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This paper proves a weak limit theorem for a one-dimensional split-step quantum
walk and investigates the limit density function. In the density function, the
difference between two Konno’s functions appears.
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1. INTRODUCTION

A large amount of work has been devoted to the study of discrete-time
quantum walks, which are viewed as quantum counterparts of random walks
(see [1,20,41] and references therein). Omne of the most interesting topics in
quantum walks is a weak limit theorem, which was first proved by Konno
[18,19] for a homogeneous quantum walk on Z and which was extended to
more general situations by many authors [11,14,23,25,26,34,37] (see also [39]).
The weak limit theorem has also been proved for quantum walks on the half
line [27], trees [3], joined half lines [4], higher-dimensional lattices [8,29,38,42],
crystal lattices 12|, and several graphs [13,31]. A random environment case
and temporally inhomogeneous case were studied in [21,28,30]. Recently, the
weak limit theorem for a nonlinear quantum walk was established in [32,33].

A spatially inhomogeneous discrete-time quantum walk on Z is described
by a unitary evolution operator

(1.1) U=SC

which is the product of a shift operator S and a coin operator C on the Hilbert
space H = (%(Z;C?). Here the shift operator S is defined as S = L& L*, where
3 is identified with ¢2(Z) @ ¢?(Z) and L is the left-shift on ¢?(Z). The coin
operator C' depends on a position x € Z and is defined as the multiplication
operator by a family of unitary matrices {C(z)}zez C U(2). In particular,
in the case where C(z) = C’ (x € Z )\ {0}) and C(z) = C(0) (x = 0) with
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C’,C(0) € U(2), the quantum walk is called a one-defect model, for which the
weak limit theorem was proved in [6,22]. In [40], the weak limit theorem was
extended to the short-range case, where Cp := lim; o, C(z) and

(1.2) IC(x) = Coll = O(|z|7179).

It is clear that (1.2) covers the homogeneous case with C(z) = Cp. In the case
where C(z) = C4 (x > 0) and C(z) = C_ (x < 0) with Cy, C_ € U(2), the
quantum walk is called a complete two-phase model, for which the weak limit
theorem was proved in [7]. See also [5] for a two-phase model with one defect.
An anisotropic quantum walk was introduced in [35], where C(z) is assumed
to satisfy

|C(z) — C+|| = O(|z|17¢) for £z > 0.

This condition covers the two-phase models and allows us to prove the weak
limit theorem [36].

In this paper, we consider a split-step quantum walk on Z introduced in
previous papers [9,10], whose evolution operator is given by U = SC'. The shift
operator S of the split-step quantum walk is given by

(1.3) S = (qﬁ* qi) 7

where p € R and ¢ € C satisfy p® + |¢|> = 1. We suppose that C(x) satisfies
(1.2), prove the weak limit theorem, and calculate the limit density function.
The difference between Konno’s functions [18] appears in the limit density
function. As put into evidence in [36, 40|, Konno’s function always appears
in the limit density function for the one-dimensional quantum walk with the
evolution U = SC. However, to the authors’ best knowledge, this is the first
work where the difference of Konno’s functions appears.

This paper is organized as follows. In Section 2, we compare the split-step
quantum walk with the other models. In Section 3, we present the weak limit
theorem for the split-step quantum walk. We give the proof in the final section.

2. SPLIT-STEP QUANTUM WALK AND THE OTHER WALKS

As pointed out in [10], the split-step quantum walk unifies the spatially
inhomogeneous quantum walk described by (1.1) and Kitagawa’s quantum walk
[17]. Indeed, if we take p = 0, then S = Soy with oy = ((1) (1)> and hence U
becomes the evolution of a spatially inhomogeneous quantum walk (1.1) with

a different coin operator. If we take p = sin(f/2) and g = cos(0/2), then
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S = 01S_R(0)S+, where Sy = L*® 1, S_ = 1@ L, and R(f) is a rotation
matrix. Taking C(x) = R(0)o1, we get

U = 01Us(0,0)01,

where Ug(0',0) = S_R(0)S;+R(#") is the evolution of Kitagawa’s split-step
quantum walk [17]. Thus the split-step quantum walk is unitarily equivalent to
Kitagawa’s one. For more details, the reader can consult [10, Examples 2.1-2.2].

The split-step quantum walk is viewed as a lazy quantum walk, ¢.e., at
each time, the walker does not only move to the left and right but also stays
at the same position. Let ¥y € H be the initial state and U; = U'¥( the state
of the walker at time ¢t = 0,1,2,.... Then the state evolution is given by

Vini(z) =Pz + D)W (x+ 1)+ Qx — 1)U(z — 1) + R(z)Vi(z), z€Z

with some 2 x 2 matrices P(x), Q(z), and R(z). The existence of the third
term in the right-hand side indicates that the split-step quantum walk is lazy.
Note that R(z) = 0 if and only if p = 0. In [14,24], a lazy quantum walk
on 7Z is defined as a three-state quantum walk on the Hilbert space ¢2(Z; C?),

whereas the split-step quantum walk is defined as a two-state quantum walk
on H = (%(Z;C?).

3. WEAK LIMIT THEOREM

In quantum walks, the position X; of a walker at time ¢ with an initial
state ¥ € H (||¥gl| = 1) is a random variable with the distribution

P(Xy =) = |[W(2)|?, z€Z,

where ¥, := U'W is the state of the walker at time ¢ with the evolution U = SC
and the shift operator S defined in (1.3). As shown in [36,40] for the short-
range cases, X;/t converges in law to a random variable V' as t — oo. This
assertion is called the weak limit theorem. To show the weak limit theorem, we
suppose the following.

(A1) There exists a matrix Cy € U(2) such that
IC(@) = Coll < sl ™77, @ € Z)\ {0}
with some k, e > 0 independent of z.

For the simplicity of the presentation, the following simplifying conditions are
assumed.

(A2) p,g>0, Coz(z b

>, a,b>0.
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Let Uy = SCy be a homogeneous evolution, whose coin operator is the
limit of C'(x) at spatial infinity. The assumption (A.1) ensures that the wave
operator W = s-limy_,oo U~ 'U{ exists and W* = s-limy_,0 UO_tUtHaC(U). Here
IL,c(U) is the projection onto the absolutely continuous spectral subspace of U.
Indeed, this can be proved by a discrete analog of the Kato-Rosenblum Theorem
[40, Proposition 3.1] (see also [15,16]), because (A.1) guarantees that U — Uy is
trace class. Moreover, (A.1) allows us to construct a conjugate operator A for U
such that U and A satisfy a Mourre estimate in a way similar to [35, Proposition
4.5, Lemma 4.9, and Proposition 4.11] (see also [2]). This proves that U has
no singular continuous spectrum. Let II,(U) be the projection onto the direct
sum of all eigenspaces of U and fx (v;r) be Konno’s function defined as

fr(v;r) = Lo I (v), veR, 0<r<1
R (1 —v2)Vr2 —v? (=)t ’ ’
where 14 is the characteristic function of a set A C R. We use F' to denote the
Fourier transform, which maps H to X = L?(T;C?;dk/(2m)) with T = [0, 27).
Let

. [ p getk
(3.1) Uo(k) = (qe_““ —p) Co, keT
and use u;(k) to denote its normalized eigenvectors corresponding to eigenva-
lues .

\j(k) = exp (1) tiarccos7(k)), j=1,2,
where 7(k) = pa+qbcosk (k € T). We are now in a position to state our main
result.

THEOREM 3.1. Let X; be as above. Then X/t converges in law to a
random variable V', whose distribution is given by
v (dv) = wodo(dv) + w (v) 1 ()dv + w_ (0) /- (v)dv,
where wy = ||, (U)Wl|? is a nonnegative constant, and fi(v) and wi(v) are
nonnegative functions given by

|frc(v;q) F fre(v;b)|

(3'2) fi(v) = 9 I(—q,q)ﬂ(—b,b) (U),
(33) we(v) — wi (2m — arccos g+ (v)) + wa(arccos g+ (v)), v >0,
' - wi (arccos g+ (v)) + wa (27 — arccos g+ (v)), v <0
with
oy JZ A )
(34) gi(v) - qb(]. — U2)
and

(3.5) wj(k) = (us(k), (FW*Wo) (k) (G = 1,2).
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This theorem says that if b # ¢, we have the difference between two
Konno’s functions fx(v;q) and fx(v;b) in the density function. To the best of
the authors’ knowledge, this is the first work where such a difference appears.

4. PROOF OF THE WEAK LIMIT THEOREM

Throughout this section, we assume (A.1) and (A.2), and prove Theo-
rem 3.1. The proof proceeds along the same lines as the proof of the weak
limit theorem in [36,40]. A key ingredient is that the Heisenberg operator
#(t) = U'2U" for the position operator 2 divided by t converges to the asymp-
totic velocity operator v for U, i.e.,

(4.1) s- lim SO/ —T1L,(U) + ¥, (U), € €R.

—00
This gives the limit distribution in terms of the projection II,(U) and the
spectral measure of 0. A direct calculation of the spectral measure yields the
density function of the limit distribution.
Following the above procedure, we first define the velocity operator 0. We
remark that the Fourier transform F': H — X is unitary and satisfies

(FO)(k)=> e ™W(z), keT
TEZL
for all ¥ € H with a finite support. The Fourier transform FUyF™* of Uy is the
multiplication operator on X by Uo(k) defined in (3.1). The velocity operator
0 for the homogeneous evolution Uy is defined so that the Fourier transform
FogF™* is given by the multiplication operator on X by the 2 x 2 hermitian
matrix
(4.2) (FooF™)(k) = > v(k)[uj(k))(u;(k)], k€T
j=1,2
with
iN.(k _1)J+1
(4.3) v (k) = :j((k)) _ D i
S VI dk
The velocity operator ¢ for the inhomogeneous evolution U is defined as v =
WooW*. We use Ey(-) to denote the spectral measure of 0. The following
proposition can be proved by (4.1) in a way similar to [40, Corollary 2.4].

PROPOSITION 4.1. Suppose (A.1) and (A.2). Let V be a random variable
with the distribution

pv (dv) = [T, (U)o *6o(dv) + || Es (dv)Mac(U) Wo|[*.

Then, X/t converges to V in law as t — 00.
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It suffices from Proposition 4.1 to calculate the density function of the
continuous part ||Ey(dv)IL,.(U)¥o|?. To this end, we calculate the Fourier
transform of || By (-)IL.(U)Wo||2. Because Ey(v)ae(U) = W Eg, (v)W* and W :
H — Ranll,.(U) is unitary, ||Es(-)ac(U)Wo||? = || Esy (- )W*¥g||%. Combining
this with (3.5) and (4.2), we have

/ €0 || By (0) e (U) T |2 = (W* T, eS0T W)

(4.4) - / dk (ef6er®on (k) + =1 Pun(h) )
T 2
where we have used vy (k) = —va(k) in the last equation. In what follows, we
make the substitutions v = v1(k) in RHS of (4.4). To do so, we calculate the
inverse function of v = v;(k) and the Jacobian iﬂ% By (4.3), we obtain
@ aplr =2 -D)
dk (1 _ 7.2)% '

For the moment, we assume p > a. Because 7 <1< Br<land0< Z—z <1,

the condition 7 = % is equivalent to the following condition:

k = arccos al or k = 2w — arccos %,
bp bp

where 0 < arccos § < . By these facts, we have

{gz <0, k€ [0,arccos 3l) U (2m — arccos gl, 2m),

v aq aq
>0, ke (arccos by 2T — arccos gl ).

Therefore, the function k +— v is injective on each domain of [0, arccos b 1)
larccos ¢4, ), [m,2m — arccos 3¢) and [2m — arccos §1,2m).  Observe that
P P P

v ([O,arccos Z—Z)) = ([arccos Z—Z,ﬂ)) = [—q,0] and v ([77,271 arccos gq)> =
v ([27T — arccos ¢, 2m) | = [0, g]. Because v? = (7)? (1— 72)71, we know that

(k) = Pty ql_zz)(vaQ Since 7(k) = pa + gbcos k, we obtain

arccos g+ (v), € [0, arccos ),

27 — arccos g— (v), ™, 2m — arccos 3f),

[

arccos g_(v), k € [arccos 71, ),
el
€l 2m),

27 — arccos g+ (v), 27 — arccos

pb’
where g4 (v) has been defined in (3.4). By direct calculation, we have

di arccos g+ (v) = £2msgn(v) f+(v),
v
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where fi(v) has been defined in (3.2). Hence,
(45) 1 dk J—fi(v), k€0, arccos b) [27r — arccos 2 b, 27),
o 2mdv | f_(v), k€ |arccos U s 2m —arccos 71).

Substituting v = vy (k) with (4.5), we have

RHS of (4.4)= Z /dvf# %01 (arccos g4 (v ))—i—e_if”wg(arccosg#(v))}
#eit }
_ —ifv _
+ Z / dv fy(v) 1€V wy (2m — arccos gy (v)) + e~V wy (27 arccosg#(v))}
#e{+,—}

- / T (f (0w (0) + £ (0w (v) do,

—0o0
where w4 has been defined in (3.3). This completes the proof for the case of
p > a. The same proof works for p < a. In the case of p = a, the proof
is immediate, because dv/dk = ap(1 — 7)?/(1 + T)% >0, i.e., v = vi(k) is
monotonically increasing.

Acknowledgements. This work was supported by Grant-in-Aid for Young Scientists
(B) (No. 26800054.

REFERENCES

[1] A. Ambainis, Quantum walks and their algorithmic applications. Int. J. Quantum Inf.
1 (2003), 507-518. arXiv: quant-ph/0403120v3

[2] J. Asch, O. Bourget and A. Joye, Spectral stability of unitary network models. Rev.
Math. Phys. 27 (2015), 1530004.

[3] K. Chisaki, M. Hamada, N. Konno and E. Segawa, Limit theorems for discrete-time
quantum walks on trees. Interdiscip. Inform. Sci. 15 (2009), 423-429.

[4] K. Chisaki, N. Konno and E. Segawa, Limit theorems for the discrete-time quantum walk
on a graph with joined half lines. Quantum Inf. Comput. 12 (2012), 314-333.

[5] S. Endo, T. Endo, N. Konno, E. Segawa and M. Takei, Weak limit theorem of a two-phase
quantum walk with one defect. Interdiscip. Inform. Sci. 22 (2016), 17-29.

[6] T. Endo and N. Konno, Weak convergence of the Wojcik model. Yokohama Math. J. 61
(2015), 87-111.

[7] T. Endo, N. Konno and H. Obuse, Relation between two-phase quantum walks and the
topological tnvariant, arXiv:1511.04230.

[8] C. Di Franco, M. Mc Gettrick, T. Machida and Th. Busch, Alternate two-dimensional
quantum walk with a single-qubit coin. Phys. Rev. A 84 (2011), 042337.

[9] T. Fuda, D. Funakawa and A. Suzuki, Localization of a multi-dimensional quantum walk
with one defect. Quantum Inf. Process. 16 (2017), 8, Paper No. 203.

[10] T. Fuda, D. Funakawa and A. Suzuki, Localization for a one-dimensional split-step
quantum walk with bound states robust against perturbations. J. Math. Phys. 59 (2018),
8, 082201.



164

Toru Fuda, Daiju Funakawa and Akito Suzuki 8

11]
[12]
113]
[14]

[15]

[16]
[17]
18]
[19]
120]
[21]
122]
23]
[24]
[25]
126]
[27]
28]
[29]

[30]

31]

[32]

G. Grimmett, S. Janson and P. Scudo, Weak limits for quantum random walks. Phys.
Rev. E 69 (2004), 026119.

Yu. Higuchi, N. Konno, I. Sato and E. Setawa, Spectral and asymptotic properties of
Grover walks on crystal lattices. J. Funct. Anal. 267 (2014), 4197-4235.

Yu. Higuchi and E. Segawa, The spreading behavior of quantum walks induced by drifted
random walks on some magnifier graph. Quantum Inf. Comput. 17 (2017), 0399-0414.
N. Inui, N. Konno and E. Segawa, One-dimensional three-state quantum walk. Phys.
Rev. E 72 (2005), 056112.

T. Kato and S.T. Kuroda, Theory of simple scattering and eigenfunction expansions. In:
F.E. Browder (Ed.), Functional analysis and related fields. Proc. Conf. for M. Stone,
Univ. Chicago, Chicago, 1968, Springer, New York, 99-131, 1970.

T. Kato and S.T. Kuroda, The abstract theory of scattering. Rocky Mountain J. Math.
1 (1971), 127-172.

T. Kitagawa, M.S. Rudner, E. Berg and E. Demler, Ezploring topological phases with
quantum walks. Phys. Rev. A 82 (2010), 033429.

N. Konno, Quantum random walks in one dimension. Quantum Inf. Process. 1 (2002),
345-354.

N. Konno, A new type of limit theorems for the one-dimensional quantum random walk.
J. Math. Soc. Japan 57 (2005), 1179-1195.

N. Konno, Quantum walks. In: U. Franz et al. (Ed.), Quantum Potential Theory,
Lecture Notes in Math. 1954, Springer, Berlin, 309-452, 2008.

N. Konno, One-dimensional discrete-time quantum walks on random environments.
Quantum Inf. Process. 8 (2009), 387-399.

N. Konno, T. Luczak and E. Segawa, Limit measure of inhomogeneous discrete-time
quantum walks in one dimension. Quantum Inf. Process. 12 (2013), 33-53.

N. Konno and T. Machida, Limit theorems for quantum walks with memory. Quantum
Inf. Comput. 10 (2010), 1004-1017.

D. Li, M. McGettrick, W. Zhang and K. Zhang, One dimensional lazy quantum walks
and occupancy rate. Chin. Phys. B24, 2015.

C. Liu, Asymptotic distributions of quantum walks on the line with two entangled coins.
Quantum. Inf. Process. 11 (2012), 1193-1205.

C. Liu and N. Petulante, One-dimensional quantum random walks with two entangled
coins. Phys. Rev. A 79 (2009), 032312.

C. Liu and N. Petulante, Weak limits for quantum walks on the half-line. Int. J. Quan-
tum Inf. 11 (2013), 1350054.

T. Machida, Limit theorems for a localization model of 2-state quantum walks. Int. J.
Quantum Inf. 9 (2011), 863-874.

T. Machida and C.M. Chandrashekar, Localization and limit laws of a three-state alter-
nate quantum walk on a two-dimensional lattice. Phys. Rev. A 92 (2015), 062307.

T. Machida and N. Konno, Limit theorem for a time-dependent coined quantum walk on
the line. Proceedings in Information and Communications Technology. Vol. 2, 226-235,
2010.

T. Machida and E. Segawa, Trapping and spreading properties of quantum walk in ho-
mological structure. Quantum Inf. Process. 14 (2015), 1539-1558.

M. Maeda, H. Sasaki, E. Segawa, A. Suzuki and K. Suzuki, Scattering and inverse
scattering for nonlinear quantum walks. Discrete Contin. Dyn. Syst. 38 (2018), 3687—
3703.



Weak limit theorem for a one-dimensional split-step quantum walk 165

[33]
[34]
[35]
[36]
37]
[38]
[39]
[40]
[41]

[42]

M. Maeda, H. Sasaki, E. Segawa, A. Suzuki and K. Suzuki, Weak limit theorem for a
nonlinear quantum walk. Quantum Inf. Process. 17 (2018), 9, Paper No. 215.

T. Miyazaki, M. Katori and N. Konno, Wigner formula of rotation matrices and quantum
walks. Phys. Rev. A 76 (2007), 012332.

S. Richard, A. Suzuki and R. Tiedra de Aldecoa, Quantum walks with an anisotropic
coin I: spectral theory. Lett. Math. Phys. 108 (2017), 331-357.

S. Richard, A. Suzuki and R. Tiedra de Aldecoa, Quantum walks with an anisotropic
coin II: scattering theory. Lett. Math. Phys., 2018.

E. Segawa and N. Konno, Limit theorems for quantum walks driven by many coins. Int.
J. Quantum Inf. 6 (2008), 1231-1343.

M. Stefann 4k, I. Bezdékové and I. Jex, Limit density of 2d quantum walk: zeroes of the
weight function. Interdiscip. Inform. Sci. 23 (2017), 19-25.

T. Sunada and T. Tate, Asymptotic behavior of quantum walks on the line. J. Funct.
Anal. 262 (2012), 2608-2645.

A. Suzuki, Asymptotic velocity of a position-dependent quantum walk. Quantum Inf.
Process. 15 (2016), 103-119.

S.E. Venegas-Andraca, Quantum walks: a comprehensive review. Quantum Inf. Process.
11 (2012), 1015-1106.

K. Watabe, N. Kobayashi, M. Katori and N. Konno, Limit distributions of two-dimen-
stonal quantum walks. Phys. Rev. A 77 (2008), 062331.

Received 30 August 2018 Kokushikan University,
School of Science and Engineering,
Department of Mathematics
and Science,
4-28-1, Setagaya, Setagaya-Ku,
Tokyo 154-8515, Japan
fudat@kokushikan.ac.jp

Hokkai-Gakuen University,
Department of Electronics
and Information Engineering,
Sapporo 062-8605, Japan
funakawa@hgu.jp

Shinshu University,

Faculty of Engineering,
Division of Mathematics and Physics,
Nagano 380-8553, Japan,
akito@shinshu-u.ac.jp



