ON THE HARTLE-HAWKING-ISRAEL STATES FOR SPACETIMES
WITH STATIC BIFURCATE KILLING HORIZONS
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We revisit the construction by K. Sanders [19] of the Hartle-Hawking-Israel state
for a free quantum Klein-Gordon field on a spacetime with a static, bifurcate
Killing horizon and a wedge reflection. Using the notion of the Calderén pro-
jector for elliptic boundary value problems and pseudodifferential calculus on
manifolds, we give a short proof of its Hadamard property.
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1. INTRODUCTION

Quantum Field Theory on curved spacetimes describes quantum fields in
an external gravitational field, represented by the Lorentzian metric on the
ambient spacetime. It is used in situations when both the quantum nature of
the fields and the effect of gravitation are important, but the quantum nature
of gravity can be neglected in first approximation. Its most important areas
of application are the study of phenomena occurring in the early universe and
in the vicinity of black holes, and its most celebrated result is the discovery
by Hawking [5] that quantum particles are created near the horizon of a black
hole.

The symmetries of the Minkowski spacetime, which play such a fundamen-
tal role, are absent in curved spacetimes, except in some simple situations, like
stationary or static spacetimes. Therefore the traditional approach to quantum
field theory has to be modified: one has first to perform an algebraic quantiza-
tion, which for free theories amounts to introduce an appropriate phase space,
which is either a symplectic or an Euclidean space, in the bosonic or fermionic
case. From such a phase space one can construct CCR or CAR x-algebras,

The second step consists in singling out, among the many states on these *-
algebras, the physically meaningful ones, which should resemble the Minkowski
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vacuum, at least in the vicinity of any point of the spacetime. This leads to
the notion of Hadamard states, which are substitutes for the wvacuum state,
which plays a fundamental role in Quantum Field Theory on the Minkowski
spacetime.

Hadamard states were originally defined by requiring that their two-point
functions have a specific asymptotic expansion near the diagonal, called the
Hadamard expansion. A very important progress was made by Radzikowski [18]
who introduced the characterization of Hadamard states by the wavefront set
of their two-point functions.

Hadamard states are nowadays widely accepted as possible physical states
of non-interacting quantum fields on a curved spacetime. One of the main
reagsons for the importance of Hadamard states is their applicability to the
renormalization of the stress-energy tensor, a necessary step in the formulation
of semi-classical Einstein equations. Moreover, the Hadamard condition plays
an essential role in the perturbative construction of interacting quantum field
theory [2].

1.1. Black hole spacetimes

One of the early successes of QFT on curved spacetimes was Hawking’s
discovery [5] of black hole radiation, produced by a spherically symmetric star
collapsing to a black hole. A related line of research was initiated by Hartle and
Hawking [6] and Israel [8], who conjectured the existence of a ‘ground state’ for
a Klein-Gordon field propagating in a spacetime containing a static black hole.
Let us now describe in more details the precise geometrical framework.

One considers a globally hyperbolic spacetime (M, g), with a bifurcate
Killing horizon, see [13,19] or Subsection 2.1 for precise definition. The bifur-
cate Killing horizon .7 is generated by the bifurcation surface 8 = {x € M :
V(z) = 0}, where V is the Killing vector field. It allows to split (M, g) into four
globally hyperbolic regions, the right/left wedges 4", .#~ and the future/past
cones &, &, each invariant under the flow of V. An important object related
with the Killing horizon ¢ is its surface gravity x, which is a scalar, constant
over all of 2.

Let us consider on (M, g) a free quantum Klein-Gordon field associated
to the Klein-Gordon equation

—Bg0(x) +m(z)p(x) = 0,

where m € C*°(M,R), m(x) > 0 is invariant under V, and its associated free
field algebra.

If V is time-like in (A, g), i.e. if (A ,g,V) is a stationary spacetime,
there exists (see [20]) for any S > 0 a thermal state wg at temperature f~1
with respect to the group of Killing isometries of (.# ™, g) generated by V.
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It was conjectured by Hartle and Hawking [6] and Israel [8] that if 8 =
21k~ 1 is the inverse Hawking temperature, denoted by By in the sequel, then
w7} can be extended to the whole of M as a pure state, invariant under V, the
Hartle-Hawking-Israel state, denoted in the sequel by wpgmnr.

The rigorous construction of the HHI state was first addressed by Kay
n [12], who constructed the HHI state in the Schwarzschild double wedge of
the Kruskal spacetime. In such a double wedge, the HHI state is a double KMS
state, see [10,11]. Later Kay and Wald [13] considered the more general case
of spacetimes with a bifurcate Killing horizon, and study general properties of
stationary states on this class of spacetimes. They emphasized in particular the
importance of the Hadamard condition. They proved that a specific sub-algebra
of the free field algebra has at most one state invariant under V' and Hadamard.
They also showed that if M admits a wedge reflection (see Subsection 2.2) the
restriction of such a state to .# " will necessarily be a Sg—KMS state. These
results were later improved in [9)].

The existence of such a state, i.e. of the HHI state, was however not
proved in [6]. The first proof of the existence of wppyr was given by Sanders
in the remarkable paper [19], if the bifurcate Killing horizon is static, i.e. if
V is static in ., assuming also the existence of a wedge reflection. Sanders
showed that there exists a unique Hadamard state wpgpr on M extending the
double By—KMS state wg on A4+ U #~. The double Sg—KMS state wg is a
pure state on .Zt U .#~ which is the natural extension of w; defined using
the wedge reflection, see [10,11]. It is an exact geometrical analog of the Fock
vacuum vector in the Araki-Woods representation of a thermal state.

1.2. Content of the paper

In this paper, we revisit the construction in [19] of the Hartle-Hawking-
Israel state in a spacetime with a static bifurcate Killing horizon. Using the
notion of the Calderén projector (see Section 5), which is a standard tool in
elliptic boundary value problems, we significantly shorten the proof of the Ha-
damard property of wpmr.

In [19] the fact that wyp is Hadamard was proved by a careful comparison
of the Hadamard parametrix construction for the D’Alembertian —O, + m
associated to the Lorentzian metric g and for the Laplacian —Aj;+m associated
to the Riemannian metric g obtained from g by Wick rotation in the Killing
time coordinate.

In our paper, we avoid working with the spacetime covariances of sta-
tes and instead systematically work with the Cauchy surface covariances (see
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Subsection 3.3) associated with a Cauchy surface ¥ containing the bifurcation
surface 4.

It turns out that the Cauchy surface covariances A* of the double S—KMS
state wg are related to a Calderén projector D.

Let us informally recall what is the Calderén projector associated to a
elliptic boundary value problem, see Section 5 for more details:

let (N, g) be a complete Riemannian manifold and P = —Aj; 4+ m(x) for
m € C*°(N), m(z) > 0 a Laplace-Beltrami operator. Let also 2 C M a smooth
open set. To € is naturally associated the canonical surface density dS, defined
by (dS|u) = [5, udo, for u € C°(M), where do is the induced surface element
on 0f).

If 9, is the external normal derivative to 92 and vyu = ( 8UL(9[S;Q ) for u €
C>(Q) the Calderén projector D is a map from C°(9Q) ® C? to C*°(9Q) ® C?
defined by:

DJ i= 50 G(fi(dVoly)1dS — fo(dVol;)33dS), f = (f’) € Cx(00) & C2,

where G = P~!. It is easy to see that f € C°(X) ® C? equals yu for some
u € C*(Q) solution of Pu =0 in § if and only if Df = f.

In our case we take N = Sg x £7, where Sg is the circle of length 8 and
YT = ¥ N.#" is the right part of the Cauchy surface ¥. The Riemannian
metric is § = v?(y)dr? + h;j(y)dy'dy’, obtained by the Wick rotation t =: it of
the Lorentzian metric g = —v?(y)dt* + hij(y)dy'dy’ on A+ ~ R x T where
M is identified to R x ¥ using the Killing time coordinate ¢.

The existence of an extension of wg, to M is then an almost immediate
consequence of the fact that (N, g) admits a smooth extension (Next, Gext) if
and only if § = fy, a well-known result which plays also a role in [19].

In fact this geometrical fact implies that D, viewed as an operator defined
on C®(¥\ %) ® C? uniquely extends to a Calderon projector Deys, defined on
CX(X)®@C2. From Dey one can then easily obtain a pure quasi-free state wypr
on the whole of M.

The Hadamard property of wgpr follows then from the well-known fact
that Deyt, being a Calderdén projector, is a 2 X 2 matrix of pseudodifferential
operators on X, and of the Hadamard property of wg in 4% U .#~.

Beside shortening the proof of the Hadamard property of wir, we think
that our paper illustrates the usefulness of pseudodifferential calculus for the
construction and study of Hadamard states, see also [14-17] for other applica-
tions. We believe that Calderén projectors could also be used to construct the
Hartle-Hawking-Israel state in the still open case of spacetimes with a Killing
horizon that is only stationary.
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1.3. Plan of the paper

Let us now briefly give the plan of the paper. In Section 2, we recall the
notion of a static bifurcate Killing horizon, following [19] and introduce the
associated Klein-Gordon equation.

Section 3 is devoted to background material on C'C R*—algebras, bosonic
quasi-free states and their spacetime and Cauchy surface covariances in the case
of quantum Klein-Gordon fields. We use the framework of charged fields, which
is in our opinion more elegant, even when considering only neutral field equa-
tions. We also recall the notion of pseudodifferential operators on a manifold,
which will be useful later on and formulate a consequence of [15] which states
that the Cauchy surface covariances of any Hadamard state for Klein-Gordon
fields is given by a matrix of pseudodifferential operators.

In Section 4, we define various ‘Euclidean’ Laplacians, K = —A; +m
acting on N = Sg x X7 and a related operator K, obtained from Wick rota-
tion of the Lorentzian metric on M in the Killing time coordinate, which are
considered in [19]. It is sufficient for us to define these Laplacians by quadratic
form techniques, which simplifies some arguments.

In Section 5, we recall the definition of the Calderdn projector, which is
a standard notion in elliptic boundary value problems. In Section 6, using
the explicit expression for K1, we show that the projection associated to the
double 8—KMS state wg equals to the Calderén projector D associated to K
and the open set =0, 3/2[xXT.

In Section 7, we recall the well-known fact that a smooth extension (Next,
Jext) of (N, g) exists iff § = fg. The extended Calderén projector Dexi ge-
nerates a pure state on M, which is the Hartle-Hawking-Israel state wypr. In
Prop. 7.4, we show that such an extension is unique among quasi-free states
whose spacetime covariances map C°(M) into C°°(M) continuously. Finally,
we give in the proof of Thm. 7.5 a new and elementary proof of the Hadamard
property of wypr, using the pseudodifferential calculus on 3.

2. SPACETIMES WITH A STATIC BIFURCATE KILLING
HORIZON

2.1. Static bifurcate Killing horizons

We consider as in [19] a globally hyperbolic spacetime (M, g) with a static
bifurcate Killing horizon. We recall, see [19, Def. 2.2|, that this is a triple
(M,g,V), such that

(1) the Lorentzian manifold (M, g) is globally hyperbolic,
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(2) V is a complete Killing vector field for (M, g),
(3) # := {x € M : V(x) = 0} is a compact, orientable submanifold of
codimension 2,
(4) there exists a Cauchy hypersurface ¥ containing 4,
(5) V is g—orthogonal to X,
see Fig. 1 below where the vector field V is represented by arrows.

/ %+/

Fig. 1

For simplicity we will also assume that the bifurcation surface % is con-
nected. Denoting by n the future pointing normal vector field to X one intro-
duces the lapse function:

(2.1) v(z) == —n(x)-g(x)V(z), x € X,
and X decomposes as
Y=Y UZUXT,
where ¥* = {x € ¥ : £v(x) > 0}. The spacetime M splits as
M=#T"U 4" UF UL,

where the future cone .# := I't(%), the past cone & := I~ (%), the right/left
wedges .4+ := D(X%), are all globally hyperbolic when equipped with g.

2.2. Wedge reflection

Additionally one has to assume the existence of a wedge reflection, see [19,
Def. 2.6], i.e. a diffeomorphism R of .#+ U.#~ UU onto itself, where U is an
open neighborhood of 4 such that:
(1) RoR=1d,
(2) R is an isometry of (#1 U .#,g) onto itself, which reverses the time
orientation,
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(3) R=1d on %,
4) R*V =V on 4T U.#".
It follows that R preserves X, see [19, Prop. 2.7|, and we denote by r the

restriction of R to X. Denoting by A the induced Riemannian metric on ¥ one
has:

(2.2) r*h = h,r*v = —v.

2.3. Killing time coordinate

Denoting by ®Y : M — M the flow of the Killing vector field V', we obtain
a diffeomorphism
X:RX (Z\%B) 3 (t,y) = ) (y) e MM UM,

which defines the coordinate t on .# " U.# ~ called the Killing time coordinate.
The metric g on .#" U .4~ pulled back by x takes the form (see [19, Sub-
section 2.1|):

(2.3) g = —v(y)dt* + hi;(y)dy'dy’,

where the Riemannian metric h;;(y)dy'dy’ is the restriction of g to .

2.4. Klein-Gordon operator

We fix a real potential m € C*°(M). As in [19] we assume that m is
stationary w.r.t. the Killing vector field V' and invariant under the wedge
reflection, i.e.:

(2.4) VeV m(z) =0, mo R(x) =m(z), v € AT UM~ UU.
For simplicity we also assume that
(2.5) m(x) >md >0, x € M,

i.e. we consider only massive fields. Note that in [19] the weaker condition
m(z) > 0 was assumed. We consider the Klein-Gordon operator

(2.6) P=—-0,+m.

3. FREE KLEIN-GORDON FIELDS

In this section, we briefly recall some well-known background material on
free quantum Klein-Gordon fields on globally hyperbolic spacetimes. We follow
the presentation in [15, Section 2| based on charged fields.
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3.1. Charged CCR algebra
3.1.1. CHARGED BOSONIC FIELDS

Let ) a complex vector space, YV* its anti-dual. Sesquilinear forms on )
are identified with elements of L(),Y*) and the action of a sesquilinear form
B is correspondingly denoted by 7 -By2 for yi,y2 € Y. We fix ¢ € Lyp(Y, V*) a
non degenerate hermitian form on ), i.e. such that Kerg = {0}.

The CCR *—algebra CCR(),q) is the complex *—algebra generated by
symbols 1,9(y),v*(y),y € Y and the relations:

(Y1 + My2) = (1) + Mp(ya), y1,92 € Y, X € C,

w*(yl + )\3/2) = w*(yl) + )\¢*(?/2)a Y1, Y2 € ya A€ (Cu

[(y1), ¥(y2] = [ (y1), ¥"(y2)] = 0, [¥(v1), V" (y2)] = Y1-qy21, y1,92 €V,
V(y) =¢*(y), ye V.

A state w on CCR(), q) is (gauge invariant) quasi-free if

- o[ 0ifp#g,
w(gw(w) Z];[lw (v3)) = { Yoes, Llim w@ )" (Yoi) if p = q.

There is no loss of generality to restrict oneself to charged fields and gauge
invariant states, see e.g. the discussion in [15, Section 2|. It is convenient to
associate to w its (complex) covariances \* € Ly(Y,Y*) defined by:

W@ (Y)Y (y2)) = T1- ATy,
W@ (y2)Y (1)) = Y- A"y,

The following results are well-known, see e.g. [4, Section 17.1] or |15, Section 2|:
— two hermitian forms \* € Ly (Y, Y*) are the covariances of a quasi-free
state w iff

(3.1) ME>0, AP - =¢

— Let ), be the completion of ) for the Hilbertian scalar product AT+ \".
If there exist linear operators ¢t € L()),) such that

e =1, ()2 =,

Y1, Y2 Gy.

(i.e. ¢* is a pair of complementary projections) and A* = +qoc*, then w is a

pure state.

3.1.2. NEUTRAL BOSONIC FIELDS

We complete this subsection by explaining the relationship with the for-
malism of neutral fields, see e.g. [15, Subsection 2.5].
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Let X a real vector space, X'# its dual, and o € L, (X, X#) a symplectic
form on X. The *—algebra CCR(X, o) is the complex *—algebra generated by
symbols 1, ¢(z),x € X and relations:

¢(x1 4 Ax2) = ¢(21) + AP(22), 21,72 € X, N ER,

[p(z1), p(w2] = iz1 0221, 71,79 € X,

P(x)" = ¢(z), z € X.
To relate the neutral to the charged formalism one sets J = CX and for
g € L(X,X#) denote by Sc € L(Y,V*) its sesquilinear extension. Vg ~ X®&X
is the real form of ), i.e. Yr = ) as a real vector space. Then (Vg,Reoc) ~
(X,0) @ (X,0) is a real symplectic space and we denote by ¢(y),y € Vr
the selfadjoint generators of CCR(YVg, Reoc). Under the identificationg(y) ~
H(r) ®1+1® ¢(2’) for y = z + iz’ we can identify CCR(YVg,Reoc) with
CCR(X,0) ® CCR(X,0) as *—algebras.

Note also that under the identification

1 1
U(y) ~ E(cb(y) +ig(iy)), " (y) ~ ﬁ(cé(y) —ig(iy)), y €Y
we can identify CCR(Vg, Reoc) with CCR(Y, q) for ¢ = ioc.
A quasi-free state w on CCR(X, o) is determined by its real covariance
n € Ls(X, X#) defined by:

i
w(g(z1)g(22)) =: x1-n22 + 521022, T1,22 € X,
A symmetric form n € Lg(X, X#) is the covariance of a quasi-free state iff
n >0, |z1-0x2] < 2(.%1-771’1)%(.%2-771’2)%, x1,10 € X.

To such a state w we associate the quasi-free state @ on CCR(Vg, Reoc) with

real covariance Renc. Then its complex covariances AT are given by (see [15,
Subsection 2.5]):

1
(3.2) M=+ Sioe:
Applying complex conjugation, we immediately see that in this case
(3.3) AT >0 < A >0,

so it suffices to check for example that AT > 0.

3.2. Free Klein-Gordon fields

Let P = —04 + m(z), m € C>®(M,R) a Klein-Gordon operator on
a globally hyperbolic spacetime (M, g) (we use the convention (1,d) for the
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Lorentzian signature). Let E* be the advanced/retarded inverses of P and
E := E* — E—. We apply the above framework to

G (M)

Y= PO (M)’ [u]-q[u] = i(u|EBu)p,

where (uv)y = [y, uwdVoly. The associated CCR *-algebra will be denoted
by CCR(P).

One restricts attention to quasi-free states on CCR(P) whose covariances
are given by distributions on M x M, i.e. such that there exists A* € D'(M x
M) with

* = (u1|ATug) s,
(3.4) w(@([ur])v*([uz])) = (ua|ATu2) m wr iy € C2(A1).

w(@* ([u2))y ([wa])) = (wa[A7u2)ar,

In the sequel, the distributions AT € D'(M x M) will be called the spacetime
covariances of the state w.

In (3.4) we identify distributions on M with distributional densities using
the density dVol, and use the notation (u|p)rr, v € CP (M), ¢ € D'(M) for

the duality bracket. We have then
(3.5 P(z,0,)A*(z,2') = P(z', 0, ) AT (z,2") = 0,
- At(z,2') — A~ (z,2') = iE(z, ).

Before recalling the definition of Hadamard states (see [18] for the neutral case
and [15] for the complex case), we need to introduce some more background
notation. We recall that T*M is the cotangent bundle of M and we denote by
o C T*M its zero section. One sets IV = {((z,€), (¢/,=¢")) : ((x,€), (2',£)) €
T} for T € T*M x T*M.

The characteristic manifold A of P is
(3.6) N i={(x,8) € T"M \o: £,9" (x)&, = 0}

The time orientation of M induces a corresponding splitting of .4 into its two
connected components A4+ where

= {(z,6) € N :££-v >0, Vv € T, M time-like future directed}.

Definition 3.1. A quasi-free state w on CCR(P) is called a Hadamard state
if its spacetime covariances AT satisfy:

(3.7) WF(AL) ¢ /% x =,



11 Hartle-Hawking-Israel states and Calderén projectors 177

3.3. Cauchy surface covariances

Denoting by Sols.(P) the space of smooth space-compact solutions of
P¢ =0, it is well known that
Ceo (M)
[E] : m = [U] — Fu € SOZSC(P)
is bijective, with
i('LLﬂEUg) = ml-ung, Ui € C(?O(M),

for
(3.8) 1-qpo = i/Z(me)lcéz — ¢V ud2)ntdo,

where ¥ is any spacelike Cauchy hypersurface, n# is the future directed unit
normal vector field to X and do the induced surface density. Setting

alcs ¢>f2 _ 0o 0o
pl&M@9¢H(r%@b>—f€Q(D@Qﬂm

Since the Cauchy problem
P¢ =0,
pu=f
has a unique solution ¢ € Sols.(P) for f € C(X) ® CX(X) the map
Cee (M)
— E Cr(X)e CX (2
P 2 il = pEuE CF(%) 0 CF(D)
is bijective, and
i(u|Ev)m = pEu-qpEu,
for

(3.9) fraf = /Ef1fo + fofidos, f= (;?)

It follows that to a quasi-free state with spacetime covariances A* one can
associate its Cauchy surface covariances \* defined by:

(3.10) AE =: (pE)'\E(pE).

Using the canonical scalar product (f|f)s = [x fifi+ fofodos we identify A+
with operators, still denoted by A*, belonging to L(C®(X) @ C*(X), D'(X) @
D'(3)).

A more explicit expression of AT in terms of A* is as follows, see e.g. [14,
Thm. 7.10]: let us introduce Gaussian normal coordinates to X

Us(ty) = x(ty) €V,
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where U is an open neighborhood of {0} x ¥ in R x ¥ and V' an open neig-
hborhood of ¥ in M, such that x*g = —dt* + h;(t,y)dy'dy’. We denote by
AE(t,y,t',y") € D'(U x U) the restriction to U x U of the distributional kernel
of A*. By (3.5) and standard microlocal arguments, their restrictions to fixed
times ¢,#', denoted by A*(t, ') € D'(X ® ¥) are well defined.

We know also that 9F9% A*(0,0) € D'(X x %) is well defined for k, k' =
0,1. Then setting AT =: ¢ o ¢* we have:

© . (10vAF(0,0)  A*(0,0)
(3.11) ¢ —i<atat,/\i(o,0) i719,A%(0,0) )

Large classes of Hadamard states were constructed in terms of their Cau-
chy surface covariances in [14, 15] using pseudodifferential calculus on ¥, see
below for a short summary.

3.4. Pseudodifferential operators

We briefly recall the notion of (classical) pseudodifferential operators on
a manifold, referring to [21, Section 4.3| of |7, Section 18.1] for details.

For m € R we denote by ¥ (R%) the space of classical pseudodifferential
operators of order m on R?, associated with poly-homogeneous symbols of order
m see e.g. 21, Section 3.7].

Let N be a smooth, d—dimensional manifold. Let U C N a precompact
chart open set and ¢ : U — U a chart diffeomorphism, where U C R is
precompact, open. We denote by o* : C°(U) — C°(U) the map ¢ u(z) =
uo(x).

Definition 3.2. A linear continuous map A : C°(N) — C*°(N) belongs
to U™ (N) if the following condition holds:

(C) Let U C N be precompact open, 1 : U — U a chart diffeomorphism,
X1, X2 € C(U) and x; = x; 01~ !. Then there exists A € U™ (R%) such that

(3.12) ()1 Axay™ = X1AXo.

Elements of W™ (N) are called (classical) pseudodifferential operators of order
m on N.

The subspace of U™ (N) of pseudodifferential operators with properly sup-
ported kernels is denoted by UJ*(N).
Note that if \II‘(’CO)(N) = Umer Uigy (), then U2 (N) is an algebra, but
U°(N) is not, since without the proper support condition, pseudodifferential
operators cannot in general be composed.
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We denote by T*N \o the cotangent bundle of N with the zero section
removed.

To A € U™(N) one can associate its principal symbol o, (A) € C°(T*N
\0), which is homogeneous of degree m in the fiber variable £ in T*M, in {|{| >
1}. Ais called elliptic in W™ (N) at (z9,&) € T*N \o if opr(A)(x0, o) # 0.

If A € ¥"(N) there exists (many) A. € ¥7'(N) such that A — A; has a
smooth kernel.

Finally one says that (xg,&p) & essupp(A4) for A € U*°(N) if there exists
B € U°(N) elliptic at (x,&) such that A. o B is smoothing, where A, €
WU2°(N) is as above, i.e. A — A, is smoothing.

3.5. The Cauchy surface covariances of Hadamard states

We now state a result which follows directly from a construction of Ha-
damard states in [15, Subsection 8.2].

THEOREM 3.3. Let w be any Hadamard state for the free Klein-Gordon
field on (M, g) and ¥ a spacelike Cauchy hypersurface. Then its Cauchy surface
covariances \T are 2 x 2 matrices with entries in W°(X).

Proof. Tt is well known (see e.g. [18]) that if w;,ws are Hadamard states,
then AT — AT are smoothing operators on M. Using (3.10) this implies that
AT — \f are matrices of smoothing operators on . From the definition of
U (Y) it hence suffices to construct one Hadamard state w whose Cauchy
surface covariances AT are matrices of pseudodifferential operators. The state
constructed in [15, Subsection 8.2] has this property, as can be seen from [15,
Equ. (8.2)]. O

4. EUCLIDEAN OPERATORS

The construction of the 3—KMS state on .# ™ with respect to the Killing
vector field V relies on the Wick rotation, where (R x X7, g) is replaced by
(Sﬁ X E"‘, Q)

(4.1) § = v (y)dr? + hi(y)dy'dy’,

is the Riemannian metric obtained from (2.3) by setting t = it and Sg = [0, 5[
with endpoints identified is the circle of length 3.

In this section, we recall various ‘Fuclidean’ operators related to g ap-
pearing in [19,20]. It will be convenient to construct them by quadratic form
techniques.
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We set
N := Sg X E+,
whose elements are denoted by (7,y). We equip N with the Riemannian metric
g in (4.1) and the associated density dVol; = |U\(y)\h|%(y)d7dy. The hyper-

surface X7 is equipped with the induced density dVol;, = |h|%(y)dy

4.1. Euclidean operator on N

We consider the operator
K = =Ny +m(y),

for m as in Subsection 2.4. Note that m depends only on y since m is invariant
under the Killing flow. We have

_ 1 — 1 i —
K = —v72()d; = [o| () [h] 2 (1)3: o] ()| ]2 ()0 ()3 + m(y)-
K is well defined as a selfadjoint operator on L?(N,dVol;) obtained from the
quadratic form:

(4.2) Q(u,u) := /N (Jv|~2|0-ul?* + 0;wh 9;u + m|ul?) dV olg,

which is closeable on CS°(N), since K is symmetric and bounded from below
on this domain. Denoting its closure again by @) and the domain of its closure
by Dom @, K is the selfadjoint operator associated to @, ¢.e. the Friedrichs
extension of its restriction to C®(Sg) @ C°(X1). We know that v € Dom K,
Ku=fiff

(4.3) u € Dom Q and Q(w,u) = (w|f)r2(n), Yw € CZ(N).

From (2.5) we know that K > m2 hence is boundedly invertible and we

set
G:=K "'

4.2. Change of volume form

Let us set Q(u,u) = Q(vu,vu), Dom Q = {u € L?>(N) : vu € Dom Q}. By
(2.5) we have Q(u,u) > m3|vul/?. If u, € Dom Q,u € L*(N) with [|u, —u| — 0
and Q(un — U, Up, — Um) — 0 then from the inequality above we obtain that
vu € L2(N) and ||v(u, —u)| — 0. Since @ is closed we obtain that u € Dom Q
and Q(un — u, up —u) — 0, i.e. Q is closed.

Let K be the injective selfadjoint operator associated to 0, (which is
formally equal to vKv) and let G = K. We claim that

(4.4) G = vGv, on v L2(N).
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This follows easily from the characterization (4.3) of G' and similarly of G.
Let now U : L?>(N) — L%*(Sg) ® L*(XT) the unitary map given by Uu =
v2u. We set
K :=UKU".
We have
K =0 +E(.0,).
where:

(y,0y) = 0|2 (W) |h] "2 (1B 0] (v) ]2 (1)WY (), 0]2 (y) + 02 (y)m(y),

is obtained as above from the quadratic form
(4.5) / <8¢\v|%ﬁ|v|hij8i|v]%u+ |u\2myu|2) 1|2 dy.
>+

If G := K~! we have by (4.4):

(4.6) G = |v|"2Gv*2, on v32L2(N).
We now recall a well known expression for G. Let

e T 4 eT=h)e
extended to 7 € R by S—periodicity. In particular, we have:

F(r) = , T€[0,8],

ef|7‘6 _|_ e('Tlfﬁ)e

(47) F(T) = 26(1 _ e_ﬁe) » TE [_ﬁaﬁ]
The following expression for G is well-known (see e.g. [4, Section 18.3.2]):
(4.8) Gi(r) = / F(r —1a(r")dr', @ € L*(Sp) ® L*(X\B).

Sg

Note that since €2 > mv? by (4.5), we have also ¢ 2 < m~'v~2 by Kato-Heinz
theorem hence C°(X") C Dom F(1).
5. CALDERON PROJECTORS
In this section, we recall some standard facts on Calderdn projectors. We
refer the reader to [3, Sects. 5.1-5.3] for details.
5.1. The Calderén projector

Let (N,h) a complete Riemannian manifold and P = —Aj, + m, where
m € C*(N) is a real potential with m(z) > m3 > 0. As in Section 4, we
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construct P as a selfadjoint operator on L?(N, dV ol) using the quadratic form
(5.1) Qu, ) = /N Oyth* 0y + m(a)|ul? (2)dV ol

We obtain that 0 € p(P), hence G := P~! is a bounded operator on L?(N,
dVoly,), defined by

(5.2) Q(Gv,w) = (v|w) 2wy, Yw € C(N).

Let  C N an open set such that 9Q = S = |J7 Si, where S; are the
connected components of S and are assumed to be smooth hypersurfaces. We

denote by C*°(Q2) the space of restrictions to €2 of functions in C*°(N).
We associate to .5; the distribution density dS; defined by:

(dS;[u) = / wdo?, e CR(N),
S;

where da}(f) is the induced Riemannian density on S; and we set

s =Y _ds;.
i=1
We denote by 9, the unit exterior normal vector field to S and set
(05dS|u) = (dS|0,u), u e CF(N).
For u € C*(Q) we set

_( uls \ _. [(u
= <3uufs) - <71U> '

For v € C2°(S) we denote by 0 € C°(N) an extension of v to N such that
ulg = u,dyuls = 0.

fi
Df =0 G(fi(dVoly)~1dS — fo(dVol; )d;dSs).

— The operator D : C°(S) @ C(S) — C®(S) @ C*(S) is continuous
and is called the Calderdn projector associated to (P, S).

Definition 5.1. Let f = <f0> € CX(S) & C(S). We set:

— The operator D is a 2 x 2 matrix of pseudodifferential operators on S.

Note that dS and 0%dS are distributional densities, hence (dVol;,)~'dS
and (dVoly,)~19;dS are distributions on N, supported on S.

Note also that the Calderén projector is obviously covariant under dif-
feomorphisms: if x : (N,h) — (N’,h’) is an isometric diffeomorphism with
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S" = x(S), P = x*P’, then
D= D',

where ¢ : S — S’ is the restriction of x to S.

5.1.1. EXPRESSION IN GAUSSIAN NORMAL COORDINATES

Let U; be a neighborhood of {0} x S; in R x .S; and V; a neighborhood of
S; in N such that Gaussian normal coordinates to S; induce a diffeomorphism:
Xi:Uisz— (s,y) €V
from U; to Vi, and ds? + ks(y)dy? = xFh on U;. Then for f € C°(S;) ® C? we
have
v; (fi(avon)tds — fo(avoly)~10zas)
= do(s) @ (f1(y) — ro(y) fo(y)) — dp(s) ® foly),

where 74 (y) = |ks| 2 ()0 ks
If o € CE(R) with ¢ > 0, [ ¢(s)ds = 1, setting ¢, (s) = np(ns), we can
compute Df for f € C(S;) ® C? as

(54)  Df= lim ~oG(ea(s) @ (f1ly) —r0(y)fo(y)) — @uls) @ f1(y)),

where the limit takes place in C°(S) & C*°(5).

Note that it is not obvious that Df € C*(S) & C*(S). To prove it
one can first replace G by a properly supported pseudodifferential parametrix
P € W2(N). Using then Gaussian normal coordinates near a point 20 € S,
one is reduced locally to N = R¢, S = {x; = 0}. The details can be found for
example in |3, Sects. 5.1- 5.3].

Another useful identity is the following: for u € C*°(€) let Tu be the
extension of u by 0 in N\Q. Then

(5.5) PIu= fi(dVoly)~'dS — fo(dVol; 1)didS + T Pu, for f = ~yu.

(5.3)

6. THE DOUBLE g—-KMS STATE

In this section, we consider the double —KMS state wg in AT U4~ It
is obtained as the natural extension to .# ™ U.#~ of the state wg in .#7", which
is a S—KMS state in .#* with respect to the Killing flow. Its construction, for
the more general stationary case is given in [19, Thm. 3.5].

Since X\# is a Cauchy surface for 4% U .#~, we associate to wg its
(complex) Cauchy surface covariances on X\Z A%, and (since ws is a pure
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state), the pair of complementary projections ¢t = £¢~! o A*, see Subsection
3.1. We will study in details the projection ¢*.
We identify C°(X\ %) with C°(X) ® C? using the map
R: CP(ET)RC? - CX(Eh) e 0x(E)
where r : ¥ — ¥ is the restriction to X of the wedge reflection R, see Sub-

section 2.2.
We will show that

(6.1)

C:=R'octoh

is exactly the Calderén projector for the Euclidean operator K, acting on
(N, §), see Subsection 4.1, and the open set

Q:={(r,y) e N:0< 1< p/2}.

6.1. The double S—KMS state

We recall now the expression of wg given by Sanders, see [19, Section 3.3]|.
There are some differences in signs and factors of i with the expression
given by Sanders in [19, Section 3.3]. They come from two differences between

our convention for quantized Klein-Gordon fields and the one of Sanders:
(1) our convention for Cauchy data of a solution of Pu = 0 is given the map
ou = <._1Uf2 > =: f, which is more natural for complex fields and

i~ Oyuls

leads to a more symmetric formulation of the Hadamard condition, while

~( uls B (1 0
Sanders uses pu = <8uuf2> =g,80 f = <O —i) 9

(2) we use as complex symplectic form fo f’ = (f1|f5)—(folfi), while Sanders
uses g-09’ = (golg}) — (91]gf)- In terms of spacetime fields, we use i ' FE,
Sanders uses iF.

Let us unitarily identify L2(X, |h|2dy) with L2(S¥,|h|2dy) & L3(S-,
[h|2dy), by
U= Uy Bu_, upr = ulyx .

Under this identification the action of the wedge reflection r*u = w o r will be
denoted by T, with:

(6.2) T(uy ®u_) :=r*u_ ®ru,.

A direct comparison with the formulas in [19, Section 3.3], using the identity
(3.2) gives the following proposition.
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PROPOSITION 6.1. The double B—KMS state on A4+ U .#~ is given by

_ )\+ +
the Cauchy surface covariance \T = ( 90 AQ}) where:
Ao Al

Ao = %\v\% (e_lcoth( €) +e 1 Tsh™! g ) |§,
(6.3) A= %|v\7% ecoth(ge) — €Tsh™! g ) ] -3,
A =My = 31
As in Subsection 3.1 we have A~ = AT — ¢, where the charge q = io is
given by the matrix ¢ = <(1) (1)) We introduce the operators ¢t := +¢~ I \*
and obtain
+ 3 A
(6.4) ¢t = (/\%r 100> .
1 2
Note that if
bop=¢! coth(ge) + e_lTsh_l(ge), b = ecoth(ge) - eTsh_l(ge),
then using that [T, €] = 0 we obtain that
p

€)% — shfl(ge)2 =1,

from which it follows easily that ¢* are (formally) projections. This is expected
since the double S—KMS state wg is a pure state in .4 U.Z".

bob1 = b1by = COth(§

6.2. Conjugation by R

The map R defined in (6.1) allows to unitarily identify L2(X1) ® C? with
L3(ZF) @ L?(X7). We have:
(65) Riet=coe iTR= (] ).

Denoting by c;; for i,j € {0,1} the entries of the matrix ¢™ and setting
Cij == R7'o c;-;- o R,

we obtain after an easy computation using (6.3), (6.1):

1 1

(6.6) Coogo = 59(()0) ® 59(()’8/2)7
1 1

Ciig1 = *9&0) S *956/2)7

2 2
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L1 B 1P 1
Corg = Jolies coth(GesJol g+ 2 ol b (G ey ol gl

1
|v\2e+ Coth(56+)|v\291ﬁ/2) |U|7 ~'sh™ (é€+)| |59§0),

1, 1 _1 1 1 _
Crogo= ol Hes coth( S ey Yol 3o ol dessh™ (Sep ol ~igl

1, 1 I5; _1g/m) 11 1,5 _1 00
@ vl e coth(G ey ol “2gs ol “essh ™ (e ol gy

In (6.6) the upper indices (0), (3/2) refer to the two connected components
{r = 0} and {7 = B/2} of 09, while the lower indices 0, 1 refer to the two
components of g.

6.3. The Calder6n projector

We now compute the Calderén projector for K, associated to the Rie-
mannian manifold (N, §). We choose

Q={(r,y) e N:0< 1< p/2}.

We have S = 90 = So U Sgjo and we write f € C°(S) © C°(5) as [ =
1O @ f62) for fO € C2(8;) @ C(Sy).

We denote by 7, i = 0, (/2 the trace operators on S; defined by yu =
7Oy @ 4B/ for u € C®°(Q). We have:

1 u(t,y)
v = limesor (—\v(y =0, y>) !
. u(T,
AV BIDy = lim, (52 < (7,9)

~4(0)
(6.7)

(4)

We denote similarly by 0,7 the exterior normal derivatives on S;.
We compute the Calderén projector D defined in Subsection 5.1 using
1 1 1
the coordinates (7,y). Since dS; = |h|2(y)dy and dVol; = |v|2(y)|h|2(y)dy,
we obtain:
(6.8) Df =DOfa DBy
for

DOf = A0 oGolul~t (a5(r) @ 17 (y) + do(r) @ £” (9)

(6.9)
100D 850(r) @ £ () + 8510(r) @ 117 ()

Since G = |vl|? G’|v|3/2 we have G o [v|™! = |v|2 G|U| Denoting by D,(fl)(j) for
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i,j €40,6/2} and k,1 € {0, 1} the various entries of D, we obtain:

(6.10) D, _{ o If@ I%(G(] (1) ®@u(y)), 1 =0,
N D]z Glol? (3;(r) ® v(y), I = 1.

We also set ‘
oY) = 70,, for i =0,5/2,

so that 88" = [v|~!(y)dt".
PROPOSITION 6.2. We have D = R~1oct o R.

Proof. We recall that Cj; are the entries of R 'oc¢t o R. We compute
D,gl)(] ) using (6.10) and the explicit formulas (4.7), (4.8) for the kernel G(7, ')
of G.

Computation of Dyo:

DOy = O y12Gl0| 72096, @ u
1, ~ _1 1
= |v|2 TlgélJr 0~ G(7,0)|v| 2u = U
D" P = A o]2 Glol 20 P64/, @ u

= ||z lim 8.G(r,B/2)v| 2u =0,
T—0*

DOy = A5Gl 200 6 @ u
_ M% lim 9.G(t,0)u =0,
T—=B8/2~
D(()g/z)(ﬁ/z)u _ 785/2)|v|%@|v|_%3$6/2)5ﬂ/2 ®u
. 1
“ol# lim 0uG(r, B/2)lul 2w = Gu.

Hence
Doogo = Coogo-
Computation of D11:

DY Vu = A{Vl2Glol26 @ u
1 ) L1
= —|v|72 L T ) 2u = Ju,
o[ 7% lim 9-G(,0)|o|7u = Su

1 ~ 1
DY = Al Glol2ds @ u
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22

= —p|72 lim 8,G(r,B/2)[v|2u =0,
70t

DO = P2l @ u

= o} lim 0,G(r,0)uru=0,
T—B/2"
DWABDy — B3 G384, @ u
| ’*% li 6@( £/2)] ‘% .
= |v un - Or ’ ViR g
T—B8/2~ " 2

Hence
D1190 = Cr190-

Computation of Doi:
D(()?)(O)u = ’y(()o)|v|%é|v|%50®u

= |v|;Tli%1+é(T,O)|v]§u:;|v|ée+1coth(§e+)\v|%u,
DY = A ]2l 285 @ u

= Jol? Tim G(r,5/2)lelbu = S lie s (Gen)lolu,
D(()f/z)(o)u = 7(()5/2)|v\%é|v\%50®u

~ 1
= it lim GOrO)olfu= slulie i Geololbu

D(()f/z)(ﬁm)u _ ’Y(SB/Z)M%GM%(SB/Q@U
~ 1
= ]v|§TEIBn/2G(T,B/2)|v|§u:2\v|%ellcoth(§e+)|v|éu.

Hence
Do1g1 = Cor9:1-

Computation of D1g:

DY) Vu =1V 2 G| 2000 @ u

A 1
= f|’l}‘_% hm aTaTIG(T, 0)|’U|_%u = 7|’U|_%E+ Coth(§€+)|v‘_%u,
707t 9 9

DR = o] Glol 20825550
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~ 1
— o[} lim 8.0, G(r B/2)|v]"Fu = — o[~ Fessht (Ze o~ Fu,
T—=0+ 2 2

D%/Q)(O)u = 'yfﬁ/Z)\vﬁé’\U]*%a&O)(;o ®u

A 1
- Mi% 7-—1>i,BH/12— 070 G(7, O)]v|’%u = _5|U|7%€+Sh71(§6+)|v‘7%u7

DEEDy, = BIDy 3 G| 30D 65)5 @ u

~ 1
— ol lim 8,0.G(r, B/2) o b = SRy coth(Ze ) o[ b
T—=B/2~ 2 2

Hence
D1ogo = Cro9o-

This completes the proof of the proposition. [

7. THE HARTLE-HAWKING-ISRAEL STATE
AND ITS PROPERTIES

7.1. The smooth extension of (/V,§) and the Hawking temperature

The existence of the Hartle-Hawking-Israel state and the definition of the
Hawking temperature Ty = x(2m)~! (where  is the surface gravity) rely on the
existence of an extension (Next, Jext) 0f (N, g) such that the two components
S0, 582 ~ YT of 90 are smoothly glued together into ¥ C Next.

The extended Riemannian metric gy is smooth iff 3 = (27)s~! (for other
values of 8 (Next, Jext) has a conic singularity on £).

Let us embed ¥\ % into N by:

. [ = (0,2) for z € BT,
|z (B/2,7(x)) for x € X7,

Note that for R defined in (6.1) we have

(7.1) R = (7)".
We recall that the function m : ¥ — Rt was introduced in Subsection 2.4.

PROPOSITION 7.1 ([19, Subsection 2.2]). Assume that 8 = (2r)x~. Then
there exists a smooth complete Riemannian manifold (Next, Jext) and
(1) a smooth isometric embedding v : ¥ — Next,
(2) a smooth isometric embedding x : (N,§) = (Next\PBext, Jext) for Bext =
V(%),
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(3) a smooth function mext, : Next — R with meyxy > m% >0
such that
Yis\z =X 0T, V'Mey =mlN .

VRN

Star(X7)
> ° B >t S,B
E+
R? x 2 Sg x £t

Fig. 2 — The embedding x.

This fundamental fact is well explained in [19, Subsection 2.2]. Let us
briefly recall the construction of y following [19]: one introduces Gaussian
normal coordinates to % in (X, h), where h is the Riemannian metric induced
by g on 3. We choose the unit normal vector field to % pointing towards
Y. Using these coordinates we can, since 4% is compact, identify a small
neighborhood U of # in ¥ with | — §,[x.Z. Denoting by w local coordinates
on % we have a map

¢:] —6,6[xB > (s,w) —y=expl(s) €U,
U™ = (]0,6[x2),
¢*h = ds® + kop(s,w)dwdw?’,
for U = X7 NU. In the local coordinates (7,s,w) on Sg x U the embedding
x takes the form:
Spx]0,0[x# — B»(0,0) x A
(1,5,w) > (scos(B(2m)~17), ssin(B(2m) ~17),w) = (X, Y, w),
where B2(0,0) = {(X,Y) € R? : 0 < X2 +Y? < §2}. A straightforward

computation performed in [19, Subsection 2.2] shows that § admits a smooth
extension ey to Next iff B = (27)k 1.

(7.2) x:

7.2. The extension of wg to M

We recall from Subsection 4.1 that K is defined from the closure Q of the
quadratic form @ on C°(N).
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Similarly Kext = —Ag. + Mext, acting on Ney; is defined using the cor-
responding quadratic form Qexy.

The following lemma is equivalent to [19, Prop. 5.2|, for completeness we
give a short proof using quadratic form arguments (note that we assume the
stronger condition that inf m(x) > 0).

LEMMA 7.2. Let U : CP(N) — C°(Next\Pext) defined by

Uu=wuox L
Then U extends as a unitary operator U : L*>(N) — L?(Next) with Key =
UKU*.

Proof. U clearly extends as a unitary operator. To check the second
statement it suffices, taking into account the way K and Kext are defined,
to prove that C°(Next\%Pext) is a form core for Qexy- The domain of Q.
is the Sobolev space Hl(Next) associated to gext, S0 we need to show that
CP(Next\Pext) is dense in H'(Ney). Using the coordinates (X,Y,w) near

Bext ~ {0} x B, this follows from the fact that C°(R?\{0}) is dense in H!(R?),
see e.g. [1, Thm. 3.23]. O

We recall that the projection ¢t associated to the double S—KMS state wg
was defined in (6.4). Let us identify in the sequel X with Yext = ¥(X) C Next-

THEOREM 7.3. Let Dexy the Calderén projector for (Kext, ). Then for
f,g € CX(X\%B) @ C? we have:
(g’chg)LQ(Z) = (gext|Dextfext)L2(Z)a
where fext = <¢*)_lf; Gext = (¢*)_19

Proof. This follows from Prop. 6.2, the fact that Ris implemented by the
embedding 7 of ¥\ into N, (see (7.1)) and Lemma 7.2. [

7.3. Uniqueness of the extension

We discuss now the uniqueness of extensions of wg to M. Other types of
uniqueness results were obtained before in [13] and [9].

PROPOSITION 7.4. There exists at most one quasi-free state w for the
Klein-Gordon field on M such that:
(1) the restriction of w to M+ U M~ equals wg,
(2) the spacetime covariances AT of w map C°(M) into C>=(M).

Proof. Let w a quasi-free state for the Klein-Gordon operator P in M,
with spacetime covariances A*. We assume that AT : C®(M) — C®(M).
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Denoting by A*(z,2') their Schwartz kernels, we have P(z,0,)A*(z,2') =
P(2',0,)A*(z,2") = 0, which implies that

(7.3) WE(AEY ¢ A x A,

where 4" is defined in (3.6). We claim that the entries cik,, kK = 0,1
of ¢* defined in (3.11) map C®(¥) into C*(¥). In fact by (7.3) we have
AT = A* o A modulo smoothing, where A € W(M) is a pseudodifferential
operator with essupp(A) included in an arbitrary small conical neighborhood
of A, For u € C(X) we have, modulo factors of i:

Cljc[,k/“ = 3£€Ai o A(—@flég ® u)li=o ,

see (3.11). Since WF((—0F 8p)®@u) € N*%, where N*X € T*M is the conormal
bundle to ¥ and X is spacelike, we have N*X N .4 = (), hence A(—@fléo ®u) €
C*°(M), which proves our claim.

Let now w;, i = 1,2 be two quasi-free states as in the proposition. Since
(ul(AT — A3)0) r2(ar) = O for u,v € CX (AT U4 ~) we obtain that (f|(A] —
A9 2 m)ece = 0 for f,g € C(X\#) @ C? hence supp(Af — AJ)g C £ for
g € C°(X\Z) ® C2. Since we have seen that A\ : C®(X) @ C? — C°(X)® C?
this implies that (\] — AJ)f = 0 for f € C®(X\%) ® C2. Since \; are
selfadjoint for L2(X,dVol,) ® C? this implies that supp(\] — \J)f C % for
f € CX(X)®C? hence (\] — AJ)f = 0 using again that \; : C(¥) ® C% —
C*(X)®C%. O

7.4. The Hartle-Hawking-Israel state

THEOREM 7.5 ([19]). Let us set
At = . Dexts Agur = My — ¢,
where Deyt is the Calderon projector for (Kext, %) and the charge quadratic
form q is defined in (3.8). Then:
(1) )‘EHI are the Cauchy surface covariances for the Cauchy surface X of a
quasi-free state wynr for the free Klein-Gordon field on M.
(2) the Hartle-Hawking-Israel state wpmnr is a pure Hadamard state and is

the unique extension to M of the double B—KMS state wg with the pro-
perty that its spacetime covariances AHHI map continuously C° (M) into

> (M).

Proof. Let us first prove (1). By (3.3) it suffices to check the positivity
of Mfiyr- This was shown in [19, Thm. 5.3] using reflection positivity. For the
reader’s convenience, let us briefly repeat the argument:
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for u € L?(N) we set Ru(t,y) = u(—7,y), for 7 € [-/2,8/2] ~ Sg. The
operator G = K1 is reflection positive, i.e.

(7.4) (Ru|Gu)p2(ny > 0, Yu € L*(N), suppu C [0,5/2] x ©+.

In fact setting @ = |v|3/2u, (7.4) is equivalent to
(7.5)
(Ra|G) 2(s,)012(s+) = 0, Vi € L*(Sg) © L*(E7), suppt C [0,58/2] x B+

Using (4.7) we obtain
(R|G) 25, 0 12(s+)
= (UO‘WUO)LZ(&L) + (Uﬁfmuﬁ)p(zﬂ,

for
uoz/ e "“a(r)dr, u5:/ 6(776/2)6€L(7)d7
Ss Ss

where @ is identified with the map Sg 2 7 — a(r) € L*(Sg; L>(X1)). This
proves (7.4).
By Lemma 7.2 and using that Geyxy = K;{ is bounded on L?(Ney), we

deduce from (7.4) that Gey is also reflection positive, i.e.
(7.6)

(Rext | GextUext) 12(Npy) = 0, u € L?(Next), suppu C N&, = x([0,3/2] x 1),

for Rext = URU*. By the remark before [19, Thm. 5.3], if (s,y) are Gaussian
normal coordinates to ¥ in Neyt we have Rexqu(s,y) = u(—s,y), i.e. Rext iS
given by the reflection in Gaussian normal coordinates. This map is a isometry
of (Nexts Jext), Which implies that if Jexi = ds® + hexi(s, y)dy® near ¥, we have
hext(5,7) = hext(—s,y) hence if r5(y) = |hext(s,)| 205 |hext (s, y)|2 We have
ro(y) = 0.

If f e CX(X)®C? it follows from (5.3) that Dexf = YGextTf for

Tf =do(s) ® fi = 6o(s) @ fo.
We have RextT'f = do(s) @ f1 + 0,(s) ® fo. Applying the reflection positivity
(7.6) to u = T f we obtain that:
(RextTf|GextTf)L2(Next) = (f|qDextf)L2(Z) >0,

which proves the positivity of )\EHI. To make the argument rigorous is suffices
to approximate dy by a sequence ¢, as in (5.4). This completes the proof of
(1).

Let us now prove (2). The fact that wypr is the unique extension of wg
to M with the stated properties has been proved in Prop. 7.4. It remains to
prove that wgpr is a pure Hadamard state in M.
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The fact that wygy is pure follows from the fact that Deyt is a projection.
To prove the Hadamard property let us fix a reference Hadamard state wye for
the Klein-Gordon field in M. By Thm. 3.3 its Cauchy surface covariances on
by )\ref are matrices of pseudodlfferentlal operators on X. The same is true of
if =+¢lo )\+ ¢ and of CHHI, since Calderén projectors are given by matrices
of pseudodlfferentlal operators on X.
Moreover we know that the restriction of wypy to 4 TU# ~ is a Hadamard
state. The same is obviously true of the restriction of wyef to .# T U.#~. Going
to Cauchy surface covariances, this implies that if ¥ € C°(%%) then

X © (clj{iHI — Crief) o x is a smoothing operator on 3.

We claim that this implies that clj_EIHI — cfef is smoothing, which will imply that
wiur 18 a Hadamard state.

If fact let a be one of the entries of cﬁHI ref, which is a scalar pseudodif-
ferential operator belonging to ¥ (X) for some m € R. We know that yoaoy
is smoothing for any x € C°(X\#). Then its principal symbol oy, (a) vanishes
on T*(X\%) hence on T*Y by continuity, so a € ¥~ (X). Iterating this ar-
gument we obtain that a is smoothing, which proves our claim and completes
the proof of the theorem. [
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