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Economic theory is a mathematically rich �eld in which there are opportunities
for the formal analysis of singularities and catastrophes. This article looks at the
historical context of singularities through the work of two eminent Frenchmen
around the late 1960s and 1970s. Ren�e Thom (1923-2002) was an acclaimed
mathematician having received the Fields Medal in 1958, whereas G�erard De-
breu (1921-2004) would receive the Nobel Prize in economics in 1983. Both were
highly in�uential within their �elds and given the fundamental nature of their
work, the potential for cross-fertilisation would seem to be quite promising. This
was not to be the case: Debreu knew of Thom's work and cited it in the analysis
of his own work, but despite this and other applied mathematicians taking catas-
trophe theory to economics, the theory never achieved a lasting following and
relatively few results were published. This article reviews Debreu's analysis of
the so called regular and crtitical economies in order to draw some insights into
the economic perspective of singularities before moving to how singularities arise
naturally in the Nash equilibria of game theory. Finally, a modern treatment of
stochastic game theory is covered through recent work on the quantal response
equilibrium. In this view, the Nash equilibrium is to the quantal response equilib-
rium what deterministic catastrophe theory is to stochastic catastrophe theory,
with some caveats regarding when this analogy breaks down discussed at the
end.
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1. INTRODUCTION. A KEY POINT IN THE HISTORY

OF ECONOMICS �IN THE MATHEMATICAL MODE�

To single out a speci�c point in the history of a �eld of study and to
say: Here is where it all began oversimpli�es the complicated relationships be-
tween competing paradigms. However, we can look at speci�c lines of research
that have, with hindsight, become the dominant paradigm and look to what
those authors wrote at the time to justify their speci�c view point in order
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to understand how an in�uential researcher framed their point of view. One
such researcher is G�erard Debreu, an economist who was the sole recipient
of the 1983 Nobel Prize in Economics1 for �having incorporated new analyti-
cal methods into economic theory and for his rigorous reformulation of general
equilibrium theory�. His work was an important step in the mathematisation of
economics [15] and his Nobel speech was titled: Economic Theory in the Math-

ematical Mode [14]. Debreu acknowledged [13, 14] the importance of Thom's
work on catastrophe theory [40, 41], but chose not to incorporate these ideas
into his axiomatic treatment of economics. At the same time applied mathe-
maticians were using catastrophe theory in many �elds in a qualitative fashion
that would ultimately lead to a backlash against catastrophe theory. The de-
bate within the �eld of economic applications of catastrophe theory has been
thoroughly reviewed in [33].

A common approach to simplifying the complexities of an entire economy
is to reduce to a simpli�ed form and study the local behaviour of that econ-
omy [12]: It su�ces to construct an ... economy with two commodities and two

consumers ... and having several equilibria. There is a neighbourhood of that

economy in which every economy has the same number of equilibria. Simpli�-
cations like this allow us to use game theory with two economic agents each
having two choices each, see [11] for a recent treatment and discussion.

An important contribution of Debreu was the distinction between regular
and critical economies. In Fig. 1, the di�erent con�gurations of an economy
are labelled e, e1, e2, and e3 with the corresponding equilibrium states lying on
the equilibrium surface M. T is the projection of the equilibrium surface M
onto E , the space of all economic con�gurations. Debreu showed that, apart
from a subset of E with Lebesgue measure zero, there is an inverse mapping
T−1 : E → S and in particular if T−1(e) ∈ M is a locally unique equilibrium
point then e is a regular economy with at least one equilibrium point s∗. This
follows from the inverse function theorem when the determinant of the Jacobian
is away from 0. The special cases where the Jacobian is degenerate, i.e. e1,
e2, and e3, are the critical economies. To quote Debreu [13, pg. 284]: For

instance the economy e1 has a discrete set of (two) equilibria, but a continuous

displacement of the economy in a neighbourhood of e1 produces a sudden change

in the set of equilibria. The parallels with singularity theory are apparent and
were known to Debreu.

The purpose of this article is to introduce some of the formal aspects of
game theory, equilibrium theory, and their stochastic variations and to place
these in the context of catastrophe theory. The article is laid out as follows.

1Formally: The Swedish National Bank's Prize in Economic Sciences in Memory of Alfred
Nobel.
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Fig. 1. Reproduced after Fig. 5 in [13]. The (e, p) represents the economic con�guration
e and the prices p for the goods produced within e that result in an equilibrium s∗ ∈ S.
As the �gure suggest s∗ may not be unique but it is `almost always' locally unique, see the

main text.

Section 2 establishes the key equilibrium result of Nash and reviews an im-
portant method for the explicit computation of Nash equilibria. Section 3
introduces singularities from the perspective of catastrophe theory, its exten-
sion to stochastic catastrophe theory, and their relation to bifurcations in game
theory. Section 4 is a discussion of these results in the context of other related
approaches and results.

2. NASH EQUILIBRIUM

Optimisation leads naturally to singularities [2] and the Nash equilibrium
is a solution to an optimisation problem. As such, the appearance of singulari-
ties is expected to be a generic property of game theory solutions. This aspect
of optimisation has been explored by Arnol'd [3]: ... suppose we have to �nd

x such that the value of a function f(x) is maximal ... On smooth change of

the function the optimum solution changes with a jump, transferring from one

competing maxima (A) to the other (B). From this, singularities are expected
to be a fundamental property of economic theory which is at its core a study of
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optimising the allocation of scarce resources. In this section, we introduce the
basic elements of game theory as a decision problem and the Nash equilibrium
as an optimal solution.

2.1. Basic de�nition and existence theorem

Economics is concerned with situations in which there are n agents, where
each agent i has a discrete set of �nite choices Ci = {c1

i , . . . , c
ki
i }. An economic

game is a function from the choices agents make to a real valued payo�, one
for each agent:

g : C1 × . . .× Cn → Rn,(1)

where gi, the i
th element of g, is the payo� to agent i. A strategy for agent i is

a probability distribution over Ci:

pi : pi(c
1
i ), . . . , pi(c

ki
i )

such that
ki∑
ji=1

pi(c
ji
i ) = 1.

To simplify notation we refer to pi(c
ji
i ) as pjii . The de�nition of agent i's

expected payo� in the game g, which takes discrete choices as its arguments,
can be extended to take the strategies of the agents as arguments:

gi(pi, p−i) =
∑

c
j1
1 ∈C1

. . .
∑

cjnn ∈Cn

gi(c
j1
1 , . . . , c

jn
n )pj11 . . . pjnn(2)

where −i denotes all indexed elements excluding element i. This de�nition
of g is an extension in the sense that it contains each discrete strategy as a
special case in which one probability pjii = 1 and p−jii = 0 otherwise. These are
called pure strategies. A strategy that is not a pure strategy is called a mixed
strategy. Nash's equilibrium theory establishes the following result,

Theorem 2.1 (Nash Equilibrium). There exists at least one n-tuple (p∗1,
. . . , p∗n) such that:

gi(p
∗
i , p
∗
−i) ≥ gi(pi, p

∗
−i) ∀ i, pi.(3)

Proof (verbatim from Nash's original article [32]). Any n-tuple of strate-
gies, one for each agent, may be regarded as a point in the product space
obtained by multiplying the n strategy spaces of the agents. One such n-tuple
counters another if the strategy of each agent in the countering n-tuple yields



5 Singularities and catastrophes in economics 407

the highest obtainable expectation for its agent against the n-1 strategies of
the other agents in the countered n-tuple. A self-countering n-tuple is called
an equilibrium point.

The correspondence of each n-tuple with its set of countering n-tuples
gives a one-to-many mapping of the product space into itself. From the def-
inition of countering we see that the set of countering points of a point is
convex. By using the continuity of the pay-o� functions we see that the graph
of the mapping is closed. The closedness is equivalent to saying: if Pi, P2 . . . and
Q1, Q2, . . . , Qn, . . . are sequences of points in the product space where Qn → Q,
Pn → P and Qn counters Pn then Q counters P .

Since the graph is closed and since the image of each point under the
mapping is convex, we infer from Kakutani's theorem that the mapping has a
�xed point (i.e. point contained in its image). Hence there is an equilibrium
point. �

Using the notation above this can be rephrased more formally [11]: Given
an agent i, for every (n-1)-tuple p−i of the strategies of the other agents, there
is a best response function:

ψ(p−i) = {pi | gi(pi, p−i) ≥ gi(p′i, p−i) ∀ p′i}.(4)

This function consists of the set of strategies pi that maximise agent i's
payo� given the other agents' strategies p−i. De�ne ψ as the product space:

ψ(p1, . . . , pn) = ψ(p−1)× . . .× ψ(p−n)(5)

Then ψ is an upper-hemicontinuous, convex valued, and non-empty-valued
correspondence that maps the set of n-tuples to itself. Kakutani's �xed point
theorem provides proof of the existence of a �xed point such that: (p∗1, . . . , p

∗
n) ∈

ψ(p∗1, . . . , p
∗
n) that also satis�es Equation 3.

2.2. Computational methods

This subsection brie�y reviews some of the methods for explicitly com-
puting Nash equilibria. The main focus will be on two-agent games, which is
the special case n = 2 of the setting introduced in the previous subsection. We
shall suppose that agent 1 has l pure strategies available, and agent 2 has m
pure strategies. We put ai,j = g1(ci1, c

j
2) and bi,j = g2(ci1, c

j
2), and let A and

B denote the l × m matrices (ai,j) and (bi,j), respectively. To simplify the
notation for the probability distributions we put xi = p1(ci1), for 1 ≤ i ≤ l, and
yj = p2(cj2), for 1 ≤ j ≤ m, and we let x and y denote the column vectors (xi)
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and (yj), respectively. We have

l∑
i=1

xi = 1, x ≥ 0l,

m∑
j=1

yj = 1, y ≥ 0m.(6)

Then the expected payo�s to agents 1 and 2 are expressed succinctly as
xTAy and xTBy, respectively, where xT denotes the transpose of x. A Nash
equilibrium for such a game is then a pair (x∗, y∗) satisfying (6) and, for all
(x, y) satisfying (6), (x∗)TAy∗ ≥ xTAy∗ and (x∗)TBy∗ ≥ (x∗)TBy. That is, a
Nash equilibrium point is a pair of mixed strategies that are best responses to
each other.

An equivalent characterization of a Nash equilibrium point (x∗, y∗) is that
(x∗, y∗) must satisfy (6) and

∀i [x∗i > 0⇒ (Ay∗)i = max
k

(Ay∗)k],(7)

∀j [y∗j > 0⇒ ((x∗)TB)j = max
k

((x∗)TB)k].(8)

This characterization is proved in [31] (see Equation 4). It could be
roughly expressed as follows: a mixed strategy is a best response to an op-
ponent's strategy if and only if it uses pure strategies that are best responses
amongst all pure strategies. See also [10] (Lemma 4.17).

The following result summarizes a further useful transformation of the
problem of �nding a Nash equilibrium point.

Theorem 2.2. Assume that all elements of A and B are positive. Then

there is a bijection φ between the set of all Nash equilibrium points (x∗, y∗) and
the set of all pairs (u∗, v∗) of non-zero vectors u∗ ∈ Rl and v∗ ∈ Rm, such that

uTB ≤ 1m, u ≥ 0l, Av ≤ 1l, v ≥ 0m, and(9)

∀i [u∗i > 0⇒ (Av∗)i = 1],(10)

∀j [v∗j > 0⇒ ((u∗)TB)j = 1].(11)

Proof. Let (x∗, y∗) be a given Nash equilibrium point for the game A, B.
Then (x∗)TAy∗ and (x∗)TBy∗ are positive, by assumption that all elements
of A and B are positive. So we may put u∗i = x∗i /((x

∗)TBy∗) for each i,
v∗j = y∗j /((x

∗)TAy∗) for each j, and de�ne φ(x∗, y∗) = (u∗, v∗). It is not
di�cult to verify that (u∗, v∗) satis�es relations (9-11), and each component of
this ordered pair is non-zero. Conversely, suppose that non-zero vectors u∗ and
v∗ are given which satisfy relations (9-11). We put x∗ = u∗/(u∗1 + · · · + u∗l ),
y∗ = v∗/(v∗1 + · · ·+ v∗m), and de�ne ψ(u∗, v∗) = (x∗, y∗). Then (x∗, y∗) satis�es
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relations (6-8). It is straightforward to check that the mappings φ and ψ are
inverses of each other. Hence φ is a bijection as claimed (as is its inverse ψ). �

We remark that the assumption of the above theorem that all elements
of A and B are positive is not too restrictive. For, if the given payo� matrices
A and B do not satisfy this assumption, then we could add to all entries of A
and B a su�cienty large positive constant to ensure A and B become positive,
without changing the essential nature of the game.

We now focus on describing a method due to Lemke and Howson [27]
for �nding a pair of non-zero vectors (u∗, v∗) which satisfy relations (9�11).
We shall also call such a pair of vectors a Nash equilibrium point. Hereafter
we shall use x and y to denote u and v, respectively, and similarly for the
corresponding starred variables. This slight abuse of notation is to ensure
consistency with most of the literature on this subject. Consider the polyhedral
sets X = {x ∈ Rl | x ≥ 0, xTB ≤ 1} and Y = {y ∈ Rm | y ≥ 0, Ay ≤ 1}
in Rl and Rm, respectively. The method of Lemke and Howson is conveniently
described in terms of a labelling process for the vertices of X and Y , originally
proposed by Shapley [37]. Let I = {1, 2, . . . , l} and J = {l+ 1, l+ 2, . . . , l+m}
be label sets for agent 1 and agent 2, respectively, and put K = I ∪ J . With
each vertex x of X we associate a set L(x) of labels from K as follows. For
1 ≤ i ≤ l, x is given the label i if xi = 0. For 1 ≤ j ≤ m, x is given the label
l+ j if (xTB)j = 1. With each vertex y of Y we associate a set M(y) of labels
from K as follows. For 1 ≤ j ≤ m, y is given the label l + j if yj = 0. For
1 ≤ i ≤ l, y is given the label i if (Ay)i = 1.

We say that X is nondegenerate if each vertex x of X satis�es exactly l
equations from amongst the xi = 0, with 1 ≤ i ≤ l, and the (xTB)j = 1, with
1 ≤ j ≤ m. Similarly, Y is nondegenerate if each vertex y of Y satis�es exactly
m equations from amongst the yj = 0, with 1 ≤ j ≤ m, and the (Ay)i = 1, with
1 ≤ i ≤ l. So, if X and Y are both nondegenerate then each vertex of X has
exactly l labels and each vertex of Y has exactly m labels. A vertex pair (x, y)
has at most l + m di�erent labels taken altogether, and this number could be
less than l+m if L(x) andM(y) have nonempty intersection. A two-agent game
de�ned by A and B is also called nondegenerate if the corresponding polyhedral
setsX and Y are nondegenerate. The description of the Lemke-Howson method
is simplest in case the game under consideration is nondegenerate, and we shall
assume this hereafter.

Consider pairs of vertices (x, y) ∈ X × Y ⊂ Rl+m. We say that (x, y)
is completely labelled if L(x) ∪M(y) = K. The importance of this concept is
due to the fact that (x, y) ∈ X × Y is completely labelled if and only if either
(x, y) = (0,0) or (x, y) is a Nash equilibrium point for A and B (by Equations
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10 and 11, and the de�nition of the labelling scheme). To avoid the special
case, the origin (0,0) is termed the arti�cial equilibrium. Now let k ∈ K. We
say that (x, y) is k-almost completely labelled if L(x) ∪M(y) = K − {k}. A
k-almost completely labelled vertex has exactly one duplicate label, that is,
exactly one label which belongs to L(x) ∩M(y).

The Lemke-Howson algorithm is succinctly, abstractly, but not quite ex-
plicitly, described in terms of following a certain path through a graph G related
toX×Y . Indeed, letG be the graph comprising the vertices and edges ofX×Y .
Fix some k ∈ K. An equilibrium point (x∗, y∗) (which is completely labelled, as
mentioned above) is adjacent in G to exactly one k-almost completely labelled
vertex (x′, y′), namely, that vertex obtained by dropping the label k. Similarly,
a k-almost completely labelled vertex (x, y) has exactly two neighbours in G
which are either k-almost completely labelled or completely labelled. These
are obtained by dropping in turn one component of the unique duplicate label
that x and y have in common. These two observations imply the existence of
a unique k-almost completely labelled path in G from any one given equilib-
rium point to some other one. (The end points of such a path are completely
labelled, but all other vertices on the path are k-almost completely labelled.)
The Lemke-Howson algorithm starts at the arti�cial equilibrium (0,0). Choos-
ing k ∈ K arbitrarily, it then follows the unique k-almost completely labelled
path in G from (0,0), step by step, until it reaches a genuine equilibrium point
(x∗, y∗) whereupon it terminates. The following result summarizes the conclu-
sions we may draw from this description.

Theorem 2.3. Let A and B represent a nondegenerate game and let k be

a label in K. Then the set of k-almost completely labelled vertices together with

the completely labelled ones, and the set of edges joining pairs of such vertices,

consist of disjoint paths and cycles. The endpoints of the paths are the Nash

equilibria of the game, including the arti�cial one (0,0). The number of Nash

equilibria of the game is therefore odd.

The above result provides an alternative and constructive proof of Theo-
rem 2.1 in the special case of two-agent nondegenerate games. The algorithm
can be described in a computationally explicit way using certain concepts and
techniques of the well known simplex method of linear programming.

Lemke and Howson [27] proposed perturbation techniques for dealing with
degenerate games. Eaves [17] provided an explicit computational procedure
based on these ideas. A clear exposition of this procedure is contained in [28].

For n-agent games, with n > 2, the problem of �nding a Nash equilibrium
is no longer of linear character. Thus the Lemke-Howson algorithm cannot be
applied directly. Now a Nash equilibrium for an n-agent game can be character-
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ized as a �xed point of a certain continuous function from a product ∆ of unit
simplices into itself. A tractable approach to computing an equilibrium point
for such a game can then be based on a path �nding technique related to an
algorithm of Scarf [36] for �nding �xed points of a continuous function de�ned
on a compact set. An exposition of such an approach, known as a simplicial

subdivision method, is found in [28].

The methods recalled in this subsection concern computation of a single,
so called sample, equilibrium point for a game. Such methods are generally
not adaptable to the construction of all equilibria of a given game, however.
Methods for locating all equilibria exist � see section 6 of [28].

Homotopy methods for computing equilibria have also been developed [24].

3. SINGULARITIES IN ECONOMICS

In the introduction to Section 2 it was pointed out that a core element of
economics is the study of applied problems in optimisation. Here this notion
is made explicit by introducing catastrophe theory and its stochastic extension
and then game theory and its stochastic extension emphasising the role of
singularities in each.

3.1. Catastrophe theory

Catastrophe theory was introduced as an approach to economic equilibria
through the work of Zeeman in the 1970s [47] in which the attempt was made
to explain the dynamics of �nancial markets using qualitative arguments based
on Thom's earlier work in catastrophe theory. We follow [16] in establishing
our general framework. We posit a potential function G(x|u) : Rn×Rk → R of
a vector of n state variables x and a vector of k control parameters u [38]. One
of the simplest examples is a system in which there is one (time dependent)
state variable xt and two control parameters u1 and u2. The dynamics of such
a system are given by the ordinary di�erential equation:

dxt = −∂G(xt|u1, u2)

∂xt
dt(12)

for which the stationary solutions of the system are given by: ∂G(xt|u1,u2)
∂xt

= 0.
The following example is the starting point of recent analyses of asset mar-
kets [6, 16]:

G(xt|u1, u2) =
1

4
x4
t −

1

2
u1x

2
t − u2xt.(13)
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The stationary states of the system are the speci�c x that solve the equa-
tion:

−∂G(xt|u1, u2)

∂xt

∣∣∣∣
x

= −x3 + u1x+ u2 = 0.(14)

Fig. 2 shows the time independent stationary points xt ≡ x as an equi-
librium surface that is functionally dependent on the control parameters u1

and u2.

A B 

1. 2. 

3. 4. 

Fig. 2. The cusp catastrophe with three contours shown for �xed u2 but variable u1 control

parameters. Plots 1, 2, and 4 show di�erent perspectives of the equilibrium surface. Notice

that the cross section u1 = constant of Plot 4 has qualitatively similar properties to the

manifold M of Fig. 1. Plot 3: Two distinct regions A and B can be discerned in the

projection of the equilibrium surface onto the control plane {u1, u2}, region A has three

equilibrium point and region B has 1 equilibrium point. A Pitchfork bifurcation is shown in

red and two fold bifurcations are shown in black and blue. Note that these plots correspond

to the equilibrium surfaces (stationary states) that are the solutions to Equation 14.
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One of the most important results of Thom's work was the classi�cation of
catastrophes into one of seven elementary catastrophes, catastrophes for families
of functions having no more than two state variables and no more than four
codimensions. Following Stewart [38] we �rst give two key de�nitions needed to
state Thom's theorem, then the theorem is given, and an illustrative example
then follows.

Right equivalence. Two smooth (C∞) functions f : Rn → R and g : Rn →
R are said to be right equivalent if there is a local di�eomorphism φ : Rn → Rn
with φ(0) = 0 (0 the zero vector) such that f(x) = g(φ(x)) for all x in some
neighbourhood of the origin.

Codimension. If f : Rn → R (the germ in the following) is smooth then
the codimension of f is the smallest k for which there exists a k-dimensional
smooth unfolding

G : Rn × Rk → R(15)

with

G(x |0) = f(x), x ∈ Rn(16)

which is stable. If no such unfolding exists, the codimension is de�ned to be
∞. In this way the codimension measures the �degree of instability� of the
function f .

Theorem 3.1 ([39]). Let G : Rn × Rk → R be a smooth stable family

of functions each of which has a critical point at the origin, and suppose that

k ≤ 4. Set f(x) = G(x |0) for all x in Rn near the origin. Then f is right

equivalent, up to a sign, to one of the germs f∗ in Table 1.

Table 1
Thom's elementary catastrophes

Catastrophe name Germ (f∗) Codimension Unfolding (G∗)

Fold x3 1 x3 + ax
Cusp x4 2 x4 + ax2 + bx
Swallow tail x5 3 x5 + ax3 + bx2 + cx
Butter�y x6 4 x6 + ax4 + bx3 + cx2 + dx
Hyperbolic umbilic x3 + xy2 or x3 + y3 3 x3 + y3 + axy + bx+ cy
Elliptic umbilic x3 − xy2 3 x3 − 3xy2 + a(x2 + y2) + bx+ cy
Parabolic umbilic x2y + y4 4 x2y + y4 + ax2 + by2 + cx+ dy

The a, b, c, d terms are control variables and the x and y are state variables.
Further, G is right equivalent, up to sign, to the expression G∗ on the same line
as f∗ in Table 1 (where right equivalence of function families is de�ned in a
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similar sense to that of functions). In this table, the catastrophes describe the
geometry of the projection onto control parameter space of the surface de�ned
by the partial derivative: ∂G∗

∂x = 0.

The unfolding of x4 results in the cusp catastrophe. A surprising result is
that the Taylor series does not need to converge on G or indeed any function
and so the importance of this proof lies in the fact that a truncated Taylor
series expansion provides a qualitatively (topologically) correct description of
a system given by Equation 12. This is the case because this family, as do all
of the elementary catastrophes, has the stability property that for su�ciently
small perturbations of G(x|u1, u2) the topology is left una�ected.

Thom's approach can be illustrated with a simple example from [38].
Suppose we are given a smooth stable potential function G(x |u1, u2) with one
state variable x and two control variables u1, u2. Regarding G as a function
family parametrised by u1 and u2, suppose that each member of the family has
a critical point at the origin, and that G(x | 0, 0) = x4 + higher order terms in x.
Then, according to Thom's theorem, the function G(x | 0, 0) is right equivalent
to x4, and the function family G(x |u1, u2) is right equivalent to the unfolding
x4 +u1x

2 +u2x, for (possibly) adjusted state and control variables x, u1 and u2.

When catastrophe theory is applied to speci�c problems in the applied
�elds, the following interpretation of Thom's theorem is very useful (after [38,
pg. 151]). The germ f∗, when observed in applications, might be topologically
unstable in the sense that small perturbations to the system might result in
qualitatively di�erent behaviours. So in practice, if we observe f∗ we should
also expect to see the rest of its unfolding G∗ as well, and this unfolding will be
a topologically stable and qualitatively complete description of the system. We
note that Berry [7] has made the rather fascinating observation that a `battle
of the catastrophes' emerges as a parameter t varies through the catastrophe
set on the singularity surface. That this generates power-law tails in a very
speci�c fashion may have applications not yet explored.

3.2. Stochastic Catastrophe Theory

Catastrophe theory is a deterministic approach to modelling a system's
dynamics but Cobb [9] was the �rst to extend catastrophe theory to stochastic
di�erential equations which was later improved upon byWagenmakers et al. [43].
The approach is to add noise to the evolutionary dynamics:

dxt = −∂G(xt|u)

∂xt
dt+ σ(xt)dWt(17)
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where −∂G(xt|u)
∂xt

≡ g(xt) is the drift function,Wt is a di�usion process and σ(xt)
parameterises the strength of the di�usion process. The stationary probability
distribution is given by [43]:

p(x|u, σ(x)) = Z−1 exp
(

2

∫ xt

a

g(z)− 0.5(dzσ(z)2)

σ(z)2
dz
)
,(18)

p(x|u, ξ) = Z−1 exp
(
ξ

∫ xt

a
g(z)dz

)
,(19)

= Z−1 exp(Gσ(x)).(20)

Here Z normalises the probability distribution, in Equation 18: dzσ(z)2 =
d

dzσ(z)2, Equation 19 is a simpli�cation in which: 2σ(z)−2 = ξ ≡ constant in
z, and Gσ(x) = ξ

∫ xt
a g(z)dz is the stochastic potential for the special case of

σ(z) being constant.
A potential function is necessary for catastrophe theory in order for there

to be a gradient dynamic in Equation 12, this is equivalent to the symmetry
of the Slutsky matrix [1] of economics. This symmetry is known to hold for
potential games [35] and so a potential function exists. The existence of a
potential function is also equivalent to the existence of a Lyapunov function. If
a (local) Lyapunov function does not exist then this is a signi�cant obstacle to
the use of catastrophe theory, however Thom has answered this objection [41]
by pointing out that near any attractor A of any dynamical system there exists
a local Lyapunov function. In evolutionary game theory, a dynamical extension
to (static) economic game theory, a Lyapunov function can always be found for
linear �tness functions that are of the type in Equation 2. The principal problem
then is to con�rm whether or not such a local Lyapunov function exhibits the
bifurcation behaviour of catastrophe theory, and in general the answer is no [20].
Although this article covers what is properly called `elementary catastrophe
theory', Thom hinted [41] that there may be ways to accommodate these issues
within the larger set of catastrophe theory that his methods encompass. It
appears to still be an open question as to what extent catastrophe theory can
be extended to accommodate these issues.

3.3. Bifurcations in Nash equilibria

To illustrate how bifurcations in the number of �xed points occur in the
Nash equilibria of games we will use G2

2 games, these games are described by
two payo� matrices, one for each agent. Speci�cally, we consider normal form,
two agent, non-cooperative games in which the agents i = 1, 2 select between
one of two possible choices (pure strategies): cji ∈ Ci. We refer to these games
as G2

2. The joint choices determine the utility for each agent i, gi : C → R.
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The choices available to the agents and their subsequent payo�s are given by
agent 1's payo� matrix:

agent 2

c1
2 c2

2

agent 1
c1

1 g1(c1
1, c

1
2) g1(c1

1, c
2
2)

c2
1 g1(c2

1, c
1
2) g1(c2

1, c
2
2)

and agent 2's payo� matrix:

agent 2

c1
2 c2

2

agent 1
c1

1 g2(c1
1, c

1
2) g2(c1

1, c
2
2)

c2
1 g2(c2

1, c
1
2) g2(c2

1, c
2
2)

Both matrices are often more compactly written as a single bi-matrix, for
example the following bi-matrix is the well known Prisoner's Dilemma game
where the vectors of joint payo�s are written (g1(ci1, c

j
2), g2(ci1, c

j
2)):

agent 2

cooperate defect

agent 1
cooperate (−1,−1) (−3, 0)

defect (0,−3) (−2,−2)

In the extended form of g, in which:

g : (g1(p1, p2), g2(p1, p2)) → R2(21)
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Fig. 3. A. The payo� bi-matrix for a subset of G2
2 games. The payo�s are symmetrical

for simplicity, if the payo� matrix to agent 1 is A1, then the payo� matrix for agent 2 is

A2 = AT1 . Two parameters are held �xed: R = 1 and P = 0, leaving a two parameter (T and

S) family of games for which the number and location of the Nash equilibrium �xed points

will vary as T and S vary. B. A schematic diagram showing how the number and location of

�xed points are a function of T and S. The location of the pure strategy Nash equilibria are

shown as red squares on a representation of the bi-matrix in each sector. For example the

Nash equilibrium of the Prisoner's Dilemma is the pure strategy: (p21 = 1, p22 = 1) which is

located at the bottom right of the bi-matrix (P, P ) in the left diagram, and shown as a red

square in the Prisoner's Dilemma region of the right diagram. Figure adapted from [23].

is an upper-hemicontinuous space2, the bi-matrix representation is only useful
in describing the discrete valued payo�s.

In order to see how singularities can occur in game theory we parameterise
the payo� values in each agent's payo� matrix in such a way that allows for
two control parameters and one state variable for each agent, i.e. the expected
utility gi(p

∗
i , p
∗
−i), at each Nash equilibrium, this approach is shown in Fig. 3.

Note that generally there are either one or three Nash equilibrium and Fig. 3
only shows the pure strategy Nash equilibria of the games. In the case where
there are two pure strategy Nash equilibria then there is also a third mixed
strategy Nash equilibria that is not shown in Fig. 3.

To illustrate the change in the number of �xed points, begin by looking
at the Prisoner's Dilemma game in the top left of the diagram. At this point

2Upper-hemicontinuity does not hold if only discrete strategies can be used, and in order
to use Kakutani's �xed point theorem it is a necessary condition that the agent's strategies
are upper-hemicontinuous
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S < 0 but as S increases and passes through S = 0 two new pure strategy
Nash equilibria form at the (T, S) and (S, T ) pure strategies and a third mixed
strategy equilibria forms that is not shown. Alternatively, beginning again from
the Prisoner's Dilemma but decreasing T from T > 1 to T < 1 the original pure
strategy at (P, P ) remains but a new pure strategy equilibrium forms at (R,R),
as well as a mixed strategy equilibrium that is not shown. From this region
of the game space, providing 1 > T > 0, then letting S increase from S < 0
to S > 0 we see that there remains three equilibrium points but the two pure
strategy equilibria at (R,R) and (P, P ) switch to (S, T ) and (T, S). Other
transitions in the state space follow similar patterns.

3.4. Quantal Response Equilibrium

The quantal response equilibrium (QRE) is an extension of the Nash equi-
librium concept developed by McKelvey and Palfrey [30] in which agents do not
perfectly optimise their choices, as in the Nash equilibrium, but instead there
is some error in the choice they make, represented by stochastic uncertainty in
their choices. The Nash equilibrium is recovered as a parameter representing
the uncertainty in the decision tends to in�nity, and so the Nash equilibria are
a subset of the �xed points given by the QRE.

There are several di�erent methods by which the QRE can be arrived at,
McKelvey and Palfrey used di�erential topology and recent work by one of the
authors used the method of maximising the entropy [22,46]. For our purposes,
we will simply de�ne the relevant terms and state the Logit functional form
of the QRE. We note that there is nothing special in this form of the QRE
correspondence. It is to be expected that all of the work in the current article,
in particular the analysis of bifurcations parameterised by a noise term β, will
carry across to any regular QRE functional form.

Agent i's expected utility gi(pi, p−i) can be said to be conditional on i's
discrete choice cji : gi(p−i|c

j
i ). The interpretation of gi(p−i|cji ) is that it is the

expected utility to agent i if they choose cji , i.e. they �x pji = 1, while all of
the other agents maintain a (possibly mixed) joint strategy p−i. The de�nition
of the equilibrium points given by the QRE are then the joint distributions
(p∗1, . . . , p

∗
n) given by:

p∗i (c
j
i |βi) =

exp(βigi(p
∗
−i|c

j
i ))∑

j exp(βigi(p∗−i|c
j
i )))

(22)

This satis�es the criteria of a probability distribution over agent i's space
of j choices and the exponentiated function βigi(p

∗
−i|c

j
i ) is the product of a
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control parameter βi speci�c to each agent and a gradient gi(p
∗
−i|c

j
i ), cf. Equa-

tions 18�20. The parameter βi ∈ [0,∞] controls the level of noise or uncertainty
the agent has in selecting each strategy, when βi = 0 the agent selects uniformly
across their choices and when βi →∞ the Nash equilibria of the game are re-
covered. For intermediate values of βi the agent prefers (up to some statistical
uncertainty) one strategy over another only if it has a higher payo�, assuming
all other agents are playing a known distribution over their own strategies. The
probability is conditional on βi to remind us that the distribution has one free
control parameter.

Bifurcations in the QRE were �rst analysed by McKelvey et al. [30] (the
chicken game discussed next) and a pitchfork bifurcation in the battle of the

sexes game is covered in [18, Figure 6.3, page 153]. The equilibrium points
in these plots were computed using the symbolic mathematics package Math-
ematica, however we note that there is also some very interesting work on
computation of (Logit) QRE using homotopy methods. These methods can
also be used to compute Nash equilibria, as limit points of the QRE, see [42],
cf. Section 2.2. For our purposes the battle of the sexes serves to illustrate the
bifurcations that can occur in the QRE as a covector of parameters [β1, β2] are
varied. The payo� bi-matrix for discrete strategies is given by:

agent 2

Swerve Straight

agent 1
Swerve (0, 0) (−1,+1)

Straight (+1,−1) (−10,−10)

This game represents interactions between two people, such as the game
often seen in movies where drivers of two cars are heading directly towards one
another. The challenge is for each driver to choose either straight or swerve, the
driver who chooses straight wins and the driver who swerves loses. If they both
choose to swerve the game is a draw, if they both choose straight both drivers
crash into each other and lose. There are two pure strategy Nash equilibria:
one where agent 1 swerves while agent 2 goes straight, the other where agent
1 goes straight while agent 2 swerves. These can be identi�ed immediately by
noting that, for either [swerve, straight] or [straight, swerve] neither agent can
achieve a higher payo� by unilaterally changing their choice while the other
agent's choice remains �xed. There is also a mixed strategy equilibrium.
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When these game parameters are put into the QRE it can be shown that
there is one �xed point for [β1, β2] = [0, 0] and three �xed points for [β1, β2] =
[∞,∞], these three �xed points correspond to the Nash equilibria of the Chicken
game. In varying these parameters away from zero and towards ∞ there is
necessarily some values of these parameters at which new �xed points emerge,
a subset of these are shown in Fig. 4. This bifurcation diagram was hinted at in
McKelvey and Palfrey's original work and recent work by Wolpert and Harr�e
has explored some of the variety of this system of equations [21,22,45,46].

Fig. 4. Left Plot: The QRE surface for one of the agents in the Chicken game. The red curve
on the surface is the set of critical points for the game, the blue curve in the [β1, β2] plane
is the projection of these critical points onto the control parameter space. Right Plot: View
projecting down onto the control pane showing the regions of the control plane that have

either 1 �xed point (A) or three �xed points (B).

To show this for G2
2 games, �rst we rescale the probabilities so that: Qi =

2pjii − 1 ∈ [−1, 1] for the probability of one of agent i's choices so that we can
work with a single variable Qi for each agent and we write the QRE as the
functional relationships:

Qi = fi(Q−i, βi),(23)

= fi(f−i(Qi, β−i), βi),(24)

Q−i = f−i(Qi, β−i),(25)

= f−i(fi(Q−i, βi), β−i).(26)

To �nd the set of singular points of the QRE surface we compute the
Jacobian of the system by �rst �nding all four terms of the form ∂Qi

∂βk
, for
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example [45]:

∂fi
∂Q−i

∂f−i
∂Qi

∂Qi
∂βi

+
∂fi
∂βi
− ∂Qi
∂βi

= 0(27)

f1
i f

1
−i
∂Qi
∂βi

+ f2
i −

∂Qi
∂βi

= 0(28)

f2
i

f1
i f

1
−i − 1

=
∂Qi
∂βi

(29)

The simpli�cation in notation at equation 28 uses the subscript to de-
note either the �rst or the second argument of fi in equations 23 and 25 that
di�erentiation is with respect to. A similar set of computations results in the
Jacobian:

JβQ =
1

f1
i f

1
−i − 1

[
f2
i f1

i f
2
−i

f2
i f

1
−i f2

−i

]
(30)

which is singular when f1
i f

1
−i− 1 = 0. This set of solutions is shown as the red

curve in the left plot of Fig. 4 and the projection of this set onto the control
plane is shown in the right plot. When game theory is used as the basis for
the construction of macroeconomic models of an economy this set is called the
critical set of the economy. Sard's theorem allows us to conclude that the
critical set of economies has measure zero [13,14].

Fig. 4 is one of the two mappings fj : βi × β−i → Qj , j ∈ {i,−i}. An
alternative representation is to consider the map JβQ : Qi×Q−i → R2×2 where

R2×2 is the family of matrices of partial derivatives ∂Qi
∂βj
∈ [−∞,∞] for G2

2

games. This can be plotted directly as shown in Fig. 5 where we have used the
Chicken game as an example. In order to generate these plots, a large number
of explicit values for ∂Qi

∂βj
were calculated and plotted, the results generate the

background (golden-tan) colouring of the plots. Then the singularity set was
calculated by implicitly solving the equation f1

i f
1
−i − 1 = 0 and overlaying

these results on the plot of ∂Qi
∂βj

. It can be seen that where ∂Qi
∂βj

diverges is

where f1
i f

1
−i − 1 = 0.

One of the interesting points that arises in the representation of Fig. 5 is
that, except possibly at �nite and isolated points, the critical economic states
partitions the Qi×Q−i space into three parts. An interpretation of this is that,
if all you can observe of an economy is its distribution over states (the Qi's)
then moving smoothly about this space is restricted by the partitions, there are
states of the economy that are not accessible from a regular economy without
passing through a critical state of the economy.
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Fig. 5. The complete space of matrices JβQ in which the colour represents the value of the
gradient ∂Qi

∂βj
. The red curves are the set of critical economies and correspond to the red

curves of Fig. 4.

4. DISCUSSION

The application of deterministic catastrophe theory to economics has a
fraught history that has been well documented [33] but there are a number of
articles that have been published recently that have begun a counter-swing in
applications [5, 16, 25, 26, 34, 44] as well as some theoretical work [26]. In this
article, we have sought to brie�y cover some of the recent material that has not
elsewhere been collected in the hope that it might stimulate theoretical work
to complement recent applied research.
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We note that the original catastrophe theory, either deterministic or stochas-
tic, is somewhat limited for direct economic application. The singularities that
are traditionally studied require a priori assumptions on the potential function
that may not be easily justi�ed in an economic context. In particular, there is
no agent-agent interaction explicit in the formulations of the potential function,
and these interactions are central to economics.

On the other hand, the QRE has notable similarities with stochastic catas-
trophe theory. The similarities in the structures of equations 20 and 22 are
notable, but their interpretation is not equivalent. Equation 20 is a single
equation with a non-linear potential function whereas Equation 22 is a set of
equations with linear interaction terms.

It might be tempting to assume that the exponentiated terms in these
equations are both potentials, and a potential function is a necessary condition
for the use of catastrophe theory, however this is also not immediately obvious.
Ay et al [4] derived a potential function for game theory of the general form:

V (p) =
1

2

∑
i,j

ai,jpipj(31)

where A = ai,j is a (constant valued) payo� matrix that describes all of the
interactions between agents and the pi are the strategies of the agents. In this
case, in order for V (p) to be a potential function the following relationship
needs to hold:

ai,j + aj,k + ak,i = ai,k + ak,j + aj,i(32)

This condition is met if the matrix A is symmetric. The relationship
between these equations and their interpretations has yet to be explored.

These considerations have restricted the family of games to which catas-
trophe theory can be applied to those with symmetric payo� matrices. In
economic theory, this is known to be satis�ed by only a few games, in partic-
ular the potential games of Sandholm [35] and a few other examples given in
Rosser Jr. [33]. In general, the adoption of catastrophe theory in economics
has been infrequent and very few examples beyond the cusp catastrophe have
been studied (see [8] for a notable exception using the Butter�y catastrophe
applied to housing markets). However, as Rosser Jr. has pointed out, there
is considerable value to be had in adding catastrophe theory to the tool box
of methods that economists use. More generally, there is a great deal of un-
touched territory in the formal analysis of the dynamics of economic systems
near market crashes (singularities) in which there have been rapid and at times
uncontrolled transitions between stable economic states in recent times.
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ADDENDUM. SOME ELEMENTARY REMARKS

ON THE ANALYTICAL FOUNDATIONS

OF QUANTAL EQUILIBRIUM THEORY FOR G2
2-GAMES

This section will reiterate in the simplest possible terms the thread of
mathematical ideas running through sections 3.3 and 3.4, connecting Game
Theory as represented by elementary G2

2-games to singularities, via the quan-

tal approach to equilibria proposed by McKelvey and Palfrey. Hence we will
consider only two players, each with the freedom to choose two strategies. The
terms player and strategy (not to mention game) have always been interpreted
somewhat abstractly. The �rst of these could easily be replaced by agent or
particle ensemble without any loss of information. Similarly the word �strat-
egy" could easily be replaced by state. We will see that an appropriate choice
of terms has everything to do with the manner in which equilibrium is de�ned
in relation to a speci�c mathematical model. Every G2

2-game corresponds to a
unique pair of 2×2 utility matrices Ui over the real numbers. The �pure" strate-
gies for each player are unit vectors (1, 0) and (0, 1) whereas �mixed" strategies
are pairs xi = (xi1, x

i
2) such that 0 ≤ xij ≤ 1 and xi1 + xi2 = 1 , i = 1, 2. The

utility functions gi are then de�ned as a standard inner product

gi(x1, x2) = 〈x1, Uix
2〉 .

Since xi2 = 1− xi1, these formulae reduce to a pair of quadratic functions
qi(x, y) whose domain is restricted to the unit square S, such that x = x1

1 and
y = x2

1. Now de�ne

δq1(y) = q1(1, y)− q1(0, y) and δq2(x) = q2(x, 1)− q2(x, 0),

and introduce non-decreasing, piecewise-continuous functions Fi : R → [0, 1],
such that

lim
X→−∞

Fi(X) = 0 and lim
X→∞

Fi(X) = 1 (i = 1, 2).

Finally, let ψ1(x) = F1(δq2(x)), ψ2(y) = F2(δq1(y)), and de�ne a map
Ψ : S → S such that Ψ(x, y) = (ψ2(y), ψ1(x)). An equilibrium strategy (or
equilibrium state) will then correspond to a �xed point

Ψ(x∗, y∗) = (x∗, y∗).

Two special cases are of particular interest here. First, suppose the Fi are
de�ned in terms of the Heaviside function with parameter 0 ≤ a ≤ 1:

H(X, a) =


1 if X > 0
0 if X < 0
a if X = 0
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so that
Ψ(x, y) = (H(δq1(y), x), H(δ2(x), y)).

This in fact de�nes the �best response" map in Nash's theory of equilibria.
Note that

ψ1(x) =

{
1 if q2(x, 1) > q2(x, 0)
0 if q2(x, 1) < q2(x, 0),

and

ψ2(y) =

{
1 if q1(1, y) > q1(0, y)
0 if q1(1, y) < q1(0, y).

Since the δqi are linear functions, these relations indicate that apart from
the pure-strategy Nash-equilibria to be found among the vertices of S, a unique
mixed-strategy Nash equilibrium occurs precisely when δq1(y) = δq2(x) = 0.
The choice of F is well-suited to the classical conception of game theory, in
which equilibria are �rationally optimized" strategies available to both players.

We turn now to a second model, in which players do not rationally �x
their strategy in response to that of their opponent. Instead, strategies are
governed by a smooth probability distribution. Applied to a large sample space
of random trials of a speci�c game, this model may or may not realistically re-
�ect the behaviour of human populations, though it is naturally adapted from
numerically large particle-ensembles of the kind encountered in statistical ther-
modynamics. A standard probability distribution associated with the partition
function which lies at the foundation of this theory is given as

Fi(X) =
1

1 + e−βiX
(i = 1, 2),

where the parameters βi are strictly positive real numbers. Note that

ψ1(x) =
1

1 + e−β1δq2(x)
=

eβ1q2(x,1)

eβ1q2(x,1) + eβ1q2(x,0)
,

and similarly

ψ2(y) =
eβ2q1(1,y)

eβ2q1(1,y) + eβ2q1(0,y)
.

ψ1(x) may be interpreted as the probability y that ensemble 2 lies in state
1, given that the probability of ensemble 1 lying in the same state is x. Con-
versely ψ2(y) represents the probability x that ensemble 1 lies in state 1, given
a probability y that ensemble 2 lies in the same state. Given two events A and
B, the symmetry between the classical de�nitions of conditional probabilities
P (A|B) and P (B|A) simply occurs when P (A) = P (B), where in general the
probability of one event is construed as conditional on the actual occurrence
of the other, as implied by Bayes' Theorem. By contrast, the model above
estimates the probability of one event as conditional on a given probability of
the other, as is traditionally postulated in the world of quantum interactions.
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Symmetry occurring in the relations y = ψ1(x) and x = ψ2(y) is then another
way of characterizing points of equilibrium. Since S is a closed and bounded
subset of R2, and in the present situation Ψ : S → S is a continuous map,
the existence of �xed points is implied by the fact that any sequence of itera-
tions {Ψ(xk, yk)}∞k=1 where (xk, yk) = Ψ(xk−1, yk−1), must have a convergent
subsequence. This is essentially the Fixed Point Theorem of Brouwer. Note,
however, that if the distributions Fi are not strictly continuous, as in the case
of Nash equilibria, then the more general theorem of Kakutani may still be
applied. With respect to an appropriately chosen norm on function-space, the
Heaviside distribution may in fact be recovered as an asymptotic β-limit of
the smooth distribution above. For generic values of (β1, β2) the number and
location within S of the �xed points of Ψ (for a given choice of the matrices Ui)
will depend smoothly on these parameters, which suggests that the set of �xed
points for each (β1, β2) will generate a possibly branched topological covering
of the parameter-plane, corresponding to the surface

Σ = {x = ψ2(y)} ∩ {y = ψ1(x)} ⊂ R2
+ × S ,

where R+ = (0,∞). Now let

f1(x, β1, β2) = x− ψ2(ψ1(x)) and f2(y, β1, β2) = y − ψ1(ψ2(y)) .

According to the Implicit Function Theorem,

∂f1

∂x
(x∗, β∗1 , β

∗
2) = 1− ∂ψ2

∂y
(ψ1(x∗))

∂ψ1

∂x
(x∗) 6= 0

implies the existence of a function x = ϕ1(β) in a neighbourhood of β∗. Simi-
larly,

∂f2

∂y
(y∗, β∗1 , β

∗
2) = 1− ∂ψ1

∂x
(ψ2(y∗))

∂ψ2

∂y
(y∗) 6= 0

implies the existence of a function y = ϕ2(β) in a neighbourhood of β∗. Hence,
in a neighbourhood of any regular equilibrium point (β∗, x∗, y∗), the surface Σ
is parametrized smoothly by functions ϕ = (ϕ1, ϕ2).

Conversely, for every (β1, β2, x
∗, y∗) ∈ Σ belonging to the critical locus

Γ = {1− ∂ψ1

∂x
(x∗)

∂ψ2

∂y
(y∗) = 0},

the standard projection π : R2 × S → R2 maps Γ ∩ Σ to the �branch locus�

π(Γ ∩ Σ) ⊂ R2
+.

In this formulation of equilibrium without reference to a potential func-
tion, there is no apparent classi�cation of critical loci in terms of Thom's ele-
mentary catastrophes. The projection π above suggests rather that the branch
locus might be understood via normal forms of generic mappings between
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smooth surfaces, as in the classic Theorem of Whitney (cf., e.g. [19]). This
would seem to be the case for games of the sort represented in Fig. 4, but
the general situation is not immediately clear. In particular, it must be asked
whether all mappings π |Σ which arise in the context above for G2

2-games are
in fact generic, in the sense that their �rst jet extension is always transversal
to the corank-one submanifold inside the jet space J1(Σ,R2

+).
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