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We review some results on the spectral theory of Schr�odinger and Dirac ope-
rators. We focus on two aspects: the existence of embedded eigenvalues in the
essential spectrum and the limiting absorption principle. They both are impor-
tant for Physics, in general, and for Scattering theory, in particular. We chose
to include a special form of oscillations in the potential of the considered ope-
rators to illustrate the diversity of behaviours that can exist in the two selected
topics. Concerning the limiting absorption principle, we discuss several methods
to prove it. To known, old or recent results, we added some unpublished results
from Mbarek's Phd Thesis.
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1. INTRODUCTION

The purpose of this paper is to review some results on the spectral theory
of (mainly) Schr�odinger and Dirac operators containing some oscillating part in
their potential. This is of course a vast subject that we cannot reasonably cover
in a short paper. We shall restrict ourselves to two phenomena, the existence
of embedded eigenvalue in the continuous spectrum and the so-called limiting
absorption principle (LAP) (see (1.2) and (1.3) below).

The �rst topic was historically considered as a kind of anomaly, but it
turns out that it is not so marginal in Physics, as one would �rst think. Furt-
hermore, its understanding and its in�uence on Scattering theory constitute a
mathematical challenge. The second topic is a cornerstone of the stationary
version of Scattering theory (cf. [32,33,45]). The LAP directly enters in repre-
sentation formulae for Scattering operators and matrices (cf. [45]).

The interest in oscillating potentials comes from the fact that, for many
questions in spectral theory, such potentials require a di�erent treatment to
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classical ones. Furthermore, in some cases, they even constitute an exception
to the behaviour that is observed or even proved for a large class of models.
Many mathematical works, mainly in the seventies and the eighties, con�rm
these facts, see [44] and references therein.

In this review, we want to illustrate this �anomalous� behaviour of oscil-
lating potentials. To this end, it actually su�ces to consider a quite narrow
class of such potentials. We shall indeed see, for instance, that some particu-
lar potentials of the form (1.1) below, can produce an embedded eigenvalue in
the continuous spectrum of a Schr�odinger operator while this is forbidden for
a large class of potentials. We shall also see that known methods to get the
LAP are simply inapplicable for some Schr�odinger operators containing such
an oscillating part in their potentials. Nevertheless the LAP does hold true for
many of them. It is however expected that the LAP breaks down near certain
energy for some cases of this kind. We chose to only consider Schr�odinger and
Dirac operators acting on functions of a continuous variable in Rd, d ∈ N∗, but
we mention that there exist recent results of this kind on discrete Schr�odinger
operators (cf. [25]). There are also interesting works concerning oscillating po-
tentials that treat related subjects, like the nature of the essential spectrum or
the wave operators (see [18,21,34,44]). We decided not to elaborate on this.

Among the quite big literature on the subject, we made a selection of
works, that we considered as relevant for the above illustration. We did not try
at all to provide an exhaustive exposition of this subject. We picked up some
recent results, some of them being unpublished. In particular, we present here
unpublished results obtained by A. Mbarek in his Phd Thesis (cf. [27]), namely
Proposition 2.4, Theorem 3.7, Theorem 3.10, and Proposition 3.12 below, and
provide for each a (sketch of) proof.

We also decided not to discuss open questions. Even in the chosen, quite
narrow area of study, there are many interesting unsolved questions. This would
considerably increase the length of the paper. Nevertheless, for each result, the
reader could ask himself what happens if one assumption is removed (or wea-
kened). He would probably get an interesting problem since our understanding
of oscillations in the present context is quite limited. Let us just mention one
question: While the paper provides situations for which the LAP is valid, is
there in the selected class of oscillating potentials an example for which the
LAP breaks down?

The paper is organized as follows. Section 2 is devoted to the question of
embedded eigenvalues. In Subsection 2.1, we provide examples of the chosen
potential class for which there exists (at least) an embedded eigenvalue. This
is done for Schr�odinger, Dirac and Klein-Gordon operators. In Subsection 2.2,
we present a situation in which so many embedded eigenvalues are produced
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that the point spectrum is dense in some part of the essential spectrum. Sub-
section 2.3 states, for the considered potential class, results showing the absence
of embedded eigenvalues in a large part of the essential spectrum. Among the
class, this gives us a quite precise description of those oscillating potentials
that produce embedded eigenvalues and also where these eigenvalues are loca-
ted. Section 3 treats the LAP. Subsection 3.1 focuses on 1-dimensional technics
of ordinary di�erential equations that apply to the 1-dimensional and radial ca-
ses. To cover more general situations, powerful methods are presented in an
abstract way in Subsection 3.2. In particular Mourre's commutator method is
brie�y reviewed and two versions of the recent �local Putnam-Lavine theory� are
described in details. In Subsection 3.3, we apply the �rst version to Schr�odinger
and Dirac operators with almost short-range oscillations in the potential. The
more complicated case of long-range oscillations for Schr�odinger operators is
treated in Subsection 3.4 with the second version of the �local Putnam-Lavine
theory�. We plotted in Fig. 1 the actual state of validity of the LAP for the
considered Schr�odinger operators.

The rest of this Introduction is devoted to the presentation of the Hamil-
tonians we study and to a precise statement of their LAP. To this end, we need
to introduce some notation. Let d ∈ N∗. We denote by 〈·, ·〉 and ‖ · ‖ the right
linear scalar product and the norm in L2(Rd), the space of squared integrable,
complex functions on Rd. We also denote by ‖·‖ the norm of bounded operators
on L2(Rd). Writing x = (x1; · · · ;xd) the variable in Rd, we set

|x| :=

( d∑
j=1

x2
j

)1/2

and 〈x〉 :=

(
1 +

d∑
j=1

x2
j

)1/2

.

Let Qj the multiplication operator in L2(Rd) by xj and Pj the self-
adjoint realization of −i∂xj in L2(Rd). We set Q = (Q1; · · · ;Qd)

T and P =
(P1; · · · ;Pd)

T , where T denotes the transposition.

Several times, we shall use the following compacity result in conjunction
with the resolvent form of Weyl's theorem on the essential spectrum (see [33],
Section XIII.4). If V is a complex-valued, bounded function on Rd, that
tends to 0 at in�nity, and f is a real, non-constant polynomial function, then
V (Q)(f(P ) + i)−1 is compact. Thus, by the resolvent formula, the di�erence
of the resolvent of f(P ) + V (Q) and of the resolvent of f(P ) is compact. In
particular, f(P ) + V (Q) is self-adjoint on the domain of f(P ) and, by Weyl's
theorem, its essential spectrum σess(f(P ) + V (Q)) coincides with the one of
f(P ), which is also the spectrum σ(f(P )) of f(P ). All this still holds true if V
(resp. f) has values in the set of squared matrices with complex entries (resp.
the set of self-adjoint, squared matrices with complex entries).
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Let

H0 = |P |2 :=

d∑
j=1

P 2
j = P T · P

be the self-adjoint realization of the nonnegative Laplace operator−∆ in L2(Rd).
Its domain is the Sobolev space H2(Rd). We shall mainly consider Schr�odinger
operators H = H0 + V (Q), where V (Q) is the multiplication operator by a
real valued function V on Rd. We shall focus on the case where V contains a
(several) oscillating part(s) of the form

(1.1) Wαβ(x) = w
(
1− κ(|x|)

)
|x|−β sin(k|x|α)

with real, nonzero w and k, α > 0, β > 0 and κ : R −→ R a smooth, com-
pactly supported function that is 1 near 0. The parameter w controls the
strength of the potential. We chose to focus on the behaviour of the potential
at in�nity and not to consider a possible singularity at zero of the function
x 7→ |x|−β sin(k|x|α). So we introduced the cut-o� function κ to exclude such
possibility. The potential is short-range if β > 1, else long-range. Finaly the
parameter α controls the speed of oscillations at in�nity. Of course, one can
replace the sinus function above by a cosinus function.

We also allow V to contain a short-range part Vsr and a long-range part
Vlr satisfying the following conditions: there exist ρsr, ρlr, ρ

′
lr ∈]0; 1] such that

the real functions Rd 3 x 7→ 〈x〉1+ρsrVsr(x) and Rd 3 x 7→ 〈x〉ρlrVlr(x) are
bounded, and such that the distribution 〈x〉ρ′lrx ·∇Vlr(x) coincide with a boun-
ded function. In almost all considered cases, H will be self-adjoint with domain
H2(Rd) and, due to Weyl's theorem and the fact that V tends to 0 at in�nity,
its essential spectrum will be the one of H0, namely [0; +∞[.

For a large class of potentials V , for compact intervals I ⊂]0; +∞[, one
can show the following LAP (see for instance [1]), that is the bound, for s > 1/2,

(1.2) sup
<z∈I,
=z 6=0

∥∥〈A〉−s(H − z)−1〈A〉−s
∥∥ < +∞ ,

where A is the self-adjoint realization in L2(Rd) of the di�erential operator
2−1(P · Q + Q · P ). While the resolvent (H − z)−1 blows up as bounded
operator on L2(Rd) as the spectral parameter z approaches the spectrum in I,
the introduction of weights 〈A〉−s on both sides with s > 1/2 �absorbs� this
blow up. Sometimes it is convenient to have the same result with the generator
of dilations A replaced by the position operator Q, namely, for s > 1/2,

(1.3) sup
<z∈I,
=z 6=0

∥∥〈Q〉−s(H − z)−1〈Q〉−s
∥∥ < +∞ ,

which is actually a consequence of (1.2). We note that (1.2) (resp. (1.3)) cannot
hold true for some s > 1/2 if H has an eigenvector in the domain of 〈A〉s (resp.
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〈Q〉s) associated to an eigenvalue in I. Therefore, it is natural to seek for a
LAP on an interval I that avoids the point spectrum of H. Nevertheless, it
is sometimes possible to allow point spectrum in I provided that one lets the
resolvent act on the orthogonal complement of the spectral subspace associated
to this point spectrum part. For simplicity, we chose not to discuss this issue.

Let us introduce now the Dirac operators we shall consider. Let

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

be the Pauli 2× 2 matrices and, denoting by 1I2 the 2× 2 identity matrix, let

β =

(
1I2 0
0 −1I2

)
, αj =

(
0 σj
σj 0

)
,

for j ∈ {1; 2; 3}, be the Dirac 4 × 4 matrices. Choosing the speed of light to
be 1, the free Dirac operator D0 in R3 with mass m ∈ R+ is the self-adjoint
realization in L2(R3;C4) ∼ L2(R3)⊗ C4 of the di�erential operator

(1.4) D0 = α · P + mβ :=

3∑
j=1

αj Pj + mβ ,

where α is the transposed vector (α1;α2;α3)T of three 4 × 4 matrices. Its
domain is the Sobolev space H1(R3;C4) ∼ H1(R3) ⊗ C4. We shall consider
(electromagnetic) external �elds that is functions V that are de�ned on R3

with values in the space of self-adjoint 4× 4 matrices and tend to 0 at in�nity.
In particular, the full Dirac operator D = D0 +V (Q) will always be self-adjoint
with domain H1(R3;C4) and the essential spectrum of D will be the one of D0,
that is ] − ∞;−m] ∪ [m; +∞[, by Weyl's theorem. In one dimension, on the
line or the half-line with boundary conditions, it is standard (cf. [39]) to view
the free Dirac operator with mass m as the operator

(1.5) D1
0 := σ2 P + mσ3 ,

acting in L2(R;C2) or in L2(]0; +∞[;C2) and the full Dirac operator D1 given
by D1

0 + V (Q) where the electromagnetic potential V takes its values in the
space of (self-adjoint) 2 × 2 matrices. This is a natural de�nition since the
3-dimensional free Dirac operator D0 reduces to a certain direct sum, indexed
by triplets ρ = (jρ;mρ;κρ) of numbers, of operators D1

0 + κρQ
−1 acting on

L2(]0; +∞[; dr)⊗ hρ, for some two dimensional spaces hρ (cf. [42], p. 128).
It is also of interest to prove a LAP for the Dirac operator. For a

large class of external potential V and m > 0, for compact intervals I ∈
]−∞;−m[∪]m; +∞[ that does not intersect the point spectrum of D, one can
show, for s > 1/2,

(1.6) sup
<z∈I,
=z 6=0

∥∥〈A′〉−s(D− z)−1〈A′〉−s
∥∥ < +∞ ,
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where A′ is a relatively explicit, self-adjoint operator (cf. [4]). This result often
implies the LAP with weights 〈Q〉, namely, for s > 1/2,

(1.7) sup
<z∈I,
=z 6=0

∥∥〈Q〉−s(D− z)−1〈Q〉−s
∥∥ < +∞ .

2. EMBEDDED EIGENVALUES

IN THE CONTINUOUS SPECTRUM

In this section, we discuss the question of the existence of embedded ei-
genvalues in the essential spectrum of Schr�odinger and Dirac operators. It is
easy to produce such embedded eigenvalues using a direct sum of operators, one
of them having (say) continuous spectrum and others having point (or discrete)
spectrum. Furthermore, when a Hamiltonian has such embedded eigenvalues,
it can always be rewritten as a direct sum of this kind. The interest for oscilla-
ting potentials is that they provide examples of this phenomenon while a direct
sum structure of the above kind is a priori not apparent.

2.1. Existence of embedded eigenvalues

In this subsection, we show that potentials containing an oscillating part of
the form (1.1) can produce an embedded eigenvalue in the continuous spectrum
of Schr�odinger, Klein-Gordon, and Dirac operators.

We start with the example given by Wigner and Von Neumann in [43].
See [33], p. 223, for a heuristic and a proof.

Proposition 2.1. Let f, g, V : R −→ R be de�ned by g(x) = 2x−sin(2x),
f(x) = (1 + g(x)2)−1 sin(x) and

(2.1) V (x) = −16 · g(x) · sin(2x)

1 + g(x)2
− 32

(
1 − 3g(x)2

)
· sin4(x)(

1 + g(x)2
)2 .

Then f, f ′ ∈ L2(R) and −f ′′ + V f = f .

We point out that, in the proof of Propositions 2.1 given in [33], the bound
state f is �rst constructed and the potential V is then de�ned by (f ′′ + f)/f .
Since f has zeroes, one has to choose g carefully to avoid singularities in V .
There is a 3-dimensional version of this Proposition, namely

Proposition 2.2. Let f, g,W : R −→ R be de�ned by g(x) = 2|x| −
sin(2|x|), f(x) = (1 + g(x)2)−1|x|−1 sin(|x|) and W (x) = V (|x|), where V is

given by (2.1). Then f,∇f ∈ L2(R3) and −∆f +Wf = f .
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In both cases, 1 is an eigenvalue of the Schr�odinger operator. We note that
there exists C > 0 such that, for all t ∈ R, |V (t)| ≤ C〈t〉−1. Thus, by Weyl's
theorem, both Schr�odinger operators have the same essential spectrum as the
Laplace operator −∆, namely [0; +∞[. Thus 1 is an embedded eigenvalue in
the continuous spectrum.

The above idea can be recycled to get an embedded eigenvalue for the one-
dimensional Klein-Gordon operator with mass m ≥ 0 which is the self-adjoint
realization of

√
P 2 +m2 −m + V (Q). This has been done recently in [24] in

the massive and the massless cases. In particular, in the massive case, one
obtains the

Proposition 2.3 ([24]). Let m > 0 and λ :=
√

1 +m2 − m > 0. Let

f, g, h, k : R −→ R be de�ned by g(x) = 2x− sin(2x), h(x) = (1 + g(x)2)−1,

k =
(√

(P + 1)2 +m2 +
√

(P − 1)2 +m2
)
h ,

and f(x) = k(x) sin(x). For all x ∈ R, V (x) = λ − f(x)−1((
√
P 2 +m2 −

m)f)(x) is well-de�ned in R and the function V is, in absolute value, bounded

above by some C〈·〉−1. Furthermore, f, f ′ ∈ L2(R) and (
√
P 2 +m2 − m)f +

V f = λf .

Due to the non-local structure of the kinetic energy, the arguments are
more involved than for the Schr�odinger case. This appears in particular when
one wants to ensure that the zeroes of f do not produce singularities in V .

It turns out that one can replace sin(2x) above by sin(kx) with an appro-
priate k > 0 to get an embedded eigenvalue at a given value in the continuous
spectrum. This has also been done for the Dirac operator in R3 with a radial
electromagnetic potential D = D0 + V (Q) (see (1.4)). In particular, one has
the

Proposition 2.4 ( [27]). Let m ≥ 0 and λ ∈ R such that |λ| > m.

Then one can �nd a radial, bounded function V with values in the set of self-

adjoint 4× 4 matrices such that V tends to 0 at in�nity, λ is an eigenvalue of

D = D0 + V (Q), D is self-adjoint on the domain of D0, namely H1(R3;C4),
and σess(D) = σ(D0).

One can follow here the heuristic used in [33], p. 223, to prove Proposi-
tion 2.1. Let us sketch this and the proof of Proposition 2.4.

First of all, a radial potential is, according to [42] p. 128 and denoting by
1I4 the 4× 4 identity matrix, of the form

(2.2) V (x) = φel(|x|) 1I4 + φsc(|x|)β + iφam(|x|)β α · x|x|−1

with real valued functions φel, φsc, and φam, on ]0; +∞[. By Theorem 4.14 in
[42], p. 128, it turns out that the radial Dirac operator D = D0+V (Q) is unitary
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equivalent to a direct sum ⊕ρ∈ΛDρ of operators Dρ acting in L2(]0; +∞[; dr)⊗
hρ, for some two dimensional space hρ. The parameters ρ are actually triplets
of eigenvalues of 3 appropriate operators that commute with D. Taking an
appropriate basis Bρ of each hρ, Dρ acts as the 1-dimensional Dirac operator
(in the variable r)

Dρ = σ2 Pr +
(
m + φsc(Qr)

)
σ3 +

( κρ
Qr

+ φam(Qr)
)
σ1 + φel(Qr) 1I2 ,

where κρ is one of the eigenvalues in ρ and is a nonzero integer. This can also
be written as

Dρ =

(
m+ φsc(Qr) + φel(Qr) − d

dr +
κρ
Qr

+ φam(Qr)
d
dr +

κρ
Qr

+ φam(Qr) −m− φsc(Qr) + φel(Qr)

)
.

Now we look at the Dirac equation Du = λu in the new representation,
namely in:

(2.3)
⊕
ρ∈Λ

(
L2(]0; +∞[; dr)⊗ hρ

)
.

We choose some arbitrary ρ0 ∈ Λ. We shall construct a radial potential
V satisfying the conditions in Proposition 2.4 such that there is a bound state
f = (fρ)ρ∈Λ at energy λ such that fρ = 0, if ρ 6= ρ0, and fρ0 is an appropriate
nonzero vector in L2(]0; +∞[; dr)⊗ hρ0 . Using the previously mentioned basis
Bρ0 of hρ0 , the vector fρ0 is represented by some (f1; f2)T ∈ L2(]0; +∞[;C2).
For simplicity, we denote κρ0 by κ.

Since the potential should be small at in�nity, we guess the form of
(f1; f2)T by solving the system(

m − d
dr

d
dr −m

)
·
(
g1

g2

)
= λ

(
g1

g2

)
.

The solutions of this system are, for (g0
1; g0

2) ∈ R2, the functions

r 7→
(
g1

g2

)
(r) = exp(rM) ·

(
g0

1

g0
2

)
, with M =

(
0 k+

k− 0

)
and k± = m ± λ. Note that the eigenvalues of M are ±i

√
−k+k−. Thus

exp(rM) carries oscillating terms. These terms will be responsible for oscilla-
tions in V . Note also that the function ]0; +∞[3 r 7→ exp(rM) is bounded.

For appropriate real smooth functions u1 and u2, the bound state will be
given by (

f1

f2

)
(r) = exp(rM) ·

(
u1(r)
u2(r)

)
.

Now, the equation

(2.4) Dρ ·
(
f1

f2

)
= λ

(
f1

f2

)
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is equivalent to

(2.5) iσ2 exp(rM)
d

dr

(
u1

u2

)
= V (r) exp(rM)

(
u1

u2

)
.

Setting(
v1

v2

)
= exp(rM)

(
u1

u2

)
and

(
w1

w2

)
= iσ2 exp(rM)

d

dr

(
u1

u2

)
,

and requiring that u2
1 + u2

2 does not vanish, we can solve (2.5) for V and get

(2.6) φsc =
v1w1 − v2w2

v2
1 + v2

2

+
v2

2 − v2
1

v2
1 + v2

2

· φel

and

(2.7)
κ

r
+ φam =

v1w2 + v2w1

v2
1 + v2

2

− 2v1v2

v2
1 + v2

2

· φel ,

where φel is arbitrary. Now, as we shall see in the sketch of the proof of
Proposition 2.4 below, one can choose the functions u1, u2, and φel such that
this V satis�es the requirement of Proposition 2.4, such that λ is an eigenvalue
of D, and such that an eigenvector f of D associated to the eigenvalue λ is given
in the direct sum (2.3) by fρ = 0, if ρ 6= ρ0, and fρ0 = (f1; f2)T .

The massive threshold case |λ| = m > 0 has also been treated in Mbarek's
Phd Thesis [27], in a similar way. Compared to the Schr�odinger case, the
arguments are easier. This is due to the facts that we have two degrees of
freedom in (2.4) and that the Dirac operator is of order 1. In particular, it
is quite easy to ensure that the divisions in (2.6) and (2.7) do not produce
singularities in the components φsc, φam, and φel, of V .

Sketch of the proof of Proposition 2.4. We choose a smooth function φel :
]0; +∞[−→ R tending to 0 at in�nity and having a �nite limit at 0. We choose
smooth L2-functions u1, u2 :]0; +∞[−→ R such that u2

1 + u2
2 never vanishes,

(2.8) lim
r→+∞

∥∥∥∥ ddr
(
u1

u2

)∥∥∥∥ · ∥∥∥∥( u1

u2

)∥∥∥∥−1

= 0 ,

for some norm ‖·‖ on R2, and the following ρ0-dependent condition is satis�ed.
Recall that κ = κρ0 is a nonzero integer. If κ > 0, we require that, near 0,
u1 = 0 and u2 = rκ. If κ < 0, we impose that, near 0, u1 = r−κ and u2 = 0.

Note that functions u1 and u2 that satisfy, near in�nity, u1 = r−δ and
u2 = r−δ with δ > 1/2, also satisfy (2.8) and are L2 at in�nity.

Let u1 and u2 satisfy the above conditions. We note that the derivatives
u′1 and u

′
2 are also in L2. Using the precise form of u1 and u2 near zero, we �nd

that the two fractions in (2.6) are o(r0) and ±1 + o(r0), respectively, as r → 0.
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The two fractions in (2.7) are κr−1 + o(r0) and o(r0), respectively, as r → 0.
Thus, the functions φsc and φam have a �nite limit at 0. Since the matrix
exp(rM) is invertible for any r > 0 and u2

1 + u2
2 does not vanish, v2

1 + v2
2 never

vanishes. Therefore φsc and φam are smooth everywhere. Since the functions
r 7→ exp(±rM) are bounded, we see that, thanks to (2.8), φsc and φam tend
to 0 at in�nity. In particular, we see that V (Q)(D0 + i1I4)−1 is compact. Now
standard results show that D is self-adjoint on H1, the domain of D0 (cf. [42]),
and σess(D) = σ(D0). Finally, one can check that the bound state f belongs
to H1. �

Now we come back to the Schr�odinger operator to mention a result by [37].
For the one-dimensional Schr�odinger operator on the half-line, with a Dirichlet
boundary condition, the authors provide an explicit construction of a potential,
that can be complex, to get a �nite number n of embedded eigenvalues at given
values. The method is similar to those used in [33] but treat the di�erent
eigenvalues together in a sort of parallel computation. The oscillating part
of the potential is now a sum of sin(kjx), each kj being chosen to get one
eigenvalue at a given value. Furthermore, the potential depends on n additional,
quite arbitrary parameters. On one hand, these parameters are used to avoid
the above problem of possible singularities in the potential and, on the other
hand, they provide several potentials that produce the same set of embedded
eigenvalues.

The previous result shows that, on the half-line, a �nite set of embedded
eigenvalues at precise places can be preserved when the potential is changed
in an appropriate way. To end this subsection, we present another interesting
result of �stability�. It concerns an embedded eigenvalue for the one-dimensional
Schr�odinger operator on R. It is due to [7].

Theorem 2.5 ([7]). Let k > 0 and γ ∈ R such that |γ| > k. Then, there

exists a codimension one submanifold M of L1(R;R) such that, for all V ∈M ,

the operator H = P 2 + γx−1 sin(kx) + V (x) is self-adjoint in L2(R) and it has

an eigenvalue at k2/4 which is embedded in the essential spectrum that is given

by [0; +∞[.

The result in [7] actually holds true for non real potentials and also for H
viewed as an unbounded operator on Lp(R) with 1 ≤ p < ∞. As we shall see
below, the full result is in fact stronger, even in the L2(R) self-adjoint setting.

2.2. Dense set of embedded eigenvalues

In the previous subsection, we saw that appropriate oscillating potentials
can produce one embedded eigenvalue in the continuous spectrum. Here we
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present results showing that similar oscillating potentials can even produce a
dense set of embedded eigenvalues. First results of this kind were apparently
obtained by Naboko in [30] for Schr�odinger and Dirac operators in one dimen-
sion. While Naboko considered Dirac operators with a scalar potential, Schmidt
provided a similar result for electrostatic potentials in [39]. All those results
concern the line and the half-line with boundary conditions and need a condi-
tion of rational independence of the eigenvalues. We present below a result of
this kind that does not require any rational independence. It is due to Simon
(see [41]) and uses an appropriate series of Wigner-Von Neumann potentials.

Theorem 2.6 ( [41]). Let (κn)n∈N be an arbitrary sequence of distinct

positive numbers. Let g : [0; +∞[−→ R be an increasing function such that

g(0) = 1 and lim
+∞

g = +∞. Then there exists an even, real potential V on R

such that, for each n ∈ N, κn is an eigenvalue of P 2 +V (Q) and, for all x ∈ R,
|V (x)| ≤ g(|x|)(1 + |x|)−1.

Simon provided also a version of this result for the half-line with boundary
conditions (see [41]). We note that one can choose a function g as above
such that, for some a > 3/4, there exists C > 0 such that, for all x ∈ R,
|V (x)| ≤ C(1 + |x|)−a. In particular, a result by Kiselev (see [18]) shows in
that case that [0; +∞[ is the support of the absolutely continuous spectrum
of −∆x + V . Therefore, one can have in that case a dense point spectrum
embedded in the absolutely continuous spectrum.

For appropriates sequences (Rn)n∈N and (ϕn)n∈N with limRn = +∞, for
some real valued potential W supported in [0; 1], the potential V in Proposi-
tion 2.6 is, for x ∈ R, given by the pointwise �nite sum

V (x) = W (x) + 4
∞∑
n=0

κn 1I{·>Rn}(x)
sin
(
2κnx+ ϕn

)
x

,

where 1IA denotes the characteristic function of the set A. Note that the sinus
functions sin(2κnx+ ϕn) can be written as n-dependent linear combination of
sin(2κnx) and cos(2κnx). Thus, each term in the above sum is, for large x,
equal to a linear combination of a potential (1.1) and of a cosinus version of a
potential (1.1).

2.3. Absence of embedded eigenvalues

The results of the previous subsections could give the impression that it is
easy to produce an embedded eigenvalue in the continuous spectrum by using
an oscillating potential. We will see in this subsection that this is not true and
one has to choose carefully the oscillating potential.
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Let us start with a result, due to Froese and Herbst, on the absence of
positive eigenvalue for Schr�odinger operators.

Theorem 2.7 ([12]). Consider a function V : Rd −→ R such that

V (Q)(H0 + 1)−1 and (H0 + 1)−1Q · ∇V (Q)(H0 + 1)−1 are compact and such

that, for any ε > 0, there exists Cε > 0 such that, as quadratic forms,

Q · ∇V (Q) ≤ εH0 + Cε .

Then H = H0 + V (Q) has no positive eigenvalue.

In fact, Froese and Herbst treat the more di�cult case of N -body Schr�o-
dinger operators and also proved a slightly better result, even in the two-body
case.

We note that if V = Wαβ + Vlr with β > α (see (1.1)) and a long range
potential Vlr, then the above result applies since Wαβ is also a long range
potential. In that case, the oscillating part Wαβ of the potential does not
produce any positive embedded eigenvalue.

To produce a positive embedded eigenvalue, one needs to give a su�cient
strength to the oscillating part. Indeed, it was proved in [12] (cf. Corollary 2.6)
that, if V = W11 + Vlr with |w| < k, then H has no positive eigenvalue, in di-
mension 1. A similar result is provided in [7]. In the framework of Theorem 2.5,
H has no positive eigenvalue if |w| < k.

Furthermore, one has to choose carefully the oscillations to get a positive
embedded eigenvalue. Among the oscillating potentials of the form (1.1), it
seems that one has to avoid the case α > 1, as suggested by the following
result.

Theorem 2.8 ([19]). Let V : Rd −→ R be given by V = Wαβ + Vsr with

α > 1 and β > 1/2. Then H = H0 + V (Q) has no positive eigenvalue.

This result is still valid if one adds to V an appropriate long-range po-
tential and H0-compact, local singularities. An inspection of the proof of The-
orem 2.8 shows that a key argument is provided by the following compacity
result, that does not hold true when α = 1.

Proposition 2.9 ([19] Proposition 2.4). Let α > 1 and d ≥ 1. Then,

for any p ≥ 0, there exist `1 ≥ 0 and `2 ≥ 0 such that 〈P 〉−`1〈Q〉p(1 −
κ(|Q|)) sin(k|Q|α)〈P 〉−`2 extends to a compact operator on L2(Rd).

In the radial case, White even proved the absence of positive eigenvalue
if α 6= 1 (cf. [44]).

We saw in Subsection 2.1 that one can use several oscillating potentials to
get several embedded eigenvalues. Is that really necessary? For the potentials
(1.1), it is essentially true. To explain what we mean, notice �rst that, in
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Subsection 2.1, a L1 potential was always added to the oscillating potential to
produce an embedded eigenvalue. For such additional potentials, one can prove
that the Wigner Von Neumann potential W11 (cf. (1.1)) produce at most one
embedded eigenvalue (see [7, 12]).

3. LIMITING ABSORPTION PRINCIPLES

This section is devoted to the second topic we want to consider, namely
the limiting absorption principle (LAP) for Schr�odinger and Dirac operators.
See (1.2), (1.3), (1.6), and (1.7).

3.1. The radial case

In this subsection, we focus on LAPs for the Schr�odinger operators obtai-
ned by technics of ordinary di�erential equations. They apply in one dimension
and also for the radial, multidimensional case.

In the papers [3,9,35,36], the LAP (1.3) was derived on compact intervals
I included in ]0; +∞[ and avoiding a certain discrete set. The potential contains
an oscillating part of the form (1.1) for appropriate values of (α;β) (see Fig. 1
below) and a radial long range part. Using a perturbative argument, one can
show that this result is preserved if one adds a (non necessary radial) short
range potential.

The main drawback of this approach is that it cannot be applied when a
non-radial long range potential is present. Despite this restriction, cases of the
above result are not covered, up to now, by another method. This is the case
when α = 1, 2/3 < β < 1, and I is close and above k2/4 (see Subsection 3.2
below). Furthermore, technics of ordinary di�erential equations provide many
interesting features on the oscillating potential (see also Appendix 2 to Section
XI.8 in [32] and also [7, 44]).

We point out that a weak version of the LAP (1.3) in the radial case is
obtained in [44] for a larger set of values of (α;β).

3.2. Local Putnam-Lavine theory

In this subsection, we prepare the treatment of the general case, i.e. when
the potential is not radial, for the Schr�odinger and Dirac operators. Here we
review several methods to get the LAP. Each method is actually applicable to
treat some potentials (1.1) but not all.

Historically, LAPs for Schr�odinger operators were �rst obtained by per-
turbation, starting from the LAP for the Laplacian H0 (see [33], p. 172�177).
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Actually, this can be applied here when V = Wαβ + Vsr with β > 1 since, in
this case, Wαβ is of short range. This does not work however if V contains a
long range part. The reason is essentially the following. There exists ε > 0
such that Vsr(Q)〈Q〉ε+1 is H0-compact while for any ε > 0, Vlr(Q)〈Q〉ε+1 is
not H0-compact. In [5, 6], the LAP was proved perturbatively for a class of
oscillatory potentials that take the form V (x) = x · ∇W (x) + Vsr(x) for short
range W and Vsr. This includes the case α+ β > 2 in the present situation.

To go beyond, non perturbative methods had to be developed. Lavine

initiated nonnegative commutator methods in [22, 23] by adapting Putnam's

idea (see [8] p. 60). Mourre introduced in 1980 [29] a powerful, commutator

method, nowadays called �Mourre commutator theory� (see [1, 8, 13, 20, 38]).

These methods have some idea in common (positivity of some commutator

i[H,B]) but the latter is more �exible and also provides stronger results on

the behaviour of the resolvent of H near the spectrum. They both apply here

when V = Wαβ + Vsr + Vlr with β > α since Wαβ is actually a long range

potential in that case. Re�ned versions of Mourre's commutator method can

be used to cover the previous results (see [19,26]). But it was proved in [16,19]

that the required assumptions for these methods are not satis�ed when α = 1

and 0 < β < 1. Roughly speaking, the problem comes from the fact that the

commutator i[H,A] does not �contain enough decay in 〈Q〉� (see details below).
We refer to the books [1, 8] for details on Mourre's commutator method. We

also mention an approach of the LAP via spectral measures in [2], which seems

however to have di�culties to treat a long range part in the potential.

In Subsections 3.3 and 3.4 below, we shall make use of the �local Putnam-

Lavine theory� to get the LAP for a larger set of parameters (α;β), for Schr�o-

dinger and Dirac operators. We present here an abstract version of this theory.

Since it is related to Mourre's commutator theory, we sketch the latter a little

bit more.

The �local Putnam-Lavine theory� was introduced in [15]. Then it was

slightly modi�ed and simpli�ed by C. G�erard in [14]. In [16], it was proved that

G�erard's version actually works under quite weak assumptions (in particular

weaker than those in [14]) and was called �Weighted Mourre theory�. This name

is not appropriate since the corresponding theory does not make use of di�e-

rential inequalities, which were a cornerstone in the usual Mourre commutator

theory (see below). In fact, the approach in [14�16] only uses a kind of positi-

vity of operators of the form θ(H)[H, iB]θ(H), for some self-adjoint operators

B and for some localization functions θ. This is reminiscent of the works of

Putnam (see [8], p. 61) and Lavine (see [22,23]) but introduces localizations in

H as a new feature. It is thus natural to call it �local Putnam-Lavine theory�.
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Let us now review and compare Mourre's commutator theory and the
�local Putnam-Lavine theory�.

Let T be a self-adjoint operator acting in some Hilbert space H (T will
play the role of H in our setting). Assume that there is another self-adjoint
operator S in H such that, in some sense, the commutator [T, S] is de�ned on
large enough domain in H. Since T and S are a priori unbounded, this is not
a trivial requirement. The notion of C1(S) regularity provides an appropriate
framework for this situation (cf. [1]). Although this point is important, we shall
not enter into details here. Assume further that, on some compact interval J
of R, we have the following Mourre estimate, in the form sense,

(3.1) EJ (T )[T ; iS]EJ (T ) ≥ cEJ (T ) + K ,

where c > 0, K is a compact operator on H, and EJ (T ) is the spectral measure
of T on J . If the commutator [T ;S] is �nice enough� (correctly, if T ∈ C1(S)),
then the Virial Theorem states that the point spectrum of T in J is �nite.
This is the �rst step in Mourre's commutator theory. To get a LAP for T of
the form

(3.2) sup
<z∈I,
=z 6=0

∥∥〈S〉−s(T − z)−1〈S〉−s
∥∥ < +∞ ,

for some s > 0, on some I ⊂ J (I necessarily avoids the point spectrum
of T ), one introduces modi�ed resolvents 0 < ε 7→ (T + Tε − z)−1, where Tε
�tends� to 0 as ε→ 0 and �contains� [T ;S]. The LAP is derived from di�erential
inequalities for the previous function of ε and this is the second step of Mourre's
commutator theory. In fact, one gets a more precise result on the resolvent of
T near I than the LAP. This second step requires a better �regularity� of T
w.r.t. S than the one required by the Virial theorem. The latter regularity is
granted when T = H, S = A, and α = β = 1, but not the former (cf. [16]).

The �local Putnam-Lavine theory� aims to get (3.2) when less regularity
than the one required by Mourre's commutator theory is available. Since one
has to �nd an interval I that avoids the point spectrum of T , one also starts
by proving a Mourre estimate (3.1) to get the Virial Theorem on J and choses
I inside J . Then one applies the

Theorem 3.1 ([16]). Under a suitable regularity assumption on T w.r.t.

S, the LAP (3.2) for s > 1/2 on I is valid if there exist an interval J , con-
taining I in its interior, and a real valued, bounded function ϕ such that the

�weighted Mourre estimate� for T on J , given by

(3.3) EJ (T )[T ; iϕ(S)]EJ (T ) ≥ EJ (T )〈S〉−2sEJ (T ) ,

holds true.
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In [14], it was proven that (3.3) follows from the Mourre estimate (3.1), if
T has a good enough regularity w.r.t. S (actually a much better regularity than
the one required by Mourre's commutator theory). This means, in particular
that, if this regularity is good enough to apply Mourre's commutator theory,
the �local Putnam-Lavine theory� becomes useless since Mourre's commutator
theory will give better results. But, in concrete applications, one can hope
to directly prove (3.3) when the regularity required by Mourre's commutator
theory is not available or di�cult to check. This is precisely what happens
when T = H, S = A, and α = β = 1 (see Subsection 3.3).

However, as we shall see in Subsection 3.4, one faces sometimes the fol-
lowing di�culty when one tries to show (3.3). There is no spectral limitation
on S in (3.3). This estimate is local in T but not in S. For instance, if one
considers (3.3) for T = H0 and S = Q, in dimension 1, the estimate is localized
in the Fourier variable but not in the original variable.

To illustrate this di�culty, let us describe a similar problem in an simple
framework. Consider a positive, continuous function f on R. We want to �nd
a positive lower bound for f . This is not possible in general but, if we further
know that the �liminf� of f at −∞ and +∞ are positive, then f indeed has a
positive lower bound. Without further information on f , we cannot guess such
a bound but we can prove its existence by �nding a positive lower bound for
f outside some compact set and then by arguing that a continuous, positive
function on a compact set does have a positive lower bound.

To prove (3.3) in applications, it might be di�cult to guess an appropriate
function ϕ. However, we can try the strategy described in the above, simple
problem. This is exactly what the primitive version of the �local Putnam-Lavine
theory� in [15] does. One tries to prove (3.3) for �large� S (see Proposition 3.1
in [15]) and to derive (3.3) for �bounded� S from the Mourre estimate (3.1) (see
Proposition 3.6 in [15]).

To ful�l the previous idea, it is convenient to reformulate the LAP (3.2) in
the following way: a weighted Weyl sequence associated to T on I with weights
〈S〉−s is a sequence (fn, zn)n∈N such that, for all n, zn ∈ C, =zn 6= 0, <zn ∈ I,
EI(T )fn = fn ∈ D(T ), and (T − zn)fn ∈ D(〈S〉s), and such that =(zn) → 0,
‖〈S〉s(T − zn)fn‖ → 0, and (‖〈S〉−sfn‖)n∈N converges to some η ≥ 0. Such η
is called the mass of the weighted Weyl sequence. Note that, if s = 0, such a
sequence (fn, zn)n∈N is a Weyl sequence for T in the usual sense.

Theorem 3.2 ([16]). Under some (quite weak) regularity of T w.r.t. S,
the LAP (3.2) on I for s ≥ 0 is equivalent to the property: for any weighted

Weyl sequence (fn, zn)n∈N associated to T on I with weights 〈S〉−s, the mass η
is zero.
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Now, to prove the LAP (3.2) on I for s > 1/2, one considers any weighted

Weyl sequence (fn, zn)n∈N associated to T on I with weights 〈S〉−s and show

that its mass η is zero. At a technical level, one separates the �large� S region

from the �bounded� S region by considering, for a compactly supported cut-

o� function χ that equals 1 near 0, the χ(S)fn, on one hand, and the (1 −
χ)(S)fn, on the other hand. More precisely, one uses a version of (3.3) for

�large� S to prove that the mass of ((1−χ)(S)fn, zn)n∈N is zero and the Mourre

estimate (3.1) to show that the mass of (χ(S)fn, zn)n∈N is also zero. This will

be illustrated in details in Subsection 3.4.

3.3. Schr�odinger and Dirac operators with an almost short range,

oscillating potential

In this Subsection, we apply the �local Putnam-Lavine Theory� to get the

LAP (1.2) for Schr�odinger operators and the LAP (1.6) for Dirac operators,

when the potential contains an almost short-range oscillating part. More pre-

cisely, this oscillating part will be given by the potential W11 (see (1.1) with

α = β = 1).

We point out that, in this situation for Schr�odinger operators, it was

proved in [16], that the Hamiltonian H does not have the regularity w.r.t. A,

that is required by Mourre's commutator theory. We expect that this is also

true for the corresponding Dirac operator.

Here we shall use the version of the �local Putnam-Lavine Theory� that

is based on a weighted Mourre estimate and summarized in Theorem 3.1.

Let us �rst consider the Schr�odinger case with V = W11 + Vlr + Vsr. We

only sketch the arguments to prove the LAP (1.2) on some compact interval

I ⊂]0; +∞[. The details are provided in [16] (see the proof of Theorem 4.15,

there).

As mentioned above, we know that I should avoid the point spectrum

of H. The latter could however be dense in the essential spectrum ]0; +∞[

(cf. Subsection 2.2). As in Mourre's commutator theory, we �rst show a Mourre

estimate on some appropriate interval J and then prove that the point spectrum

of H in J is �nite. It is then possible to choose inside J a compact interval I
that avoids the point spectrum. On such I, we shall be able to prove a LAP.

In view of Subsection 3.2, it is natural to take for S the operator A =
2−1(P · Q + Q · P ) and to look for a compact interval J (inside ]0; +∞[), for
which we can prove a Mourre estimate (3.1). In the present framework, the
Mourre estimate on J is valid if there exists c > 0 and a compact operator K
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(on L2(Rd)) such that

(3.4) EJ (H)[H, iA]EJ (H) ≥ cEJ (H) + K ,

where Ω 7→ EΩ(H) is the spectral resolution of H.

It is well known that the quadratic form [H0 + Vlr + Vsr, iA] extends to a
bounded form on the domain H2(Rd) of H0 and that (3.4) holds true if [H, iA]
is replaced by [H0 + Vlr + Vsr, iA]. Thus, we have to control the form [W11, iA]
that is associated to the operator −Q · ∇W11(Q). This form does extend to a
bounded form on H2(Rd) but not to a compact one, due to the fact that the
function x 7→ x · ∇W11(x) does not tend to 0 at in�nity.

To overcome this di�culty, we note that we may replace EJ (H) in (3.4)
by θ(H) for some smooth, localized function θ. Thus we have to control
θ(H)[W11, iA]θ(H). Furthermore, since the di�erence H −H0 is H0-compact,
it actually su�ces to show that θ(H0)[W11, iA]θ(H0) is a compact form on
L2(Rd). We pick from [16] the

Proposition 3.3 ([16], Lemma 4.3, Lemma C.1, and Proposition A.1).
Take some θ ∈ C∞c (R;C) with small enough support in the interval ]0; k2/4[.
Then, for any ε ∈ [0; 1[, the operator θ(H0)〈Q〉ε sin(k|Q|)θ(H0) extends to a

compact operator on L2(Rd).

Remark 3.4. In dimension d = 1, Proposition 3.3 still holds true if ]0; k2/4[
is replaced by R \ {k2/4}. It is more or less contained in [12].

In general, it is convenient to use an appropriate pseudodi�erential cal-
culus to prove Proposition 3.3. In this way, one can see that, up to a compact
correction, the operator θ(H0)〈Q〉εeik|Q|θ(H0) is given by the Weyl quantiza-
tion of the function (x; ξ) 7→ 〈x〉εθ(|ξ|2)θ(|ξ − k|2). If the support of θ is small
enough in ]0; k2/4[ (in R\{k2/4}, if d = 1), this function vanishes identically. If
d > 1 and the support of θ is contained in [k2/4; +∞[, this is not true anymore
and the considered operator is not compact.

Proposition 3.3 should be compared to Proposition 2.9 to enlighten the
di�erence between the cases α = 1 and α > 1.

Thanks to Proposition 3.3, we get the Mourre estimate (3.4) on any small

enough compact interval J ⊂]0; k2/4[ (J ⊂ R \ {k2/4}, if d = 1). Using a
compacity argument, we recover (3.4) on any compact interval J ⊂]0; k2/4[
(J ⊂ R \ {k2/4}, if d = 1). Then we can use the Virial Theorem (see [1], p.
295) to show the �nitness of the point spectrum of H in J .

Now we take a compact interval I inside ]0; k2/4[ (R \ {k2/4}, if d = 1),
that avoids the point spectrum of H. Since, for any δ > 0, I can be covered
by a �nite number of compact intervals of size δ, we can deduce the LAP (1.2)
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on I from the LAP (1.2) on those intervals. In other words, we may assume I
as small as we want.

To prove the LAP on such I, it su�ces, by Theorem 3.1, to prove a
weighted Mourre estimate of the type (3.3). We shall show that, for all s > 1/2,
there exist an interval J , that contains I in its interior and avoids the point
spectrum of H, and a bounded, real function ϕ on R such that

(3.5) EJ (H)[H, iϕ(A)]EJ (H) ≥ EJ (H)〈A〉−2sEJ (H) .

It is convenient to look for a function ϕ of the form ψ(·/R), for some R ≥ 1
and an appropriate real valued, bounded function ψ, and to show

(3.6) EJ (H)[H, iψ(A/R)]EJ (H) ≥ EJ (H)〈A/R〉−2sEJ (H) .

Indeed, (3.5) follows from (3.6) since 〈A/R〉−2s ≥ 〈A〉−2s.

To guess an appropriate function ψ, it is natural to express ψ(A/R) with
the help of Hel�er-Sj�ostrand formula

(3.7) ψ(A/R) =

∫
C
∂z̄ψ

C(z)(z −A/R)−1 dµ(z) ,

where µ is the Lebesgue measure on C and ψC is an almost-analytic extension
of ψ (see [15�17] for details). Commutator expansions (see [15]) indicate that
the commutator [H, iψ(A/R)] is essentially given by ψ′(A/R)[H, iA/R] and
one expects that the commutator [H, iA] exhibits some positivity. Therefore,
in view of the r.h.s. of (3.6), it is natural to choose ψ such that ψ′(t) = R〈t〉−2s.
Since 2s > 1, we may take

ψ(t) = c ·R ·
∫ t

−∞
〈τ〉−2s dτ ,

for some constant c > 0 to be chosen later. However, the mentioned commu-
tator expansions actually require at least an appropriate boundedness of the
commutators [H,A] and [[H,A], A], that we do not have in the present setting.
What we can use is the consequence of (3.7) given by

(3.8) [H, iψ(A/R)] =

∫
C
∂z̄ψ

C(z) (z−A/R)−1[H, iA/R](z−A/R)−1 dµ(z) .

Now the �rst step is to replace each projection EJ (H) in the l.h.s. of
(3.6) by θ(H), for smooth localization functions θ, and to move a copy χ(H) of
these localizations (with θ = θχ) inside the integral and through the resolvent
(z − A/R)−1. Then, one replaces these copies by localizations in H0. Up to
error terms, the l.h.s. of (3.6) reduces to

θ(H)
(∫

C
∂z̄ψ

C(z) (z−A/R)−1χ(H0)[H, iA/R]χ(H0)(z−A/R)−1 dµ(z)
)
θ(H) .
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As in the proof of the Mourre estimate (3.4), χ(H0)[H, iA/R]χ(H0) is
given by R−1χ2(H0)2H0 plus some �small� error term. Here, we used again
Proposition 3.3 to get rid of the contribution of the oscillating part W11 of the
potential. In the contribution of R−1χ2(H0)2H0 to the above integral, namely

θ(H)
(∫

C
∂z̄ψ

C(z) (z −A/R)−1R−1χ2(H0)2H0(z −A/R)−1 dµ(z)
)
θ(H) ,

we move each localization χ(H0) through a resolvent (z − A/R)−1 to get, up
to some error term,

θ(H)χ(H0)
(∫

C
∂z̄ψ

C(z) (z−A/R)−1R−1[H0, iA](z−A/R)−1 dµ(z)
)
χ(H0)θ(H) ,

which is equal to θ(H)χ(H0)[H0, iψ(A/R)]χ(H0)θ(H). Since the forms [H0, A]
and [[H0, A], A] have nice boundedness properties, we can use the commutators
expansions of [15] to write the above term, up to some error, as

θ(H)χ(H0)(ψ′(A/R))1/2[H0, iA/R](ψ′(A/R))1/2χ(H0)

= c θ(H)χ(H0)〈A/R〉−s[H0, iA]〈A/R〉−sχ(H0)θ(H) .

Now, we move again each χ(H0) through a weight 〈A/R〉−s to transform
this term into, up to some error term,

c θ(H)〈A/R〉−sχ(H0)[H0, iA]χ(H0)〈A/R〉−sθ(H)

= c θ(H)〈A/R〉−sχ2(H0)2H0〈A/R〉−sθ(H) ,

which is bounded below by cc′θ(H)〈A/R〉−sχ2(H0)〈A/R〉−sθ(H), for some I-
dependent constant c′ > 0. Moving again each localization χ(H0) through a
weight 〈A/R〉−s and replacing each χ(H0) by χ(H), this lower bound can be
replaced by cc′θ(H)〈A/R〉−2sθ(H), up to another error term, since θ = θχ.
Choosing c such that cc′ = 2, we arrive at
(3.9)
θ(H)[H, iψ(A/R)]θ(H) ≥ 2 θ(H)〈A/R〉−s

(
2I + B + R−1C

)
〈A/R〉−sθ(H) ,

where I is the identity operator on L2(Rd) and where we put all the previous
error terms in B + R−1C. It turns out that the following properties are true,
with Hσ = H or Hσ = H0.

a) The operator C is bounded and, although it depends on χ and R, its ope-
rator norm can be bounded above by some χ-independent, R-independent
constant.

b) The operator B is a �nite sum of terms of the form

B1 ·K · χ(Hσ) ·B2 .

c) K is a compact operator on L2(Rd) that depends neither on θ, nor on R,
nor on χ.
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d) The operators B1 and B2 are bounded on L2(Rd). Although they do

depend on χ and R, their operator norms can be bounded above by some

χ-independent, R-independent constant.
Now we shrink the support of χ (and thus the one of θ) to make the

norm of Kχ(Hσ) small enough. This is possible since we only have continuous
spectrum of H and H0 in J . Then we take R large enough to ensure that the
r.h.s of (3.9) is bounded below by θ(H)〈A/R〉−2sθ(H), yielding the weighted
Mourre estimate (3.6) on any small enough J , on which θ = 1.

We claimed that the contribution of the potential V to the l.h.s. of (3.9)
can be bounded below by terms in B + R−1C. This is quite straightforward
(and standard) for the contributions of Vlr and Vsr since

〈Q〉ρlr/2[Vlr(Q), iA]〈Q〉ρlr/2 = −〈Q〉ρlr/2Q · ∇Vlr(Q)〈Q〉ρlr/2

and 〈P 〉−1〈Q〉ρsr/2(Vsr(Q)A−AVsr(Q))〈Q〉ρsr/2〈P 〉−1

are bounded. For the one of W11, we saw that we essentially have to control

χ(H0)[W11(Q), A]χ(H0) = χ(H0)W11(Q)Aχ(H0) − χ(H0)AW11(Q)χ(H0) .

This form extends to a compact form on L2(Rd) thanks to Proposition 3.3.
Since (3.6) implies (3.5), we can apply Theorem 3.1 to obtain the

Theorem 3.5 ([16]). Take V = W11 + Vlr + Vsr and a compact interval
I ⊂]0; k2/4[ (I ⊂ R \ {k2/4}, if d = 1). Then, for any s > 1/2, (1.2) holds
true.

Remark 3.6. Actually, one can include in V some local, H0-compact sin-
gularities.

The above method can be recycled to treat the massive Dirac operator D
with an oscillating part of typeW111I4 in the potential. To take into account the
matrix structure of the Dirac operator, a natural candidate for the �conjugate
operator� A′ is a bit more complicated than the operator A we used for the
Schr�odinger case. To get the LAP (1.2) with H replaced by D and A replaced
by A′ on some compact interval I, it is convenient to choose a I-dependent
operator A′. Denote byM4(C) the vector space of 4×4-matrices with complex
entries. Recall that m > 0 denotes the mass. Let τ ∈ C∞c (R;R+) such that
τ = 1 on I and τ = 0 outside a slightly larger interval included in]

−(m2 + k2/4)1/2;−m
[
∪
]
m; (m2 + k2/4)1/2

[
.

We introduce the functions µ : R3 −→ R+, Fj : R3 −→ R, for j ∈ {1; 2; 3},
and Π± : R3 −→M4(C), de�ned by

µ(ξ) =
(
|ξ|2 +m2

)1/2
, Fj(ξ) = µ(ξ)2 · |ξ|−2 · τ

(
µ(ξ)

)
· ξj

and Π±(ξ) = 2−1
(
1I4 ± µ(ξ)−1(α · ξ + mβ)

)
.
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After conjugation with the Fourier transform, the free Dirac operator
(1.4) acts as the multiplication by the matrix α ·ξ + mβ (where ξ is the Fourier
variable). The eigenvalues of this matrix are ±µ(ξ), both with multiplicity two,
and the corresponding spectral projections are Π±(ξ).

Let F = (F1;F2;F3)T . Following [4], we set

Ã = 2−1
(
Q · F (P ) + F (P ) ·Q

)
= 2−1

∑
j∈{1;2;3}

(
Qj · Fj(P ) + Fj(P ) ·Qj

)
,

One can check that [µ(P ), iÃ] = µ(P )τ(µ(P )). This fact should be com-
pared to [H0; iA] = 2H0. But one also needs to take into account the matrix
structure of D0. It is thus natural to choose A

′ as the self-adjoint realization in
L2(R3;C4) of Π+(P )ÃΠ+(P ) + Π−(P )ÃΠ−(P ).

Following the method we used to prove Theorem 3.5, one can also prove
the following result on the Dirac operator D.

Theorem 3.7 ([27]). Let V = (W11 +Vlr)1I4 +Vsr, where the function Vlr
(resp. Vsr), de�ned on R3 with values in R (resp. the space of self-adjoint 4×4-
matrices), satis�es the long (resp. short) range assumption. Take a compact
interval

I ⊂
]
m; (m2 + k2/4)1/2

[
or I ⊂

]
−(m2 + k2/4)1/2;−m

[
.

Then, for any s > 1/2, (1.6) holds true.

3.4. Schr�odinger operators with a weak decaying,

oscillating potential

Now, we come back to the Schr�odinger operator and study the LAP for
a another range of the parameters (α;β) in the oscillating part (1.1) of the
potential. We shall focus on the region where 1 ≤ α, 1/2 < β ≤ 1, and
α+ β ≤ 2.

Let us have a look at the method we followed to get Theorem 3.5. It used

in an important way the fact that the form [W11, iA] extends to a bounded

form on L2(Rd). Indeed, we used this property to prove the Mourre estimate

(3.4), to write down (3.8), and also each time we moved a localization χ(H)

through the resolvent (z−A/R)−1. In the considered region for (α;β), one can

prove (cf. [19]) that the form [Wαβ, iA] does not extend to a bounded form on

H2(Rd). Therefore, we cannot simply follow the method. While we shall be

able to recover the Mourre estimate, it seems di�cult (at least complicated) to

adapt the above arguments to get the weighted Mourre estimate (3.5) to the

present situation.
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However, as we shall see now, it is possible to use the version of the �local

Putnam-Lavine Theory�, that was presented in [15] and sketched at the end of

Subsection 3.2 (see Theorem 3.2 and the comments following it).

For simplicity, we assume that V = Wαβ + Vsr and sketch the arguments

used in [19] to get the LAP.

We �rst need to show the Mourre estimate (3.4). Consider again the above

proof of (3.4). We use the fact that β > 1/2 to �rst show that(
θ(H)− θ(H0)

)
WαβAθ(Hσ) and

(
θ(H)− θ(H0)

)
AWαβθ(Hσ) ,

with Hσ = H0 or Hσ = H, extend to compact forms on L2(Rd). Thus, there

exists a compact operator K0 such that θ(H)[Wαβ, iA]θ(H) = θ(H0)[Wαβ, iA]

θ(H0)+K0. Now we use β > 0 and Proposition 2.9, if α > 1, or Proposition 3.3,

if α = 1, to see that θ(H0)[Wαβ, iA]θ(H0) extends to a compact form on L2(Rd).
Thus we are able to perform the previous proof of the Mourre estimate (3.4).

We point out for latter purposes that, as usual, shrinking the size of J , one
deduces from it the following strict Mourre estimate: there exists c > 0 such

that

(3.10) EJ (H)[H, iA]EJ (H) ≥ cEJ (H) .

Although the regularity assumptions needed by the Virial Theorem are

not met (if β < 1), its result is valid (see [19]). The main reason for this is

the fact that a possible eigenvector of H associated to an eigenvalue in J is

nice enough to belong to the domain of A. Thus, the point spectrum of H is

�nite in an interval J for which the Mourre estimate (3.4) is valid and it is

actually empty on those intervals J for which the strict Mourre estimate (3.10)

holds true.

Instead of proving the LAP (1.2), we shall prove the LAP (1.3). Note

that if the latter is true for some s > 1/2, it is also true for any s′ ≥ s, since

〈Q〉s−s′ is bounded. Thus, we only need to show (1.3) for s > 1/2 and s as

close to 1/2 as we want. Let δ = 2s− 1 > 0, small enough.

Instead of proving the estimate (3.6), that is global in the position ope-

rator Q, we prove a similar estimate but �at in�nity in the position operator

Q�. Let us make this precise. Let J be a compact interval inside ]0; k2/4[

(R \ {k2/4} if d = 1). Inside the interior of J , take a compact interval I
that avoids the (�nite) point spectrum of H in J . Let E be a set of functions

f ∈ L2(Rd) satisfying EI(H)f = f such that the function E 3 f 7→ ‖〈Q〉−sf‖
is bounded. Let γ = β − δ > 1/2.
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We claim that there exist c1 > 0 and R1 ≥ 1 such that, for all R ≥ R1,
there exists a H-bounded, self-adjoint operator BR such that, for all f ∈ E ,

〈f ,
[
H, iBR

]
f〉 ≥ c1 · ‖χR(Q)〈Q〉−sf‖2(3.11)

−O(R−γ) · ‖χR(Q)〈Q〉−sf‖ − O(R−γ−1) ,

where χR(Q) = χ(R−1|Q|), χ ∈ C∞(R+;R), χ = 0 on [0; 1], and χ = 1
on [1; +∞[, and where the �O� are uniform w.r.t. the set E . In fact, we can
precisely take the operator BR = χR(Q)2gδ(Q)Q ·P +P ·Qgδ(Q)χR(Q)2, where

gδ(x) =
(
2 − 〈x〉−δ

)
〈x〉−1 ≥ 〈x〉−1 .

(3.11) plays the role of what we called the estimate (3.6) for �large� S with
S = Q in Subsection 3.2. The cut-o� function χR(Q) indeed localizes in a
region where |Q| is large. In contrast to (3.6), we allow error terms in (3.11),
that are however small for R large.

To prove (3.11), we write f = θ(H)f , for an appropriate, smooth cut-o�
function θ. We use the fact thatH andH0 have a good regularity w.r.t. Q in the
sense that the forms [H,Qj ] = [H0, Qj ] and [[H,Qj ], Qk] = [[H0, Qj ], Qk] are
H-bounded and bounded, respectively. Now (3.11) follows from the following
facts:

a) The contribution of Vsr to (3.11) can be hidden in the two last terms, the
errors terms.

b) Thanks to the form of BR,

[H0, iBR] = χR(Q)gδ(Q)1/2[H0, iA]gδ(Q)1/2χR(Q) + a nice error term .

c) Since EI(H)f = f , we may write f = θ(H)f , for an appropriate, smooth
cut-o� function θ. On the l.h.s. of (3.11), we insert those functions θ(H)
and move them from the exterior to the centre. This creates terms that
contribute to the error terms on the r.h.s. of (3.11). We replace each
moved function θ(H) by θ(H0) producing this way new terms that can
be seen as error terms.

d) The main term on the l.h.s. of (3.11) is of the form

〈f , χR(Q)gδ(Q)1/2θ(H0)[H0, iA]θ(H0)gδ(Q)1/2χR(Q)f〉

and can be bounded below by the �rst term on the r.h.s. of (3.11).

e) It remains to explain why the contribution of Wαβ to the l.h.s. of (3.11)
produces terms that belong to the error terms on the r.h.s. of (3.11).
This follows from Proposition 2.9, if α > 1, and from Proposition 3.3, if
α = 1.

Now we follow the arguments in [15]. We shall apply Theorem 3.2 with
S = Q to get the LAP (1.3). Take a weighted Weyl sequence (fn, zn)n∈N
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associated to H on I. Recall that, for all n, zn ∈ C, =zn 6= 0, <zn ∈ I,
EI(H)fn = fn ∈ D(H), and (H − zn)fn ∈ D(〈Q〉s), and such that =(zn)→ 0,
‖〈Q〉s(H−zn)fn‖ → 0, and (‖〈Q〉−sfn‖)n∈N converges to some η ≥ 0, the mass
of the weighted Weyl sequence. We show that η = 0.

For all n, θ(H)fn = fn. For E = {fn;n ∈ N}, we have (3.11). Using the
properties

(3.12) ‖〈Q〉s(H − zn)fn‖ → 0 and ‖〈Q〉−sfn‖ → η ,

and expanding the commutator, we can show that the l.h.s. of (3.11) tends to
zero as n→∞. This implies that, for R ≥ R1,

(3.13) lim sup
n→∞

‖χR(Q)〈Q〉−sfn‖ = O(R−γ) .

Let τR = 1 − χR. We apply the strict Mourre estimate (3.10) to each
τR(Q)fn. Thanks to the good boundedness properties of the commutators
[H,Qj ] = [H0, Qj ] and [[H,Qj ], Qk] = [[H0, Qj ], Qk], we can move the τR(Q)
into the commutator and control the error terms with the help of (3.13). This
leads to

(3.14) 〈fn , [H, iCR]fn〉 ≥ c‖τR(Q)fn‖2 − O(Rs−γ)‖τR(Q)fn‖ − O(R2s−2) ,

for some R-dependent bounded operator CR. Expanding the commutator on
the l.h.s. of (3.14) and using again (3.12), we prove that this l.h.s. tends to
zero as n→∞. This yields

lim sup
n→∞

‖τR(Q)fn‖ = O(Rs−γ) ,

with s− γ < 0. Combining this with (3.13), we obtain that

η = lim
n→∞

‖〈Q〉−sfn‖ = 0 .

By Theorem 3.2, this proves the LAP (1.3) on I. We have just sketched the
proof of the following

Theorem 3.8 ([19]). Let 1/2 < β ≤ 1 ≤ α and V = Wαβ + Vsr. Take

a compact interval I ⊂]0; k2/4[ (I ⊂ R \ {k2/4}, if d = 1). Then, for any

s > 1/2, (1.3) holds true.

Remark 3.9. Theorem 3.8 remains valid if V contains H0-compact, local
singularities and a long range part Vlr, provided that β + ρlr > 1 (see [19]).
However, we believe that the condition ρlr > 0 should be su�cient.

In technical terms, the main di�erence between the proof of Theorem 3.5
and the one of Theorem 3.8 takes place in the facts that, in the former, H has
the C1 regularity w.r.t. A, while, in the latter, this regularity is absent and one
replaces it by a much better regularity w.r.t. 〈Q〉.
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In the previous results, we always chose I ⊂]0; k2/4[ (except in dimension
1). What happens if we take I ⊂]k2/4; +∞[? We shall give an answer in the
case α = β = 1. Recall that, in this case, the form [W11, iA] is actually bounded
on L2(Rd). In the proof of Theorems 3.5 and 3.8 above, we treated the contri-
bution of [W11, iA] as a �small� perturbation of the dominant contribution given
by [H0, iA]. This was granted by the localizations in H in the energy region
]0; k2/4[ (see Proposition 3.3). For the Mourre estimate (3.4), the contribution
of [W11, iA] then disappeared in the compact operator K. But (3.4) would
still hold true if this contribution would be small compared to [H0, iA] = 2H0.
Roughly speaking, 2H0 is of the size of 2H and the latter is controlled by the
considered interval I. When the in�mum of I is large enough compared to
the size of |w| in (1.1) or, equivalently, when |w| is small enough w.r.t. to this
in�mum, one can show that, for some compact operator K1,

θ(H)
(
2H0 + [Wαβ, iA]

)
θ(H) ≥ θ(H0)2H0 + K1 .

This is enough to replace the use of Proposition 3.3 in the proof of the
Mourre estimate (as pointed out in [19], Remark 1.11) and also in the proof
of Theorem 3.5. In particular, the LAP (1.2) holds true on a compact interval
I that is located at large enough energy and also holds true on any compact
interval if |w| is small enough, provided that I avoids the point spectrum of H.
This was also obtained but in a di�erent way in [28].

What can we say if d > 1, I ⊂]k2/4; +∞[, and |w| is large? One can show
the LAP (1.3) on I as stated in

Theorem 3.10 ([27]). Let V = W11+Vsr+Vlr and take a compact interval

I included in ]k2/4; +∞[. Then, for any s > 1/2, (1.3) holds true.

Remark 3.11. Again Theorem 3.10 remains valid if V containsH0-compact,
local singularities.

One can prove Theorem 3.10 along the lines of the proof of Theorem 3.8.
There is however an important change. In the present situation, we know that
the form θ(H0)[W11, iA]θ(H0) does not extend to a compact form on L2(Rd).
But one can use the following

Proposition 3.12 ([27]). Let θ ∈ C∞c (R;C) with small enough compact

support in ]k2/4; +∞[. Then, for any ε > 0, there exist three bounded operators

Bε, B
′
ε, and Cε on L2(Rd) such that

θ(H0) sin
(
k|Q|

)
θ(H0) = Cε + 〈Q〉−1Bε + B′ε〈Q〉−1 ,

‖Cε‖ ≤ ε, and, as ε→ 0, ‖Bε‖+ ‖B′ε‖ = O(1).

We got rid of the contribution of θ(H0)[W11, iA]θ(H0) in the proof of
Theorem 3.8 by saying that it is compact or it �contains� decay in 〈Q〉. In the
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present situation, we use Proposition 3.12 to say that it is, up to some error
that is compact or that �contains� decay in 〈Q〉, small compared to the main
contribution, namely the one of θ(H0)[H0, iA]θ(H0), provided we take ε small
enough.

Before we end this section with a sketch of the proof of Proposition 3.12,
let us sum up the above results on the LAPs for Schr�odinger operators in Fig. 1.
Depending on the parameters α and β, that enter in the oscillating potential
(1.1), we marked several regions. In the blue one, one can prove the LAP (1.2)
without energy restriction in ]0; +∞[ by Mourre commutator method with A as
conjugate operator. Above the dark and red lines, the LAP (1.3), again without

-
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Fig. 1 � LAP. V = blue ∪ green.

energy restriction in ]0; +∞[, is proven by one-dimensional arguments, provided
that the longe range part of the potential is radial. In the green region, the LAP
(1.3) on I inside ]0; k2/4[ (R \ {k2/4}, if d = 1) is obtained by Theorem 3.8.
On the point B, the LAP (1.2) is valid below k2/4 (cf. Theorem 3.5) and the
LAP (1.3) is granted above k2/4 (cf. Theorem 3.10).

Recently, Mourre's commutator theory for Schr�odinger operator was de-
veloped with new conjugate operators ( [26, 31]). In particular, the LAP (1.3)
is shown in [26] to hold on I inside ]0; k2/4[ (R\{k2/4}, if d = 1) if 2α+β > 3.
Using an appropriate version of Mourre's commutator theory, one can even in-
clude negative values of β. This increases the blue region in Fig. 1 but it still
does not cover the green region.

Let us now sketch a proof of Proposition 3.12. It relies on a decomposition
of the radial symmetric operator θ(H0) sin

(
k|Q|

)
θ(H0) in spherical harmonics
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and on the one-dimensional version of the interference phenomenon observed
in Proposition 3.3 (as mentioned in Remark 3.4).

As guiding ideas, we note, on one hand, that, above k2/2 and in dimension

1, θ(H0) sin
(
k|Q|

)
θ(H0) is compact (cf. Remark 3.4), and, on the other hand,

this operator in arbitrary dimensions should behave like in dimension 1, since

it is radial. We also point out that the proof of Proposition 3.3 in [16] is based

upon some appropriate pseudodi�erential calculus (see Lemma 4.3, Lemma C.1,

and Proposition A.1 in [16]). Using spherical coordinates, one can map L2(Rd)
by a unitary transformation to a direct sum⊕

α∈D
L2(R+; dr)⊗ Sα ,

where D = {` − 1 + d/2; ` ∈ N} and, for α ∈ D, Sα is a (d − 1)-dimensional

vector space over C. Furthermore H0 is unitary equivalent to a direct sum

⊕
α∈D

h>0
α ,

where, for α ∈ D, h>0
α := −∂2

r +αr−2. To get Proposition 3.12, it su�ces that,

for all α ∈ D, Proposition 3.12 with H0 replaced by h>0
α and with a O(1), that

is uniform w.r.t. α, holds true.

The latter result can be deduced from the same result but for the opera-

tors hα := −∂2
r + αr−2, acting in L2(R; dr) ⊗ Sα. This can be seen using the

restriction operator R : L2(R; dr) −→ L2(R+; dr) de�ned by Rf = f|R+ . Furt-

hermore, since each hα and sin(k|Qr|) act trivially on Sα, it su�ces to prove

the following:

Proposition 3.13. Take α ∈ D. For any ε > 0, one can �nd an α-

independent function θ ∈ C∞c (R;C), with small enough support in ]k2/4; +∞[,

and bounded operators Bε(α), B′ε(α), and Cε(α), on L2(R) such that, uniformly

w.r.t. α, ‖Cε(α)‖ ≤ ε, ‖Bε(α)‖+ ‖B′ε(α)‖ = O(1), and

(3.15) θ(hα) sin
(
k|Qr|

)
θ(hα) = Cε(α) + 〈Qr〉−1Bε(α) + B′ε(α)〈Qr〉−1 .

Here Qr denotes the multiplication operator by the variable r in L2(R).

Since θ is compactly supported, we expect that the (possible) singularity

at r = 0 of hα does not signi�cantly contribute to θ(hα). Therefore we should

be able to smooth it out by replacing hα by the pseudodi�erential operator

−∂2
r + (1− χ1)(r)αr−2, where χ1 ∈ C∞c (R;C) and χ1 = 1 near 0. The symbol

of this pseudodi�erential operator even belongs to the symbol class used to
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prove Proposition 3.3. But, to get an uniform bounds w.r.t α for the operators

Bε(α) and B′ε(α), we need that this symbol stays in a bounded set in the symbol

class, as α runs in D. This is however not true.
To overcome this di�culty, we proceed as follows. Given ε > 0, we shall

choose an appropriate function θ and some large enough κ ≥ 1, and consider,

for α ∈ D, the operators hα;κ = pwα;κ, the Weyl quantization of the symbols pα;κ

given by, denoting by τ the dual variable of r,

pα;κ(r; τ) = τ2 + αr−2 · χ
(
κ−1αr−2

)
,

where χ ∈ C∞c (R;C) and χ = 1 near 0. Since all the derivatives of the function

t 7→ t2χ(κ−1t) are bounded, pα;κ actually stays in a bounded set in the previous

symbol class, as α varies in D.
Now, we can follow the proof of Proposition 3.3 in [16] to get, for each κ ≥

1, the result of Proposition 3.13 with hα replaced by hα;κ and Cε(α) replaced

by 0. We point out that θ is chosen such that, for τ ∈ R, θ(τ2)θ((τ − k)2) = 0.

This requirement does not depend on α.

To end the proof, we transfer the result for hα;κ to hα by perturbations.

As a main step, we use the fact that hα;κ and hα di�er in the region where

αr−2 ≥ κ and the positivity of −∂2
r , to get

θ(hα) = θ1(hα)θ(hα;κ) + κ−1O(1) = θ(hα;κ)θ1(hα) + κ−1Õ(1) ,

where θ1 ∈ C∞c (R;C) satis�es θθ1 = θ, and O(1) and Õ(1) are uniform w.r.t. α

and κ. Finally, we obtain (3.15) with ε = 1/κ,

Cε(α) = θ(hα) sin
(
k|Qr|

)
κ−1Õ(1) + κ−1O(1) sin

(
k|Qr|

)
θ(hα;κ)θ1(hα),

and we choose κ large enough to get the result of Proposition 3.13.
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