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We revisit the construction by K. Sanders [19] of the Hartle-Hawking-Israel state
for a free quantum Klein-Gordon �eld on a spacetime with a static, bifurcate
Killing horizon and a wedge re�ection. Using the notion of the Calder�on pro-
jector for elliptic boundary value problems and pseudodi�erential calculus on
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1. INTRODUCTION

Quantum Field Theory on curved spacetimes describes quantum �elds in
an external gravitational �eld, represented by the Lorentzian metric on the
ambient spacetime. It is used in situations when both the quantum nature of
the �elds and the e�ect of gravitation are important, but the quantum nature
of gravity can be neglected in �rst approximation. Its most important areas
of application are the study of phenomena occurring in the early universe and
in the vicinity of black holes, and its most celebrated result is the discovery
by Hawking [5] that quantum particles are created near the horizon of a black
hole.

The symmetries of the Minkowski spacetime, which play such a fundamen-
tal role, are absent in curved spacetimes, except in some simple situations, like
stationary or static spacetimes. Therefore the traditional approach to quantum
�eld theory has to be modi�ed: one has �rst to perform an algebraic quantiza-
tion, which for free theories amounts to introduce an appropriate phase space,
which is either a symplectic or an Euclidean space, in the bosonic or fermionic
case. From such a phase space one can construct CCR or CAR ∗-algebras,

The second step consists in singling out, among the many states on these ∗-
algebras, the physically meaningful ones, which should resemble the Minkowski
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vacuum, at least in the vicinity of any point of the spacetime. This leads to
the notion of Hadamard states, which are substitutes for the vacuum state,
which plays a fundamental role in Quantum Field Theory on the Minkowski
spacetime.

Hadamard states were originally de�ned by requiring that their two-point
functions have a speci�c asymptotic expansion near the diagonal, called the
Hadamard expansion. A very important progress was made by Radzikowski [18]
who introduced the characterization of Hadamard states by the wavefront set
of their two-point functions.

Hadamard states are nowadays widely accepted as possible physical states
of non-interacting quantum �elds on a curved spacetime. One of the main
reasons for the importance of Hadamard states is their applicability to the
renormalization of the stress-energy tensor, a necessary step in the formulation
of semi-classical Einstein equations. Moreover, the Hadamard condition plays
an essential role in the perturbative construction of interacting quantum �eld
theory [2].

1.1. Black hole spacetimes

One of the early successes of QFT on curved spacetimes was Hawking's
discovery [5] of black hole radiation, produced by a spherically symmetric star
collapsing to a black hole. A related line of research was initiated by Hartle and
Hawking [6] and Israel [8], who conjectured the existence of a `ground state' for
a Klein-Gordon �eld propagating in a spacetime containing a static black hole.
Let us now describe in more details the precise geometrical framework.

One considers a globally hyperbolic spacetime (M, g), with a bifurcate
Killing horizon, see [13, 19] or Subsection 2.1 for precise de�nition. The bifur-
cate Killing horizon H is generated by the bifurcation surface B = {x ∈ M :
V (x) = 0}, where V is the Killing vector �eld. It allows to split (M, g) into four
globally hyperbolic regions, the right/left wedges M +, M− and the future/past
cones F , P, each invariant under the �ow of V . An important object related
with the Killing horizon H is its surface gravity κ, which is a scalar, constant
over all of H .

Let us consider on (M, g) a free quantum Klein-Gordon �eld associated
to the Klein-Gordon equation

−2gφ(x) +m(x)φ(x) = 0,

where m ∈ C∞(M,R), m(x) > 0 is invariant under V , and its associated free
�eld algebra.

If V is time-like in (M +, g), i.e. if (M +, g, V ) is a stationary spacetime,
there exists (see [20]) for any β > 0 a thermal state ω+

β at temperature β−1

with respect to the group of Killing isometries of (M +, g) generated by V .
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It was conjectured by Hartle and Hawking [6] and Israel [8] that if β =
2πκ−1 is the inverse Hawking temperature, denoted by βH in the sequel, then
ω+
β can be extended to the whole of M as a pure state, invariant under V , the

Hartle-Hawking-Israel state, denoted in the sequel by ωHHI.

The rigorous construction of the HHI state was �rst addressed by Kay
in [12], who constructed the HHI state in the Schwarzschild double wedge of
the Kruskal spacetime. In such a double wedge, the HHI state is a double KMS
state, see [10, 11]. Later Kay and Wald [13] considered the more general case
of spacetimes with a bifurcate Killing horizon, and study general properties of
stationary states on this class of spacetimes. They emphasized in particular the
importance of the Hadamard condition. They proved that a speci�c sub-algebra
of the free �eld algebra has at most one state invariant under V and Hadamard.
They also showed that if M admits a wedge re�ection (see Subsection 2.2) the
restriction of such a state to M + will necessarily be a βH−KMS state. These
results were later improved in [9].

The existence of such a state, i.e. of the HHI state, was however not
proved in [6]. The �rst proof of the existence of ωHHI was given by Sanders
in the remarkable paper [19], if the bifurcate Killing horizon is static, i.e. if
V is static in M +, assuming also the existence of a wedge re�ection. Sanders
showed that there exists a unique Hadamard state ωHHI on M extending the
double βH−KMS state ωβ on M + ∪M−. The double βH−KMS state ωβ is a
pure state on M + ∪M− which is the natural extension of ω+

β de�ned using
the wedge re�ection, see [10, 11]. It is an exact geometrical analog of the Fock
vacuum vector in the Araki-Woods representation of a thermal state.

1.2. Content of the paper

In this paper, we revisit the construction in [19] of the Hartle-Hawking-
Israel state in a spacetime with a static bifurcate Killing horizon. Using the
notion of the Calder�on projector (see Section 5), which is a standard tool in
elliptic boundary value problems, we signi�cantly shorten the proof of the Ha-
damard property of ωHHI.

In [19] the fact that ωHHI is Hadamard was proved by a careful comparison
of the Hadamard parametrix construction for the D'Alembertian −2g + m
associated to the Lorentzian metric g and for the Laplacian −∆ĝ+m associated
to the Riemannian metric ĝ obtained from g by Wick rotation in the Killing
time coordinate.

In our paper, we avoid working with the spacetime covariances of sta-
tes and instead systematically work with the Cauchy surface covariances (see
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Subsection 3.3) associated with a Cauchy surface Σ containing the bifurcation
surface B.

It turns out that the Cauchy surface covariances λ± of the double β−KMS
state ωβ are related to a Calder�on projector D.

Let us informally recall what is the Calder�on projector associated to a
elliptic boundary value problem, see Section 5 for more details:

let (N, ĝ) be a complete Riemannian manifold and P = −∆ĝ + m(x) for
m ∈ C∞(N), m(x) > 0 a Laplace-Beltrami operator. Let also Ω ⊂M a smooth
open set. To Ω is naturally associated the canonical surface density dS, de�ned
by 〈dS|u〉 =

∫
∂Ω udσ, for u ∈ C

∞
c (M), where dσ is the induced surface element

on ∂Ω.

If ∂ν is the external normal derivative to ∂Ω and γu =

(
u�∂Ω

∂νu�∂Ω

)
for u ∈

C∞(Ω) the Calder�on projector D is a map from C∞c (∂Ω)⊗C2 to C∞(∂Ω)⊗C2

de�ned by:

Df ··= γ ◦G(f1(dV olĝ)
−1dS − f0(dV ol−1

ĝ )∂∗νdS), f =

(
f0

f1

)
∈ C∞c (∂Ω)⊗ C2,

where G = P−1. It is easy to see that f ∈ C∞(Σ) ⊗ C2 equals γu for some
u ∈ C∞(Ω) solution of Pu = 0 in Ω if and only if Df = f .

In our case we take N = Sβ × Σ+, where Sβ is the circle of length β and
Σ+ = Σ ∩M + is the right part of the Cauchy surface Σ. The Riemannian
metric is ĝ = v2(y)dτ2 + hij(y)dyidyj , obtained by the Wick rotation t =·· iτ of
the Lorentzian metric g = −v2(y)dt2 + hij(y)dyidyj on M + ∼ R × Σ+ where
M + is identi�ed to R× Σ+ using the Killing time coordinate t.

The existence of an extension of ωβH to M is then an almost immediate
consequence of the fact that (N, ĝ) admits a smooth extension (Next, ĝext) if
and only if β = βH, a well-known result which plays also a role in [19].

In fact this geometrical fact implies that D, viewed as an operator de�ned
on C∞c (Σ\B)⊗ C2 uniquely extends to a Calderon projector Dext, de�ned on
C∞c (Σ)⊗C2. From Dext one can then easily obtain a pure quasi-free state ωHHI

on the whole of M .

The Hadamard property of ωHHI follows then from the well-known fact
that Dext, being a Calder�on projector, is a 2 × 2 matrix of pseudodi�erential
operators on Σ, and of the Hadamard property of ωβ in M + ∪M−.

Beside shortening the proof of the Hadamard property of ωHHI, we think
that our paper illustrates the usefulness of pseudodi�erential calculus for the
construction and study of Hadamard states, see also [14�17] for other applica-
tions. We believe that Calder�on projectors could also be used to construct the
Hartle-Hawking-Israel state in the still open case of spacetimes with a Killing
horizon that is only stationary.
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1.3. Plan of the paper

Let us now brie�y give the plan of the paper. In Section 2, we recall the
notion of a static bifurcate Killing horizon, following [19] and introduce the
associated Klein-Gordon equation.

Section 3 is devoted to background material on CCR∗−algebras, bosonic
quasi-free states and their spacetime and Cauchy surface covariances in the case
of quantum Klein-Gordon �elds. We use the framework of charged �elds, which
is in our opinion more elegant, even when considering only neutral �eld equa-
tions. We also recall the notion of pseudodi�erential operators on a manifold,
which will be useful later on and formulate a consequence of [15] which states
that the Cauchy surface covariances of any Hadamard state for Klein-Gordon
�elds is given by a matrix of pseudodi�erential operators.

In Section 4, we de�ne various `Euclidean' Laplacians, K = −∆ĝ + m
acting on N = Sβ × Σ+ and a related operator K̃, obtained from Wick rota-
tion of the Lorentzian metric on M in the Killing time coordinate, which are
considered in [19]. It is su�cient for us to de�ne these Laplacians by quadratic
form techniques, which simpli�es some arguments.

In Section 5, we recall the de�nition of the Calder�on projector, which is
a standard notion in elliptic boundary value problems. In Section 6, using
the explicit expression for K̃−1, we show that the projection associated to the
double β−KMS state ωβ equals to the Calder�on projector D associated to K
and the open set Ω =]0, β/2[×Σ+.

In Section 7, we recall the well-known fact that a smooth extension (Next,
ĝext) of (N, ĝ) exists i� β = βH. The extended Calder�on projector Dext ge-
nerates a pure state on M , which is the Hartle-Hawking-Israel state ωHHI. In
Prop. 7.4, we show that such an extension is unique among quasi-free states
whose spacetime covariances map C∞c (M) into C∞(M) continuously. Finally,
we give in the proof of Thm. 7.5 a new and elementary proof of the Hadamard
property of ωHHI, using the pseudodi�erential calculus on Σ.

2. SPACETIMES WITH A STATIC BIFURCATE KILLING

HORIZON

2.1. Static bifurcate Killing horizons

We consider as in [19] a globally hyperbolic spacetime (M, g) with a static
bifurcate Killing horizon. We recall, see [19, Def. 2.2], that this is a triple
(M, g, V ), such that

(1) the Lorentzian manifold (M, g) is globally hyperbolic,
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(2) V is a complete Killing vector �eld for (M, g),

(3) B ··= {x ∈ M : V (x) = 0} is a compact, orientable submanifold of
codimension 2,

(4) there exists a Cauchy hypersurface Σ containing B,

(5) V is g−orthogonal to Σ,

see Fig. 1 below where the vector �eld V is represented by arrows.

Fig. 1

For simplicity we will also assume that the bifurcation surface B is con-
nected. Denoting by n the future pointing normal vector �eld to Σ one intro-
duces the lapse function:

(2.1) v(x) ··= −n(x)·g(x)V (x), x ∈ Σ,

and Σ decomposes as
Σ = Σ− ∪B ∪ Σ+,

where Σ± = {x ∈ Σ : ±v(x) > 0}. The spacetime M splits as

M = M + ∪M− ∪F ∪P,

where the future cone F ··= I+(B), the past cone P ··= I−(B), the right/left
wedges M± ··= D(Σ±), are all globally hyperbolic when equipped with g.

2.2. Wedge re�ection

Additionally one has to assume the existence of a wedge re�ection, see [19,
Def. 2.6], i.e. a di�eomorphism R of M + ∪M− ∪U onto itself, where U is an
open neighborhood of B such that:

(1) R ◦R = Id,

(2) R is an isometry of (M + ∪M−, g) onto itself, which reverses the time
orientation,
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(3) R = Id on B,

(4) R∗V = V on M + ∪M−.

It follows that R preserves Σ, see [19, Prop. 2.7], and we denote by r the
restriction of R to Σ. Denoting by h the induced Riemannian metric on Σ one
has:

(2.2) r∗h = h, r∗v = −v.

2.3. Killing time coordinate

Denoting by ΦV
s : M →M the �ow of the Killing vector �eld V , we obtain

a di�eomorphism

χ : R× (Σ\B) 3 (t, y) 7→ ΦV
t (y) ∈M + ∪M−,

which de�nes the coordinate t on M +∪M− called the Killing time coordinate.
The metric g on M + ∪M− pulled back by χ takes the form (see [19, Sub-
section 2.1]):

(2.3) g = −v2(y)dt2 + hij(y)dyidyj ,

where the Riemannian metric hij(y)dyidyj is the restriction of g to Σ.

2.4. Klein-Gordon operator

We �x a real potential m ∈ C∞(M). As in [19] we assume that m is
stationary w.r.t. the Killing vector �eld V and invariant under the wedge
re�ection, i.e.:

(2.4) V a∇am(x) = 0, m ◦R(x) = m(x), x ∈M + ∪M− ∪ U.

For simplicity we also assume that

(2.5) m(x) ≥ m2
0 > 0, x ∈M,

i.e. we consider only massive �elds. Note that in [19] the weaker condition
m(x) > 0 was assumed. We consider the Klein-Gordon operator

(2.6) P = −2g +m.

3. FREE KLEIN-GORDON FIELDS

In this section, we brie�y recall some well-known background material on
free quantum Klein-Gordon �elds on globally hyperbolic spacetimes. We follow
the presentation in [15, Section 2] based on charged �elds.
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3.1. Charged CCR algebra

3.1.1. CHARGED BOSONIC FIELDS

Let Y a complex vector space, Y∗ its anti-dual. Sesquilinear forms on Y
are identi�ed with elements of L(Y ,Y∗) and the action of a sesquilinear form
β is correspondingly denoted by y1 ·βy2 for y1, y2 ∈ Y . We �x q ∈ Lh(Y ,Y∗) a
non degenerate hermitian form on Y , i.e. such that Ker q = {0}.

The CCR ∗−algebra CCR(Y , q) is the complex ∗−algebra generated by
symbols 1, ψ(y), ψ∗(y), y ∈ Y and the relations:

ψ(y1 + λy2) = ψ(y1) + λψ(y2), y1, y2 ∈ Y , λ ∈ C,

ψ∗(y1 + λy2) = ψ∗(y1) + λψ∗(y2), y1, y2 ∈ Y , λ ∈ C,

[ψ(y1), ψ(y2] = [ψ∗(y1), ψ∗(y2)] = 0, [ψ(y1), ψ∗(y2)] = y1 ·qy21, y1, y2 ∈ Y ,
ψ(y)∗ = ψ∗(y), y ∈ Y .

A state ω on CCR(Y , q) is (gauge invariant) quasi-free if

ω(

p∏
i=1

ψ(yi)

q∏
i=1

ψ∗(yj)) =

{
0 if p 6= q,∑

σ∈Sp
∏p
i=1 ω(ψ(yi)ψ

∗(yσ(i))) if p = q.

There is no loss of generality to restrict oneself to charged �elds and gauge
invariant states, see e.g. the discussion in [15, Section 2]. It is convenient to
associate to ω its (complex) covariances λ± ∈ Lh(Y ,Y∗) de�ned by:

ω(ψ(y1)ψ∗(y2)) =·· y1 ·λ+y2,

ω(ψ∗(y2)ψ(y1)) =·· y1 ·λ−y2,
y1, y2 ∈ Y .

The following results are well-known, see e.g. [4, Section 17.1] or [15, Section 2]:
� two hermitian forms λ± ∈ Lh(Y ,Y∗) are the covariances of a quasi-free

state ω i�

(3.1) λ± ≥ 0, λ+ − λ− = q.

� Let Yω be the completion of Y for the Hilbertian scalar product λ++λ−.
If there exist linear operators c± ∈ L(Yω) such that

c+ + c− = 1, (c±)2 = c±,

(i.e. c± is a pair of complementary projections) and λ± = ±q ◦ c±, then ω is a
pure state.

3.1.2. NEUTRAL BOSONIC FIELDS

We complete this subsection by explaining the relationship with the for-
malism of neutral �elds, see e.g. [15, Subsection 2.5].
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Let X a real vector space, X# its dual, and σ ∈ La(X ,X#) a symplectic
form on X . The ∗−algebra CCR(X , σ) is the complex ∗−algebra generated by
symbols 1, φ(x), x ∈ X and relations:

φ(x1 + λx2) = φ(x1) + λφ(x2), x1, x2 ∈ X , λ ∈ R,

[φ(x1), φ(x2] = ix1 ·σx21, x1, x2 ∈ X ,
φ(x)∗ = φ(x), x ∈ X .

To relate the neutral to the charged formalism one sets Y = CX and for
β ∈ L(X ,X#) denote by βC ∈ L(Y ,Y∗) its sesquilinear extension. YR ∼ X⊕X
is the real form of Y , i.e. YR = Y as a real vector space. Then (YR,ReσC) ∼
(X , σ) ⊕ (X , σ) is a real symplectic space and we denote by φ(y), y ∈ YR
the selfadjoint generators of CCR(YR,ReσC). Under the identi�cationφ(y) ∼
φ(x) ⊗ 1 + 1 ⊗ φ(x′) for y = x + ix′ we can identify CCR(YR,ReσC) with
CCR(X , σ)⊗ CCR(X , σ) as ∗−algebras.

Note also that under the identi�cation

ψ(y) ∼ 1√
2

(φ(y) + iφ(iy)), ψ∗(y) ∼ 1√
2

(φ(y)− iφ(iy)), y ∈ Y

we can identify CCR(YR,ReσC) with CCR(Y , q) for q = iσC.
A quasi-free state ω on CCR(X , σ) is determined by its real covariance

η ∈ Ls(X ,X#) de�ned by:

ω(φ(x1)φ(x2)) =·· x1 ·ηx2 +
i

2
x1 ·σx2, x1, x2 ∈ X .

A symmetric form η ∈ Ls(X ,X#) is the covariance of a quasi-free state i�

η ≥ 0, |x1 ·σx2| ≤ 2(x1 ·ηx1)
1
2 (x2 ·ηx2)

1
2 , x1, x2 ∈ X .

To such a state ω we associate the quasi-free state ω̃ on CCR(YR,ReσC) with
real covariance ReηC. Then its complex covariances λ± are given by (see [15,
Subsection 2.5]):

(3.2) λ± = ηC ±
1

2
iσC.

Applying complex conjugation, we immediately see that in this case

(3.3) λ+ ≥ 0 ⇔ λ− ≥ 0,

so it su�ces to check for example that λ+ ≥ 0.

3.2. Free Klein-Gordon �elds

Let P = −2g + m(x), m ∈ C∞(M,R) a Klein-Gordon operator on

a globally hyperbolic spacetime (M, g) (we use the convention (1, d) for the
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Lorentzian signature). Let E± be the advanced/retarded inverses of P and

E ··= E+ − E−. We apply the above framework to

Y =
C∞c (M)

PC∞c (M)
, [u]·q[u] = i(u|Eu)M ,

where (u|v)M =
∫
M uvdV olg. The associated CCR ∗-algebra will be denoted

by CCR(P ).

One restricts attention to quasi-free states on CCR(P ) whose covariances

are given by distributions on M ×M , i.e. such that there exists Λ± ∈ D′(M ×
M) with

(3.4)
ω(ψ([u1])ψ∗([u2])) = (u1|Λ+u2)M ,

ω(ψ∗([u2])ψ([u1])) = (u1|Λ−u2)M ,
u1, u2 ∈ C∞c (M).

In the sequel, the distributions Λ± ∈ D′(M ×M) will be called the spacetime

covariances of the state ω.

In (3.4) we identify distributions on M with distributional densities using

the density dV olg and use the notation (u|ϕ)M , u ∈ C∞c (M), ϕ ∈ D′(M) for

the duality bracket. We have then

(3.5)
P (x, ∂x)Λ±(x, x′) = P (x′, ∂x′)Λ

±(x, x′) = 0,

Λ+(x, x′)− Λ−(x, x′) = iE(x, x′).

Before recalling the de�nition of Hadamard states (see [18] for the neutral case

and [15] for the complex case), we need to introduce some more background

notation. We recall that T ∗M is the cotangent bundle of M and we denote by

o ⊂ T ∗M its zero section. One sets Γ′ = {((x, ξ), (x′,−ξ′)) : ((x, ξ), (x′, ξ′)) ∈
Γ} for Γ ⊂ T ∗M × T ∗M .

The characteristic manifold N of P is

(3.6) N ··= {(x, ξ) ∈ T ∗M \o : ξµg
µν(x)ξν = 0}.

The time orientation of M induces a corresponding splitting of N into its two

connected components N ± where

N ± = {(x, ξ) ∈ N : ±ξ · v > 0, ∀v ∈ TxM time-like future directed}.

De�nition 3.1. A quasi-free state ω on CCR(P ) is called a Hadamard state

if its spacetime covariances Λ± satisfy:

(3.7) WF(Λ±)′ ⊂ N ± ×N ±.
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3.3. Cauchy surface covariances

Denoting by Solsc(P ) the space of smooth space-compact solutions of
Pφ = 0, it is well known that

[E] :
C∞c (M)

PC∞c (M)
3 [u] 7→ Eu ∈ Solsc(P )

is bijective, with

i(u1|Eu2) = Eu1 ·qEu2, ui ∈ C∞c (M),

for

(3.8) φ1 ·qφ2 ··= i

∫
Σ

(∇µφ1φ2 − φ1∇µφ2)nµdσ,

where Σ is any spacelike Cauchy hypersurface, nµ is the future directed unit
normal vector �eld to Σ and dσ the induced surface density. Setting

ρ : C∞sc (M) 3 φ 7→
(

φ�Σ

i−1∂νφ�Σ

)
= f ∈ C∞c (Σ)⊕ C∞c (Σ)

Since the Cauchy problem {
Pφ = 0,
ρu = f

has a unique solution φ ∈ Solsc(P ) for f ∈ C∞c (Σ)⊕ C∞c (Σ) the map

C∞c (M)

PC∞c (M)
3 [u] 7→ ρEu ∈ C∞c (Σ)⊕ C∞c (Σ)

is bijective, and
i(u|Eu)M = ρEu·qρEu,

for

(3.9) f ·qf ··=
∫

Σ
f1f0 + f0f1dσΣ, f =

(
f0

f1

)
.

It follows that to a quasi-free state with spacetime covariances Λ± one can
associate its Cauchy surface covariances λ± de�ned by:

(3.10) Λ± =·· (ρE)∗λ±(ρE).

Using the canonical scalar product (f |f)Σ ··=
∫

Σ f1f1 +f0f0dσΣ we identify λ±

with operators, still denoted by λ±, belonging to L(C∞c (Σ)⊕C∞c (Σ),D′(Σ)⊕
D′(Σ)).

A more explicit expression of λ± in terms of Λ± is as follows, see e.g. [14,
Thm. 7.10]: let us introduce Gaussian normal coordinates to Σ

U 3 (t, y) 7→ χ(t, y) ∈ V,
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where U is an open neighborhood of {0} × Σ in R × Σ and V an open neig-
hborhood of Σ in M , such that χ∗g = −dt2 + hij(t, y)dyidyj . We denote by
Λ±(t, y, t′, y′) ∈ D′(U ×U) the restriction to U ×U of the distributional kernel
of Λ±. By (3.5) and standard microlocal arguments, their restrictions to �xed
times t, t′, denoted by Λ±(t, t′) ∈ D′(Σ⊗ Σ) are well de�ned.

We know also that ∂kt ∂
k′
t′ Λ
±(0, 0) ∈ D′(Σ × Σ) is well de�ned for k, k′ =

0, 1. Then setting λ± =·· ±q ◦ c± we have:

(3.11) c± = ±
(

i∂t′Λ
±(0, 0) Λ±(0, 0)

∂t∂t′Λ
±(0, 0) i−1∂tΛ

±(0, 0)

)
.

Large classes of Hadamard states were constructed in terms of their Cau-
chy surface covariances in [14, 15] using pseudodi�erential calculus on Σ, see
below for a short summary.

3.4. Pseudodi�erential operators

We brie�y recall the notion of (classical) pseudodi�erential operators on
a manifold, referring to [21, Section 4.3] of [7, Section 18.1] for details.

For m ∈ R we denote by Ψm(Rd) the space of classical pseudodi�erential
operators of orderm on Rd, associated with poly-homogeneous symbols of order
m see e.g. [21, Section 3.7].

Let N be a smooth, d−dimensional manifold. Let U ⊂ N a precompact
chart open set and ψ : U → Ũ a chart di�eomorphism, where Ũ ⊂ Rd is
precompact, open. We denote by ψ∗ : C∞c (Ũ) → C∞c (U) the map ψ∗u(x) ··=
u ◦ ψ(x).

De�nition 3.2. A linear continuous map A : C∞c (N) → C∞(N) belongs
to Ψm(N) if the following condition holds:

(C) Let U ⊂ N be precompact open, ψ : U → Ũ a chart di�eomorphism,
χ1, χ2 ∈ C∞c (U) and χ̃i = χi ◦ ψ−1. Then there exists Ã ∈ Ψm(Rd) such that

(3.12) (ψ∗)−1χ1Aχ2ψ
∗ = χ̃1Ãχ̃2.

Elements of Ψm(N) are called (classical) pseudodi�erential operators of order
m on N .

The subspace of Ψm(N) of pseudodi�erential operators with properly sup-
ported kernels is denoted by Ψm

c (N).

Note that if Ψ∞(c)(N) ··=
⋃
m∈R Ψm

(c)(N), then Ψ∞c (N) is an algebra, but

Ψ∞(N) is not, since without the proper support condition, pseudodi�erential
operators cannot in general be composed.
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We denote by T ∗N \o the cotangent bundle of N with the zero section
removed.

To A ∈ Ψm(N) one can associate its principal symbol σpr(A) ∈ C∞(T ∗N
\o), which is homogeneous of degree m in the �ber variable ξ in T ∗M , in {|ξ| ≥
1}. A is called elliptic in Ψm(N) at (x0, ξ0) ∈ T ∗N \o if σpr(A)(x0, ξ0) 6= 0.

If A ∈ Ψm(N) there exists (many) Ac ∈ Ψm
c (N) such that A − Ac has a

smooth kernel.

Finally one says that (x0, ξ0) 6∈ essupp(A) for A ∈ Ψ∞(N) if there exists
B ∈ Ψ∞c (N) elliptic at (x0, ξ0) such that Ac ◦ B is smoothing, where Ac ∈
Ψ∞c (N) is as above, i.e. A−Ac is smoothing.

3.5. The Cauchy surface covariances of Hadamard states

We now state a result which follows directly from a construction of Ha-
damard states in [15, Subsection 8.2].

Theorem 3.3. Let ω be any Hadamard state for the free Klein-Gordon
�eld on (M, g) and Σ a spacelike Cauchy hypersurface. Then its Cauchy surface
covariances λ± are 2× 2 matrices with entries in Ψ∞(Σ).

Proof. It is well known (see e.g. [18]) that if ω1, ω2 are Hadamard states,
then Λ±1 − Λ±2 are smoothing operators on M . Using (3.10) this implies that
λ±1 − λ±2 are matrices of smoothing operators on Σ. From the de�nition of
Ψ∞(Σ) it hence su�ces to construct one Hadamard state ω whose Cauchy
surface covariances λ± are matrices of pseudodi�erential operators. The state
constructed in [15, Subsection 8.2] has this property, as can be seen from [15,
Equ. (8.2)]. �

4. EUCLIDEAN OPERATORS

The construction of the β−KMS state on M + with respect to the Killing
vector �eld V relies on the Wick rotation, where (R × Σ+, g) is replaced by
(Sβ × Σ+, ĝ):

(4.1) ĝ = v2(y)dτ2 + hij(y)dyidyj ,

is the Riemannian metric obtained from (2.3) by setting t = iτ and Sβ = [0, β[
with endpoints identi�ed is the circle of length β.

In this section, we recall various `Euclidean' operators related to ĝ ap-
pearing in [19, 20]. It will be convenient to construct them by quadratic form
techniques.
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We set
N ··= Sβ × Σ+,

whose elements are denoted by (τ, y). We equip N with the Riemannian metric

ĝ in (4.1) and the associated density dV olĝ = |v|(y)|h|
1
2 (y)dτdy. The hyper-

surface Σ+ is equipped with the induced density dV olh = |h|
1
2 (y)dy.

4.1. Euclidean operator on N

We consider the operator

K ··= −∆ĝ +m(y),

for m as in Subsection 2.4. Note that m depends only on y since m is invariant
under the Killing �ow. We have

K = −v−2(y)∂
2
τ − |v|−1(y)|h|−

1
2 (y)∂yi |v|(y)|h|

1
2 (y)hij(y)∂yj +m(y).

K is well de�ned as a selfadjoint operator on L2(N, dV olĝ) obtained from the
quadratic form:

(4.2) Q(u, u) ··=
∫
N

(
|v|−2|∂τu|2 + ∂iuh

ij∂ju+m|u|2
)
dV olĝ,

which is closeable on C∞c (N), since K is symmetric and bounded from below
on this domain. Denoting its closure again by Q and the domain of its closure
by DomQ, K is the selfadjoint operator associated to Q, i.e. the Friedrichs
extension of its restriction to C∞(Sβ) ⊗ C∞c (Σ+). We know that u ∈ DomK,
Ku = f i�

(4.3) u ∈ DomQ and Q(w, u) = (w|f)L2(N), ∀w ∈ C∞c (N).

From (2.5) we know that K ≥ m2
0 hence is boundedly invertible and we

set
G ··= K−1.

4.2. Change of volume form

Let us set Q̂(u, u) = Q(vu, vu), Dom Q̂ = {u ∈ L2(N) : vu ∈ DomQ}. By
(2.5) we have Q̂(u, u) ≥ m2

0‖vu‖2. If un ∈ Dom Q̂, u ∈ L2(N) with ‖un−u‖ → 0

and Q̂(un − um, un − um) → 0 then from the inequality above we obtain that
vu ∈ L2(N) and ‖v(un−u)‖ → 0. Since Q is closed we obtain that u ∈ Dom Q̂
and Q̂(un − u, un − u)→ 0, i.e. Q̂ is closed.

Let K̂ be the injective selfadjoint operator associated to Q̂, (which is
formally equal to vKv) and let Ĝ = K̂−1. We claim that

(4.4) G = vĜv, on v−1L2(N).
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This follows easily from the characterization (4.3) of G and similarly of Ĝ.

Let now U : L2(N) → L2(Sβ)⊗ L2(Σ+) the unitary map given by Uu =

v
1
2u. We set

K̃ ··= UK̂U∗.
We have

K̃ = −∂2
τ + ε2(y, ∂y),

where:

ε2(y, ∂y) = −|v|
1
2 (y)|h|−

1
2 (y)∂yi |v|(y)|h|

1
2 (y)hij(y)∂yj |v|

1
2 (y) + v2(y)m(y),

is obtained as above from the quadratic form

(4.5)

∫
Σ+

(
∂i|v|

1
2 ũ|v|hij∂i|v|

1
2u+ |v|2m|u|2

)
|h|

1
2dy.

If G̃ ··= K̃−1 we have by (4.4):

(4.6) G = |v|1/2G̃|v|3/2, on v−3/2L2(N).

We now recall a well known expression for G̃. Let

F (τ) =
e−τε + e(τ−β)ε

2ε(1− e−βε)
, τ ∈ [0, β[,

extended to τ ∈ R by β−periodicity. In particular, we have:

(4.7) F (τ) =
e−|τ |ε + e(|τ |−β)ε

2ε(1− e−βε)
, τ ∈ [−β, β]

The following expression for G̃ is well-known (see e.g. [4, Section 18.3.2]):

(4.8) G̃ũ(τ) =

∫
Sβ
F (τ − τ ′)ũ(τ ′)dτ ′, ũ ∈ L2(Sβ)⊗ L2(Σ\B).

Note that since ε2 ≥ mv2 by (4.5), we have also ε−2 ≤ m−1v−2 by Kato-Heinz
theorem hence C∞c (Σ+) ⊂ DomF (τ).

5. CALDER�ON PROJECTORS

In this section, we recall some standard facts on Calder�on projectors. We
refer the reader to [3, Sects. 5.1�5.3] for details.

5.1. The Calder�on projector

Let (N,h) a complete Riemannian manifold and P = −∆h + m, where
m ∈ C∞(N) is a real potential with m(x) ≥ m2

0 > 0. As in Section 4, we
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construct P as a selfadjoint operator on L2(N, dV olh) using the quadratic form

(5.1) Q(u, u) =

∫
N
∂iuh

ij∂ju+m(x)|u|2(x)dV olh.

We obtain that 0 ∈ ρ(P ), hence G ··= P−1 is a bounded operator on L2(N,
dV olh), de�ned by

(5.2) Q(Gv,w) = (v|w)L2(N), ∀w ∈ C∞c (N).

Let Ω ⊂ N an open set such that ∂Ω = S =
⋃n

1 Si, where Si are the
connected components of S and are assumed to be smooth hypersurfaces. We
denote by C∞(Ω) the space of restrictions to Ω of functions in C∞(N).

We associate to Si the distribution density dSi de�ned by:

〈dSi|u〉 ··=
∫
Si

udσ
(i)
h , u ∈ C∞c (N),

where dσ
(i)
h is the induced Riemannian density on Si and we set

dS =
n∑
i=1

dSi.

We denote by ∂ν the unit exterior normal vector �eld to S and set

〈∂∗νdS|u〉 ··= 〈dS|∂νu〉, u ∈ C∞c (N).

For u ∈ C∞(Ω) we set

γu ··=
(
u�S
∂νu�S

)
=:

(
γ0u
γ1u

)
.

For v ∈ C∞c (S) we denote by ṽ ∈ C∞c (N) an extension of v to N such that
ũ�S = u, ∂ν ũ�S = 0.

De�nition 5.1. Let f =

(
f0

f1

)
∈ C∞c (S)⊕ C∞c (S). We set:

Df ··= γ ◦G(f̃1(dV olh)−1dS − f̃0(dV ol−1
h )∂∗νdS).

� The operator D : C∞c (S) ⊕ C∞c (S) → C∞(S) ⊕ C∞(S) is continuous
and is called the Calder�on projector associated to (P, S).

� The operator D is a 2× 2 matrix of pseudodi�erential operators on S.

Note that dS and ∂∗νdS are distributional densities, hence (dV olh)−1dS
and (dV olh)−1∂∗νdS are distributions on N , supported on S.

Note also that the Calder�on projector is obviously covariant under dif-
feomorphisms: if χ : (N,h) → (N ′, h′) is an isometric di�eomorphism with
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S′ = χ(S), P = χ∗P ′, then
D = ψ∗D′,

where ψ : S → S′ is the restriction of χ to S.

5.1.1. EXPRESSION IN GAUSSIAN NORMAL COORDINATES

Let Ui be a neighborhood of {0}× Si in R× Si and Vi a neighborhood of
Si in N such that Gaussian normal coordinates to Si induce a di�eomorphism:

χi : Ui 3 x 7→ (s, y) ∈ Vi
from Ui to Vi, and ds

2 + ks(y)dy2 = χ∗ih on Ui. Then for f ∈ C∞c (Si)⊗C2 we
have

(5.3)
χ∗i

(
f̃1(dV olh)−1dS − f̃0(dV olh)−1∂∗νdS

)
= δ0(s)⊗ (f1(y)− r0(y)f0(y))− δ′0(s)⊗ f0(y),

where rs(y) = |ks|−
1
2 (y)∂s|ks|

1
2 .

If ϕ ∈ C∞c (R) with ϕ ≥ 0,
∫
ϕ(s)ds = 1, setting ϕn(s) = nϕ(ns), we can

compute Df for f ∈ C∞c (Si)⊗ C2 as

(5.4) Df = lim
n→+∞

γ ◦G(ϕn(s)⊗ (f1(y)− r0(y)f0(y))− ϕ′n(s)⊗ f1(y)),

where the limit takes place in C∞(S)⊕ C∞(S).

Note that it is not obvious that Df ∈ C∞(S) ⊕ C∞(S). To prove it
one can �rst replace G by a properly supported pseudodi�erential parametrix
P (−1) ∈ Ψ−2

c (N). Using then Gaussian normal coordinates near a point x0 ∈ S,
one is reduced locally to N = Rd, S = {x1 = 0}. The details can be found for
example in [3, Sects. 5.1- 5.3].

Another useful identity is the following: for u ∈ C∞(Ω) let Iu be the
extension of u by 0 in N\Ω. Then

(5.5) PIu = f̃1(dV olh)−1dS − f̃0(dV ol−1
h )∂∗νdS + IPu, for f = γu.

6. THE DOUBLE β−KMS STATE

In this section, we consider the double β−KMS state ωβ in M + ∪M−. It
is obtained as the natural extension to M +∪M− of the state ω+

β in M +, which

is a β−KMS state in M + with respect to the Killing �ow. Its construction, for
the more general stationary case is given in [19, Thm. 3.5].

Since Σ\B is a Cauchy surface for M + ∪M−, we associate to ωβ its
(complex) Cauchy surface covariances on Σ\B λ±, and (since ωβ is a pure
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state), the pair of complementary projections c± = ±q−1 ◦ λ±, see Subsection
3.1. We will study in details the projection c+.

We identify C∞c (Σ\B) with C∞c (Σ+)⊗ C2 using the map

(6.1)
R̂ : C∞c (Σ+)⊗ C2 → C∞c (Σ+)⊕ C∞c (Σ−)

g = g(0) ⊕ g(β/2) 7→ f = g(0) ⊕ r∗g(β/2),

where r : Σ → Σ is the restriction to Σ of the wedge re�ection R, see Sub-
section 2.2.

We will show that
C ··= R̂−1 ◦ c+ ◦ R̂

is exactly the Calder�on projector for the Euclidean operator K+ acting on
(N, ĝ), see Subsection 4.1, and the open set

Ω ··= {(τ, y) ∈ N : 0 < τ < β/2}.

6.1. The double β−KMS state

We recall now the expression of ωβ given by Sanders, see [19, Section 3.3].

There are some di�erences in signs and factors of i with the expression
given by Sanders in [19, Section 3.3]. They come from two di�erences between
our convention for quantized Klein-Gordon �elds and the one of Sanders:

(1) our convention for Cauchy data of a solution of Pu = 0 is given the map

ρu =

(
u�Σ

i−1∂νu�Σ

)
=: f , which is more natural for complex �elds and

leads to a more symmetric formulation of the Hadamard condition, while

Sanders uses ρu =

(
u�Σ

∂νu�Σ

)
= g, so f =

(
1 0
0 −i

)
g.

(2) we use as complex symplectic form f·σf ′ = (f1|f ′0)−(f0|f ′1), while Sanders
uses g ·σg′ = (g0|g′1)− (g1|g′0). In terms of spacetime �elds, we use i−1E,
Sanders uses iE.

Let us unitarily identify L2(Σ, |h|
1
2dy) with L2(Σ+, |h|

1
2dy) ⊕ L2(Σ−,

|h|
1
2dy), by

u 7→ u+ ⊕ u−, u± = u�Σ± .

Under this identi�cation the action of the wedge re�ection r∗u = u ◦ r will be
denoted by T , with:

(6.2) T (u+ ⊕ u−) ··= r∗u− ⊕ r∗u+.

A direct comparison with the formulas in [19, Section 3.3], using the identity
(3.2) gives the following proposition.
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Proposition 6.1. The double β−KMS state on M + ∪M− is given by

the Cauchy surface covariance λ+ =

(
λ+

00 λ+
01

λ+
10 λ+

11

)
where:

(6.3)

λ+
00 = 1

2 |v|
1
2

(
ε−1 coth(β2 ε) + ε−1T sh−1(β2 ε)

)
|v|

1
2 ,

λ+
11 = 1

2 |v|
− 1

2

(
ε coth(β2 ε)− εT sh−1(β2 ε)

)
|v|−

1
2 ,

λ+
01 = λ+

10 = 1
21.

As in Subsection 3.1 we have λ− = λ+ − q, where the charge q = iσ is

given by the matrix q =

(
0 1
1 0

)
. We introduce the operators c± ··= ±q−1λ±

and obtain

(6.4) c+ =

(
1
2 λ+

00

λ+
11

1
2

)
.

Note that if

b0 = ε−1 coth(
β

2
ε) + ε−1T sh−1(

β

2
ε), b1 = ε coth(

β

2
ε)− εT sh−1(

β

2
ε),

then using that [T, ε] = 0 we obtain that

b0b1 = b1b0 = coth(
β

2
ε)2 − sh−1(

β

2
ε)2 = 1,

from which it follows easily that c± are (formally) projections. This is expected
since the double β−KMS state ωβ is a pure state in M + ∪M−.

6.2. Conjugation by R̂

The map R̂ de�ned in (6.1) allows to unitarily identify L2(Σ+)⊗C2 with
L2(Σ+)⊕ L2(Σ−). We have:

(6.5) R̂−1εR̂ = ε+ ⊕ ε+, R̂−1TR̂ =

(
0 1
1 0

)
.

Denoting by c+
ij for i, j ∈ {0, 1} the entries of the matrix c+ and setting

Cij ··= R̂−1 ◦ c+
ij ◦ R̂,

we obtain after an easy computation using (6.3), (6.1):

(6.6) C00g0 =
1

2
g

(0)
0 ⊕

1

2
g

(β/2)
0 ,

C11g1 =
1

2
g

(0)
1 ⊕

1

2
g

(β/2)
1 ,
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C01g1 =
1

2
|v|

1
2ε−1

+ coth(
β

2
ε+)|v|

1
2g

(0)
1 +

1

2
|v|

1
2ε−1

+ sh−1(
β

2
ε+)|v|

1
2 g

(β/2)
1

⊕ 1

2
|v|

1
2ε−1

+ coth(
β

2
ε+)|v|

1
2g

(β/2)
1 +

1

2
|v|

1
2ε−1

+ sh−1(
β

2
ε+)|v|

1
2g

(0)
1 ,

C10g0 =
1

2
|v|−

1
2ε+coth(

β

2
ε+)|v|−

1
2g

(0)
0 −

1

2
|v|−

1
2ε+sh−1(

β

2
ε+)|v|−

1
2g

(β/2)
0

⊕ 1

2
|v|−

1
2ε+coth(

β

2
ε+)|v|−

1
2g

(β/2)
0 −1

2
|v|−

1
2ε+sh−1(

β

2
ε+)|v|−

1
2g

(0)
0 .

In (6.6) the upper indices (0), (β/2) refer to the two connected components
{τ = 0} and {τ = β/2} of ∂Ω, while the lower indices 0, 1 refer to the two
components of g.

6.3. The Calder�on projector

We now compute the Calder�on projector for K+, associated to the Rie-
mannian manifold (N, ĝ). We choose

Ω = {(τ, y) ∈ N : 0 < τ < β/2}.

We have S = ∂Ω = S0 ∪ Sβ/2 and we write f ∈ C∞c (S) ⊕ C∞c (S) as f =

f (0) ⊕ f (β/2) for f (i) ∈ C∞c (Si)⊕ C∞c (Si).

We denote by γ(i), i = 0, β/2 the trace operators on Si de�ned by γu =
γ(0)u⊕ γ(β/2)u for u ∈ C∞(Ω). We have:

(6.7)
γ(0)u = limτ→0+

(
u(τ, y)

−|v(y)|−1∂τu(τ, y)

)
,

γ(β/2)u = limτ→(β/2)−

(
u(τ, y)

|v(y)|−1∂τu(τ, y)

)
.

We denote similarly by ∂
(i)
ν the exterior normal derivatives on Si.

We compute the Calder�on projector D de�ned in Subsection 5.1 using

the coordinates (τ, y). Since dSi = |h|
1
2 (y)dy and dV olĝ = |v|

1
2 (y)|h|

1
2 (y)dy,

we obtain:

(6.8) Df = D(0)f ⊕D(β/2)f,

for

(6.9)
D(i)f = γ(i) ◦G ◦ |v|−1

(
∂

(0)
ν δ0(τ)⊗ f (0)

0 (y) + δ0(τ)⊗ f (0)
1 (y)

+∂
(β/2)
ν δβ/2(τ)⊗ f (β/2)

0 (y) + δβ/2(τ)⊗ f (β/2)
1 (y)

)
.

Since G = |v|
1
2 G̃|v|3/2 we have G ◦ |v|−1 = |v|

1
2 G̃|v|

1
2 . Denoting by D

(i)(j)
kl for
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i, j ∈ {0, β/2} and k, l ∈ {0, 1} the various entries of D, we obtain:

(6.10) D
(i)(j)
kl v =

{
γ

(i)
k |v|

1
2 G̃|v|

1
2 (∂

(j)
ν δj(τ)⊗ v(y)), l = 0,

γ
(i)
k |v|

1
2 G̃|v|

1
2 (δj(τ)⊗ v(y)), l = 1.

We also set
∂(i)
τ = ∓∂τ , for i = 0, β/2,

so that ∂
(i)
ν = |v|−1(y)∂

(i)
τ .

Proposition 6.2. We have D = R̂−1 ◦ c+ ◦ R̂.

Proof. We recall that Cij are the entries of R̂−1 ◦ c+ ◦ R̂. We compute

D
(i)(j)
kl using (6.10) and the explicit formulas (4.7), (4.8) for the kernel G̃(τ, τ ′)

of G̃.

Computation of D00:

D
(0)(0)
00 u = γ

(0)
0 |v|

1
2 G̃|v|−

1
2∂(0)

τ δ0 ⊗ u

= |v|
1
2 lim
τ→0+

∂τ ′G̃(τ, 0)|v|−
1
2u =

1

2
u,

D
(0)(β/2)
00 u = γ

(0)
0 |v|

1
2 G̃|v|−

1
2∂(β/2)

τ δβ/2 ⊗ u

= −|v|
1
2 lim
τ→0+

∂τ ′G̃(τ, β/2)|v|−
1
2u = 0,

D
(β/2)(0)
00 u = γ

(β/2)
0 |v|

1
2 G̃|v|−

1
2∂(0)

τ δ0 ⊗ u

= |v|
1
2 lim
τ→β/2−

∂τ ′G̃(τ, 0)u = 0,

D
(β/2)(β/2)
00 u = γ

(β/2)
0 |v|

1
2 G̃|v|−

1
2∂(β/2)

τ δβ/2 ⊗ u

= −|v|
1
2 lim
τ→β/2−

∂τ ′G̃(τ, β/2)|v|−
1
2u =

1

2
u.

Hence
D00g0 = C00g0.

Computation of D11:

D
(0)(0)
11 u = γ

(0)
1 |v|

1
2 G̃|v|

1
2 δ0 ⊗ u

= −|v|−
1
2 lim
τ→0+

∂τ G̃(τ, 0)|v|
1
2u =

1

2
u,

D
(0)(β/2)
11 u = γ

(0)
1 |v|

1
2 G̃|v|

1
2 δβ/2 ⊗ u



188 Christian G�erard 22

= −|v|−
1
2 lim
τ→0+

∂τ G̃(τ, β/2)|v|
1
2u = 0,

D
(β/2)(0)
11 u = γ

(β/2)
1 |v|

1
2 G̃|v|

1
2 δ0 ⊗ u

= |v|−
1
2 lim
τ→β/2−

∂τ G̃(τ, 0)|v|
1
2u = 0,

D
(β/2)(β/2)
11 u = γ

(β/2)
1 |v|

1
2 G̃|v|

1
2 δβ/2 ⊗ u

= |v|−
1
2 lim
τ→β/2−

∂τ G̃(τ, β/2)|v|
1
2u =

1

2
u.

Hence
D11g0 = C11g0.

Computation of D01:

D
(0)(0)
01 u = γ

(0)
0 |v|

1
2 G̃|v|

1
2 δ0 ⊗ u

= |v|
1
2 lim
τ→0+

G̃(τ, 0)|v|
1
2u =

1

2
|v|

1
2 ε−1

+ coth(
β

2
ε+)|v|

1
2u,

D
(0)(β/2)
01 u = γ

(0)
0 |v|

1
2 G̃|v|

1
2 δβ/2 ⊗ u

= |v|
1
2 lim
τ→0+

G̃(τ, β/2)|v|
1
2u =

1

2
|v|

1
2 ε−1

+ sh−1(
β

2
ε+)|v|

1
2u,

D
(β/2)(0)
01 u = γ

(β/2)
0 |v|

1
2 G̃|v|

1
2 δ0 ⊗ u

= |v|
1
2 lim
τ→β/2−

G̃(τ, 0)|v|
1
2u =

1

2
|v|

1
2 ε−1

+ sh−1(
β

2
ε+)|v|

1
2u,

D
(β/2)(β/2)
01 u = γ

(β/2)
0 |v|

1
2 G̃|v|

1
2 δβ/2 ⊗ u

= |v|
1
2 lim
τ→β/2

G̃(τ, β/2)|v|
1
2u =

1

2
|v|

1
2 ε−1

+ coth(
β

2
ε+)|v|

1
2u.

Hence
D01g1 = C01g1.

Computation of D10:

D
(0)(0)
10 u = γ

(0)
1 |v|

1
2 G̃|v|−

1
2∂(0)

τ δ0 ⊗ u

= −|v|−
1
2 lim
τ→0+

∂τ∂τ ′G̃(τ, 0)|v|−
1
2u =

1

2
|v|−

1
2 ε+ coth(

β

2
ε+)|v|−

1
2u,

D
(0)(β/2)
10 u = γ

(0)
1 |v|

1
2 G̃|v|−

1
2∂(β/2)

τ δβ/2u
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= |v|−
1
2 lim
τ→0+

∂τ∂τ ′G̃(τ, β/2)|v|−
1
2u = −1

2
|v|−

1
2 ε+sh−1(

β

2
ε+)|v|−

1
2u,

D
(β/2)(0)
10 u = γ

(β/2)
1 |v|

1
2 G̃|v|−

1
2∂(0)

τ δ0 ⊗ u

= |v|−
1
2 lim
τ→β/2−

∂τ∂τ ′G̃(τ, 0)|v|−
1
2u = −1

2
|v|−

1
2 ε+sh−1(

β

2
ε+)|v|−

1
2u,

D
(β/2)(β/2)
10 u = γ

(β/2)
1 |v|

1
2 G̃|v|

1
2∂(β/2)

ν δβ/2 ⊗ u

= −|v|−
1
2 lim
τ→β/2−

∂τ∂τ ′G̃(τ, β/2)|v|−
1
2u =

1

2
|v|−

1
2 ε+ coth(

β

2
ε+)|v|−

1
2u.

Hence
D10g0 = C10g0.

This completes the proof of the proposition. �

7. THE HARTLE-HAWKING-ISRAEL STATE

AND ITS PROPERTIES

7.1. The smooth extension of (N, ĝ) and the Hawking temperature

The existence of the Hartle-Hawking-Israel state and the de�nition of the
Hawking temperature TH = κ(2π)−1 (where κ is the surface gravity) rely on the
existence of an extension (Next, ĝext) of (N, ĝ) such that the two components
S0, Sβ/2 ∼ Σ+ of ∂Ω are smoothly glued together into Σ ⊂ Next.

The extended Riemannian metric ĝext is smooth i� β = (2π)κ−1 (for other
values of β (Next, ĝext) has a conic singularity on B).

Let us embed Σ\B into N by:

r̂ :

{
x 7→ (0, x) for x ∈ Σ+,
x 7→ (β/2, r(x)) for x ∈ Σ−,

Note that for R̂ de�ned in (6.1) we have

(7.1) R̂ = (r̂)∗.

We recall that the function m : Σ→ R+ was introduced in Subsection 2.4.

Proposition 7.1 ([19, Subsection 2.2]). Assume that β = (2π)κ−1. Then
there exists a smooth complete Riemannian manifold (Next, ĝext) and

(1) a smooth isometric embedding ψ : Σ→ Next,

(2) a smooth isometric embedding χ : (N, ĝ) → (Next\Bext, ĝext) for Bext =
ψ(B),
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(3) a smooth function mext : Next → R with mext ≥ m2
0 > 0

such that
ψ�Σ\B = χ ◦ r̂, ψ∗mext = m�N .

Fig. 2 � The embedding χ.

This fundamental fact is well explained in [19, Subsection 2.2]. Let us
brie�y recall the construction of χ following [19]: one introduces Gaussian
normal coordinates to B in (Σ, h), where h is the Riemannian metric induced
by g on Σ. We choose the unit normal vector �eld to B pointing towards
Σ+. Using these coordinates we can, since B is compact, identify a small
neighborhood U of B in Σ with ]− δ, δ[×B. Denoting by ω local coordinates
on B we have a map

φ :]− δ, δ[×B 3 (s, ω) 7→ y = exphω(s) ∈ U,

U+ = φ(]0, δ[×B),

φ∗h = ds2 + kαβ(s, ω)dωαdωβ,

for U+ = Σ+ ∩U . In the local coordinates (τ, s, ω) on Sβ ×U+ the embedding
χ takes the form:

(7.2) χ :
Sβ×]0, δ[×B → B2(0, δ)×B

(τ, s, ω) 7→ (s cos(β(2π)−1τ), s sin(β(2π)−1τ), ω) =·· (X,Y, ω),

where B2(0, δ) = {(X,Y ) ∈ R2 : 0 < X2 + Y 2 < δ2}. A straightforward
computation performed in [19, Subsection 2.2] shows that ĝ admits a smooth
extension ĝext to Next i� β = (2π)κ−1.

7.2. The extension of ωβ to M

We recall from Subsection 4.1 that K is de�ned from the closure Q of the
quadratic form Q on C∞c (N).
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Similarly Kext = −∆ĝext + mext, acting on Next is de�ned using the cor-
responding quadratic form Qext.

The following lemma is equivalent to [19, Prop. 5.2], for completeness we
give a short proof using quadratic form arguments (note that we assume the
stronger condition that inf m(x) > 0).

Lemma 7.2. Let U : C∞c (N)→ C∞c (Next\Bext) de�ned by

Uu = u ◦ χ−1.

Then U extends as a unitary operator U : L2(N) → L2(Next) with Kext =
UKU∗.

Proof. U clearly extends as a unitary operator. To check the second
statement it su�ces, taking into account the way K and Kext are de�ned,
to prove that C∞c (Next\Bext) is a form core for Qext. The domain of Qext

is the Sobolev space H1(Next) associated to ĝext, so we need to show that
C∞c (Next\Bext) is dense in H1(Next). Using the coordinates (X,Y, ω) near
Bext ∼ {0}×B, this follows from the fact that C∞c (R2\{0}) is dense inH1(R2),
see e.g. [1, Thm. 3.23]. �

We recall that the projection c+ associated to the double β−KMS state ωβ
was de�ned in (6.4). Let us identify in the sequel Σ with Σext = ψ(Σ) ⊂ Next.

Theorem 7.3. Let Dext the Calder�on projector for (Kext,Σ). Then for
f, g ∈ C∞c (Σ\B)⊗ C2 we have:

(g|c+g)L2(Σ) = (gext|Dextfext)L2(Σ),

where fext = (ψ∗)−1f , gext = (ψ∗)−1g.

Proof. This follows from Prop. 6.2, the fact that R̂ is implemented by the
embedding r̂ of Σ\B into N , (see (7.1)) and Lemma 7.2. �

7.3. Uniqueness of the extension

We discuss now the uniqueness of extensions of ωβ to M . Other types of
uniqueness results were obtained before in [13] and [9].

Proposition 7.4. There exists at most one quasi-free state ω for the
Klein-Gordon �eld on M such that:

(1) the restriction of ω to M + ∪M− equals ωβ,

(2) the spacetime covariances Λ± of ω map C∞c (M) into C∞(M).

Proof. Let ω a quasi-free state for the Klein-Gordon operator P in M ,
with spacetime covariances Λ±. We assume that Λ± : C∞c (M) → C∞(M).
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Denoting by Λ±(x, x′) their Schwartz kernels, we have P (x, ∂x)Λ±(x, x′) =
P (x′, ∂x′)Λ

±(x, x′) = 0, which implies that

(7.3) WF(Λ±)′ ⊂ N ×N ,

where N is de�ned in (3.6). We claim that the entries c±k,k′ , k, k
′ = 0, 1

of c± de�ned in (3.11) map C∞c (Σ) into C∞(Σ). In fact by (7.3) we have
Λ± = Λ± ◦ A modulo smoothing, where A ∈ Ψ0(M) is a pseudodi�erential
operator with essupp(A) included in an arbitrary small conical neighborhood
of N . For u ∈ C∞c (Σ) we have, modulo factors of i:

c±k,k′u = ∂kt Λ± ◦A(−∂k′t δ0 ⊗ u)�t=0 ,

see (3.11). Since WF((−∂k′t δ0)⊗u) ⊂ N∗Σ, where N∗Σ ⊂ T ∗M is the conormal
bundle to Σ and Σ is spacelike, we have N∗Σ∩N = ∅, hence A(−∂k′t δ0⊗u) ∈
C∞(M), which proves our claim.

Let now ωi, i = 1, 2 be two quasi-free states as in the proposition. Since
(u|(Λ+

1 − Λ+
2 )v)L2(M) = 0 for u, v ∈ C∞c (M + ∪M−) we obtain that (f |(λ+

1 −
λ+

2 )g)L2(Σ)⊗C2 = 0 for f, g ∈ C∞c (Σ\B) ⊗ C2 hence supp(λ+
1 − λ

+
2 )g ⊂ B for

g ∈ C∞c (Σ\B)⊗C2. Since we have seen that λ+
i : C∞c (Σ)⊗C2 → C∞(Σ)⊗C2

this implies that (λ+
1 − λ+

2 )f = 0 for f ∈ C∞c (Σ\B) ⊗ C2. Since λ+
i are

selfadjoint for L2(Σ, dV olh) ⊗ C2 this implies that supp(λ+
1 − λ

+
2 )f ⊂ B for

f ∈ C∞c (Σ)⊗C2, hence (λ+
1 − λ

+
2 )f = 0 using again that λ+

i : C∞c (Σ)⊗C2 →
C∞(Σ)⊗ C2. �

7.4. The Hartle-Hawking-Israel state

Theorem 7.5 ([19]). Let us set

λ+
HHI
··= q ◦Dext, λ

−
HHI
··= λ+

HHI − q,

where Dext is the Calder�on projector for (Kext,Σ) and the charge quadratic
form q is de�ned in (3.8). Then:

(1) λ±HHI are the Cauchy surface covariances for the Cauchy surface Σ of a
quasi-free state ωHHI for the free Klein-Gordon �eld on M .

(2) the Hartle-Hawking-Israel state ωHHI is a pure Hadamard state and is
the unique extension to M of the double β−KMS state ωβ with the pro-
perty that its spacetime covariances Λ±HHI map continuously C∞c (M) into
C∞(M).

Proof. Let us �rst prove (1). By (3.3) it su�ces to check the positivity
of λ+

HHI. This was shown in [19, Thm. 5.3] using re�ection positivity. For the
reader's convenience, let us brie�y repeat the argument:
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for u ∈ L2(N) we set Ru(τ, y) = u(−τ, y), for τ ∈ [−β/2, β/2] ∼ Sβ . The
operator G = K−1 is re�ection positive, i.e.

(7.4) (Ru|Gu)L2(N) ≥ 0, ∀u ∈ L2(N), suppu ⊂ [0, β/2]× Σ+.

In fact setting ũ = |v|3/2u, (7.4) is equivalent to
(7.5)

(Rũ|G̃ũ)L2(Sβ)⊗L2(Σ+) ≥ 0, ∀ũ ∈ L2(Sβ)⊗ L2(Σ+), suppũ ⊂ [0, β/2]× Σ+.

Using (4.7) we obtain

(Rũ|G̃ũ)L2(Sβ)⊗L2(Σ+)

= (u0| 1
2ε(1−e−βε)

u0)L2(Σ+) + (uβ| 1
2ε(1−e−βε)

uβ)L2(Σ+),

for

u0 =

∫
Sβ

e−τεũ(τ)dτ, uβ =

∫
Sβ

e(τ−β/2)εũ(τ)dτ

where ũ is identi�ed with the map Sβ 3 τ 7→ ũ(τ) ∈ L2(Sβ;L2(Σ+)). This
proves (7.4).

By Lemma 7.2 and using that Gext = K−1
ext is bounded on L2(Next), we

deduce from (7.4) that Gext is also re�ection positive, i.e.
(7.6)
(Rextu|Gextuext)L2(Next) ≥ 0, u ∈ L2(Next), suppu ⊂ N+

ext = χ([0, β/2]× Σ+),

for Rext = URU∗. By the remark before [19, Thm. 5.3], if (s, y) are Gaussian
normal coordinates to Σ in Next we have Rextu(s, y) = u(−s, y), i.e. Rext is
given by the re�ection in Gaussian normal coordinates. This map is a isometry
of (Next, ĝext), which implies that if ĝext = ds2 + hext(s, y)dy2 near Σ, we have

hext(s, y) = hext(−s, y) hence if rs(y) = |hext(s, y)|−
1
2∂s|hext(s, y)|

1
2 we have

r0(y) ≡ 0.

If f ∈ C∞c (Σ)⊗ C2 it follows from (5.3) that Dextf = γGextTf for

Tf = δ0(s)⊗ f1 − δ′0(s)⊗ f0.

We have RextTf = δ0(s) ⊗ f1 + δ′0(s) ⊗ f0. Applying the re�ection positivity
(7.6) to u = Tf we obtain that:

(RextTf |GextTf)L2(Next) = (f |qDextf)L2(Σ) ≥ 0,

which proves the positivity of λ+
HHI. To make the argument rigorous is su�ces

to approximate δ0 by a sequence ϕn as in (5.4). This completes the proof of
(1).

Let us now prove (2). The fact that ωHHI is the unique extension of ωβ
to M with the stated properties has been proved in Prop. 7.4. It remains to
prove that ωHHI is a pure Hadamard state in M .
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The fact that ωHHI is pure follows from the fact that Dext is a projection.
To prove the Hadamard property let us �x a reference Hadamard state ωref for
the Klein-Gordon �eld in M . By Thm. 3.3 its Cauchy surface covariances on
Σ λ±ref are matrices of pseudodi�erential operators on Σ. The same is true of
c±ref = ±q−1 ◦ λ+

ref and of c±HHI, since Calder�on projectors are given by matrices
of pseudodi�erential operators on Σ.

Moreover we know that the restriction of ωHHI to M +∪M− is a Hadamard
state. The same is obviously true of the restriction of ωref to M +∪M−. Going
to Cauchy surface covariances, this implies that if χ ∈ C∞c (Σ±) then

χ ◦ (c±HHI − c
±
ref) ◦ χ is a smoothing operator on Σ.

We claim that this implies that c±HHI− c
±
ref is smoothing, which will imply that

ωHHI is a Hadamard state.

If fact let a be one of the entries of c±HHI−c
±
ref , which is a scalar pseudodif-

ferential operator belonging to Ψm(Σ) for some m ∈ R. We know that χ ◦ a ◦χ
is smoothing for any χ ∈ C∞c (Σ\B). Then its principal symbol σpr(a) vanishes
on T ∗(Σ\B) hence on T ∗Σ by continuity, so a ∈ Ψm−1(Σ). Iterating this ar-
gument we obtain that a is smoothing, which proves our claim and completes
the proof of the theorem. �
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