A) by

[X,Y ]|Ui := [X|Ui , Y |Ui ]i,

where [., .]i is the Lie bracket on Ai. Since Ai|Ui∩Uj and Aj |Ui∩Uj are isomorphic
as Lie algebroid, the section [X,Y ] is well-de�ned on Ui ∩ Uj , for all i, j ∈ I.
This de�nes the Lie bracket on Γ(A). The anchor map is similarly de�ned as
ρ(X)|Ui := ρi(X|Ui), with ρi the anchor map of Ai. Because the family (Ai)i∈I
covers A, this it is the unique Lie algebroid structure on A such that each map
π : Ai → A|Ui is a Lie algebroid isomorphism. �

Lemma 3.13. Let (Gi ⇒ Ui)i∈I be a family of Lie groupoids satisfying

the gluing condition, with isomorphisms φij : Gj |Ui∩Uj → Gi|Ui∩Uj . The Lie

algebroid of the resulting glued groupoid G =
⋃
i∈I Gi is isomorphic to the gluing

of the family (AGi)i∈I , with Lie algebroid isomorphisms (φij)∗ : AGi|Ui∩Uj →
AGj |Ui∩Uj , for i, j ∈ I.

Proof. By de�nition of the quotient maps πi : Gi → G, the map π−1
j ◦ πi

coincides with the isomorphism φji : Gi|Ui∩Uj → Gj |Ui∩Uj , for all i, j ∈ I. Let
ξ ∈ AGi|Ui∩Uj . Then

(4) (πi)∗(ξ) = (πj)∗ ◦ (π−1
j ◦ πi)∗(ξ) = (πj)∗ ◦ (φji)∗(ξ) ∈ AG|Ui∩Uj

Let Ψ :
⊔
i∈I AGi → AG be the map given by Ψ(ξ) := (πi)∗(ξ), whenever

ξ ∈ AGi. Equation (4) implies that Ψ induces a map from the quotient A =
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i∈I AGi, which is the glued algebroid, to AG. Each map πi : Gi → G gives

an isomorphism (πi)∗ : AGi → AG|Ui , so Ψ : A → AG is also a Lie algebroid
isomorphism. �

3.3. Boundary action groupoids

Our aim is to study Fredholm conditions for algebras of di�erential ope-
rators generated by Lie groupoids G ⇒ M . To this end, we de�ne the class of
boundary action groupoids, which are obtained by gluing reductions of action
groupoids. We will show that many examples of groupoids arising in analysis
on open manifold belong to this class, and obtain Fredholm condition for the
associated di�erential operators.

Recall that gluing conditions were discussed in Subsection 3.1.

De�nition 3.14. A Lie groupoid G ⇒M is a boundary action groupoid if

(1) there is an open dense G-invariant subset U ⊂M such that GU ' U ×U ;
(2) there is an open cover (Ui)i∈I of M such that for all i ∈ I, we have a

Hausdor� manifold Xi, a Lie group Gi acting smoothly on Xi on the right
and an open subset U ′i ⊂ Xi di�eomorphic to Ui satisfying

G|Ui ' (Xi oGi)|U ′i ;

(3) the family of groupoids (G|Ui)i∈I satisfy the weak gluing condition, with
the obvious identi�cations of G|Ui and G|Uj with G|Ui∩Uj over common
domains.

In other words, boundary action groupoids are groupoids that are obtained
by gluing reductions of action groupoids, and that are simply the pair groupoid
over a dense orbit. Note that, as an open dense G-orbit in M , the subset U in
De�nition 3.14 is uniquely determined by G.

Example 3.15. IfM0 is a smooth manifold (without corners), then the pair
groupoid G = M0 ×M0 is a boundary action groupoid. Indeed, for any triple
(x, y, z) ∈ M3

0 , we can choose an open subset Ux,y,z ⊂ M0 that contains x, y,
and z and is such that Ux,y,z is di�eomorphic to an open subset U ′x,y,z ⊂ Rn
(just choose three disjoint, relatively compact coordinate charts near each point
x, y and z and take Ux,y,z to be their disjoint union). Then

G|Ux,y,z ' (Rn × Rn)|U ′x,y,z ' (Rn oRn)|U ′x,y,z ,

where Rn acts on itself by translation. Moreover, the family of groupoids
(G|Ux,y,z), for x, y, z ∈M0, satisfy the weak gluing condition: for any composa-
ble pair (x, y) and (y, z) in G, both (x, y) and (y, z) are contained in G|Ux,y,z .
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This shows ((2)) and ((3)) from De�nition 3.14, whereas ((1)) is trivially satis-
�ed.

Other practical examples will be introduced in Subsection 3.4 below. One
of the main points of this de�nition is to have a good understanding of how GU
and GM\U are glued together near the boundary. In particular:

Lemma 3.16. Boundary action groupoids are Hausdor�.

Proof. We keep the notations of De�nition 3.14 above. Note that all (Xio
Gi)|U ′i are Hausdor� groupoids (as subsets of the Hausdor� spaces Xi × Gi).
Since the groupoids (G|Ui)i∈I satisfy the weak gluing condition, the groupoid
G is obtained by gluing Hausdor� groupoids. The result then follows from
Lemma 3.7. �

Lemmas 3.17 to 3.19 give some possible combinations of boundary action
groupoids that preserve the local structure.

Lemma 3.17. Let G ⇒ M and H ⇒ N be boundary action groupoids.

Then G ×H⇒M ×N is a boundary action groupoid.

Proof. First, let U, V be the respective open dense orbits of G and H.
Then U × V is an open dense orbit for G × H, and (G × H)U×V is the pair
groupoid (U ×V )2. Secondly, let (Ui)i∈I and (Vj)j∈J be respective open covers
of M and N such that we have isomorphisms

G|Ui ' (Xi oGi)U ′i and H|Vj ' (Yj oHj)|V ′j
and both families (G|Ui)i∈I and (H|Vj )j∈J satisfy the weak gluing condition.
Then the family {(G × H)|Ui×Vj}, for i ∈ I and j ∈ J , satisfy the weak gluing
condition over M ×N and we have

(G ×H)|Ui×Vj ' (Xi × Yj) o (Gi ×Hj),

for all i ∈ I and j ∈ J , where the action of Gi ×Hj is the product action. �

Lemma 3.18. Let G ⇒ M be a boundary action groupoid and V an open

subset of M . Then G|V is a boundary action groupoid.

Proof. Let U be the unique open dense orbit of G. Then U∩V is the unique
open dense orbit of G|V , and (G|U∩V ) ' (U × U)|U∩V is the pair groupoid of
U ∩ V . Moreover, there is an open cover (Ui)i∈I of M with isomorphisms

G|Ui ' (Xi oGi)|U ′i
for all i ∈ I, and such that the family (G|Ui)i∈I satis�es the weak gluing condi-
tion. For all i ∈ I, let Vi = Ui ∩ V and V ′i be the image of Vi in U

′
i . The weak
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gluing condition implies that, for any pair (g, h) of composable arrows in G|V ,
there is an i ∈ I such that g, h are both in G|Ui . Then g, h ∈ G|Vi , which shows
that the family (G|Vi)i∈I satis�es the weak gluing condition. Finally, we have
isomorphisms

G|Vi = G|Ui∩V ' (Xi oGi)|V ′i
for all i ∈ I, which concludes the proof. �

Lemma 3.19. Let M be a manifold with corners, and assume that we have

two open subsets U, V ⊂M such that

(1) the set U is dense in M and M = U ∪ V ,
(2) there is a boundary action groupoid H ⇒ V whose unique open dense

orbit is U ∩ V .
Then the glued groupoid G = H∪(U×U) overM is a boundary action groupoid.

Lemma 3.19 should be thought as a way of �attaching ends� to a pair
groupoid, which will model the geometry at in�nity.

Proof. First, the de�nition of boundary action groupoids gives HU∩V '
(U ∩V )2, so that U×U and H are isomorphic over U ∩V . The pair (H, U×U)
satis�es the strong gluing condition (the G-orbit of any point in M is either U
or contained in V \ U), so the gluing has a well-de�ned groupoid structure.

It follows from the properties of the gluing (Lemma 3.3) that U is the
unique open dense G-orbit in M , and that GU ' U × U . We know from
Example 3.15 that U × U is a boundary action groupoid. Therefore, there is
an open cover (Ui)i∈I of U and an open cover (Vj)j∈J of V with isomorphisms

(5) (U × U)Ui ' (Rn oRn)|U ′i and H|Vj ' (Xj oGj)V ′j ,

and such that the respective families of reductions satisfy the weak gluing con-
dition. Because G|V ' H and GU ' U × U , the isomorphisms of Equation (5)
also hold for the reductions G|Ui and G|Vj . Besides, any two composable arrows
for G are either in GU or in G|V , so the family (G|Ui)i∈I ∪ (G|Vj )j∈J also satis�es
the weak gluing condition. �

3.4. Examples

We will show here that many groupoids occurring in the study of analy-
sis on singular manifolds are boundary action groupoids. We will explain in
Subsection 3.5 how this class of groupoids allows to obtain Fredholm conditi-
ons for many interesting di�erential operators. Our examples are based on the
following result:
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Theorem 3.1. LetM be a manifold with corners andM0 := M \∂M . Let

A→M be a Lie algebroid, such that the anchor map ρ induces an isomorphism

A|M0 ' TM0 and ρ(A|F ) ⊂ TF for any face F of M . Then there is a unique

Lie groupoid G ⇒ M integrating A, such that GM0 ' M0 ×M0 and G∂M is

d-simply-connected.

Proof. The existence of such a groupoid has been proven by Debord [14]
and Nistor [51]. If H is another groupoid satisfying the assumptions of Theo-
rem 3.1, then H∂M and G∂M are d-simply-connected integrations of A|∂M , so
Theorem 2.2 states that they are isomorphic. The main result in [51] implies
that G is then isomorphic to H. �

The groupoid G in Theorem 3.1 will be called the maximal integration

of A. Based on this theorem, we give several examples of boundary action
groupoids which occur naturally in the context of analysis on open manifolds:
see [7] for more details.

Example 3.20 (Zero-groupoid). Consider Gn := (0,∞) n Rn−1, where
(0,∞) acts by dilation on Rn−1. The right action of Gn upon itself extends
uniquely to an action on Xn := [0,∞)× Rn−1, by setting

(x1, . . . , xn) · (t, ξ2, . . . , ξn) = (tx1, x2 + x1ξ2, . . . , xn + x1ξn).

The Lie algebra of fundamental vector �elds for this action (recall Exam-
ple 2.13) is the one spanned by (x1∂1, . . . , x1∂n) on Xn.

To generalize this setting, let M be a manifold with boundary and let
V0 be the Lie algebra of all vector �elds on M vanishing on ∂M . In a local
coordinate system [0,∞)× Rn−1 near ∂M , we have

V0 = Span(x1∂1, . . . , x1∂n),

as a C∞(M)-module.
It follows from Serre-Swan's Theorem that there is a unique Lie algebroid

A0 → M such that the anchor map induces an isomorphism Γ(A0) ' V0. The
zero-groupoid G0 ⇒M is the maximal integration of A0, as given by Theorem
3.1: it is the natural space for the Schwarz kernels of di�erential operators that
are induced by asymptotically hyperbolic metrics on M0 [39].

Theorem 3.2. The 0-groupoid G0 ⇒ M is a boundary action groupoid.

Moreover, for each p ∈ ∂M , there is a neighborhood U of p in M , and an open

set V ⊂ R+ × Rn−1, such that

G0|U ' (Xn oGn)|V .

Proof. For each p ∈ ∂M , there is a neighborhood U of p in M that is
di�eomorphic to an open subset V ⊂ R+ × Rn−1, through φ : U → V . The
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di�eomorphism φ maps ∂U to ∂V , so φ∗(V0(U)) = V0(V ). This implies that
there is an isomorphism A0(U) ' A0(V ) covering φ. Both groupoids G0|U and
(Xn o Gn)|V are maximal integrations of A0(U) ' A0(V ), so Theorem 3.1
implies that G0|U ' (Xn oGn)|V .

To prove that G0 is a boundary action groupoid, let (Ui)
n
i=1 be an open

cover of ∂M , such that each G0|Ui is isomorphic to a reduction of Xn o Gn,
for all i = 1, . . . , n. Let U0 = M0. Then (Ui)

n
i=0 is an orbit cover of M that

satis�es the assumptions of De�nition 3.14. �

Example 3.21. Example 3.20 can be slightly generalized by replacing V0

with a Lie algebra V ⊂ Γ(TM) such that, for any point p ∈ ∂M , there is a
n-tuple α ∈ Nn and a local coordinate system [0,∞)× Rn−1 near p with

V = Span(xα1
1 ∂1, . . . , x

αn
1 ∂n).

If α1 = 1 and every αi ≥ 1, for i = 2, . . . , n, then the maximal integration
G ⇒M of V is again a boundary action groupoid. Indeed, consider the action
of (0,∞) on Rn−1 given by

t · (x2, . . . , xn) = (tα2x2, . . . , t
αnxn),

and form the semidirect product Gα = (0,∞) nα Rn−1 given by this action.
As in Example 3.20, the right action of Gα upon itself extends uniquely to an
action on Xn := [0,∞)× Rn−1, by setting

(x1, . . . , xn) · (t, ξ2, . . . , ξn) = (tx1, x2 + xα2
1 ξ2, . . . , xn + xαn

1 ξn).

An argument analogous to that of Theorem 3.2 shows that G is obtained by
gluing reductions of actions groupoids Xn oGα, for some n-tuples α ∈ Nn.

Example 3.22 (Scattering groupoid). Let Sn+ be the stereographic com-
pacti�cation of Rn. Consider the action of Rn upon itself by translation, and
extend it to Sn+ in the only possible way, by a trivial action on ∂Sn+. The action
groupoid Gsc = Sn+ oRn has been much studied in the literature, and is related
to the study of the spectrum of the N -body problem in Euclidean space [22,45].

As in Example 3.22, we can generalize this setting to any manifold with
boundaryM . Let Vb be the Lie algebra of vector �elds onM which are tangent
to the boundary, and let x ∈ C∞(M) be a de�ning function for ∂M . We de�ne
the Lie algebra of scattering vector �elds on M as Vsc := xVb. In a local
coordinate system [0,∞)× Rn−1 near ∂M , we have

Vsc = Span(x2
1∂1, x1∂2, . . . , x1∂n),

as a C∞(M)-module. One can check that, when M = Sn+ as above, then Vsc is
the Lie algebra of fundamental vector �elds induced by the action of Rn on Sn+.
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As in Example 3.20, there is a unique Lie algebroid Asc → M whose
sections are isomorphic to Vsc through the anchor map. The scattering grou-

poid Gsc ⇒ M is the maximal integration of Asc, and it generates the algebra
of di�erential operators on M0 that are induced by asymptotically Euclidean

metrics [39]. The proof of Theorem 3.2 can be adapted to this context to give:

Theorem 3.3. The scattering groupoid Gsc ⇒ M is a boundary action

groupoid. Moreover, for each p ∈ ∂M , there is a neighborhood U of p in M ,

and an open set V ⊂ Sn+, such that

Gsc|U ' (Sn+ oRn)|V .

We introduce and study in Section 4 another example of boundary action
groupoid, used to model layer potentials methods on conical domains.

3.5. Fredholm conditions

Let G ⇒ M be a boundary action groupoid, with U its unique dense G-
orbit. Our aim in this Subsection is to obtain some conditions under which G
is a Fredholm groupoid, as introduced in Subsection 2.5.

Recall that the algebra of pseudodi�erential operators Ψ∞(G) was in-
troduced in Subsection 2.3, together with the closure Lms (G) of the space of
order-m pseudodi�erential operators in B(Hs(U), Hs−m(U)).

Theorem 3.4. Let G ⇒ M be a boundary action groupoid, and U ⊂ M
its unique dense orbit. Assume that the action of G on F := M \ U is trivial,

and that for all x ∈ ∂M , the group Gxx is amenable. Let P be an operator in

Lms (G). Then for all s ∈ R, the operator P : Hs(U) → Hs−m(U) is Fredholm

if, and only if:

(1) P is elliptic, and

(2) Px : Hs(Gxx)→ Hs−m(Gxx) is invertible for all x ∈ F .

Under the assumptions of Theorem 3.4, the characterization of Fredholm
operators in Lms (G) reduces to the study of right-invariant operators Px on
the amenable groups Gxx , for x ∈ M \ U . It should be emphasized that, if
P is a geometric operator (Dirac, Laplacian. . . ) for a metric on U which is
�compatible� with G (in a sense made precise in [31]), then each Px is an operator
of the same type induced by a right-invariant metric on the amenable group Gxx .
Theorem 3.4 extends straightforwardly to pseudodi�erential operators acting
between sections of vector bundles.

Proof of Theorem 3.4. First, according to Lemma 3.16, the groupoid G is
Hausdor�. Let (Ui)i∈I be an open cover satisfying the conditions of De�nition
3.14, and let Fi = Ui∩F . Because the family (G|Ui)i∈I satis�es the weak gluing



144 C. Carvalho, R. C�ome and Y. Qiao 32

condition over M and F is G-invariant, the family (G|Fi)i∈I also satis�es the
weak gluing condition over F . In other words, the groupoid GF is the gluing of
the family (G|Fi)i∈I . Moreover, the action of G on F is trivial, so each G|Fi is
isomorphic to Fi ×Gi, for every i ∈ I.

These local trivializations show that GF is a Lie group bundle over each
connected component of F . Each Gi is amenable, for i ∈ I, so we can conclude
from Corollary 2.25 that G is a Fredholm groupoid. Theorem 3.4 is then a
consequence of Theorem 2.26. �

Example 3.23. The scattering groupoid Gsc of Example 3.22 satis�es the
assumptions of Theorem 3.4. When P ∈ Ψm(Gsc), the limit operators (Px)x∈∂M
are translation-invariant operators on Rn. In that case, the operator Px is
simply a Fourier multiplier on C∞(Rn), whose invertibility is easy to study:
see [5].

Example 3.24. The 0-groupoid G0 of Example 3.20, which models asymp-
totically hyperbolic geometries, also satis�es the assumptions of Theorem 3.4.
If P ∈ Ψm(G0), the limit operators Px are order-m, right-invariant pseudodif-
ferential operators on the noncommutative groups Gn = (0,∞) nRn−1.

Remark 3.25. We will show in a subsequent paper [11] that a result similar
to Theorem 3.4 holds without the assumption of a trivial action of G on ∂M
(the proof requires a more involved study of the representations of G). Thus
all boundary action groupoids that are obtained by gluing actions by amena-
ble groups are Fredholm groupoids. We believe the converse not to be true,
although we are unable to provide any example of a Lie groupoid (with an
open, dense orbit U on which GU ' U × U) that is not also a boundary action
groupoid.

4. LAYER POTENTIALS GROUPOIDS

In this section, we review the construction of layer potentials groupoids
for conical domains in [8]. In order to study layer potentials operators, which
are operators on the boundary, we consider a groupoid over the desingularized
boundary. Our aim is to relate this groupoid with the boundary action grou-
poids de�ned in the previous section in an explicit way, which we shall do in
Section 4.4.

4.1. Conical domains and desingularization

We begin with the de�nition of domains with conical points [4, 8, 36].
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De�nition 4.1. Let Ω ⊂ Rn, n > 2, be an open connected bounded dom-
ain. We say that Ω is a domain with conical points if there exists a �nite number
of points {p1, p2, · · · , pl} ⊂ ∂Ω, such that

(1) ∂Ω\{p1, p2, · · · , pl} is smooth;

(2) for each point pi, there exist a neighborhood Vpi of pi, a possibly discon-
nected domain ωpi ⊂ Sn−1, ωpi 6= Sn−1, with smooth boundary, and a
di�eomorphism φpi : Vpi → Bn such that

φpi(Ω ∩ Vpi) = {rx′ : 0 < r < 1, x′ ∈ ωpi}.

(We assume always that Vi ∩ Vj = ∅, for i 6= j, i, j ∈ {1, 2, · · · , l}.)
If ∂Ω = ∂Ω, then we say that Ω is a domain with no cracks. The points pi,
i = 1, · · · , l are called conical points or vertices. If n = 2, Ω is said to be a
polygonal domain.

We distinguish two cases: conical domains without cracks, n ∈ N, and
polygonal domains with rami�ed cracks. (Note that if n ≥ 3 then domains with
cracks have edges, and are no longer conical.)

For simplicity, we assume Ω to be a subset of Rn.
In applications to boundary value problems in Ω, it is often useful to

regard smooth boundary points as arti�cial vertices, representing for instance
a change in boundary conditions. Then a conical point x is a smooth boundary
point if, and only if, ωx ∼= Sn−1

+ . The minimal set of conical points is unique
and coincides with the singularities of ∂Ω; these are true conical points of Ω.
Here we will give our results for true vertices, but the constructions can easily
be extended to arti�cial ones.

For the remainder of the paper, we keep the notation as in De�nition 4.1.
Moreover, for a conical domain Ω, we always denote by

Ω(0) = {p1, p2, · · · , pl},

the set of true conical points of Ω, and by Ω0 be the smooth part of ∂Ω, i.e.,
Ω0 = ∂Ω\{p1, p2, · · · , pl}. We remark that we allow the bases ωpi and ∂ωpi to
be disconnected (in fact, if n = 2, ∂ωpi is always disconnected).

We now recall the de�nition of the desingularization Σ(Ω) of Ω of a conical
domain without cracks, which is obtained from Ω by removing a, possibly non-
connected, neighborhood of the singular points and replacing each connected
component by a cylinder. We refer to [4] for details on this construction, see
also [8, 29,38].

We have the following

Σ(Ω) ∼=

 ⊔
pi∈Ω(0)

[0, 1)× ωpi

 ⋃
φpi

Ω,
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where the two sets are glued by φi along a suitable neighborhood of pi.
In the terminology of [4], the hyperfaces which are not at in�nity corre-

spond to actual faces of Ω, denoted by ∂′Σ(Ω), that is,

(6) ∂′Σ(Ω) ∼=

 ⊔
pi∈Ω(0)

[0, 1)× ∂ωpi

 ⋃
φpi , pi∈Ω(0)

Ω0.

A hyperface at in�nity corresponds to a singularity of Ω. Let ∂′′Σ(Ω) denote
the union of hyperfaces at in�nity. Hence

(7) ∂′′Σ(Ω) ∼=
⊔

pi∈Ω(0)

{0} × ωpi .

The boundary ∂Σ(Ω) can be identi�ed with the union of ∂′Σ(Ω) and
∂′′Σ(Ω). Let Ω0 denote the smooth part of ∂Ω, that is, Ω0 := ∂Ω\Ω(0). Hence,
we can write

∂Σ(Ω) = ∂′Σ(Ω) ∪ ∂′′Σ(Ω)

∼=

 ⊔
pi∈Ω(0)

[0, 1)× ∂ωpi ∪ {0} × ωpi

 ⋃
φpi , pi∈Ω(0)

Ω0.(8)

We denote by M := ∂′Σ(Ω). Note that M coincides with the closure of
Ω0 in Σ(Ω). It is a compact manifold with (smooth) boundary

∂M =
⊔

pi∈Ω(0)

{0} × ∂ωpi .

In fact, we regard M := ∂′Σ(Ω) as a desingularization of the boundary ∂Ω.
Operators on M will be related to (weighted) operators on ∂Ω, as we shall see
in Subsection 4.4. See [4, 8] for more details.

4.2. Groupoid construction for conical domains without cracks

Let Ω be a conical domain without cracks, Ω(0) = {p1, p2, · · · , pl} be the
set of (true) conical points of Ω, and Ω0 be the smooth part of ∂Ω. We will
review the de�nition of the layer potentials groupoid G ⇒M , withM := ∂′Σ(Ω)
a compact set, as in the previous subsection, following [8].

Let H := [0,∞) o (0,∞) be the transformation groupoid with the action
of (0,∞) on [0,∞) by dilation (see Example 2.13). To each pi ∈ Ω(0), we �rst
associate a groupoid H × (∂ωpi)

2 ⇒ [0,∞) × ∂ωpi , where (∂ωpi)
2 is the pair

groupoid of ∂ωpi (see Example 2.12). We then take its reduction to [0, 1)×∂ωpi
to de�ne

Ji :=
(
H× (∂ωpi)

2
)∣∣

[0,1)×∂ωpi
⇒ [0, 1)× ∂ωpi .
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We now want to glue the pair groupoid Ω0×Ω0 = Ω2
0 and the family (Ji)i=1,2,...,l

in a suitable way. First, let Vi ⊂ Rn be a neighborhood of pi such that there is
a di�eomorphism ϕi : (0, 1)×∂ωi ∼= Vi∩Ω0. Let ϕ = (ϕi)pi∈Ω(0) on the disjoint

union
⊔l
i=1 Vi, and set

M =

 ⊔
pi∈Ω(0)

[0, 1)× ∂ωpi

⋃
ϕ

Ω0 = ∂′Σ(Ω),

as above.

Note that Ji|(0,1)×∂ωpi
is the pair groupoid ((0, 1)× ∂ωpi)2, so that

Ji|(0,1)×∂ωpi

∼= Ω2
0|Vi .

Moreover, it is easy to see that the family (Ji)li=1 ∪ {Ω2
0} satis�es the strong

gluing condition of Subsection 3.1 (the orbit of any point in M is either Ω0 or
one of the ∂ωpi , for i = 1, . . . , l). Therefore the gluing in the following de�nition
is a well de�ned Hausdor� Lie groupoid.

De�nition 4.2. Let Ω be a conical domain without cracks. The layer

potentials groupoid associated to Ω is the Lie groupoid G ⇒ M := ∂′Σ(Ω)
de�ned by

(9) G :=

 ⊔
pi∈Ω(0)

Jpi

 ⋃
ϕ

Ω2
0 ⇒ M

where ϕ = (ϕpi)pi∈Ω(0) , with space of units

M =

 ⊔
pi∈Ω(0)

[0, 1)× ∂ωpi

 ⋃
ϕ

Ω0
∼= ∂′Σ(Ω),(10)

where ∂′Σ(Ω) (de�ned in Equation (6)) denotes the union of hyperfaces which
are not at in�nity of a desingularization.

Clearly, the space M of units is compact. We have that Ω0 coincides
with the interior of M , so Ω0 is an open dense subset of M . The following
proposition summarizes the properties of the layer potentials groupoid and its
groupoid C∗-algebra. Note that C∗(H) = C0([0,∞))oR+, where R+ = (0,∞)
is the multiplication group, by [46].

Proposition 4.3. Let G be the layer potentials groupoid (9) associated to

a domain with conical points Ω ⊂ Rn. Let Ω(0) = {p1, p2, · · · , pl} be the set of

conical points and Ω0 = ∂Ω\Ω(0) be the smooth part of ∂Ω. Then, G is a Lie

groupoid with units M = ∂′Σ(Ω) (de�ned in Equation (6)) such that
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(1) Ω0 is an open, dense invariant subset with GΩ0
∼= Ω0×Ω0 and Ψm(GΩ0) ∼=

Ψm(Ω0).

(2) For each conical point p ∈ Ω(0), the subset {p} × ∂ωp is G-invariant and

G∂M =

l⊔
i=1

(∂ωi × ∂ωi)× R+ × {pi}

(3) If P ∈ Ψm(G∂M ) then for each pi ∈ Ω(0), P de�nes a Mellin convolution

operator on R+ × ∂ωi.
(4) G is (metrically) amenable, i.e. C∗(G) ∼= C∗r (G).

(5) If n≥3, C∗(G∂M )∼=
l⊕

i=1
C0(R+)⊗K. If n = 2, C∗(G∂M )∼=

l⊕
i=1

Mki(C0(R+)),

where ki is the number of elements of ∂ωi, the integer l is the number of

conical points, and K is the algebra of compact operators on an in�nite

dimensional separable Hilbert space.

Note that if P ∈ Ψm(G) then, at the boundary, the regular representation
yields an operator

Pi := πpi(P ) ∈ Ψm(R+ × (∂ωi)
2),

where R+ × (∂ωi)
2 is regarded as a groupoid (see Item (2) as above), which

is de�ned by a distribution kernel κi in R+ × (∂ωi)
2, hence a Mellin convo-

lution operator on R+ × ∂ωi with kernel κ̃i(r, s, x
′, y′) := κi(r/s, x

′, y′). If
P ∈ Ψ−∞(G), that is, if κi is smooth, then it de�nes a smoothing Mellin con-
volution operator on R+ × ∂ωi (see [32, 57]). This is one of the motivations in
our de�nition of G.

Remark 4.4. Recall the de�nition of b-groupoid in Example 2.16, which,
in the case of M =

⊔
i[0, 1)× ∂ωi comes down to

bG =
⊔
i,j

R+ × (∂jωi)
2
⋃

Ω2
0

where ∂jωi denotes the connected components of ∂ωi. If ∂ωi is connected, for
all i = 1, ..., l, then G = bG. In many cases of interest, ∂ω is not connected, for
instance, if n = 2, that is, if we have a polygonal domain, then ∂ω is always
disconnected. In general, the groupoid G is larger and not d-connected, and
bG is an open, wide subgroupoid of G. (The main di�erence is that here we
allow the di�erent connected components of the boundary, corresponding to the
same conical point, to interact, in that there are arrows between them.) The
Lie algebroids of these two groupoids coincide, as A(G) ∼= bTM , the b-tangent
bundle of M . Moreover, Ψ(G) ⊃ Ψ(bG), and the latter is the (compactly
supported) b-pseudodi�erential operators on M .
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Remark 4.5. The construction of the layer potential groupoid can be ex-
tended to polygonal domains with cracks, when n = 2, that is domains Ω ⊂ R2

such that ∂Ω 6= ∂Ω. This construction was done in [8].

The point is that in two dimensions, the actual cracks, given by ∂Ω \ ∂Ω,
are a collection of smooth crack lines and boundary points that behave like
conical singularities (in higher dimensions we get �edges�). To each polygonal
domain with cracks we can associate a generalized conical domain with no

cracks, the so-called unfolded domain,

Ωu = Ω ∪ ∂uΩ,

where ∂uΩ is the set of inward pointing unit normal vectors to the smooth part
of ∂Ω. The main idea is that a smooth crack point should be covered by two
points, which correspond to the two sides of the crack. At the boundary we get
a double cover of each smooth crack line, and a k-cover of each singular crack
point, k being the rami�cation number (see [8] for details). The vertices of Ω
are still vertices of the generalized domain, but now each singular crack point
yields k new vertices. The groupoid construction de�ned above still applies to
this case, as all the results in this subsection and the next.

4.3. Desingularization and weighted Sobolev spaces

for conical domains

An important class of function spaces on singular manifolds are weighted
Sobolev spaces. Let Ω be a conical domain, and rΩ be the smoothened distant
function to the set of conical points Ω(0) as in [4, 8]. The space L2(Σ(Ω)) is
de�ned using the volume element of a compatible metric on Σ(Ω). A natural
choice of compatible metrics is g = r−2

Ω ge, where ge is the Euclidean metric.
Then the Sobolev spacesHm(Σ(Ω)) are de�ned in the usual way. These Sobolev
spaces can be identi�ed with weighted Sobolev spaces.

Let m ∈ Z>0 and a ∈ R. The m-th Sobolev space on Ω with weight rΩ

and index a is de�ned by

(11) Kma (Ω) = {u ∈ L2
loc(Ω) | r|α|−aΩ ∂αu ∈ L2(Ω), for all |α| ≤ m}.

We de�ned similarly the spaces Kma (∂Ω). Note that in this case, as ∂Ω has no
boundary, these spaces are de�ned for any m ∈ R by complex interpolation [4].

The following result is taken from [4, Proposition 5.7 and De�nition 5.8].

Proposition 4.6. Let Ω ⊂ Rn be a domain with conical points, Σ(Ω) be

its desingularization, and ∂′Σ(Ω) be the union of the hyperfaces that are not at

in�nity. We have
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(a) Kmn
2

(Ω) ' Hm(Σ(Ω), g), for all m ∈ Z;
(b) Kmn−1

2

(∂Ω) ' Hm(∂′Σ(Ω), g), for all m ∈ R.

where the metric g = r−2
Ω ge with ge the Euclidean metric.

4.4. Fredholm Conditions for Layer Potentials

In this section, we relate the layer potential groupoids for conical domains

constructed in Section 4 with boundary action groupoids. Moreover, we also

show that they �t in the framework of Fredholm groupoids so we can apply the

Fredholm criteria obtained in the previous sections operators on layer potential

groupoids. All the results hold also for polygonal domains with rami�ed cracks

as in Remark 4.5.

Recall the de�nition of boundary action groupoids from Subsection 3.3.

Theorem 4.7. The layer potentials groupoid de�ned in De�nition 4.2 is

a boundary action groupoid.

Proof. The layer potential groupoids is built in several steps. First, the

groupoid H = [0,∞)o (0,∞) is obviously a boundary action groupoid. If pi is

a conical point of Ω, then ∂ωpi × ∂ωpi is also a boundary action groupoid (see

Example 3.15). Hence H× (∂ωpi)
2 is a boundary action groupoid by Theorem

3.17, and so is its reduction Ji =
(
H× (∂ωpi)

2
)
|[0,1)×∂ωpi

, according to Lemma

3.18. The layer potential groupoids is then obtained by gluing boundary action

groupoids Ji, for i = 1, . . . , l, with the pair groupoid Ω0 × Ω0, therefore it is

again a boundary action groupoid by Lemma 3.19. �

Let us now show that the layer potentials groupoid is Fredholm. The

results of Subsection 3.5 do not apply here, so we use a more direct method.

Let us �rst see the case of straight cones. Let ω ⊂ Sn−1 be an open subset

with smooth boundary (note that we allow ω to be disconnected) and

Ω := {ty′, y′ ∈ ω, t ∈ (0,∞)} = R+ ω

be the (open, unbounded) cone with base ω. The desingularization becomes in

this case an half-in�nite solid cylinder

Σ(Ω) = [0,∞)× ω

with boundary ∂Σ(Ω) = [0,∞)×∂ω∪{0}×ω, so thatM = ∂′Σ(Ω) = [0,∞)×∂ω
the union of the hyperfaces not at in�nity. Taking the one-point compacti�-

cation [0,∞] of [0,∞), we can consider the groupoid H as in Example 2.22.
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Then the layer potentials groupoid associated to a straight cone Ω ∼= R+ω

is the product Lie groupoid with units M = [0,∞] × ∂ω, corresponding to a

desingularization of ∂Ω, de�ned as

J := H× (∂ω)2.

Now, we have seen in Example 2.22 that H is a Fredholm groupoid, hence J
is also a Fredholm groupoid.

In the general case, we can proceed in several ways: we can use the same

argument as in the straight cone case (that is, as in Example 2.22 ), or we can

use the fact that the gluing (along the interior) of Fredholm groupoids is also a

Fredholm groupoid. By analogy with the classes of Fredholm groupoids studied

in [6], we chose to check that G is actually given by a �bered pair groupoid over

the boundary.

Theorem 4.8. The layer potentials groupoid de�ned in De�nition 4.2 is

a Fredholm groupoid.

Proof. It is clear that Ω0 is an open, dense, G-invariant subset of M =

∂′Σ(Ω), with GΩ0 is the pair groupoid. Let

F := M\Ω0 = ∂M =
⋃

p∈Ω(0)

{p} × ∂ωp ∼=
l⊔

i=1

∂ωpi .

We have

GF =

l⊔
i=1

(∂ωi × ∂ωi)× (R+)

For any x ∈ F , we have (GF )xx = Gxx ' {x} × R+ ' R+. Since the group

R+ is commutative, it is amenable. We claim that R(GF ) = {πx, x ∈ F} is
a strictly spectral/exhaustive set of representations of C∗(GF ). This can be

proved directly, using the description in (4) of Proposition 4.3.

We show alternatively that GF can be given as a �bered pair groupoid,

along the lines of Example 2.15. Let P := {∂ωi}i=1,...,l be a �nite partition of

the smooth manifold F and let f : F → P, x ∈ ∂ωi 7→ ∂ωi. Then each ∂ωi is a

closed submanifold of F and P is a smooth discrete manifold, with f a locally

constant smooth �bration.

Let H := P × R+, as a product of a manifold and a Lie group. Then, by

Example 2.15,

f↓↓(H) =

l⊔
i=1

(∂ωi × ∂ωi)× R+ = GF .
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Hence, by Corollary 2.25, the result is proved. �

If we apply Theorem 2.26 [7, Theorem 4.17] to our case, we obtain the

main theorems as follows. Recall that the regular representations πx and πy
are unitarily equivalent for x, y in the same orbit of GF , so that for P ∈ Ψm(G)

we obtain a family of Mellin convolution operators Pi := πx(P ) on R+ × ∂ωi,
i = 1, ..., p, with x = (pi, x

′) ∈ ∂M , x′ ∈ ∂ωpi .
Recall that the space Lms (G) is the norm closure of Ψm(G) in the topology

of continuous operators Hs(M) → Hs−m(M). By the results in [56, 57], if

P ∈ Lms (G), then πpi(P ) is also a Mellin convolution operator.

Theorem 4.9. Suppose that Ω ⊂ Rn is a conical domain without cracks

and Ω(0) = {p1, p2, · · · , pl} is the set of conical points. Let G ⇒ M = ∂′Σ(Ω)

be the layer potentials groupoid as in De�nition 4.2. Let P ∈ Lms (G) ⊃ Ψm(G)

and s ∈ R. Then
P : Ksn−1

2

(∂Ω)→ Ks−mn−1
2

(∂Ω)

is Fredholm if, and only if,

(1) P is elliptic and

(2) the Mellin convolution operators

Pi : Hs(R+ × ∂ωi; g)→ Hs−m(R+ × ∂ωi; g)

are invertible, for i = 1, . . . , p, where the metric g = r−2
Ω ge with ge the

Euclidean metric.

Remark 4.10. Fredholm conditions similar to those of Theorem 4.9 also

hold for polygonal domains with cracks. In that case, some extra limit operators

arise from the fact that the boundary ∂Ω should be desingularized near the

crack points.

We expect that these results have applications to layer potentials.
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