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Quantization or pseudodi�erential analysis is a theory which applies to numerous
domains (functional analysis, operator theory, mathematical physics etc.) The
classical framework is that of �nite dimensional con�guration and phase spaces.
To handle problems involving an arbitrary number of particles, one needs to work
with operators de�ned on in�nite dimensional spaces, like the symmetric Fock
space, and one may wish to use the e�cient tools provided by the Weyl calculus,
hence to work with an in�nite dimensional measure space. This survey exposes
the construction of a quantization on an abstract Wiener space, lists the results
of pseudodi�erential analysis which were generalized and gives applications to
mathematical physics.
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1. INTRODUCTION

This paper summarizes several articles aiming at developing an in�nite di-
mensional calculus akin to Weyl's �nite dimensional quantization, in view of ap-
plications in mathematical physics, for example in nuclear magnetic resonance.
The �rst articles in this direction go back to Bleher, Lascar, Vishik [13,34,35].

The material exposed here is taken from articles of Amour, Nourrigat,
and collaborators Jager, Lascar. It was the subject of several talks too. This
review exposes the de�nition and the results already obtained but, for the sake
of concision, the proofs are, at most, hinted at. On a few subjects it brings
together points of view or domains which had not been compared before.

Section 2 recalls some de�nitions about the �nite dimensional Weyl quan-
tization, its construction, its aims and some often-used tools. In this part,
which may appear as very classical to many readers, we state which results
were extended.
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Section 3 recalls the in�nite dimensional spaces and extends some classi-
cal notions (Wigner function, Wick symbol, anti-Wick calculus). An intrinsic
Hilbert space which is classical in mathematical physics is the symmetric Fock
space on an initial Hilbert space H, for which we refer to [41, 42] and [18, 19].
We give the link between Fock spaces and Gaussian Hilbert spaces (de�ned
in [32]). But one may use an abstract Wiener space B, built on the same initial
H and on which a measure theory has been constructed in [22�25,33,40]. This
point of view seems to be less classical and is therefore more developed here.

The following parts then give the basis of the constructions of the Weyl
calculus in an in�nite dimensional setting, beginning by two kinds of symbol
classes (Section 4.1). These ones generalize �nite dimensional symbol classes
but a part of their study relies on a particular version of the heat operator (para-
graph 4.1.3). The di�erent constructions of the operators (or, in the preliminary
case, of the quadratic form) are exposed in Section 4.2, with results about the
continuity of such operators on a convenient L2 space. In Section 4.3, we give
composition results and a characterization analogous to the Beals characteri-
zation, stating that, under conditions on commutations with �basic� operators,
an operator A has a symbol in one of the symbol classes mentioned before. The
last section (4.4) is concerned with applications to mathematical physics.

2. WEYL CALCULUS

IN THE FINITE DIMENSIONAL SETTING

This section recalls classical facts about Weyl calculus and its applications
to the study of operators in mathematical physics. This includes tools and
notions that are necessary to construct the pseudodi�erential operators, as well
as example of results. We also mention here what has been extended to the
in�nite dimensional case.

A quantization or pseudodi�erential calculus is a way of associating, with
a convenient function called symbol, a linear operator. The Weyl calculus has
been chosen as a starting point here, since it is the quantization for which the
most numerous tools were developed. Among many other references one may
consult [15,21,27,28,36], from which we took (up to normalization) all the facts
recalled in this section. Other quantizations than the Weyl calculus exist in a
�nite dimensional context (see [44,45]). They are adapted to precise problems
and require the use of di�erent kinds of symbols.

In this �nite dimensional case, the symbol F is de�ned on R2n (the phase
space) and the test functions u are de�ned on Rn (the con�guration space).
When both symbol and test function are rapidly decreasing, the Weyl quanti-
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zation is de�ned by the classical formula:

(1) (OpW,clh (F )(u))(x) = (2πh)−n
∫
R2n

e
i
h

(x−y)·ξF

(
x+ y

2
, ξ

)
u(y)dydξ

and the pseudodi�erential operator OpW,clh (F ) is continuous from S(Rn) to
S(Rn).

The Weyl quantization can be adapted to take into account a magnetic
�eld and the magnetic momenta. This is the case in [30], where the authors
introduce an additional factor in formula (1). This is not the quantization
that is generalized here, although magnetic �elds appear in some examples of
Section 4.4.

Formula (1) above has been given a sense for more general test functions
and symbols, belonging to classes of functions satisfying di�erentiability and
boundedness conditions and adapted to various problems. Quantizations must
also satisfy some physical conditions. For example, the symbol 1 gives the
identity operator. The coordinate functions xj and ξj correspond, respectively,
to the multiplication by xj and to the di�erentiation operator h

i
∂
∂xj

( [15]). If

F is real valued, the operator is (formally) self-adjoint.
The Wigner function of ϕ,ψ belonging to L2(Rn) is given by

Wϕ,ψ(x, ξ) =

∫
Rn
e−

i
h
u·ξϕ(x+

u

2
)ψ(x− u

2
) du.

It is the Weyl symbol of the rank one projection operator η 7→ 〈η, ψ〉L2(Rn)ϕ
(we take the convention that the complex scalar products are antilinear with
respect to the second variable).

This gives another expression of the Weyl calculus, valid for u, v and F
rapidly decreasing on their respective spaces:

(2) 〈OpW,clh (F )f, g〉L2(Rn,dλ(x)) = (2πh)−n
∫
R2n

F (x, ξ)Wf,g(x, ξ)dxdξ.

Contrary to (1), this formula has been generalized in the in�nite dimensional
case and constitutes the starting point of the constructions (see De�nition 20
below).

A fundamental result is the Calder�on-Vaillancourt theorem (see [14] and
[16], [29], who relax the condition on the number of derivatives), generalized in
the in�nite dimensional setting in Section 4.2:

Theorem 1. If F is in�nitely di�erentiable on R2n and if its derivatives

of arbitrary order are bounded, the operator OpW,clh (F ) extends as a bounded

operator on L2(Rn).

The conditions satis�ed by F in the previous theorem are a particular
case of the H�ormander symbol classes, namely the class S(1, 1, 1). One denotes
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by S(m,ϕ,Φ) the set of all functions F satisfying the following conditions. For
all indices α, β, there exists a positive constant Cα,β such that

∀(x, ξ) ∈ R2n, |∂αx ∂
β
ξ F (x, ξ)| ≤ Cα,βm(x, ξ)ϕ(x, ξ)−|α|Φ(x, ξ)−|β|.

The positive functions m,ϕ,Φ are admissible (slowly varying, temperate). If
Φ and φ are greater than 1, one considers that one �gains� with every di�e-
rentiation of the symbol F . Since the constant function is admissible, one can
take m = Φ = φ = 1. This gives a particular H�ormander symbol class, which
contains the function F of Theorem 1.

There exist results about composition of pseudodi�erential operators. One
may give an explicit, integral expression for the symbol of OpW,clh (a)◦OpW,clh (b),
or one can write an asymptotic expansion of the symbol according to symbol
classes, which are better and better the further one develops. The latter point
of view was generalized (Section 4.2).

Let us state the Beals characterization ([36], Theorem 2.6.6), generalized
in Section 4.3.

Theorem 2. Let A be a linear operator from S(Rn) to S ′(Rn). It can

be written as A = OpW (a) with a ∈ S(1, 1, 1) if and only if A and its iterated

commutators with the multiplication by xj and the di�erentiation with respect

to xj are bounded on L2.

Now recall brie�y the de�nitions linked with the coherent states: the Wick
symbol and the anti-Wick calculus. These notions have analogues in the in�nite
dimensional setting (in the Fock space or in the Wiener space).

The classical coherent states are the following functions of L2(Rn, dλ),
indexed by X = (x, ξ) ∈ R2n and a positive h:

Ψcl
X,h(u) = (πh)−n/4e−

|u−x|2
2h e

i
h
u.ξ− i

2h
x.ξ.

There, λ denotes the Lebesgue measure on Rn. They satisfy, for f, g ∈ L2(Rn,
dλ), the identity:

〈f, g〉L2(Rn,dλ) = (2πh)−n
∫
R2n

〈f,Ψcl
X,h〉 〈Ψcl

X,h, g〉dλ(X).

One may then de�ne, on the one hand the anti-Wick operator associated
with a convenient symbol F and, on the other hand, the Wick symbol of an
operatorA bounded on L2(Rn, dλ) ( [12]). Let F be measurable and bounded on
R2n. The anti-Wick or Berezin-Wick operator is de�ned, for f, g ∈ L2(Rn, dλ),
by:

(3) 〈OpAW,clh (F )f, g〉 = (2πh)−n
∫
R2n

F (X)〈f,Ψcl
X,h〉〈Ψcl

X,h, g〉dλ(X).
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The anti-Wick calculus has properties which are easier to derive than
similar (or even non existing) properties of the Weyl calculus. For example,

||OpAW,clh (F )||L(L2(Rn,dλ)) ≤ ||F ||∞ and when F = 1, it immediately gives the
identity operator. Moreover, if F is a positive function, the operator is positive,
which is not the case for the Weyl calculus. Indeed, the G�arding inequality only
assures that the Weyl operator is bounded below.

The Wick or covariant symbol of an operator A, bounded on L2(Rn, dλ),
is de�ned by:

σWick
h (A)(X) = 〈AΨX,h,ΨX,h〉.

Finally, mention the links between Weyl, Wick and anti-Wick symbols
[21]. One has, thanks to the heat operator, for a bounded Borel function F ,

〈OpAW,clh (F )f, g〉 = 〈OpW,clh (e
h
4

∆F )f, g〉, σWick
h (OpAW,clh (F )) = e

h
2

∆F.

3. THE INFINITE DIMENSIONAL SPACES

We recall in this section the in�nite dimensional spaces which appear in
the construction of the in�nite dimensional quantization: �rst the abstract
Wiener spaces, then (less extensively) the Fock space and Gaussian Hilbert
spaces.

The symmetric Fock space is a Hilbert space constructed on an initial
Hilbert space H with the help of symmetrized tensor products, for example to
model the appearance or disappearance of undistinguishable particles. Its use
is classical in mathematical physics.

Abstract Wiener spaces are in�nite dimensional measure spaces, con-
structed as suitable completions of the Hilbert space H. They allow the use
of integrals, since the measure theory on them is very well developed: see
[22�25, 33, 40] etc. There is a correspondence between both kind of spaces,
more precisely between the Fock space and L2 spaces on an abstract Wiener
space, as will be seen below.

Ideally, to describe an arbitrary number of photons, one would like to
replace the phase space Rn by an in�nite dimensional Hilbert space endowed
with a suitable measure and to generalize formulas (1) and (2). But an in�nite
dimensional Hilbert space cannot be equipped with a measure, either invariant
by translations or by rotations and taking �nite positive values on the open
balls (see [33]). Indeed, since the unit ball contains in�nitely many disjoint
balls of radius 1/4, these assumptions can't hold simultaneously. The �natural�
pseudomeasure (4) de�ned on cylinders is therefore just a starting point.
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3.1. Abstract Wiener spaces

In this part, B(X) denotes the Borel sets of a normed space X and
Ffin(X), the set of �nite dimensional subspaces of X.

We �rst present the abstract Wiener space, which is less classically used
in these circumstances. Most of the facts recalled here are taken from [33]
(chap. 1 par. 4) but one can refer to [22�25, 40]. Let H be a real, separable,
in�nite dimensional Hilbert space with norm | · | and scalar product ·. For
a �nite dimensional subspace E of H, let πE be the orthogonal projection
on E. To generalize a Gaussian probability measure on H, it is natural to
de�ne the pseudomeasure of a �cylinder� on E, that is of a set C of the form
C = {x ∈ H : πE(x) ∈ A}, where A is a Borel set of E, setting:

(4) µH,s(C) =

∫
A
e−
|y|2
2s (2πs)− dim(E)/2dλE(y) =

∫
A
dµE,s(y).

Here λE is the Lebesgue measure on E and the positive parameter s represents
the variance. In the same way, a cylindrical (or tame) function on H is a
function f which can be written as f = f̂ ◦ πE for a function f̂ de�ned on E.
Tame functions depend on a �nite number of variables.

The pseudomeasure (4) does not extend as a measure on H, since it lacks
the property of σ-additivity on the σ-algebra generated by cylinders. Indeed,
let (en)n be an orthonormal basis of H and (dn)n∈N, an increasing sequence of
positive integers. Set Cn = {x ∈ H : |x · ek| ≤ n ∀k ≤ dn}. The pseudo-
measure of Cn is equal to

µH,s(Cn) =

(∫ n

−n
e−x

2/2(2π)−1/2 dx

)dn
,

which is smaller than 1
2n+1 provided dn is large enough. Then H =

⋃
Cn, but

the sum of the µH,s(Cn) is not equal to 1 = µH,s(H) [33].
The solution is to endow H with a norm || || satisfying the �measurability�

condition: for all positive ε, there exists a �nite dimensional subspace of H such
that

(5) ∀F ∈ Ffin(H), F⊥Eε, µH,t({x ∈ H : ||πF (x)|| > ε}) < ε.

Whereas all d-dimensional spaces E have the same status with respect to the
initial norm, this norm introduces a kind of anisotropy. One denotes by B the
completion ofH with respect to || ||, by B′ its topological dual space. SinceH is
identi�ed with its dual space H′, one has the sequence of continuous inclusions,
where every space is densely embedded in the following one: B′ ⊂ H ⊂ B. One
often takes a Hilbert basis of H whose elements are contained in B′. The triple
(i,H, B), where i is the injection of H in B, is called an abstract Wiener space,
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B is a Wiener extension of H, H is the Cameron Martin space of B. The new
norm is not necessarily hilbertian and is never equivalent to the initial one. The
choice of the measurable norm and hence of B is not unique and it is sometimes
useful to skip from one extension to another one, as in Proposition 12.

One can de�ne a measure on the cylinder sets of B. For y1, . . . , yn in B′

and a Borel set A of Rn, one sets
µB,s({x ∈ B : ((yi, x)B′,B)1≤i≤n ∈ A}) = µH,s({x ∈ H : (yi · x)1≤i≤n ∈ A}).

This time, this measure is a probability measure on the σ-algebra gene-
rated by the cylinder sets of B, which is � as a consequence of the separability
of H and B � the Borel σ-algebra of B.

The most famous example of such a triple is the classical Wiener space,
whereH is the set of functions inH1([0, 1]) vanishing at 0, B is the set C0([0, 1])
of continuous functions, vanishing at 0. The scalar product on H is given by
〈u, v〉 =

∫ 1
0 u
′v′ dt and the norm on B is the supremum norm.

We now introduce functions which play an important part in the rest of
this construction. Their de�nition, in formula (6) below, extends the duality
between B′ and B or the scalar product ofH. As elements of a Gaussian Hilbert
space de�ned below, they appear in the Segal isomorphisms linking Wiener
and Fock spaces. In the theory of Wiener spaces, they allow one to de�ne
the stochastic extensions of functions initially de�ned on the Hilbert space.
They also furnish �linear� symbols for the �rst construction of the operators
(De�nition 20).

An element a ∈ B′ can be seen as a random variable on the probability
space (B,B(B), µB,s). It is denoted by `a to stress the di�erence of status and
it has a normal distribution: `a ∼ N (0, σ =

√
s|a|). By density, one can de�ne

an application

(6) ` : H → L2(B,µB,s), a 7→ `a.

One notices that s−1/2` is isometric. For a ∈ H, `a is not necessarily linear on
B since it is not de�ned everywhere. Nevertheless, some properties still hold:
`a+y(x) = `a(x) + x · y if y ∈ H, `a(−x) = −`a(x).

Replacing scalar products on H by functions ` allows one to generalize
the projection operators πE from H to E (where E ∈ Ffin(H)), which yields
�nite rank operators π̃E from B to E. If (uj) is an orthogonal basis of E, one
sets:

(7) π̃E =

dim(E)∑
j=1

`ujuj , π̃E : B → E.

These generalized projectors allow us to give a link between the Hilbert
space H, on which no convenient measure exists, and its Wiener extension
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B, which is a measure space without a scalar product or symplectic form (at
least, devoid of the original H scalar product). This is the following notion of
stochastic extension [40]:

De�nition 3. Let (i,H, B) be an abstract Wiener space and s be a positive
real number. A function f , de�ned on H, is said to admit a stochastic extension
f̃ in Lp(B,µB,s) (1 ≤ p < ∞) if, for every increasing sequence (En) of �nite

dimensional subspaces of H, whose union is dense in H, f̃ and the functions
f ◦ π̃En are in Lp(B,µB,h) and if the sequence f ◦ π̃En converges in Lp(B,µB,s)

to f̃ .

If the sequence f ◦ π̃En converges in probability to f̃ , one only speaks
of a stochastic extension and it is implied by the condition of the preceding
de�nition. Usually, a stochastic extension is not a continuity extension, but
it may be (Theorem 6.3 [33]). Reciprocally, restricting a measurable function
de�ned on B to the subspace H makes no sense, since H is negligible in B for
any measure µB,s.

A fundamental example is that, for all a ∈ H, the random variable `a is
the stochastic extension in Lp(B,µB,s) of the function x 7→ a ·x, de�ned on H.
Indeed, a · π̃En(x) = `πEn (a)(x) and the properties of the normal distribution
imply that `πEn (a) − `a = `πEn (a)−a → 0 in Lp(B,µB,s). Moreover, if α is a
multiindex (a family of integers, of which only a �nite number is di�erent from
zero), if one de�nes the function aα on H by

aα(x) =
n∏
i=1

(ai · x)αi ,

then, for s > 0 and any p ∈ [1,+∞[, the function aα admits the function∏n
i=1 `

αi
ai as a stochastic extension in Lp(B,µB,s) (see [31]).

In Section 4.1 about symbol classes, one sees that the symbols are de�ned
so as to admit stochastic extensions. But to give simpler examples, one can
check that the functions x ∈ H 7→ |x|2, x 7→ ei|x|

2
have no stochastic extension,

whereas x 7→ e−|x|
2
admits the null function. This can be seen in [33], Chap. 1,

Sec. 4, for the �rst function, where this example justi�es the de�nition of �me-
asurability� (5). For the exponential functions, explicit computations on �nite
dimensional spaces prove that the sequence (f ◦ π̃En) is not a Cauchy sequence
(�rst case) or converges to 0 (second case).

A further example of a stochastic extension is the following result, which
will be useful to de�ne the Segal-Bargmann transform:

Theorem 4. Let (i,H, B) be an abstract Wiener space. Let f be a con-

tinuous function on H. Suppose that the restrictions of f to the subspaces in
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Ffin(H) are harmonic functions. Suppose there exist h > 0 and M > 0 such

that, for every subset E in Ffin(H), ||f ◦ π̃E ||L2(B,µB,h) ≤ M . Then f admits

a stochastic extension in L2(B,µB,h).

We mention here some particular features of the abstract Wiener space:
most of the translations and dilations yield mutually orthogonal measures. We
state the result for the translations, since we need the corresponding change of
variable ([33], Chap.2, par.5):

Theorem 5. For s > 0 and A ∈ B(B), set

µB,s(x,A) = µB,s(A− x), A− x = {a− x, a ∈ A}.

The measures µB,s(x, ·) and µB,t(y, ·) are absolutely continuous with respect to

one another if and only if s = t and x− y ∈ H.
For u ∈ H and g measurable and bounded:∫

B
g(y)dµB,s(y) =

∫
B
g(x− u)e−

1
2s
|u|2+ 1

s
`u(x)dµB,s(x).

3.2. Gaussian Hilbert spaces, Fock spaces

We recall here what is strictly necessary about Gaussian Hilbert spaces
(treated in [32]), in particular the Segal isomorphism between Gaussian Hil-
bert spaces and Fock spaces. The Fock symmetric space constructed on the
complexi�ed of a Hilbert space H is denoted by Fs(H). Fock spaces are con-
structed in [41,42] or [18,19,32], from which we took the de�nition, the creation
and annihilation operators and the second quantization. We denote by Sn the
orthogonal projection on the symmetrized tensor product of order n, given by

Sn(u1 ⊗ · · · ⊗ un) := (n!)−1
∑
σ∈Σn

uσ(1) ⊗ · · · ⊗ uσ(n),

where Σn is the symmetric group.
A Gaussian Hilbert space M is a real vector space of random variables

ξ de�ned on a probability space (Ω,F , P ), such that every random variable is
centered and Gaussian. Hence every ξ belongs to L2(Ω,F , P ). Moreover, when
it is endowed with the norm and scalar product of L2(Ω,F , P ), the Gaussian
Hilbert space is required to be complete.

An example of a Gaussian Hilbert space is given by the set of functi-
ons `a, a ∈ H, previously de�ned, which we call M. In this case, M ⊂
L2(B,B(B), µB,s).

Since every element of M belongs to Lp for any �nite p, polynomials in
elements of M belong to L2(Ω,F , P ). One de�nes by Pn(M) the closure, in
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L2(Ω,F , P ), of the set {p(ξ1, . . . , ξm),m ∈ Nm, deg(p) ≤ n, ξ1, . . . , ξm ∈ M}.
One sets, for n ≥ 1,

M:n: = Pn(M) ∩ P⊥n−1(M),

whereM:1: is the set of constant random variables andM:−1: = {0}.
If F(M) is the σ-algebra generated by all functions ofM, the setsM:n:

are mutually orthogonal and closed subspaces of L2(Ω,F(M), P ) and one has
the Wiener chaos decomposition ([32], Theorem 2.6):

∞⊕
0

M:n: = L2(Ω,F(M), P ).

Let πn be the orthogonal projection of L2(Ω,F , P ) ontoM:n:. The Wick
product of the elements ξ1, . . . , ξn is then de�ned as

: ξ1 . . . ξn : = πn(ξ1 . . . ξn).

One can express the Wick products in terms of usual products and con-
versely ( [32], Chap.3). Let us recall the following result. Let (ξi)i∈I be an
orthonormal basis ofM, (countable or not), let α = (αi)i∈I be a multiindex (a
family of integers, of which only a �nite number is di�erent from 0). Then

(8) :
∏
i

ξαii : =
∏
i

hαi(ξi).

where the hn are the Hermite polynomials with leading coe�cient equal to 1,
de�ned by

hn+1(x) = xhn(x)− nhn−1(x), h0(x) = 1.

One needs to specify the relationship between the Gaussian Hilbert space
M = {`a, a ∈ H} ⊂ L2(B,µB,s) and the Fock space Fs(H), since its norma-
lization depends on the variance parameter s. For elements a1, . . . , an ∈ H,
the Segal isomorphism associates, with the element Sn(a1 ⊗ · · · ⊗ an) of the

Fock space, the element 1√
n!

(
1
s

)n/2
: `a1 . . . `an : of the Gaussian Hilbert space

M. It extends as an isometry of the Fock space onto L2
R(B,B(B), µB,s). This

is proved in [32], Chap. 4, with s = 1. Note that B(B) is generated by the
elements ofM.

Now give the correspondence between the classical operators in the Fock
space and their Wiener counterpart. Later on, we shall see that these operators
can be expressed thanks to the pseudodi�erential calculus and state their links
with the Malliavin Gradient (Section 4.2).

Let f, a1, . . . , an belong to H. The creation and annihilation operators
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act in the following way on Wick monomials:

a∗(`f )(: `a1 . . . `an :) = t−1/2 : `f `a1 . . . `an :

a(`f )(: `a1 . . . `an :) = t−1/2
n∑
j=1

〈`aj , `f 〉L2(B,µB,t) : `a1 . . .
ˇ`aj . . . `an : ,

where ˇ`aj indicates that the term is missing (see [32], Chap. 13, up to norma-
lization). Hence the Fock Segal �eld ΦF (f) = 1√

2
(a(f) + a∗(f)) corresponds

to

ΦS(`f ) : `a1 . . . `an

:=
1√
2t

: `f `a1 . . . `an : +
n∑
j=1

〈`aj , `f 〉L2(µB,t) : `a1 . . .
ˇ`aj . . . `an :


3.3. Coherent states, Wick, anti-Wick symbols

One can then de�ne the coherent states indexed by X = (x, ξ) ∈ H2, as
a family of functions de�ned on B and belonging to L2(B,µB,h/2) in the �rst
place:

ΨX,h(u) = e
1
h
`x+iξ(u)− 1

2h
|x|2− i

2h
x·ξ

and as elements of the Fock space in the second place:

ΨX,h = e−
|X|2
4h

∑
n≥0

(x+ iξ)⊗ · · · ⊗ (x+ iξ)

(2h)n/2
√
n!

, Ψ0,h = Ω,

where Ω is the vacuum state. Coherent states satisfy

〈ΨX,h,ΨY,h〉 = e−
1
4h
|X−Y |2+ i

2h
(ξ·y−x·η),

with the scalar product of L2(B,µB,h/2) or of the Fock space. They are, in the
Wiener space, the stochastic extensions of functions on H which have the same
expression with a scalar product instead of the function ` [4].

As in the �nite dimensional setting, they are useful to de�ne the Wick
symbol of a bounded operator as well as the Segal Bargmann transform of a
function. Let A be a bounded operator over L2(B,µB,h/2). Then the Wick
symbol of A is de�ned by

σWick
h (A)(X) = 〈AΨX,h,ΨX,h〉.

Note that a Wick calculus has been developed in an in�nite dimensional
context (see [1,2]). The authors associate, with a polynomial on a Fock space,
an operator. This is not the point of view adopted here.
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In the �nite dimensional case, a formula of decomposition of the iden-
tity allowed one to de�ne an operator called anti-Wick operator (3). Here we
can't generalize it in this form, since one can't integrate on the Hilbert space.
One has to use the Segal-Bargmann transformation. Let f ∈ L2(B,µB,h/2).

We set (Thf)(X) =
〈f,ΨX,h〉
〈Ψ0,h,ΨX,h〉 and de�ne T̃hf as its stochastic extension in

L2(B2, µB2,h). This extension exists thanks to the antiholomorphy properties

of Thf , using Theorem 4. The map f 7→ T̃hf is the Segal-Bargmann transfor-
mation. It is a partial isometry from L2(B,µB,h/2) into L2(B2, µB2,h) (see [21]
for the �nite dimensional case).

We now may de�ne the anti-Wick calculus. Let F be de�ned on H2,
admitting a bounded Borel stochastic extension F̃ in L2(B2, µB2,h). One sets

〈OpAWh (F )f, g〉 =

∫
B2

F̃ (X)T̃hf(X)T̃hg(X)dµB2,h(X).

As in the classical case, the anti-Wick calculus is easier to use and, for example,
||OpAWh (F )|| ≤ ||F̃ ||∞.

For a, b ∈ H, let us introduce the operator

(9) Σ(a,b) = `a+ib +
h

i
b · ∂
∂u

de�ned on the set of tame and smooth functions. By b · ∂∂u we understand, if f
is cylindrical on a �nite dimensional subspace E of B′ with orthonormal basis
(e1, . . . , en):

b · ∂f
∂u

(u) =

n∑
i=1

〈b, ei〉H
∂ϕ

∂yi
(e1(u), ..., en(u))

where f(u) = ϕ(e1(u), ..., en(u)). The operator Σ(a,b) is the analogous of a Segal
�eld. One can check this fact on simple elements of L2(B,µB,h/2) like the Wick
product

f = :

n∏
j=1

(`ej )
αj : =

(
h

2

)|α|/2 n∏
j=1

hαj (
√

2/h `ej ),

where the family (ej)j is orthonormal. Indeed, the multiplication part `a+ib

can be treated by the following equality (a particular case of results of [32],
Chap.3):

ξ : ξ1 . . . ξn : = : ξξ1 . . . ξn : +

n∑
i=1

E(ξξi) : ξ1 . . . ξ̌i . . . ξn : ,

where, as usual, ξ̌i does not appear. For the di�erentiation part one uses the
correspondence (8). This �nally gives

Σ(a,b)f = `a+ibf +
h

i
b · ∂f
∂u

=
√
hΦ(`a+ib).
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This can be extended by linearity to polynomials of functions `as.

Now, for a, b ∈ H and f de�ned on B set, according to [4]

(10) (Ua,b,hf)(u) = e−
h
2
|b|2+ih

2
a·b+i`a+ib(u)f(u+ hb).

One can check that, if f is tame and takes the form f̂ ◦ PE with f̂ po-
lynomial, or if f is a linear combination of coherent states, then the following
convergence holds in L2(B,µB,h/2):

lim
t→0

Ut( a
h
, b
h

),hf − f
t

= b · ∂uf +
i

h
`a+ibf in L2(B,µB,h/2).

This justi�es the correspondence between the operators U and the Weyl
operators [18,41,42].

Ut( a
h
, b
h

),h = e
i t√

h
Φ(`a+ib).

The operators Σ(a,b), Ua,b,h can be expressed thanks to the quantization (see
Section 4.2).

4. WEYL CALCULUS ON A WIENER SPACE

4.1. Symbol classes, heat operator

This paragraph presents the symbol classes introduced in the in�nite di-
mensional setting. These are sets of functions de�ned on H2 and admitting
stochastic extensions on B2. One is led to de�ne a heat operator which applies
to such functions and hence di�ers from the classical one [24, 26, 33], acting
on functions de�ned on B (or here on B2). Further results about the symbol
classes and the heat operator are mentioned here.

4.1.1. DEFINITIONS

The symbol classes recalled here are taken from [4, 7] and [31]. The �rst
class satis�es conditions similar to the Calder�on Vaillancourt hypotheses and
depends strongly of the choice of a Hilbert basis of H. The second class, more
intrinsic, resorts to a quadratic form. They are adapted to di�erent problems,
as will be seen in Section 4.4.

Let Γ be a countable set. A multi-index is a map (α, β) from Γ into N×N
such that αj = βj = 0 except for a �nite number of indices. We denote byMm

the set of multi-indices of �depth� m, satisfying αi, βi ≤ m for all i ∈ Γ.
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De�nition 6. Let (i,H, B) be an abstract Wiener space such that B′ ⊂
H ⊂ B. Let B = (ej)(j∈Γ) be a Hilbert basis of H, each vector belonging
to B′ and set uj = (ej , 0), vj = (0, ej). Let m be a nonnegative integer and
ε = (εj)(j∈Γ), a family of nonnegative real numbers. One denotes by Sm(B, ε)
the set of bounded continuous functions F : H2 → C satisfying the following
condition. For every multi-index (α, β) ofMm, the derivative

∂αu∂
β
v F =

∏
j∈Γ

∂
αj
uj ∂

βj
vj

F
is well de�ned, continuous on H2 and there exists a real constant M such that

(11) ∀(x, ξ) ∈ H2,

∣∣∣∣∣∣
∏
j∈Γ

∂
αj
uj ∂

βj
vj

F (x, ξ)

∣∣∣∣∣∣ ≤M
∏
j∈Γ

ε
αj+βj
j .

One then de�nes ||F ||m,ε as the smallest M such that (11) holds.

Remark that Sm(B, ε), equipped with || ||m,ε, is a Banach space. Setting

S∞(B, ε) =
⋂∞
m=0 Sm(B, ε), one can de�ne a distance by d(F,G) =

∞∑
m=0

2−m

||F −G||m,ε
1 + ||F −G||m,ε

, for which (S∞(B, ε), d) is complete.

One easily checks that, if G ∈ Sm(B, δ), then FG ∈ Sm(B, ε + δ) with
||FG||m,ε+δ ≤ ||F ||m,ε||G||m,δ. Moreover, if m ≥ k ≥ 1 and if α, β are two

multi-indexes of depth k, then ∂αu∂
β
v F ∈ Sm−k(B, ε) and

||∂αu∂βv F ||m−k,ε ≤ ||F ||m,ε
∏
j∈Γ

ε
αj+βj
j .

One can de�ne matrix valued symbols as well, as is the case in De�ni-
tion 3.1 of [7]. The de�nition makes no assumption about the sequence ε but
square summability or summability is required in most of the results of the
following paragraphs.

The class of symbols de�ned below was introduced to treat a problem in
NMR (see Section 4.4). The use of the former class was possible but imposed
a sharp condition on a cuto� function, which the new classes enable one to lift.

De�nition 7. Let A be a linear, self-adjoint, nonnegative, trace class ap-
plication on a Hilbert space H. For all x ∈ H, one sets QA(x) = 〈Ax, x〉. Let
S(QA) be the class of all functions f ∈ C∞(H) such that there exists C(f) > 0



15 Pseudodi�erential operators in in�nite dimensional spaces: a survey of recent results265

satisfying:

(12)

∀x ∈ H, |f(x)| ≤ C(f),∀m ∈ N∗, ∀x ∈ H, ∀(U1, . . . , Um) ∈ Hm,

|(dmf)(x)(U1, ..., Um)| ≤ C(f)

m∏
j=1

QA(Uj)
1
2 .

The smallest constant C(f) such that (12) holds is denoted by ‖f‖QA .

Notice that S(QA), equipped with the norm || ||QA , is a Banach space.
One can also check that, if A and B satisfy the conditions of De�nition 7, a
product of functions belonging to S(QA), S(QB) is in S(Q2(A+B)) with

(13) ||fg||Q2(A+B)
≤ ||f ||QA ||g||QB .

4.1.2. PROPERTIES OF SYMBOLS

We state here properties of both kinds of symbols. The symbols in both
classes admit stochastic extensions (provided the sequence ε is summable for
the Sm(B, ε)). The proofs, which are omitted, rely on a Lipschitz property
for the Calder�on-Vaillancourt class, on orthogonality properties for the second
one. We then mention Frechet di�erentiability properties for the Calder�on-
Vaillancourt classes, initially de�ned by conditions on partial derivatives. We
skip technical results about the behaviour of Taylor expansions, integrals of
symbol classes and most of the intermediate results.

Proposition 8 ([4, 31]). Let F be a function in S1(B, ε) with respect to

a Hilbert basis B = (ej)(j∈Γ). Assume that the sequence (εj)(j∈Γ) is summable.

1. For every positive h and every q ∈ [1,+∞[, F admits a stochastic ex-

tension in Lq(B2, µB2,h). This extension depends on h and q in a loose

way: for all h0 > 0 and q0 ∈]1,+∞[, there exists a function F̃ which

is the stochastic extension of F in Lq(B2, µB2,h) for all h ∈]0, h0] and
q ∈ [1, q0].

2. There exists a constant K(q) such that for any E ∈ Ffin(H2), we have

the inequalities: ∀(h, q) ∈]0, h0]× [1, q0],

||F ◦ π̃E − F̃ ||Lq(B2,µB2,h)

≤ ||F ||1,εK(q)h1/2
∞∑
j=1

εj

(
|uj − πE(uj)|+ |vj − πE(vj)|

)
.

3. If F ∈ Sm(B, ε) with m ≥ 1, if F̃ is the stochastic extension mentioned

above, if Y ∈ H2, then τY F admits τY F̃ as a stochastic extension in

Lp(B2, µB2,h) for h > 0 and p ∈ [1,+∞[.



266 Lisette Jager 16

The last point of the former proposition is valid for all globally Lipschitz
functions which admit a stochastic extension for every positive h and �nite p.

Proposition 9 ([31]). Let A be a linear, self-adjoint, positive and trace-

class operator with eigenvalues (λi). Let h > 0 and let p ∈ [1,+∞[. Every

function f belonging to S(QA) admits a stochastic extension f̃ in Lp(B,µB,h).

The function f̃ is bounded µB,h almost everywhere by ||f ||QA. Moreover, there

exists a constant C(p,A) such that, for all E ∈ Ffin(H),

(14) ||f ◦ π̃E − f̃(x)||Lp(B,µB,h)

≤ C(p,A)h
1
2 ‖f‖QA

∑
j≥0

λj |πE(uj)− uj |α(p)

1/max(2,p)

.

For the latter class, one can prove similar extension properties for the
multilinear forms de�ned by the derivatives. If k ∈ N∗ and x ∈ H, the function
y 7→ dkf(x) · yk de�ned on H admits a stochastic extension in Lp(B,µB,h) and
one has an inequality similar to (14).

We now state the di�erentiability properties for the Calder�on-Vaillancourt
classes.

Proposition 10. Let F be in Sm(B, ε) with m ≥ 2 and ε square sum-

mable. Then F is Cm−1 on H2. For the �rst order of di�erentiability, one

has

DF (X) · Y =
∑
j∈Γ

〈Y, uj〉
∂F

∂uj
(X) + 〈Y, vj〉

∂F

∂vj
(X).

Moreover, for all X and Y in H2,

|F (X + Y )− F (X)−DF (X) · Y | ≤ ||F ||m,ε
∑
j∈Γ

ε2
j (1 + 2

√
2) |Y |2.

Finally, for all Y ∈ H2, X 7→ DF (X) · Y is in Sm−1(B, ε), with ||X 7→
DF (X) · Y ||m−1,ε ≤ 2||F ||m,ε|Y |

√∑
j∈Γ ε

2
j .

The loss of one order of di�erentiability is due to the fact that one handles
series and estimates a countable number of integral Taylor rests.

In the former proposition, nothing proves that the functions have stochas-
tic extensions, since the series is only square summable. All the computations
were conducted in the Hilbert space, where the sums took the form

∑
εjuj · x

and
∑

(uj · x)2 converges.
The following result ensures the existence of a stochastic extension for the

�rst order di�erential. One needs the summability of ε, since the sums that
appear are

∑
εj`uj , where all the `uj have the same norm. Here, P denotes

the passage to a stochastic extension.
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Proposition 11. Let F ∈ Sm(B, ε) with m ≥ 2 and ε summable. The

application X 7→ DF (X) · Y from H in R admits a stochastic extension in

Lp(B2, µB2,t), which is the application∑
Γ

〈Y, uj〉P
(
∂F

∂uj

)
+ 〈Y, vj〉P

(
∂F

∂vj

)
.

The next result allows one to construct another completion BA of H in
the case when ε is summable. The advantage is that stochastic extension and
continuity extension coincide. The result is stated for the Calder�on-Vaillancourt
classes but exists in the classes of De�nition 7.

Proposition 12. Let ε be a summable sequence such that εj > 0 for all

j ∈ Γ. One de�nes a symmetric, de�nite positive and trace class operator A by

setting

∀X ∈ B2, AX =
∑
j∈Γ

εj〈X,uj〉uj + εj〈X, vj〉vj .

Set ||X||A = 〈AX,X〉1/2. Then || ||A is a measurable norm on H (see (5)).

One denotes by BA the completion of H for this norm.

If F ∈ Sm(B, ε) for m ≥ 2, then F is uniformly continuous on H2 with

respect to the norm || ||A. It admits a uniformly continuous extension FA on

BA and the stochastic extension F̃ of F given by Proposition 8 is equal to FA
µBA,h- a.e.

Finally, there are relationships between both symbol classes. If F belongs
to S∞(B, ε) and if there exists a constant M such that ||F ||m,ε ≤M for all m,
then F ∈ S(QB) with B de�ned by B = 4(

∑
Γ εj)A, A being as in the former

proposition.

4.1.3. HEAT OPERATOR

We now introduce the heat operator. On abstract Wiener spaces, there
exists the following classical notion: if f is a Borel bounded function on the
Wiener space (B,B(B)), one sets

∀x ∈ B, ∀t > 0, H̃tf(x) =

∫
B
f(x+ y) dµB,t(y).

It has properties exposed in [24�26,33]. For example, H̃tf is in�nitely derivable

along the directions of H, (H̃t)t is a strongly continuous contraction semigroup
on the Banach space of all bounded, uniformly continuous, complex valued
functions. One can see [4] that it is bounded and with a norm smaller than 1
from Lp(B2, µB2,t+h) in Lp(B2, µB2,h) for �nite p and positive t, h. In the �nite
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dimensional case it corresponds to e
t
2

∆. One may de�ne partial heat operators
too, by integrating on particular subspaces of B as in (16) below.

As the symbols are de�ned on the Hilbert space and not on a Wiener
extension, one is led to de�ne the following version of the heat operator:

De�nition 13. Let F be de�ned on H, admitting a stochastic extension F̃
in Lp(B,µB,t) for a �nite p. One de�nes HtF or e

t
2

∆F by

∀X ∈ H, (HtF )(X)=

∫
B
F̃ (X+Y ) dµB,t(Y )=

∫
B
F̃ (Y )e−

|X|2
2t e`X/t dµB,t(Y ).

The second equality is a consequence of Theorem 5, since X ∈ H.
This de�nition is independent of the measurable norm onH, of the Wiener

extension of H and of the stochastic extension of F . Indeed, the fact that a
sequence (F ◦ π̃En)n∈N is a Cauchy sequence in Lp(B,µB,h) is expressed by
integrals on �nite dimensional subspaces of H. Similarly, the integral does
not depend on the integration space B, since it is a limit of integrals on �nite
dimensional spaces of H. This property allows one to choose, transitorily, an
extension like that of Proposition 12 and to use results of the classical theory.

The heat operator has properties similar to its �nite dimensional model:

Proposition 14. Let F be in S(QA) or in Sm(B, ε), with ε summable.

For all positive s, t and all X in the Hilbert space H,

Ht(HsF )(X) = Ht+sF (X).

Moreover, one has (according to whether F ∈ S(QA) or Sm(B, ε)),

∀X ∈ H2, |(HtF )(X)| ≤ ||F ||m,ε or ∀X ∈ H, |(HtF )(X)| ≤ ||F ||QA .

To justify the notation e
t
2

∆, we need to introduce the Laplace operator
on the symbol classes. If the operator A satis�es the assumptions of De�nition
7, then, for f ∈ S(QA), the Laplace operator is normally de�ned by ∆f(x) =
Tr(d2f(x)).

On the Calder�on-Vaillancourt classes it is de�ned as in the �nite dimensi-
onal setting, as a sum of partial derivatives (and thus depends, a priori, on the
chosen basis): if m ≥ 2 and if the sequence ε is square summable, the following
series converges and one sets

∆BF =

∑
j∈Γ

(
∂

∂uj

)2

+

(
∂

∂vj

)2
F.

We then have ∆BF ∈ Sm−2(B, ε), with ||∆BF ||m−2,ε ≤ 2
∑

j ε
2
j ||F ||m,ε.

But if F ∈ Sm(B, ε) with m ≥ 3 and ε summable, the function F is C2 in
the usual (Frechet) sense, according to Proposition 10. One can, then, de�ne
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the Laplace operator intrisically, by ∆f(x) = Tr(d2f(x)) as for the S(QA)
classes and it does not depend on B.

Laplace operator and heat operator have the properties stated in the fol-
lowing results. The �rst one concerns the Calder�on-Vaillancourt classes, the
second one, the classes de�ned by a quadratic form [31]. Notice that there is a
loss of derivability in the �rst classes.

Theorem 15. Let ε be summable.

1. Form ≥ 1, the heat operator Ht is continuous from Sm(B, ε) to Sm−1(B, ε).
For m ≥ 2, the Laplace operator ∆ is continuous from Sm(B, ε) to

Sm−2(B, ε). For m ≥ 3, Ht and ∆ commute.

2. Let m ≥ 6 and F ∈ Sm(B, ε). The application t 7→ HtF is C1 from

[0,+∞[ in Sm−6(B, ε) and its derivative is t 7→ 1
2Ht∆F .

Theorem 16. Let A be a linear application on H satisfying the conditions

of De�nition 7 and let f be in S(QA).

1. The function ∆f belongs to S(QA) with

||∆f ||QA ≤ Tr(A)||f ||QA .

For all t > 0, Htf belongs to S(QA) and ||Htf ||QA ≤ ||f ||QA. Moreover,

Ht and ∆ commute.

2. The function t 7→ Htf is C∞ on [0,∞[ with values in S(QA), with
dm

dtm
Htf =

(
1

2
∆

)m
Htf.

Remark 17. This gives the unusual fact that the Laplace operator is con-
tinuous and is due to the stronger than holomorphy properties of the S(QA)
classes. Consequences are the expression of Ht as a series:

Ht =

∞∑
n=0

1

n!

(
t∆

2

)n
.

and the invertibility of the heat operator:

Proposition 18. Let A and QA satisfy the assumptions of De�nition 7,

let F be in S(QA). For all positive t, the operator Ht is an isomorphism of

S(QA) onto itself and its inverse satis�es

‖(Ht)
−1‖ ≤ e(t/2)TrA.

Despite their apparent restrictivity, the classes of De�nition 7 are useful
in an application presented in Section 4.4.

The heat operator also gives a link between the three kinds of symbols
(Weyl, Wick and anti-Wick), as is the case in the �nite dimensional setting.
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4.2. Pseudodi�erential operators

This section gives the de�nitions of the pseudodi�erential operators: by
means of a quadratic form �rst, then with the di�erent symbol classes seen in
the preceding section. To stress the di�erences between the various situations
and present the tools, we shall sketch the general outline of some of the proofs.

The parameter h > 0 is �xed and (i,H, B) is an abstract Wiener space,
with variance parameter h. Due to the use of the Segal-Bargmann transform
de�ned in Section 3.3, the spaces which appear are mainly, on the one hand
L2(B,µB,h/2), containing the �test� functions on which the operators act and,
on the other hand, L2(B2, µB2,h), in which the convergences linked with the
stochastic extensions take place.

The �rst construction does not give an operator but a quadratic form,
acting on a space D de�ned below which replaces the Schwartz space S(Rn)
of the �nite dimensional case. This de�nition allows one to use unbounded
symbols, provided they satisfy convenient estimates. The symbols are functions
de�ned on B2, not on H2.

The second de�nitions really yield operators de�ned on L2(B,µB,h/2),
associated with symbols belonging to the classes de�ned above. In particular,
the symbols are bounded and de�ned on H2.

The results and notions about the quadratic form, QWh , the Segal �elds
and Calder�on-Vaillancourt type symbols are taken from [4]. The second class
of symbols has been de�ned in [31] to be exploited in [5, 7].

Quadratic form. Let us de�ne the space D which replaces S(Rn). For

E ∈ Ffin(B′), let SE be the space of all functions ϕ such that x 7→ ϕ(x)e−
|x|2
2h

is rapidly decreasing. We denote by DE the set of applications f : B → C of
the form f = ϕ ◦ π̃E , where π̃E : B → E is de�ned by (7). Such functions are
said to be based on E. The space D is de�ned as the union of the spaces DE ,
taken over all E in Ffin(B′). It is dense in L2(B,µB,h/2) and contains smooth,
cylindrical functions. Similarly, let DH be the space obtained when the union
is taken on the E ∈ Ffin(H).

De�nition 19. If f and g belong to D and are based on E, their Wigner
function Wh(f, g) is de�ned, for all Z = (z, ζ) ∈ B2 by

Wh(f, g)(Z) = e
|π̃E(ζ)|2

2

∫
E
e−2 i

h
π̃E(ζ)·t f̂(π̃E(z) + t)ĝ(π̃E(z)− t) dµE,h/2(t).

The space E on which f, g are based is not unique but the Wigner function
does not depend on the choice of such a space. One can check that, for all
f, g ∈ D, Wh(f, g) belongs to L1(B2, µB2,h/2). The same notion has been
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recalled, in the �nite dimensional case, in Section 2. We do not, thus, generalize
formula (1), but formula (2):

De�nition 20. Let F̃ be a bounded Borel function on B2. One de�nes
QWh (F̃ ) by

QWh (F̃ )(f, g) =

∫
B2

F̃ (Z)Wh(f, g)(Z)dµB2,h/2(Z),

for f and g in D.
If F̃ is not bounded, assume that there exists m ≥ 0 such that

(15) Nm(F̃ ) := sup
Y ∈H2

||τY F̃ ||L1(B2,µB2,h/2)

(1 + |Y |H2)m
< +∞.

Then QWh (F̃ ) can be de�ned as above.

The condition (15) says that the translated of F remain in L1 and that
the norm depends polynomially on the translation vector Y . The vector Y is in
H2 for otherwise, the initial measure and the measure translated by Y would
be mutually orthogonal.

It is useful to be able to de�ne the operator (as a quadratic form) for
unbounded symbols like `a or polynomials of such functions. Indeed, symbols
like ϕ̃a,b (x, ξ) 7→= `a(x) + `b(ξ), or `a ⊗ 1 + 1⊗ `b give a multiplication by the
variable and a di�erentiation, as in the �nite dimensional case ([4], Section 8):

QWh (ϕ̃a,b)(f, g) = 〈`a+ibf +
h

i
b · ∂f
∂u
, g〉L2(B,µB,h/2),

for f, g ∈ D. One recognizes the operator Σ(a,b) (9), which is linked with the
Segal �elds on the set of �nite particle states. The operator Σ(a,b) is de�ned onD
and takes values in D if a, b ∈ B′. Without this restriction, it only preserves DH.
Therefore, provided we restrict ourselves to D, we may consider commutators of
such operators with an operator A letting D invariant (which allows one to give
a Beals characterization). One can also consider the commutation relations in
their Weyl form or exponential form, to avoid unbounded operators.

The heat operator gives a link between the Weyl, Wick and anti-Wick
symbols. Suppose that the operator A and the quadratic form QA are as in
De�nition 7. For F ∈ S(QA) and for all f and g linear combinations of coherent
states,

QWh (Hh/2F )(f, g) = 〈OpAWh (F )f, g〉, σWick
h (OpAWh (F )) = HhF.

The anti-Wick quantization andWick symbol were de�ned in the paragraph 3.3.
Finally, although it is not directly linked with the construction of these

quantizations, it may be relevant to give the relationship between the operators
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with a linear symbol and the Malliavin gradient ([32], Chap 14,15, [11,37,38]).
Let f be cylindrical and based on E ⊂ B′, with

f(x) = ϕ(e1(x), . . . , ed(x)),

where (e1, . . . , ed) is an orthonormal basis of E. Then one has, for x ∈ B and
y ∈ H,

∂yf(x) = lim
t→0

f(x+ ty)− f(x)

t
=

d∑
i=1

∂ϕ

∂ui
(e1(x), . . . ed(x))ei · y = y · ∂f

∂u
(x),

where the �rst equality de�nes ∂yf(x).
On the Gaussian Hilbert space M = {`x, x ∈ H} ⊂ L2(B,µB,h/2), one

can then de�ne a Malliavin gradient for f , setting

∀x ∈ B, ∇f(x) =
2

h

d∑
i=1

∂ϕ

∂ui
(e1(x), . . . ed(x))`ei .

The gradient satis�es, as is required,

∀x ∈ B, y · ∂f
∂u

(x) = ∂yf(x) = 〈∇f(x), `y〉L2(B,µB,h/2).

Calder�on-Vaillancourt classes. When the symbol belongs to the �rst,
Calder�on-Vaillancourt class (De�nition 6), it is possible to construct an operator
continuous on L2(B,µB,h/2):

Theorem 21. Let B = (ei)i∈Γ be a Hilbert basis of H, with ei ∈ B′ for
all i. Let ε = (εj)(j∈Γ) be square summable. Let F belong to S2(B, ε). Suppose
that F admits a stochastic extension F̃ with respect to µB2,h and µB2,h/2.

There exists an operator OpWh (F ) bounded on L2(B,µB,h/2) and such that,
for all f, g ∈ D,

〈OpWh (F )f, g〉 = QWh (F̃ )(f, g).
Moreover, for all h ∈]0, 1],

‖OpWh (F )‖ ≤ ||F ||2,ε
∏
j∈Γ

(1 + 81πhSεε
2
j ) with Sε = sup

j∈Γ
max(1, ε2

j ).

The existence of the stochastic extension is ensured, for example, if the
sequence ε is summable as has been seen in Proposition 8.

Let us suggest the general idea of the proof. One introduces hybrid ope-
rators, de�ned thanks to partial heat operators. If E ∈ Ffin(B′), one sets
E⊥ = {x ∈ B : (y, x)B′,B = 0 ∀y ∈ E}. It is a Wiener space and, following [40],
one can decompose the measure on B as a product µB,s = µE,s × µE⊥,s for all
positive s. One then de�nes a partial heat operator:

(16) (H̃E⊥,sF )(X) =

∫
(E⊥)2

F (X + YE⊥)dµ(E⊥)2,s(YE⊥),
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and a hybrid quadratic form by:

Qhyb,Eh (F )(f, g) = QWh (H̃E⊥,h/2F )(f, g).

The hybrid operators act as Weyl operators on a �nite number of variables
(namely, the variables in E) and as anti-Wick operators, easier to handle, on
the rest of the variables. The operator of Theorem 21 is, therefore, not de�ned
by an integral formula, but as a limit of a Cauchy sequence of hybrid operators.

One example of an operator with a symbol in a class Sm(B, ε) is the
operator Ua,b,h de�ned in (10) above. For a and b in H, let Fa,b be the function
on H2 de�ned by: Fa,b(x, ξ) = ei(a·x+b·ξ). If B = (ej)(j≥1) is an arbitrary Hilbert
basis of H and if m is a positive integer, the function Fa,b is in the set Sm(B, ε),
with εj = max(|ej · a|, |ej · b|) and this sequence is square summable. Let
OpWh (Fa,b) be the operator, bounded on L2(B,µB,h/2), associated with Fa,b by

Theorem 21. Then OpWh (Fa,b) = Ua,b,h. We already saw that

(17) eiΦS(`a+ib) = Ut( a√
h
, b√
h

)h.

Symbol de�ned thanks to a quadratic form. Now let us state the results
for the classes de�ned thanks to a quadratic form (De�nition 7).

For V = (a, b) inH2, denote by LhV the operator Σ(−b,a) = `−b+ia+
h
i a·

∂
∂u

de�ned thanks to (9).

De�nition 22. For a nonnegative quadratic form Q on H2, L(Q) is the set
of families (Ah) of bounded operators in L2(B,µB,h/2), depending on h ∈ (0, 1],
such that there exists a real constant Ch(Ah, Q) satisfying, ∀m ∈ N∗, V1, . . . ,
Vm ∈ H2:

‖ad(LhV1) · · · ad(LhVm)Ah‖ ≤ Ch(Ah, Q) hm
m∏
j=1

Q(Vj)
1/2, h ∈ (0, 1].

Set ‖(Ah)‖L(Q) = suph∈(0,1]Ch(Ah, Q).

The commutators can be expressed in an exponential form (with the Weyl
operators) to avoid problems of de�nition.

We may now state a theorem about the existence of an operator with a
symbol in a class S(H2, Q) and a result akin to Calder�on-Vaillancourt Theo-
rem [5].

Theorem 23. Let (i,H, B) be a Wiener space, let A a nonnegative, trace

class, self-adjoint operator. Set Q(X) = 〈AX,X〉 and let F ∈ S(H2, Q). We

then have the following results:

1. The family of operators (OPAWh (F ))h is in L(Q) and

‖(OPAWh (F ))‖L(Q) ≤ ‖F‖Q.
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2. For each h, the quadratic form QWh (F ) is associated with an operator

OPWh (F ) ∈ L(L2(B,µB,h/2)). This family of operators is in L(Q) and:

Ch(OPWh (F ), Q) ≤ ‖F‖Qe(h/4)TrA.

The second point comes from the �rst one and uses the invertibility of the
heat operator.

4.3. Composition, Beals characterization

The results in this section are taken from [5, 6]. They amount to a Beals
characterization for both kind of symbol classes. There are also composition
results, for the Wick symbol �rst, then for the Weyl symbol. The composition
results are given in the shape of an asymptotic expansion, not of an integral
formula. The proofs (which we omit) rely, in the second case, on the use of the
classes S(H2, Q), in which the heat operator is invertible.

Theorem 24. Let (i,H, B) be an abstract Wiener space. Let A be a

bounded operator in L2(B,µB,h/2), with 0 < h < 1. Let B = (ej)j∈Γ be a

hilbertian basis of H, consisting of elements of B′. Let M > 0 and let ε be

a summable sequence indexed by Γ. Let m ≥ 2. Suppose that, for all multi-

index (α, β) ∈ Mm+4 (meaning that 0 ≤ αi, βi ≤ m + 4) the commutator∏
j∈Γ(adΣ(0,ej))

αj (adΣ(ej ,0))
βjA is bounded in L2(B,µB,h/2), with

||
∏
j∈Γ

(adΣ(0,ej))
αj (adΣ(ej ,0))

βjA||L(L2(B,µB,h/2)) ≤M
∏
j∈Γ

(hεj)
αj+βj .

Then there exists a function F ∈ Sm(B, ε) such that OpWh (F ) = A. Moreover

||F ||m,ε ≤M
∏
j∈Γ

(1 +KS2
εhε

2
j )

with Sε =
∑

�∈Γ max(1, ε2
j ) and K a universal constant.

Here the operator Σ(0,ej) or Pj corresponds to the position operator and
Σ(ej ,0) or Qj , to the impulsion operator (see (9) and section 4.2).

Theorem 25. Let (Ah) be a family of operators in L(Q).

The Wick symbol σwickh (Ah) is bounded in S(H2, Q) and:

‖σwickh (Ah)‖Q ≤ ‖(Ah)‖L(Q).

There exists a family of functions (Fh), bounded in S(H2, Q), such that Ah =
OPWh (Fh), with:

‖Fh‖Q ≤ ‖(Ah)‖L(Q)e
(h/4)TrA.
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There exists a family of functions (Gh) in S(H2, Q), such that Ah = OPAWh (Gh),
with:

‖Gh‖Q ≤ ‖(Ah)‖L(Q)e
(h/2)TrA.

We now give composition results. The �rst result concerns the Wick
symbol for bounded operators:

Theorem 26. Let B1, B2 be bounded on L
2(B,µB,h/2). The Wick symbols

Fi of Bi are smooth on H2. For all nonnegative k, the following series (de�ned
with respect to a basis of H) is absolutely convergent:

Cwickk (F1, F2) = 2−k
∑
|α|=k

(
1

α!

)
(∂x − i∂ξ)αF1 (∂x + i∂ξ)

αF2.

Moreover, its sum Cwickk (F1, F2) is independent of the basis. Then one has:

∀X ∈ H2, σwickh (B1 ◦B2)(X) =

∞∑
k=0

hkCwickk (F1, F2)(X),

where the series is absolutely convergent.

The second theorem concerns the composition for operators de�ned by
their Weyl symbol.

When the series converges, one de�nes, for a function F de�ned on H2,
the following di�erential operator, which appears in the expansion:

σ(∇1,∇2)F =
∑
j

∂2F

∂yj∂ξj
− ∂2F

∂xj∂ηj
.

When it makes sense, set

CWeyl
k (F,G)(X) =

1

(2i)kk!
σ(∇1,∇2)k(F ⊗G)(X,X).

Theorem 27. Let A and Q = QA be as in De�nition 7 and let F,G belong

to S(H2, Q). Then for all nonnegative k:

‖CWeyl
k (F,G)‖4Q ≤ ‖F‖Q‖G‖Q

(TrA)k

2kk!
.

The series

Kh =

∞∑
k=0

hkCWeyl
k (F,G)

is absolutely convergent and de�nes a function Kh in S(H2, 4Q). One has:

OpWh (F ) ◦OpWh (G) = OpWh (Kh).
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4.4. Some applications

Symbols associated with the exponential of linear functions give the Weyl
operators, as has been seen in (17).

We now give the example of a symbol belonging to a Calder�on-Vaillancourt
class [4] and representing a lattice where each particle interacts with its neig-
hbors. There is an in�nite number of particles but the interactions (modeled
by the coe�cients gis) decrease. Let Γ = Zd, H = `2(Zd), let V : R → R+ be
smooth, with bounded derivatives of order ≥ 1. Let (gj)(j∈Γ) be a sequence of
positive real numbers such that, if |j − k| ≤ 1, gj/gk ≤ K0 with K0 > 1. For
all (x, ξ) ∈ H2 and t > 0 set:

f(x, ξ) =
∑
j∈Γ

g2
j ξ

2
j +

∑
(j, k) ∈ Γ× Γ
|j − k| = 1

gjgkV (xj − xk) and Ft(x, ξ) = e−tf(x,ξ),

where | · | is the sup norm of Rd.
For all m ≥ 1, there exists a real constant Cm and a sequence ε satisfying

ε
(m)
j ≤ Cm max(g2

j , g
1/m
j ),

such that the symbol Ft ∈ Sm(B, ε(m)) with ||Ft||S(B,ε) ≤ 1. The constant Cm
depends only of m, t, d, K0 and of the bounds of the derivatives of V , up to
order 2m.

Now turn to a model of quantum electrodynamics due to Reuse [43], for
which there are two di�erent implementations, using both kinds of symbol clas-
ses [5,7]. The system consists of N �xed particles with spin 1/2 in an external
constant magnetic �eld and of an arbitrary number of photons. One wants to
describe the evolution operator e−i

t
h
H(h), where H(h) is the Hamiltonian of the

system. What motivates the use of a quantization on an in�nite dimensional
space is the Hilbert space representing the photons, a symmetrized Fock space.
We present successively the spaces, the operators and then the results.

Spaces. The initial Hilbert space is the one photon space, namely:

H = {q = q(k) ∈ L2(R3,R3) : k · q(k) = 0 a.e.},

endowed with the norm

|q|2 =
3∑
j=1

∫
R3

|qj(k)|2dk

where the measure is the Lebesgue measure. The symmetrized Fock space
Hph = Fs(HC), represents the photons, whereas Hsp = (C2)⊗N represents the
state of the N �xed particles. There exists an isomorphism between Hph and
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L2(B,µB,h/2), where B is a Wiener extension of the initial space H (Section 3).
The Hilbert space describing the whole system is then

Hph ⊗Hsp = Fs(HC)⊗ (C2)⊗N .

Operators. The initial operator de�ned onH is the (unbounded) operator
Mω de�ned by Mωq(k) = |k|q(k). On the Fock space, one sets Hph = hdΓ(Mω)
and one de�nes the free operator by H0 = Hph ⊗ I.

The Hamiltonian of the system is obtained by adding an interaction term
to the free operator. The external constant magnetic �eld β and the induced
electric and magnetic �elds are taken into account in this interaction term.
The di�erence between the two implementations lies there, in an assumption
about the induced �elds. The magnetic �eld B is de�ned as follows. For the
parameters j = 1, 2, 3 and x ∈ R3, let Bj,x be de�ned by

(18) ∀k ∈ R3 \ {0}, Bj,x(k) =
iχ(|k|)|k|1/2

(2π)3/2
e−ik·x

k ∧ ej
|k|

.

The function χ is a cuto� function and the eis are the vectors of the canonical
basis of R3. We set, for (q, p) ∈ H2,

Bj(x, q, p) = (<(Bj,x), q) + (=(Bj,x), p) .

The operator Bj(x) is the unbounded operator of symbol Bj(x, q, p), that is to
say a Segal �eld. So is the electric �eld:

Ej(x, q, p) = −Bj(x, J(q, p))

where J : H2 → H2 is the helicity operator de�ned by

J(q, p)(k) =

(
k ∧ q(k)

|k|
,
k ∧ p(k)

|k|

)
, k ∈ R3 \ {0}.

The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

One denotes by σ
[λ]
m the operator in Hsp = (C2)⊗N de�ned by:

σ[λ]
m = I ⊗ · · ·σm · · · ⊗ I,

where σm is located at the λth position. The interaction operator is de�ned by:

Hint =

N∑
λ=1

3∑
j=1

(βj +Bj(aλ)⊕ σ[λ]
j ),

for N particles located at a1, . . . aN ∈ R3. We then set

H(h) = H0 +Hint = Hph ⊗ I +Hint
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and denote by Hint(q, p) the Wick symbol of the operator Hint.

In [7], the cuto� function χ appearing in (18) is rapidly decreasing in R
and vanishes in a neighborhood of 0. This last assumption has disappeared

in [5].

In both cases the operator H(h) has a self-adjoint extension with the same

domain as the free operator H0 = Hph ⊗ I.
The two evolution operators associated with a self-adjoint operator A on

Hph ⊗Hsp are the following

Afree(t, h) = ei
t
h
Hph⊗IAe−i

t
h
Hph⊗I , A(t, h) = ei

t
h
H(h)Ae−i

t
h
H(h).

Results. A �rst result is concerned with the link between both evolution

operators. We state the version of [7], (where the cuto� function vanishes

near 0).

The space Smat∞ (B, |t|ε(t))) is de�ned as in Section 4.1 (De�nition 6), but

the functions take their values in L((C2)⊗N ). Basis and sequence are carefully

chosen. The basis B referred to is constructed as follows. Let E denote the set

of L2 vector �elds on the unit sphere S2 (of R3):

E = {f = (f1, f2, f3) : S2 → R3 :
3∑
j=1

ωjfj(ω) = 0}.

The norm on E is given by

||f ||2E =

3∑
j=1

∫
S2

|fj(ω)|2 dµ(ω),

where µ is the surface measure on S2. ThenH can be viewed as L2(R+, r2dr,E).

If (um)m and (vn)n are, respectively, Hilbert bases of L
2(R+, r2dr) and E, then

the family (fm,n) de�ned by

fm,n(k) = um(|k|)vn(
k

|k|
)

is a Hilbert basis of H. One chooses the basis (vn)n of E consisting of the

eigenvectors of the Laplace operator on S2. The functions (um)m are the ei-

genvectors of the operator L = − d2

dr2
− 2

r

d

dr
+ r2 and can be expressed thanks

to generalized Laguerre polynomials.

Finally, the sequence ε(t) = (εm,n(t)) is rapidly decreasing, such that

t 7→ εm,n(t) is a non decreasing function of |t|. It satis�es a condition linked

with the free evolution operator and the impulsion and position operators of
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the fm,n:

||[Ph(fm,n), Hfree∫ (t)]||+ ||[Qh(fm,n), Hfree∫ (t)]|| ≤ hεm,n(t).

The following theorem has been proved in [7]. The symbol of the reduced

propagator admits an expansion in powers of h, too.

Theorem 28. There exists a function U(t, q, p, h) de�ned on R×H2, with

parameter h > 0 and taking matrix values in L((C2)⊗N ) such that the operator

U redh (t) de�ned by

U redh (t) = ei
t
h
H0e−i

t
h
H(h)

can be written as

U redh (t) = OpWh (U(t, ·, h)).

As a function of X = (q, p) ∈ H2, U(t, ·, h) belongs to the space Smat∞ (B, |t|ε(t)).
Moreover, it is bounded in this space as t belongs to a compact set and h runs

over ]0, 1[.

A second result [5] is an asymptotic expansion in powers of h of the Wick

symbol of an evolution operator A(t, h). Here, the cuto� function χ is rapidly

decreasing but does not necessarily vanish near the origin. One uses the second

classes of symbols.

One de�nes the following quadratic form, as

Qt(q, p) = |t|
∫ t

0
|dHfree

int (s, q, p)|2ds

where Hfree
int (s, q, p) is the Wick symbol of the free evolution operator. More

explicitly,

Qt(q, p) = 2N |t|
N∑
λ=1

3∑
j=1

∫ t

0
Re

(∫
R3

(p+ iq)(k)eis|k|Bjxλ(k)dk

)2

ds.

We are concerned with observables of the following form:

A = OpWh (FA)⊗ I + I ⊗ SA
where FA is a linear continuous form on H2 and SA is in L(Hsp). According

to Proposition 8.4 [5], if A has this form, the operator A(t, h) is the sum of an

operator with linear symbol and of an operator bounded in L(4Qt)

Theorem 29. Let A be an observable of the form (4.4). For each M ,

there exist functions in A[j](t, q, p) in S(H2, 16j+1Qt) and a rest RM (t, ·, h) in
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S(H2, 16M+5Qt) such that one can write:

σwickh (A(t, h))(q, p) =
M∑
j=0

hjA[j](t, q, p) + hM+1RM (t, q, p, h)

Moreover, the norm of the A[j] and of RM (in their respective symbol classes)

are bounded independently of t and h, when t remains in a compact subset of

R and h varies in (0, 1).
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