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In this review paper, we carry on our investigations on Schr�odinger operators
with inverse square potentials on the half-line. Depending on several parame-
ters, such operators possess either a �nite number of complex eigenvalues, or
an in�nite one, but also some spectral singularities embedded in the continu-
ous spectrum (exceptional situations). The spectral and the scattering theory
for these operators is recalled, and new results for the exceptional cases are
provided. Some index theorems in scattering theory are also developed, and
explanations why these results can not be extended to the exceptional cases are
provided.
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1. INTRODUCTION

Levinson's theorem is a relation between the number of bound states of a
quantum mechanical system and an expression related to the scattering part of
that system. It was originally established by N. Levinson in [6] for Schr�odinger
operators with a spherically symmetric potential, and has then been developed
by numerous researchers on a purely analytical basis. About 10 years ago, it
has been shown that this relation can be interpreted as an index theorem in
scattering theory, and the results of these investigations have been summarized
in the review paper [11]. More recently, a scattering system involving several
parameters has been exhibited in [3] and this system has been at the root of
several extensions of Levinson's theorem: in [8] it has been shown that complex
eigenvalues can also be counted, and in [5] a �rst attempt for dealing with an
in�nite number of eigenvalues has been introduced. However, some of the
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operators exhibited in [3] were not used for these extensions, and our aim in
the present paper is to complete the investigations for the entire family.

Before entering into the details of our investigations, let us immediately
mention that part of our aim has been unsuccessful. Indeed, for a reduced family
of operators, we end up with wave operators which are either unbounded or not
Fredholm. In such a situation, computing their Fredholm index is either much
more involved or simply not possible. Nevertheless, we provide an exhaustive
picture of the situation and describe the limitations of our approach. We hope
that our presentation will motivate further investigations for the trickiest cases.

Let us now be more precise on the model and on the results, see also
Section 2 for more details on the model. The initial system consists in a family
of Schr�odinger operators of the form −∂2

r +
(
m2 − 1

4

)
1
r2

on the half-line R+.
The parameter m ∈ C with <(m) > −1 is used for describing the coupling
constant for the potential. For m 6= 0 an additional parameter κ ∈ C is used
for de�ning the boundary condition at r = 0, while for m = 0 another family
of operators indexed by a boundary parameter ν is de�ned. The study of the
corresponding families of closed operators Hm,κ and Hν

0 in L2(R+) has been
initiated and extensively performed in [3].

Among all operators Hm,κ and Hν
0 only a few are self-adjoint. They are

exhibited in Lemma 2.2. In the large complementary family, some pairs of pa-
rameters (m,κ) and some parameters ν are called exceptional if they satisfy a
prescribed condition provided in De�nition 3.1. As shown in Remark 3.8 the
corresponding operators Hm,κ or Hν

0 possess spectral singularities in the con-
tinuous spectrum. Around these singularities the spectral and the scattering
properties of these operators are less obvious, and for that reason these opera-
tors were not considered in [3]. Here, we shall consider all the operators, and
provide as much information as possible even in the exceptional situations.

The spectral theory of the operatorsHm,κ andH
ν
0 is provided in Section 3.

The number of eigenvalues of these operators can be �nite or in�nite, depending
on the parameters. For the exceptional operators, it is shown in particular
that even though there is no eigenvalue embedded in the continuous spectrum,
it is possible to construct a family of operators of the same type (but non-
exceptional) having complex eigenvalues converging to a prescribed value in
R+, see Lemma 3.3. These convergences take place either in C+ or in C−
depending on the choice of the initial exceptional parameters.

The next spectral result corresponds to a limiting absorption principle.
For non-exceptional operators this limiting process takes place from below and
from above the real axis in C, but in the exceptional cases some restricti-
ons appear. More precisely, at the spectral singularity the limiting absorption
principle holds only on one side of the real axis, the side free of possible accu-
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mulations of complex eigenvalues. These results are gathered in Propositions
3.5 and 3.6. Let us also note that even if most of the exceptional operators
have only one spectral singularity, some have two spectral singularities (with
corresponding limiting absorption principles in two di�erent half-planes) and
some have an in�nite number of spectral singularities, converging both to 0 and
to +∞.

The scattering theory for the pairs of operators (Hm,κ, HD) or (Hν
0 , HD)

is studied in Section 4. The reference operator HD corresponds to the Dirichlet
Laplacian on R+ (and is equal to H 1

2
,0). Following the approach of [3] we start

by constructing the generalized Hankel transformations F∓m,κ and F ν∓
0 , and

de�ne the wave operators in terms of these transformations. Various represen-
tations are provided for these operators, but here again a special attention has
to be paid to the exceptional cases. Indeed, for them either one or sometimes
both wave operators are not bounded. A list of all unbounded wave operators
is provided at the end of Section 4.

In the last section, we provide some index theorems in scattering theory.
This part contains new information but the framework corresponds to the one
which already appeared in [8] and to part of the one used in [5]. The �rst step
consists in providing a representation of the wave operators in the usual setting
of pseudo-di�erential operators. Since this new representation is implemented
by a unitary transformation, the bounded wave operators remain bounded, and
the unbounded ones remain unbounded! However, this representation is con-
venient for the introduction of some C∗-algebras containing pseudo-di�erential
operators of order 0 and with coe�cients which are either asymptotically con-
stant or periodic. These algebras contain all bounded wave operators, as stated
in Proposition 5.1.

Once in this C∗-algebraic framework, the way for index theorems is al-
ready paved and rather well understood. Indeed, by looking at some ideals
in these algebras and by considering the quotient algebras, one ends up auto-
matically with an index map which corresponds to our topological version of
Levinson's theorem. For the model under consideration and depending on the
parameters, one obtains either an index theorem for Fredholm operator or a
so-called Atiyah's L2-index theorem [1]. These results are presented in Theo-
rem 5.3 and 5.5. Note that the Fredholm case has already been considered for
several models in [11], and beside the usual contribution due to the scattering
operator, two additional contributions are possible. In the original represen-
tation they correspond to corrections at 0-energy and at energy equal to +∞.
Note also that in the present setting we are dealing with arbitrary complex
eigenvalues while in reference [11] only real eigenvalues were considered. On
the other hand, when the number of bound states is in�nite, no such correction
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appears, and the new Levinson's theorem corresponds to an equality between
the winding number computed over one period for the scattering operator, and
a suitable trace in the Floquet-Bloch representation of the projection on the
bound states of Hm,κ. This situation coincides with a special instance of the
results obtained in the seminal paper [1] where an index theorem is provided
for elliptic operators on a non-compact manifold which are invariant under
the action of a discrete group. The decomposition with respect to the group
corresponds in our setting to the Floquet-Bloch decomposition.

Unfortunately, in Section 5 about index theorems the exceptional cases
are no longer considered. Indeed, as already mentioned some of the correspon-
ding wave operators are unbounded, and therefore can not easily be associated
to any C∗-algebra. For the remaining wave operators still belonging to some
C∗-algebras, their principal symbol is not boundedly invertible. As a conse-
quence, these operators are not Fredholm, and their analytical index can not
be de�ned. It is quite unfortunate that the presence of a spectral singula-
rity prevented us from de�ning any index theorem for the corresponding wave
operators. Note that a related result about the non-completeness of the wave
operators in the presence of spectral singularity has also been recently obtained
in [4]. Some relations between spectral singularities and scattering theory have
also been exhibited in [7, 12], see also references therein. We hope that future
investigations will provide new insights about these exceptional situations in
our algebraic framework.

2. THE MODEL

In this section, we introduce the model used for our investigations. This
material is borrowed from [3] to which we refer for more explanations and for
the proofs. Note that [5, 8] also contain partial information of this model.

For any m ∈ C we consider the di�erential expression

Lm2 := −∂2
r +

(
m2 − 1

4

) 1

r2

acting on distributions on R+. The maximal operator associated with Lm2

in L2(R+) is de�ned by D(Lmax
m2 ) = {f ∈ L2(R+) | Lm2f ∈ L2(R+)}, and

the minimal operator Lmin
m2 is de�ned as the closure of the restriction of Lm2

to C∞c (R+), where C∞c (R+) denotes the set of compactly supported smooth
functions on R+. Then, the equality (Lmin

m2 )∗ = Lmax
m̄2 holds for any m ∈ C, and

Lmin
m2 = Lmax

m2 if |<(m)| ≥ 1 while Lmin
m2 ( Lmax

m2 if |<(m)| < 1. In the latter
situation D(Lmin

m2 ) is a closed subspace of codimension 2 of D(Lmax
m2 ), and for

any f ∈ D(Lmax
m2 ) there exist a, b ∈ C such that

f(r)− ar1/2−m − br1/2+m ∈ D(Lmin
m2 ) around 0 if m 6= 0,
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f(r)− ar1/2 ln(r)− br1/2 ∈ D(Lmin
0 ) around 0.

Here, the expression g(r) ∈ D(Lmin
m2 ) around 0 means that there exists ζ ∈

C∞c
(
[0,∞)

)
with ζ = 1 around 0 such that gζ ∈ D(Lmin

m2 ). In addition, the
behavior of any function g ∈ D(Lmin

m2 ) is known, namely g ∈ H1
0(R+) and as

r → 0 :

g(r) = o
(
r3/2

)
and g′(r) = o

(
r1/2

)
if m 6= 0,

g(r) = o
(
r3/2 ln(r)

)
and g′(r) = o

(
r1/2 ln(r)

)
if m = 0.

Remark 2.1. It is worth mentioning that for m 6= 0 the functions r 7→
r

1
2
±m are the two linearly independent solutions of the ordinary di�erential

equation Lm2u = 0, and that they are square integrable near 0 if |<(m)| <
1. Similarly, the functions r 7→ r

1
2 and r 7→ r

1
2 ln(r) are the two linearly

independent solutions of the ordinary di�erential equation L0u = 0.

Based on the above observations we construct various closed extensions
of the operator Lmin

m2 . For simplicity we restrict our attention to m ∈ C with
|<(m)| < 1. These extensions are parameterized by a boundary condition at 0,
namely for any κ ∈ C ∪ {∞} we de�ne a family of closed operators Hm,κ :

D(Hm,κ) =
{
f ∈ D(Lmax

m2 ) | for some c ∈ C,

f(r)− c
(
κr1/2−m + r1/2+m

)
∈ D(Lmin

m2 ) around 0
}
, κ 6=∞;

D(Hm,∞) =
{
f ∈ D(Lmax

m2 ) | for some c ∈ C,

f(r)− cr1/2−m ∈ D(Lmin
m2 ) around 0

}
.

For m = 0, we introduce an additional family of closed operators Hν
0 with

ν ∈ C ∪ {∞} :
D(Hν

0 ) =
{
f ∈ D(Lmax

0 ) | for some c ∈ C,

f(r)− c
(
r1/2 ln(r) + νr1/2

)
∈ D(Lmin

0 ) around 0
}
, ν 6=∞;

D(H∞0 ) =
{
f ∈ D(Lmax

0 ) | for some c ∈ C,

f(r)− cr1/2 ∈ D(Lmin
0 ) around 0

}
.

Let us directly mention a few simple properties of these operators. For
any |<(m)| < 1 and any κ ∈ C∪{∞}, the equality Hm,κ = H−m,κ−1 holds. For
that reason, the case κ = ∞ will be disregarded in the following. In addition,
the operator H0,κ does not depend on κ, and all these operators coincide with
H∞0 (which has already been fully investigated in [2]). For that reason, all
results about the case m = 0 will be formulated in terms of the family Hν

0

for ν ∈ C. It has also been proved in [3, Prop. 2.3] that for any m ∈ C with
|<(m)| < 1 and for any κ, ν ∈ C one has

(Hm,κ)∗ = Hm̄,κ̄ and (Hν
0 )∗ = H ν̄

0 .
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Based on this, the self-adjoint elements can easily be identi�ed in the two
families of operators. Indeed, one has:

Lemma 2.2. (i) The operator Hm,κ is self-adjoint for m ∈ (−1, 1) and

κ ∈ R, and for m ∈ iR and |κ| = 1.

(ii) The operator Hν
0 is self-adjoint for ν ∈ R.

Let us �nally note that the operator H 1
2
,0 corresponds to the Dirichlet

Laplacian on R+, which will be denoted by HD. Later on, this operator will
play the role of a comparison operator.

3. SPECTRAL THEORY

In this section, we start by introducing the de�nition of an exceptional pair
(m,κ) or of an exceptional parameter ν. We then show how these exceptional
situations show o� in spectral theory, by recalling a few spectral results obtained
in [3] and by making some of them slightly more accurate.

In the sequel, we shall use the notations z 7→ ln(z) for the principal value
of the logarithm whose imaginary part lies in the interval (−π, π]. On the
other hand, Ln(z) will denote the multivalued logarithm. This means that
Ln(z) = {ln(z) + 2πiZ}, or equivalently if w satis�es ew = z, then Ln(z) is the
set {w + 2πiZ}. We also introduce for m ∈ C∗ with |<(m)| < 1 and for κ ∈ C
the new parameter

ς ≡ ς(m,κ) := κ
Γ(−m)

Γ(m)

where Γ denotes the usual Gamma function.

De�nition 3.1. A pair (m,κ) in C∗ × C∗ with |<(m)| < 1 is called excep-

tional if ±π ∈ =
(

1
m Ln(ς)

)
. Similarly, a parameter ν ∈ C is called exceptional

if =(ν) = ±π
2 .

Let us immediately stress that ±π ∈ =
(

1
m Ln(ς)

)
are two independent

conditions. Indeed by setting m = mr + im� ∈ C∗ with m�,mr ∈ R and
|mr| < 1 one has

α ∈ =
( 1

m
Ln(ς)

)
⇔ α ∈ =

( 1

m

(
ln(ς) + 2πiZ

))
⇔ α ∈ =

( 1

m
ln(ς)

)
+ 2π<

( 1

m

)
Z

⇔ α ∈ =
( 1

m
ln(ς)

)
+ 2π

mr

m2
r +m2

�

Z.(3.1)
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Thus, this equation can either be satis�ed for α = π or for α = −π, or can be
satis�ed both for π and −π. Indeed, if mr 6= 0 both conditions are simultane-
ously satis�ed if and only if the following system of equations is satis�ed for
some z1, z2 ∈ Z with z1 6= z2 :{

=
(

1
m ln(ς)

)
= −π z1+z2

z1−z2
m2

r+m2
�

mr
= z1 − z2.

On the other hand, if m = in for some n ∈ R∗ then (3.1) corresponds to
α = −

(
1
n ln(|κ|)

)
.

Let us now recall some information about the point spectrum of the ope-
rators Hm,κ or Hν

0 .

Theorem 3.2 (Theorem 5.2 in [3]). Let m ∈ C with |<(m)| < 1.

(i) For m 6= 0 one has σp(Hm,0) = ∅ while for κ ∈ C∗ one has

σp(Hm,κ) =
{
− 4e−w | w ∈ 1

m
Ln(ς) and − π < =(w) < π

}
(ii) For any ν ∈ C, σp(Hν

0 ) is nonempty if and only if −π
2 < =(ν) < π

2 , and

then

σp(Hν
0 ) =

{
− 4e2(ν−γ)

}
where γ denotes the Euler's constant.

From this statement we can guess that σp(Hm,κ) depends in a compli-
cated way on the parameters m and κ. There even exists a pattern of phase
transitions, when some eigenvalues disappear in the continuous spectrum. By
looking carefully on the conditions appearing in the above statement we can
see that the exceptional situations correspond to the borderline cases, and
that the location of the eigenvalues are not arbitrary. More precisely if we
set C± := {z ∈ C | ±=(z) > 0} then one has:

Lemma 3.3. (i) Let (mn)n∈N ⊂ {z ∈ C∗ | |<(z)| < 1} and (κn)n∈N ⊂
C∗ be two sequences, set

ςn := κn
Γ(−mn)

Γ(mn)
, an := <

( 1

mn
ln(ςn)

)
, bn := =

( 1

mn
ln(ςn)

)
and assume that (an)n∈N converges to a∞ ∈ R and that (bn)n∈N is an

increasing sequence converging to π. Then, for n large enough there exists

λn ∈ σp(Hmn,κn) with λn ∈ C+ and λn → 4e−a∞ as n→∞. If (bn)n∈N is

a decreasing sequence converging to −π, then for n large enough λn ∈ C−
and λn → 4e−a∞ as n → ∞. The value 4e−a∞ is not an eigenvalue for

any operator Hm,κ.
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(ii) Let (an)n∈N ⊂ R be a sequence converging to a∞ ∈ R and let (bn)n∈N ⊂
(0, π2 ) be an increasing sequence converging to π

2 . Then, for any n ∈ N and

for νn := an + ibn one has σp(Hνn
0 ) = {λn} ⊂ C− and λn → 4e2(a∞−γ)

as n → ∞. If (bn)n∈N ⊂ (−π
2 , 0) is a decreasing sequence converging to

−π
2 , then one has σp(Hνn

0 ) = {λn} ⊂ C+ and λn → 4e2(a∞−γ) as n→∞.

The value 4e2(a∞−γ) is not an eigenvalue for any operator Hν
0 .

Proof. The proof simply consists in an application of Theorem 3.2. �

Let us recall one more result related to eigenvalues. Later on, we shall need
the following characterization of #σp(Hm,κ), i.e. of the number of eigenvalues
of Hm,κ.

Proposition 3.4 (Proposition 5.3 in [3]). Let m = mr + im� ∈ C∗ with
|mr| < 1, and let κ ∈ C∗.
(i) If mr = 0 and ln(|κ|)

m�
∈ (−π, π) then #σp(Hm,κ) =∞,

(ii) If mr = 0 and ln(|κ|)
m�
6∈ (−π, π) then #σp(Hm,κ) = 0,

(iii) If mr 6= 0 and if N ∈ {0, 1, 2, . . . } satis�es N < m2
r+m2

�

|mr| ≤ N + 1, then

#σp(Hm,κ) ∈ {N,N + 1}.

Let us now turn to the continuous spectrum for the operators Hm,κ and
Hν

0 . It has been shown in [3] that [0,∞) belongs to the spectrum of all these
operators. In addition, a limiting absorption principle has been exhibited. Such
a result corresponds to the existence of a boundary value of the resolvent on
(0,∞) when considered in some weighted Hilbert spaces. For that purpose, we
introduce for t > 0 the weighted spaces Ht and H−t with Ht the domain of
the operator 〈R〉t of multiplication by the function r 7→ 〈r〉t ≡ (1 + r2)t/2 in
L2(R+), and H−t stands for its dual space. We also recall the de�nition of the
Bessel functions for dimension 1 as introduced and motivated in [3], namely

the modi�ed Bessel function for dimension 1 Im(z) :=

√
πz

2
Im(z),

the MacDonald function for dimension 1 Km(z) :=

√
2z

π
Km(z),

the Bessel function for dimension 1 Jm(z) :=

√
πz

2
Jm(z),

the Hankel function of the 1st kind for dimension 1 H+
m(z) :=

√
πz

2
H+
m(z),

the Hankel function of the 2nd kind for dimension 1 H−m(z) :=

√
πz

2
H−m(z),
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the Neumann function for dimension 1 Ym(z) :=

√
πz

2
Ym(z),

where Im is the modi�ed Bessel function, Km is the MacDonald function, Jm
is the Bessel function, H±m are the Hankel function of the 1st kind and of the
2nd kind, and Ym is the Neumann function.

In the following statements, we recall the limiting absorption principle
obtained in [3] and improve the statement in the exceptional situations. The
operators Hm,κ and Hν

0 are considered separately, and we set

Rm,κ(z) := (Hm,κ − z)−1 and Rν0(z) := (Hν
0 − z)−1

for their resolvents. We also set when κ 6= 0

Ω±m,κ :=
{
k ∈ R+ | k2 = 4e−<( 1

m
ln(ς)) e2π=( 1

m)z for any z ∈ Z satisfying

± π = =
( 1

m
(ln(ς) + 2πiz)

)}
.(3.2)

As a consequence of the observation made after De�nition 3.1 the set Ω±m,κ
is empty if (m,κ) is not an exceptional pair, it consists of one single value if
±π ∈ =

(
1
m(ln(ς)+2πiZ)

)
andmr 6= 0, but it consists of an in�nite set ifmr = 0

and ±π = −
(

1
n ln(|κ|)

)
.

Proposition 3.5. Let m ∈ C∗ with |<(m)| < 1, let κ ∈ C, and let k > 0.

(i) If (m,κ) is not an exceptional pair, then the boundary values of the re-

solvent
Rm,κ(k2 ± i0) := lim

ε↘0
Rm,κ(k2 ± iε)

exist in the sense of operators from Ht to H−t for any t > 1
2 , uniformly

in k on each compact subset of R+. The kernel of Rm,κ(k2 ± i0) is given

for 0 < r ≤ s by

Rm,κ(k2 ± i0; r, s)

=
±i

k
(
1− ςe∓iπm

(
k
2

)2m)(Jm(kr)− ς
(
k
2

)2mJ−m(kr)
)
H±m(ks)

and the same expression with the role of r and s exchanged for 0 < s < r.

(ii) If π ∈ =
(

1
m Ln(ς)

)
but −π 6∈ =

(
1
m Ln(ς)

)
, then the statement (i) holds

for Rm,κ(k2− i0), while for Rm,κ(k2 + i0) it only holds uniformly in k on

each compact subset of R+ \ Ω+
m,κ.

(iii) If −π ∈ =
(

1
m Ln(ς)

)
but π 6∈ =

(
1
m Ln(ς)

)
, then the statement (i) holds

for Rm,κ(k2 + i0), while for Rm,κ(k2− i0) it only holds uniformly in k on

each compact subset of R+ \ Ω−m,κ.

(iv) If π ∈ =
(

1
m Ln(ς)

)
and −π ∈ =

(
1
m Ln(ς)

)
, then the statement (i) holds

for Rm,κ(k2 + i0) uniformly in k on each compact subset of R+ \ Ω+
m,κ,

and for Rm,κ(k2−i0) uniformly in k on each compact subset of R+\Ω−m,κ.
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For the next statement we set

Ων
0 :=

{
k ∈ R+ | k2 = 4e2(<(ν)−γ)

}
.

Proposition 3.6. Let ν ∈ C, and let k > 0.

(i) If ν is not an exceptional parameter, then the boundary values of the

resolvent
Rν0(k2 ± i0) := lim

ε↘0
Rν0(k2 ± iε)

exist in the sense of operators from Ht to H−t for any t > 1
2 , uniformly

in k on each compact subset of R+. The kernel of Rν0(k2 ± i0) is given

for 0 < r ≤ s by

Rν0(k2 ± i0; r, s)

=
±i

k
(
γ + ln

(
k
2

)
− ν ∓ iπ2

)((γ + ln
(
k
2

)
− ν
)
J0(kr)− π

2Y0(kr)
)
H±0 (ks).

and the same expression with the role of r and s exchanged for 0 < s < r.

(ii) If =(ν) = π
2 , then the statement (i) holds for Rν0(k2+i0) while for Rν0(k2−

i0) it only holds uniformly in k on each compact subset of R+ \ Ων
0.

(iii) If =(ν) = −π
2 , then the statement (i) holds for Rν0(k2 − i0) while for

Rν0(k2+i0) it only holds uniformly in k on each compact subset of R+\Ων
0.

Proof of Propositions 3.5 & 3.6. In the non exceptional situations, these
statements already appeared in [3, Thm. 6.1 & Prop. 7.1] while in the ex-
ceptional situations the statements above are slightly more precise than the
corresponding ones in this reference. In fact, the only di�erence is that a more
careful analysis of some numerical prefactors is considered here. Namely, let us
consider the following equivalences:

1− ςe∓iπm
(
k
2

)2m
= 0⇔ ς = em(±iπ−ln( k

2
)2)

⇔ 1

m
Ln(ς) 3 ±iπ − ln

(k
2

)2

⇔

{
±π = =

(
1
m(ln(ς) + 2πiz±)

)
k2 = 4e−<( 1

m
ln(ς)) e2π=( 1

m)z±

whenever such z± ∈ Z exist. Then, the convergences mentioned in the sta-

tement only hold if the factor
(
1 − ςe∓iπm

(
k
2

)2m)−1
does not vanish, and the

previous computation explains the necessary restriction in the exceptional si-
tuations.

For the second statement, it is su�cient to observe that

γ + ln
(k

2

)
− ν ∓ iπ

2
= 0⇔

{
=(ν) = ∓π

2

k2 = 4e2(<(ν)−γ)
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and the same argument allows us to conclude. �

Before turning our attention to scattering theory, let us add two remarks
related to the above limiting absorption principle:

Remark 3.7. The information provided on the discrete spectrum and on
the continuous spectrum are quite consistent. Indeed, let us compare the con-
tent of Lemma 3.3 with the previous two propositions. If (m,κ) is an excep-
tional pair, the limiting absorption principle holds without limitation in the
half-plane in C where there is no possible accumulation of eigenvalues of some
operators in the same family. On the other hand, in the half-plane where there
is a possible accumulation of eigenvalues the limiting absorption principle holds
only away from these singular points. A similar observation is also valid for the
operator Hν

0 when ν is an exceptional parameter.

Remark 3.8. The elements in the sets Ω±m,κ and Ων
0 correspond to spectral

singularities of the operators Hm,κ and Hν
0 respectively, see [13, Sec. 2] and

[4, Sec. 2.3] for more information on this concept. In our setting, it means
that if ko ∈ Ω±m,κ then the following limits hold uniformly in k on suitable
neighborhood of ko, namely

lim
ε↘0
|k2 − k2

o |Rm,κ(k2 ± iε)

exist in the sense of operators from Ht to H−t for t > 1
2 . Similar limits also

hold for ko ∈ Ων
0 and for the resolvent of the operator Hν

0 . Note �nally that if
(m,κ) is an exceptional pair and if <(m) = 0, then Hm,κ has an in�nite number
of spectral singularities.

4. SCATTERING THEORY

In this section, we review the scattering theory for the operators Hm,κ

and Hν
0 as developed in [3]. However, exceptional situations were disregarded

in this reference, so we also provide new information about the corresponding
operators.

First of all, let us recall the de�nition of the Hankel transform. For any
m ∈ C with <(m) > −1 we set Fm : Cc(R+)→ L2(R+) with(

Fmf
)
(r) :=

∫ ∞
0

Fm(r, s)f(s)ds

and

Fm(r, s) :=

√
2

π
Jm(rs).
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It has been shown in [3, Prop. 4.5] that this map extends continuously to a
bounded invertible operator in L2(R+), with F−1

m = Fm. Additional informa-
tion about this operator will be provided later on.

Based on this transformation, for any m ∈ C with |<(m)| < 1 and for any
κ ∈ C let us de�ne the incoming and outgoing Hankel transformations F∓m,κ
given by

F∓m,κ =
(
Fm − ςF−m

(
R
2

)2m) e∓i
π
2
m

1− ςe∓iπm
(
R
2

)2m .
As already seen in the proof of Propositions 3.5, the denominator in the last
factor vanishes only if (m,κ) is an exceptional pair. However, even in this
case the operators F∓m,κ are still well de�ned as unbounded operator on several
natural domains. For example, this operator is well de�ned on the set Cc

(
R+ \

Ω±m,κ
)
with Ω±m,κ introduced in (3.2).

In order to get a better understanding of these operators, let us provide a
slightly modi�ed presentation of them. For that purpose, we de�ne the unitary
and self-adjoint transformation J : L2(R+)→ L2(R+) by the formula(

Jf
)
(r) =

1

r
f
(1

r

)
for any f ∈ L2(R+) and r ∈ R+. We also denote by A the generator of dilation
group in L2(R+), namely the generator of the unitary group {Uτ}τ∈R satisfying
[Uτf ](r) = eτ/2f(eτr) for any τ ∈ R, f ∈ L2(R+) and r ∈ R+. Finally we
introduce the bounded and continuous function Ξm : R→ C de�ned for t ∈ R
by

(4.1) Ξm(t) := ei ln(2)tΓ(m+1+it
2 )

Γ(m+1−it
2 )

.

We can now provide a slightly generalized version of [3, Lem. 6.3] :

Lemma 4.1. For any m ∈ C∗ with |<(m)| < 1 and any κ ∈ C the following

equality holds:

(4.2) F∓m,κ = J
(

Ξm(A)− ςΞ−m(A)
(
R
2

)2m) e∓i
π
2
m

1− ςe∓iπm
(
R
2

)2m .
If (m,κ) is not an exceptional pair, then this equality holds between bounded

operators, while if (m,κ) is an exceptional pair, then:

(i) If π ∈ =
(

1
m Ln(ς)

)
but −π 6∈ =

(
1
m Ln(ς)

)
, then F+

m,κ extends to a bounded

operator while the above equality for F−m,κ holds on Cc

(
R+ \ Ω+

m,κ

)
.

(ii) If −π ∈ =
(

1
m Ln(ς)

)
but π 6∈ =

(
1
m Ln(ς)

)
, then F−m,κ extends to a bounded

operator while the above equality for F+
m,κ holds on Cc

(
R+ \ Ω−m,κ

)
.
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(iii) If π ∈ =
(

1
m Ln(ς)

)
and −π ∈ =

(
1
m Ln(ς)

)
, the above equality holds for

F−m,κ on Cc

(
R+ \ Ω+

m,κ

)
and for F+

m,κ on Cc

(
R+ \ Ω−m,κ

)
.

Similarly, for any ν ∈ C we de�ne the incoming and outgoing Hankel

transformations F ν∓
0 given by the kernels for r, s ∈ R+ :

F ν∓
0 (r, s) :=

√
2

π

(
J0(rs)±

iπ2
γ + ln

(
s
2

)
− ν ∓ iπ2

H±0 (rs)
)

=

√
2

π

((
γ + ln

(
s
2

)
− ν
)
J0(rs)− π

2Y0(rs)

γ + ln
(
s
2

)
− ν ∓ iπ2

)
.

However, a better understanding of these transformations can be obtained with
the subsequent formulas:

Lemma 4.2. For any ν ∈ C the following alternative description of F ν∓
0

hold:

(4.3) F ν∓
0 = JΞ0(A)

(
γ + ln

(
R
2

)
− ν − iπ2 tanh

(
π
2A
)) 1

γ + ln
(
R
2

)
− ν ∓ iπ2

.

If ν is not an exceptional parameter, then this equality holds between bounded

operators, while if ν is an exceptional pair, then:

(i) If =(ν) = π
2 , then F ν−

0 extends to a bounded operator while the above

equality for F ν+
0 holds on Cc

(
R+ \ Ων

0

)
.

(ii) If =(ν) = −π
2 , then F ν+

0 extends to a bounded operator while the above

equality for F ν−
0 holds on Cc

(
R+ \ Ων

0

)
.

Proof of Lemmas 4.1 & 4.2. In the non exceptional cases, these statements
and their proofs already appeared in [3, Lem. 6.3 & Corol. 7.6]. It is then enough
to observe that the same arguments hold in the exceptional cases, when the
possible singularities of the multiplication operators are taken into account by
choosing suitable domains for these operators. �

Before introducing the wave operators, let us observe that the operators
F∓1

2
,0
take a very explicit form. Indeed, as shown in [3, Sec. 4.7] one has

F∓D ≡ F∓1
2
,0

= e∓i
π
4 Ξ 1

2
(−A)J = e∓i

π
4 FD

with (
FDf

)
(r) :=

√
2

π

∫ ∞
0

sin(rs)f(s)ds, f ∈ L2(R+).

This operator is clearly unitary.
We can now introduce the wave operators for the pairs (Hm,κ, HD) or

(Hν
0 , HD), where HD ≡ H 1

2
,0 denotes the Dirichlet Laplacian on R+. Note that

HD for the reference operator is chosen for simplicity, but other choices are
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possible and lead to interesting phenomena, as emphasized in [5]. In [3] the
wave operators are de�ned by the formulas

W∓m,κ ≡W∓(Hm,κ, HD) := F∓m,κF±D

and

W ν∓
0 ≡W∓(Hν

0 , HD) := F ν∓
0 F±D .

However, since some of these operators are unbounded in the exceptional cases,
we shall use a unitarily equivalent de�nition for these operators, namely we
shall consider F±D W∓ (F±D )−1, or more precisely

W∓m,κ := F±D F∓m,κ

= Ξ 1
2
(−A)

(
Ξm(A)− ςΞ−m(A)

(
R
2

)2m) e∓i
π
2

(m− 1
2

)

1− ςe∓iπm
(
R
2

)2m
and

W ν∓
0 := F±D F ν∓

0

= Ξ 1
2
(−A)Ξ0(A)

(
γ + ln

(
R
2

)
− ν − iπ2 tanh

(
π
2A
)) e±i

π
4

γ + ln
(
R
2

)
− ν ∓ iπ2

.

As a direct consequence of Lemmas 4.1 and 4.2 most of these operators
are bounded and thus well de�ned on L2(R+). However, in the exceptional
cases some of the operators F±m,κ are not bounded, and thus were only de�ned
on suitable domains. For that reason the corresponding wave operators are
also only de�ned on the same domains. For completeness, let us enumerate
the operators which are unbounded, and consequently which require a special
attention for their de�nition:

(i) If π ∈ =
(

1
m Ln(ς)

)
but −π 6∈ =

(
1
m Ln(ς)

)
, then W−m,κ is unbounded.

(ii) If −π ∈ =
(

1
m Ln(ς)

)
but π 6∈ =

(
1
m Ln(ς)

)
, then W+

m,κ is unbounded.

(iii) If π ∈ =
(

1
m(Ln(ς)

)
and −π ∈ =

(
1
m Ln(ς)

)
, then both operators W±m,κ are

unbounded.

(iv) If =(ν) = π
2 , then W

ν+
0 is unbounded.

(v) If =(ν) = −π
2 , then W

ν−
0 is unbounded.

Except the operators appearing in the above list, all wave operators are boun-
ded.

Remark 4.3. In the previous two lemmas and in the above statement we
have been rather pessimistic, and there is a tiny chance that the situation is
slightly better than described. Indeed, if one looks carefully at the expressions
provided in (4.2) and (4.3) the operator F∓m,κ or F ν∓

0 consist in a product of
two types of operators, namely some functions of A and some multiplication



15 Topological Levinson's theorem for inverse square potentials 239

operators (functions of R). For all parameters m, κ and ν the functions of A
are bounded. On the other hand, depending on the parameters m, κ and ν
the multiplication operators are either bounded or not. In the latter case, the
operators W∓m,κ or W

ν∓
0 can be de�ned on a natural domain for the unbounded

multiplication operators, but it is not clear if this domain can be extended due
to some cancellations with the other factors. In the above statements, we took
the precautious attitude of not expecting any improvement, and for that reason
we mentioned that some wave operators are unbounded. It would certainly be
interesting to further investigate in this direction and get a better description of
the maximal domain of these operators and of their range. So far, our attempts
have not been successful.

5. INDEX THEOREMS

In this section, we provide the algebraic framework which leads to a to-
pological version of Levinson's theorem. This framework for the current model
already appeared in [5, 8], but we extend the results presented in these refe-
rences in three directions. Indeed, we shall consider systems with arbitrary
eigenvalues (complex or real) and in arbitrary number (�nite or in�nite). In
the former reference, only real eigenvalues were considered (which means only
self-adjoint operators Hm,κ were studied), and in the latter only a �nite number
of complex eigenvalues were considered. In addition, we also provide an index
theorem for the pair (Hν

0 , HD) which has never been exhibited before.
Our �rst task is to provide a more familiar but unitarily equivalent repre-

sentation of the wave operators. Indeed, since the operators A and B := ln
(
R
2

)
in L2(R+) satisfy the Weyl commutation relation, they are unitarily equivalent
to the operators D = −i∂x and X in L2(R). This equivalence is essentially
implemented by a Mellin transform. Through this transformation the wave
operators introduced in the previous section are given by the following expres-
sions:

(5.1) W∓m,κ := Ξ 1
2
(−D)

(
Ξm(D)− ςΞ−m(D)e2mX

) e∓i
π
2

(m− 1
2

)

1− ςe∓iπme2mX

and

(5.2) Wν∓
0 := Ξ 1

2
(−D)Ξ0(D)

(
γ +X − ν − iπ2 tanh

(
π
2D
)) e±i

π
4

γ +X − ν ∓ iπ2
.

This representation is more familiar since these operators correspond now to
pseudo-di�erential operators.

Our second task is to observe that these operators are made of functions
of D and X which have precise properties. For that purpose, let us set when



240 H. Inoue and S. Richard 16

κ 6= 0

Λ±m,κ :=
{
x ∈ R | x = −1

2

(
<
( 1

m
ln(ς)

)
− 2π=

( 1

m

)
z
)
for any z ∈ Z satisfying

± π = =
( 1

m
(ln(ς) + 2πiz)

)}
and Λν0 := ∅ if =(ν) 6= ±π

2 while if =(ν) = ±π
2

Λν0 :=
{
x ∈ R | x = <(ν)− γ

}
.

These sets are the counterparts of Ω±m,κ and Ων
0 in the new representation.

We then de�ne the functions of two variables: Γ∓m,κ : R \ Λ±m,κ × R → C and

Γν∓0 : R \ Λν0 × R→ C by

Γ∓m,κ(x, ξ) := Ξ 1
2
(−ξ)

(
Ξm(ξ)− ςΞ−m(ξ)e2mx

) e∓i
π
2

(m− 1
2

)

1− ςe∓iπme2mx

and

Γν∓0 (x, ξ) := Ξ 1
2
(−ξ)Ξ0(ξ)

(
γ + x− ν − iπ2 tanh

(
π
2 ξ
)) e±i

π
4

γ + x− ν ∓ iπ2
.

Formally the following equalities hold:

W∓m,κ = Γ∓m,κ(X,D) and Wν∓
0 = Γν∓0 (X,D),

but the only precise meaning is the one provided in (5.1) and (5.2).
Let us now introduce the commutative algebra C

(
[−∞,∞]

)
of continuous

functions on R having limits at ±∞. We then recall from the proof of [3,
Thm. 4.10] that for any m,m′ ∈ C with <(m) > −1 and <(m′) > −1 the map
ξ 7→ Ξm(−ξ)Ξm′(ξ) belongs to C

(
[−∞,∞]

)
and that the following equalities

hold:
Ξm(∓∞)Ξm′(±∞) = e∓i

π
2

(m−m′).

We also introduce two non-commutative algebras which are going to nest the
wave operators W∓m,κ and Wν∓

0 . Firstly, we consider the unital C∗-subalgebra
of B

(
L2(R)

)
Eo = C∗

(
a(D)b(X) | a ∈ C

(
[−∞,∞]

)
, b ∈ C

(
[−∞,+∞]

))
.

Secondly, for any n > 0 we introduce the unital C∗-subalgebra of B
(
L2(R)

)
En := C∗

(
a(D)b(X) | a ∈ C

(
[−∞,+∞]

)
, b ∈ Cπ

n
(R)
)
,

where Cπ
n

(R) denotes the set of all continuous periodic functions on R with
period π

n .
Based on a careful analysis of the functions Γ∓m,κ and Γν∓0 one easily

deduces the following statement, see [5] and [8] for similar results.
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Proposition 5.1. Let m ∈ C∗ with |<(m)| < 1, and let κ, ν ∈ C. The

following operators belong to Eo:
I.1) W∓m,κ if (m,κ) is not an exceptional pair and <(m) 6= 0,

I.2) W+
m,κ if <(m) 6= 0 and π ∈ =

(
1
m Ln(ς)

)
but −π 6∈ =

(
1
m Ln(ς)

)
,

I.3) W−m,κ if <(m) 6= 0 and −π ∈ =
(

1
m Ln(ς)

)
but π 6∈ =

(
1
m Ln(ς)

)
,

I.4) Wν∓
0 if ν is not an exceptional parameter,

I.5) Wν−
0 if =(ν) = π

2 , and W
ν+
0 if =(ν) = −π

2 .

The following operators belong to E|n|:
II.1) W∓m,κ if (m,κ) is not an exceptional pair and m = in for some n ∈ R∗,
II.2) W+

m,κ if m = in for some n ∈ R∗ and π ∈ =
(

1
m Ln(ς)

)
but −π 6∈

=
(

1
m Ln(ς)

)
,

II.3) W−m,κ if m = in for some n ∈ R∗ and −π ∈ =
(

1
m Ln(ς)

)
but π 6∈

=
(

1
m Ln(ς)

)
.

In all other cases, the wave operators are not bounded and do not belong to any

C∗-algebras.

Remark 5.2. When an operator is unbounded, it cannot belong to any
C∗-algebra but it is still possible that its resolvent belongs. It is thus a natural
question to check if the unbounded wave operators belong to the C∗-algebras
introduced above. Since some essential information on these operators are still
missing, as already mentioned in Remark 4.3, we can not answer this question.

Once we know that the wave operators belong to very explicit
C∗-subalgebra of B

(
L2(R)

)
, the third task consists in studying these algebras

and their structures, and to deduce a suitable C∗-algebra framework for infer-
ring index theorems. The two algebras Eo and En will be studied independently,
and we shall start with the former one.

The key observation for the analysis of Eo is that the ideal of compact ope-
rators KR := K

(
L2(R)

)
corresponds to the C∗-algebra generated by products

of the form a(D)b(X) with a, b ∈ C0(R), with C0(R) the algebra of continuous
functions on R vanishing at ±∞. Then, one easily infers that Eo/KR is isomor-
phic to C(�), the algebra of continuous functions on the boundary � of the
closed square �. Note that the unital quotient morphism qo : Eo → C(�) is
uniquely determined by

qo
(
a(D)b(X)

)
=
(
a(·)b(−∞), a(−∞)b(·), a(·)b(+∞), a(+∞)b(·)

)
.

In fact, the above notation corresponds to an embedding of the algebra C(�)
as a subalgebra of

C
(
[−∞,+∞]

)
⊕ C

(
[−∞,+∞]

)
⊕ C

(
[−∞,+∞]

)
⊕ C

(
[−∞,+∞]

)
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given by elements (Γ1,Γ2,Γ3,Γ4) which coincide at the corresponding end
points, that is, Γ1(−∞) = Γ2(−∞), Γ2(+∞) = Γ3(−∞), Γ3(+∞) = Γ4(+∞),
and Γ4(−∞) = Γ1(+∞).

Now, whenever the wave operators W∓m,κ and Wν∓
0 belong to Eo, the

corresponding functions Γ∓m,κ or Γν∓0 admit a restriction to �. More precisely in
such a situation one easily deduces the following expressions for the restriction
of Γ−m,κ to � :

Γ−m,κ;1(ξ) =

{
ei
π
2

( 1
2
−m)Ξ 1

2
(−ξ)Ξm(ξ) if <(m) > 0,

ei
π
2

( 1
2

+m)Ξ 1
2
(−ξ)Ξ−m(ξ) if <(m) < 0,

Γ−m,κ;2(x) = eiπ( 1
2
−m) 1− ςe+iπme2mx

1− ςe−iπme2mx
,

Γ−m,κ;3(ξ) =

{
ei
π
2

( 1
2

+m)Ξ 1
2
(−ξ)Ξ−m(ξ) if <(m) > 0,

ei
π
2

( 1
2
−m)Ξ 1

2
(−ξ)Ξm(ξ) if <(m) < 0,

Γ−m,κ;4(x) = 1,

and in the special case κ = 0 one has Γ−m,0;1(ξ) = Γ−m,0;3(ξ) = ei
π
2

( 1
2
−m)Ξ 1

2
(−ξ)

Ξm(ξ), Γ−m,0;2(x) = eiπ( 1
2
−m) and Γ−m,0;4(x) = 1. Similarly, one has for the

restriction of Γν−0 to �

Γν−0;1(ξ) = ei
π
4 Ξ 1

2
(−ξ)Ξm(ξ)

Γν−0;2(x) = ei
π
4
γ + x− ν + iπ2
γ + x− ν − iπ2

,

Γν−0;3(ξ) = ei
π
4 Ξ 1

2
(−ξ)Ξm(ξ)

Γν−0;4(x) = 1.

Note also that similar expressions for Γ+
m,κ and Γν+

0 can be computed, but they
are not presented for brevity.

Before stating our �rst index theorem with the data mentioned above, two
more information coming from scattering theory are necessary. The �rst one is
related to the scattering operator. Let us recall that for a scattering system de-
�ned by the pair of operators (Hm,κ, HD) the scattering operator Sm,κ is given

by the product W−#
m,κW−m,κ where # means the transpose operator. Note that

in the self-adjoint case this de�nition corresponds to the more usual product
W+∗
m,κW

−
m,κ and extends it when the operators are not self-adjoint. The scat-

tering operator is known to commute with the reference operator, namely HD.
In addition, this operator is unitarily equivalent to the multiplication operator
in L2(R) de�ned by the function Γ−m,κ;2. By analogy this operator will also be
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denoted by Sm,κ. Clearly, a similar relation exists between the scattering ope-
rator Sν0 for the pair (Hν

0 , HD) and the multiplication operator in L2(R) de�ned
by the function Γν−0;2 ≡ Sν0 . A key observation about these scattering operators

is that whenever (m,κ) or ν are not exceptional the functions Γ−m,κ;2 or Γν−0;2

are bounded and boundedly invertible on R. In these situations it then follows
that the functions Γ−m,κ and Γν−0 de�ned on � are also invertible and boundedly
invertible. As a consequence, their winding numbers 1 are well de�ned and will
be denoted by Wind. On the other hand, it is also easily observed that in the
exceptional situations these functions are either not bounded or have an inverse
which is not bounded.

The second necessary information is about the wave operators themselves.
It is shown in [3] that if (m,κ) is not an exceptional pair the kernels of W∓m,κ
are empty while the cokernels of these operators corresponds to the subspaces
spanned by the eigenfunctions associated to the eigenvalues of Hm,κ. Similarly,
if ν is not an exceptional parameter, the wave operators W ν∓

0 have an empty
kernel and a cokernel equal to the subspace spanned by the eigenfunctions of
Hν

0 .
With all the information collected so far, the following statement can

easily be proved. It relies on the index map associated to the short exact
sequence

0→ KR → Eo → C(�)→ 0

and to the fact thatW−m,κ is a lift for the invertible operator Γ−m,κ ∈ C(�) (and

similarly Wν−
0 is a lift for the invertible operator Γν−0 ∈ C(�)). The details

are provided in [8]. Note that the following statement applies for the cases I.1)
and I.4) of Proposition 5.1. Let us still recall for clarity that the index of a
Fredholm operator corresponds to the di�erence between the dimension of its
kernel and of its cokernel. This index will be denoted by Index in the sequel.

Theorem 5.3 (Topological Levinson's theorem). Let m ∈ C∗ with |<(m)|
∈ (0, 1), and let κ, ν ∈ C. If (m,κ) and ν are not exceptional parameters, then

the following relations hold:

Wind
[
Γ−m,κ

]
= number of eigenvalues of Hm,κ

and
Wind

[
Γν−0

]
= number of eigenvalues of Hν

0 ,

where the r.h.s. are also equal to − Index(W−m,κ) and − Index(Wν−
0 ), respecti-

vely.

1Recall that for a function f de�ned on a closed curve γ and taking values in C∗ its
winding number corresponds to number of times the function t 7→ f(t) turns around 0 ∈ C
when t runs on γ.
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Note that the l.h.s. of the above statement contains four contributions,
one for each function living on the edges of the square. As already mentioned,
the contribution of Γ2 corresponds to the one of the scattering operator. In
addition, the contribution due to Γ1 and to Γ3 correspond to corrections to
Levinson's theorem. Explanations on these corrections have been provided
in [11] and are quite common in any statement about Levinson's theorem. In
our approach, these corrections are automatically taken into account.

Remark 5.4. The wave operators described in the cases I.2), I.3) and I.5)
of Proposition 5.1 also belong to Eo and the corresponding functions Γ−m,κ or Γν−0
are well de�ned. However, since these functions vanish at one point on � their
winding numbers are no more well-de�ned. Accordingly, the corresponding
wave operators are not Fredholm operators, and thus their analytic indexes are
also not well de�ned.

Let us now turn our attention to the algebra En for n > 0. Clearly, this
algebra does not contain KR, and thus the previous construction does not apply.
In fact, this algebra contains all pseudo-di�erential operators of order 0 with
periodic coe�cients. In such a case the ideal KR has to be replaced by the ideal
Jn de�ned by

Jn := C∗
(
a(D)b(X) | a ∈ C0(R), b ∈ Cπ

n
(R)
)
.

Then, the quotient algebra En/Jn can easily be computed and is isomorphic to
Cπ
n

(R)⊕Cπ
n

(R). The quotient morphism qn : En → Cπ
n

(R)⊕Cπ
n

(R) is uniquely
determined by

qn
(
a(D)b(X)

)
=
(
a(−∞)b(·), a(+∞)b(·)

)
.

Now, let us consider n ∈ R∗ and compute the image of W−m,κ by this
quotient map whenever W−m,κ belongs to E|n|, namely in the cases II.1) - II.3)

of Proposition 5.1. More precisely, for the operator W−in,κ one has

q|n|(W−in,κ) =
(
ieπn

1− ςe−πne2inx

1− ςe+πne2inx
, 1
)
.

Note then that since Cπ
n

(R) can naturally be identi�ed with C(S), we de�ne
through this identi�cation the winding number Windπ

n
(f) of any bounded and

boundedly invertible element f ∈ Cπ
n

(R). Clearly, this is well de�ned if and
only if (in, κ) is not an exceptional pair.

In order to de�ne an analytic index for W−in,κ we recall the construction

provided in [5, Sec. 4] about the direct integral decomposition of L2(R) useful for
periodic systems, the so-called Floquet-Bloch decomposition. More information
can also be found in [10, Sec.XIII.16]. For simplicity, we provide only the
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construction for n > 0, but the general case can be obtained by replacing n
with |n|. For each θ ∈ [0, 2n) we set Hθ := L2

(
[0, πn ],dx

)
endowed with the

usual Lebesgue measure, and also de�ne

Hn :=

∫ ⊕
[0,2n)

Hθ
dθ

2n
.

Then, if S(R) denotes the Schwartz space on R, the map Un : L2(R) → Hn
de�ned for θ ∈ [0, 2n) and x ∈ [0, πn) by

[Unf ](θ, x) :=
∑
k∈Z

e−i
π
n
kθf
(
x+

π

n
k
)

∀f ∈ S(R),

extends continuously to a unitary operator. The adjoint operator is then given
by the formula

[U∗nϕ]
(
x+

π

n
k
)

=

∫ 2n

0
ei
π
n
kθϕ(θ, x)

dθ

2n
.

Moreover, one has

UnDU∗n =

∫ ⊕
[0,2n)

D(θ)
x

dθ

2n
,

where D
(θ)
x is the operator −i d

dx on a �ber Hθ with boundary condition f(πn) =

ei
π
n
θf(0).

Thus, for any operator of the form a(D)b(X) with a ∈ C
(
[−∞,∞]

)
and

b ∈ Cπ
n

(R), the operator Una(D)b(X)U∗n is a decomposable operator with

the �bers a
(
D

(θ)
x

)
b(X). On suitable bounded decomposable operator Φ =∫ ⊕

[0,2n) Φ(θ) dθ
2n we also de�ne the trace Trn by

Trn(Φ) =

∫ 2n

0
trθ
(
Φ(θ)

)dθ

2n

where trθ is the usual trace on Hθ.
Before stating our main result for the semi-Fredholm operator W−in,κ, let

us recall that W∓#
m,κ denote the transpose operators of W∓m,κ, and that the

following relations have been proved in [3] in the non exceptional case:

W±#
m,κW∓m,κ = I and W∓m,κW±#

m,κ = IR+(Hm,κ)

where IR+(Hm,κ) is a projection related to the continuous spectrum of Hm,κ.
More precisely, the subspace spanned by this projection is the image through the
unitary transformation of the complementary to the subspace spanned by the
eigenfunctions of the operator Hm,κ. This latter subspace for m = in is either
in�nite dimensional, or 0-dimensional, as already mentioned in Proposition 3.4.
If we set Ip(Hm,κ) := 1− IR+(Hm,κ) then one has:
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Theorem 5.5. Consider n > 0 and κ ∈ C such that (in, κ) is not an

exceptional pair. Then,

Windπ
n

(
Sin,κ

)
= −Trn

(
Ip(Hin,κ)

)
.

Let us emphasize that the l.h.s. corresponds to the natural analytic index

Indexn de�ned in terms of Trn and evaluated on W−in,κ. A proof for such a

statement is provided in [5] but is valid only if Hin,κ is self-adjoint. This takes

place if and only if |κ| = 1. For completeness we provide below an adaptation

of the proof valid in the more general context of the present paper. We shall

show in this proof that the above equality can only take two values: either −1

when Hin,κ has an in�nite number of eigenvalues, or 0 when this operator has

no eigenvalue.

Proof. In this proof we assume that κ 6= 0 since in this case the statement

is trivially satis�ed. From the equalities

|ς| =
∣∣∣κΓ(−in)

Γ(in)

∣∣∣ = en( 1
n

ln(|κ|)

together with the equality

Sin,κ(x) = ieπn
1− ςe−πne2inx

1− ςeπne2inx

one easily infers that Windπ
n

(
Sin,κ

)
= −1 if 1

n ln(|κ|) ∈ (−π, π) while one has

Windπ
n

(
Sin,κ

)
= 0 if 1

n ln(|κ|) 6∈ [−π, π]. Since the special case 1
n ln(|κ|) = ±π

is an exceptional situation, it is disregarded.

Let us now consider an operator of the form a(D)b(X) with a ∈ C0(R)

and b ∈ Cπ
n

(R), and the corresponding operator a
(
D

(θ)
x

)
b(X). Since the eigen-

functions of the operator D
(θ)
x are provided by the functions

[0,
π

n
) 3 x 7→

√
n

π
ei(θ+2nk)x ∈ C, k ∈ Z

we infer that the Schwartz kernel of the operator a
(
D

(θ)
x

)
b(X) is given by

K
a(D

(θ)
x )b(X)

(x, y) =
n

π

∑
k∈Z

a(θ + 2nk)ei(θ+2nk)(x−y)b(y).

Thus, if b(X)a
(
D

(θ)
x

)
is trθ-trace class for a.e. θ ∈ [0, 2n) we obtain

trθ
(
a
(
D(θ)
x

)
b(X)

)
=
∑
k∈Z

a(θ + 2nk)× n

π

∫ π
n

0
b(x)dx
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and then

(5.3) Trn
(
a(D)b(X)

)
=

1

2n

∫
R
a(ξ)dξ × n

π

∫ π
n

0
b(x)dx.

Note that these formulas are valid if a has a fast enough decay, which will be

the case in the sequel. In addition, note also that the last term depends only

on the 0-th Fourier coe�cient of the function b. Our next aim is thus to show

that [W−in,κ,W
+#
in,κ] = −Ip(Hin,κ) can be rewritten in the above form.

Recall now that Ξ 1
2
(D) is a unitary operator, with Ξ 1

2
(D)∗ = Ξ 1

2
(−D).

One also infers from the de�nition in (4.1) that Ξin(D) is invertible with

Ξin(D)−1 = Ξin(−D) and that Ξin(D)∗ = Ξ−in(−D). Then one gets

Ξin(D)−1Ξ 1
2
(D)

(
W−in,κW

+#
in,κ −W

+#
in,κW

−
in,κ

)
Ξ 1

2
(D)∗Ξin(D)

=
(
I − ςG+

n (D)e2inX
)
Fin,κ(X)

(
ςe2inXG−n (D)− I

)
− I,

where

Fin,κ(X) :=
−1

(1− ςe−πne2inX)(1− ςeπne2inX)
and

G±n (ξ) := Ξ±in(−ξ)Ξ∓in(ξ).

From the identity Γ(z + 1
2)Γ(−z + 1

2) = π
cos(πz) one then infers that

G±n (ξ) = e±πn
eπξ + e∓πn

eπξ + e±πn
,

and by taking into account the identity [3, (6.10)] written in our framework,

namely

e2inXG−n (D) +G+
n (D)e2inX = 2 cosh(πn)e2inX ,

one then gets(
I − ςG+

n (D)e2inX
)
Fin,κ(X)

(
ςe2inXG−n (D)− I

)
− I

= −Fin,κ(X)− ς2G+
n (D)e2inXFin,κ(X)e2inXG−n (D)

+ ςFin,κ(X)e2inXG−n (D) + ςG+
n (D)e2inXFin,κ(X)− I

= −Fin,κ(X)− ς2e2inXFin,κ(X)e2inX − ς2G+
n (D)

[
e2inXFin,κ(X)e2inX , G−n (D)

]
+ ςFin,κ(X)

(
2 cosh(πn)e2inX −G+

n (D)e2inX
)

+ ςG+
n (D)e2inXFin,κ(X)− I

= −Fin,κ(X)
(
1− 2ς cosh(πn)e2inX + ς2e4inX

)
− I

− ς2G+
n (D)

[
e2inXFin,κ(X)e2inX , G−n (D)

]
− ς
[
Fin,κ(X), G+

n (D)
]
e2inX

= − ς2G+
n (D)

[
e2inXFin,κ(X)e2inX , G−n (D)

]︸ ︷︷ ︸
=:Iin,κ

− ς
[
Fin,κ(X), G+

n (D)
]
e2inX︸ ︷︷ ︸

=:Jin,κ
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For the last step, observe that since the function Fin,κ is a smooth π
n -

periodic function, its Fourier series converges uniformly. We can thus write
Fin,κ(X) =

∑
`∈Z c`e

2in`X . Using the relation eisXg(D)e−isX = g(D − s),
which holds for any g ∈ Cb(R) and s ∈ R, we obtain

Iin,κ = ς2
∑
`∈Z

c`G
+
n (D)

{
G−n
(
D − 2n(`+ 2)

)
−G−n (D)

}
e2in(`+2)X ,

Jin,κ = ς
∑
`∈Z

c`

{
G+
n (D − 2n`)−G+

n (D)
}

e2in(`+1)X .

By applying then formula (5.3) one infers that Trn(Iin,κ) = 0 since the 0-th
Fourier coe�cient of the corresponding function b is obtained for ` = −2, but
the �rst factor vanishes precisely when ` = −2. On the other hand, one has

Trn(Jin,κ) = ςc−1
1

2n

∫ 2n

0

∑
k∈Z

{
G+
n

(
θ + 2n(k + 1)

)
−G+

n

(
θ + 2nk)

)}
dθ

= ςc−1

{
G+
n (∞)−G+

n (−∞)
}

= ςc−1(eπn − e−πn).

Finally, by collecting the result obtained so far and by using the cyclicity of the
traces one gets

Trn
(
W−in,κW

+#
in,κ −W

+#
in,κW

−
in,κ

)
= Trn

(
Ξin(D)−1Ξ 1

2
(D)

(
W−in,κW

+#
in,κ −W

+#
in,κW

−
in,κ

)
Ξ 1

2
(D)∗Ξin(D)

)
= −ςc−1(eπn − e−πn).

For the computation of c−1 it is enough to observe that if 1
n ln(|κ|) ∈

(−π, π) then

Fin,κ(x) =
−1

(1− ςe−πne2inx)(1− ςeπne2inx)

=
1

ςeπn
e−2inx 1

1− ςe−πne2inx

1

1− ς−1e−πne−2inx

=
1

ςeπn
e−2inx

∞∑
j=0

(
ςe−πne2inx

)j ∞∑
k=0

(
ς−1e−πne−2inx

)k
,

from which one infers by considering the diagonal sum that

c−1 = ς−1e−πn
∞∑
j=0

(
e−πn

)2j
= ς−1 e−πn

1− e−2πn
= ς−1 1

eπn − e−πn
.
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It follows that −Trn(Ip

(
Hin,κ)

)
= −1 if 1

n ln(|κ|) ∈ (−π, π). On the other
hand, if 1

n ln(|κ|) > π or if 1
n ln(|κ|) < −π then one gets by a similar argument

that the function Fin,κ has a Fourier series with coe�cient c−1 equal to 0. In
such a case one gets −Trn(Ip

(
Hin,κ)

)
= 0, as expected. �

Remark 5.6. Let us emphasize that the previous theorem is the �rst topo-

logical version of Levinson's theorem when an in�nite number of eigenvalues is

involved. Note however that a generalized Levinson's theorem involving an in-

�nite number of bound states already appeared in [9,14], but it corresponds to

a relation between the asymptotic behaviors of the spectral shift function and

of the eigenvalues counting functions. A deeper understanding of the relation

between our result and the results contained in these papers would certainly be

valuable.
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