
COFRONTALS
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In this paper, we introduce the notion of cofrontal mappings, as the dual objects
to frontal mappings, and study their basic local and global properties. Cofrontals
are very special mappings and far from generic nor stable except for the case of
submersions. It is observed that any smooth mapping can be C0-approximated
by a possibly �unfair� cofrontal or a frontal. However, global �fair� cofrontals are
very restrictive to exist. Then we give a method to construction �fair� cofrontals
with �ber-dimension one and a target-local di�eomorphism classi�cation of such
cofrontals, under some �niteness condition.
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1. INTRODUCTION

In the previous papers (see [8�11]) we have introduced and studied the
notion of frontal map-germs. A map-germ f : (N, a) → (M, b) from an n-
dimensional manifold N to an m-dimensional manifold M is called a frontal if
n ≤ m and there exists a smooth n-plane �eld f̃ along f , i.e. which commutes

Gr(n, TM)

π

��
(N, a)

f
//

f̃
88

(M, b),

and which satis�es ImTxf ⊆ f̃(x) for any x ∈ (N, a). Here Gr(n, TM) means
the Grassmannian bundle over M with �bers Gr(n, TyM), the Grassmannians

of n-dimensional subspaces in TyM,y ∈ M . The condition on f̃ is equivalent

to that f̃ is an integral mapping for the canonical distribution on the Grass-
mannian bundle.

In this paper, in a dual manner to frontals, we introduce the notion of
cofrontals: A map-germ f : (N, a) → (M, b) is called a cofrontal if n ≥ m and
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there exists an integrable vector-subbundle K = Kf of TN of corank m, which
is regarded as a section

Gr(n−m,TN)

(N, a)
f

//

Kf

OO

(M, b),

and which satis�es the condition (Kf )x ⊆ Ker(Txf) for any x ∈ (N, a). We
impose the integrability condition onK in addition. If f is fair (De�nition 2.13),
i.e. the singular locus of the confrontal f has no interior point nearby a ∈ N ,
then the integrability of the germK follows automatically. Moreover in this case
K is uniquely determined from the cofrontal f (Lemma 2.16). In some sense,
frontals are mappings such that the images of di�erentials are well-behaved, and
cofrontals are mappings such that the kernels of di�erentials are well-behaved.

A global mapping f : N → M is called a frontal (resp. a cofrontal) if all
germs fa : (N, a)→ (M,f(a)) of f at every a ∈ N are frontal (resp. cofrontal).
Moreover a cofrontal f is called fair if all germs fa at f at every a ∈ N are fair
cofrontal germs (De�nition 3.1).

Important examples of cofrontals are obtained as mappings which are
constant along Seifert �bers ([2], cf. Example 3.2).

We see that frontals and cofrontals are not stable except for the trivial
cases, immersions and submersions and far from generic classes in the space
of all C∞ mappings. Nevertheless, we see that they enjoy rather interesting
properties to be studied. For example, we see that any smooth map is approxi-
mated by a frontal or a cofrontal in C0-topology, at least if the source manifold
is compact (Proposition 3.3). In this paper, we will describe such basic but
interesting properties of cofrontals mainly.

If f : N →M is a fair cofrontal, then the kernel �eld of f exists uniquely
and globally, and therefore the source manifold N has a strict restriction if a
global fair cofrontal exists on N . Note that, for given manifolds N,M with
n < m, if N is compact then there exists a fair frontal N →M (Remark 4.3).

It is known that the local structures of fair (proper) frontals are under-
stood by map-germs between spaces with the same dimension (n = m), together
with the process of �openings� ([10, 11]). On the other hand, the local struc-
tures of fair cofrontals turn to be reduced to the case n = m. In fact, as for
the source-local problem, the classi�cation of cofrontal singularities is reduced
to the case n = m completely (Proposition 2.4, Lemma 2.16).

Note that frontals were studied mainly in the case m − n = 1, i.e. the
case of hypersurfaces, motivated by the study on wave-fronts ([1, 10]).

In this paper, as for cofrontals, we study the cases of relative dimension
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n − m = 1. We provide a general target-local classi�cation of fair cofrontals
Nm+1 → Mm with relative dimension 1 under a mild condition. In fact the
target-local classi�cation problem of cofrontal mappings is reduced to that of
the right-left classi�cation of multi-germs (Rm, S) → (Rm, 0) together with a
right symmetry of the multi-germ (Theorem 5.9). It is interesting to apply the
classi�cation results of map-germs (Rm, 0)→ (Rm, 0), in particular in the case
m = 2 (see [12, 19, 20, 22] for instance), to classi�cations of concrete classes of
cofrontals.

In �2, we introduce the notion of cofrontal map-germs comparing with
that of frontals and clarify their local characters. In �3, we introduce global
cofrontals and show some approximation result of mappings by frontals and
cofrontals. After given several notions and examples related to fair frontals
in �4, we give a classi�cation of cofrontals of �ber-dimension one under the
condition of �reduction-�nite� (De�nition 2.5, De�nition 5.5, Theorem 5.9) in
� 5.

In this paper, all manifolds and mappings are assumed to be smooth, i.e.
of class C∞ unless otherwise stated.

2. COFRONTAL SINGULARITIES

Let N,M be smooth manifold of dimension n and m respectively, and
f : (N, a)→ (M, b) a smooth map-germ. Suppose n ≥ m.

De�nition 2.1 (Cofrontal map-germ, kernel �eld). The germ f is called
a cofrontal map-germ or a cofrontal in short, if there exists a germ of smooth
(C∞) integrable subbundle K ⊂ TN , K = (Kx)x∈(N,a), of rank n − m such
that

Kx ⊆ Ker(Txf : TxN → Tf(x)M),

for any x ∈ N nearby a. Here Txf : TxN → Tf(x)M is the di�erential of f at
x ∈ (N, a).

Then K is called a kernel �eld of the cofrontal f .

Note that the kernel �eld is regarded as a section K : (N, a) → Gr(n −
m,TN) satisfying (Txf)(Kx) = {0}, x ∈ (N, a).

Compare with the notion of frontals (cf. [7, 10, 11]). Here we recall the
de�nition of frontals: Let f : (N, a)→ (Rm, b) be a map-germ. Suppose n ≤ m.
Then f is called a frontal map-germ or a frontal in short, if there exists a smooth
family of n-planes f̃(t) ⊆ Tf(t)Rm along f , t ∈ (N, a), satisfying the condition

Image(Ttf : TtN → Tf(t)Rm) ⊆ f̃(t) (⊂ Tf(t)Rm), for any t ∈ (N, a). The

family f̃(t) is called a Legendre lift of the frontal f .
In some sense, cofrontals are dual objects to frontals.
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Example 2.2. (1) Any immersion is a frontal. The Legendre lift is given
by f̃ := (Ttf(TtN))t∈(N,a). Any submersion is a cofrontal. The kernel �eld K
is given by K := (Ker(Txf))x∈(N,a).

(2) Any map-germ (N, a)→ (M, b) between same dimensional manifolds
(n = m) is a frontal and a cofrontal simultaneously. In fact, the Legendre lift
is given by f̃(t) := Tf(t)M, t ∈ (N, a) and the kernel �eld K is given by the
zero-section of TN .

(3) Any constant map-germ (N, a) → (M, b) is a frontal if n ≤ m and a
cofrontal if n ≥ m. In fact, we can take any family of n-planes along the germ
as a Legendre lift and any subbundle K ⊂ TN of rank n−m as a kernel �eld.

Remark 2.3. As was mentioned, the di�erentials of cofrontals have a mild
behavior. This reminds us Thom's af -condition: Let f : N →M be a smooth
map, X,Y submanifolds in N , and x ∈ X ∩ Y . Then Y is af -regular over X
at x if a sequence yi of points in Y converges to x and

Ker(Tyi(f |Y ))→ T ⊆ TxN, (i→∞),

then Ker(Tx(f |X)) ⊆ T .
Let f : N → M is a cofrontal and take any �ber X = f−1(b), b ∈ M .

Then X is a submanifold of N and Y = N \X is af -regular over X.

Let EN,a := {h : (N, a) → R} denote the R-algebra of smooth function-
germs on (N, a).

Recall that Jacobi ideal Jf of a map-germ f : (N, a) → (M, b) is de�ned
as the ideal generated in EN,a by all min{n,m}-minor determinants of Jacobi
matrix J(f) of f . Note that Jf is independent of the choices of local coordinates
on (N, a) and (M, b).

Proposition 2.4 (Criterion of cofrontality). Let f : (N, a) → (M, b) be

a map-germ with n = dim(N) ≥ m = dim(M). If f is a cofrontal, then there

exists a germ of submersion π : (N, a)→ (N, a) to an m-dimensional manifold

N and a smooth map-germ f : (N, a)→ (M, b) such that f = f ◦ π. Moreover

the Jacobi ideal Jf of f is principal, i.e. it is generated by one element. In fact

Jf is generated by λ = π∗(λ) for the Jacobian determinant λ of f .
Conversely, if the Jacobi ideal Jf is principal and the singular locus

S(f) = {x ∈ (N, a) | rank(Txf : TxN → Tf(x)M) < m}

of f is nowhere dense in (N, a), then f is a cofrontal.

De�nition 2.5 (Reductions of cofrontals). We call f a reduction of the
cofrontal-germ f . A germ of cofrontal f : (N, a) → (M, b) is called reduction-

�nite if a reduction f : (N, a) → (M, b) of f is K-�nite (or �nite brie�y), i.e.
the dimension of Qf := EN,a/f

∗
(mb) is �nite, where f

∗
: EM,b → EN,a is the
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R-algebra homomorphism de�ned by f
∗
(h) = h ◦ f , and mb ⊂ EM,b is the

maximal ideal of function-germs vanishing at b (see [14] [5] [21] [1]).

Remark 2.6. In Lemma 2.3 of [11], it is shown that if f : (N, a) →
(M, b), n ≤ m is a frontal, then the Jacobi ideal Jf is principal and that con-
versely if Jf is principal and S(f) = {x ∈ (N, a) | rank(Txf) < n} is nowhere
dense, then f is a frontal.

Remark 2.7. If f : (Rm, 0) → (Rm, 0) is K-�nite, then the zero set of f
is isolated and any nearby germ of f has the same property. The number of
�bers of f is uniformly bounded by dim(Qf ) (Propositions 2.2, 2,4 of Ch.VII
in [5], see also [3, 13]).

Proof of Proposition 2.4. Let f be a cofrontal and K be a kernel �eld of
f . Since K is an integrable subbundle of TN of rank n − m, there exists a
submersion π : (N, a)→ (Rm, 0) such that Kx = Ker(π∗ : TxN → Tπ(x)Rm) for
any x ∈ (N, a), i.e. π-�bers form the foliation induced by K. Take any curve
γ : (R, 0)→ N in a �ber of π. Then (f ◦γ)′(t) = (Tγ(t)f)(γ ′(t)) = 0. Therefore
f is constant along the curve γ. Hence f is constant on π-�bers. Then there
exists a map-germ f : (Rm, 0) → (M, b) such that f = f ◦ π. Take a smooth
section s : (Rm, 0) → (N, a). Then f = f ◦ π ◦ s = f ◦ s. Therefore f is a
smooth map-germ.

Take a system of local coordinates x1, . . . , xm, xm+1, . . . , xn such that π
is given by

π(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm)

and therefore Kx is generated by ∂/∂xm+1, . . . , ∂/∂xn in TxN . Then f is
expressed as

f(x1, . . . , xn) = (f1(x1, . . . , xm), . . . , fm(x1, . . . , xm)).

Then Jf is generated by one element det(∂fi/∂xj)1≤i,j≤m = π∗(det(∂f i
/∂xj)1≤i,j≤m) = π∗(λ) and therefore Jf is a principal ideal in EN,a.

Conversely, suppose Jf is a principal ideal generated by one element λ ∈
Jf and S(f) is nowhere dense. Denote by Γ the set of subsets I ⊆ {1, 2, . . . , n}
with #(I) = m. For a map-germ f : (N, a) → (M, b), n ≥ m and I ∈ Γ, we
set DI = det(∂fi/∂xj)1≤i≤m,j∈I for some coordinates x1, . . . , xn of (N, a) and
y1, . . . , ym of (M, b) with fi = yi ◦ f . For any I ∈ Γ, there exists hI ∈ Ea
such that DI = kIλ. Since S(f) is nowhere dense, there exists I0 ∈ Γ such
that DI0 6= 0. Since λ ∈ Jf , there exists `I ∈ Ea for any I ∈ Γ such that
λ =

∑
I∈Γ `IDI . Then (1−

∑
I∈Γ `IkI)λ = 0. If kI(a) = 0 for any I ∈ Γ, then

1 −
∑

I∈Γ `IkI is invertible in Ea, therefore λ = 0 and then we have Jf = 0.
This contradicts to the assumption that S(f) is nowhere dense. Hence there
exists I0 ∈ Γ such that (`I0kI0)(a) 6= 0. Then kI0(a) 6= 0. Therefore Jf is
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generated by DI0 . Hence DI = hIDI0 for any I ∈ Γ with hI0(a) = 1. Then the
Pl�ucker-Grassmann coordinates (hI)I∈Γ give a smooth section K : (Ra, a) →
Gr(n−m,TN) ∼= Gr(m,T ∗Ra), which is regarded as a subbundle K ⊆ TN of
rank n−m and Kx ⊆ Ker(Txf) for any x ∈ (N, a). Moreover Kx coincides with
Ker(Txf) for x ∈ (N \ S(f), a) and therefore K is integrable outside of S(f).
Since S(f) is nowhere dense, K is integrable. Thus f is a cofrontal map-germ
with the kernel �eld K. �

Corollary 2.8. Let f : (N, a) → (M, b) be a map-germ. Suppose f is

analytic and Jf 6= 0. Then f is a frontal or a cofrontal if and only if Jf is a

principal ideal.

Proof. By Lemma 2.4 and Remark 2.6, if f is a frontal or a cofrontal,
then Jf is principal. If Jf is principal, Jf 6= 0 and f is analytic, then S(f) is
nowhere dense. Thus by Lemma 2.4 and Remark 2.6, f is a frontal if n ≤ m
or a cofrontal if n ≥ m. �

Example 2.9. Let f : (R3, 0)→ (R2, 0) be the map-germ given by f(x1, x2,
x3) = (x2

1 + x2
2 + x2

3, 0). Then f is analytic and Jf = 0 is principal. However f
is not a cofrontal. In fact, suppose f is a cofrontal and K a kernel �eld of f of
rank 1. Let

ξ(x) = ξ1(x)∂/∂x1 + ξ2(x)∂/∂x2 + ξ3(x)∂/∂x3, ξ(0) 6= 0,

be a generator of K. Then ξ1(x)x1 + ξ2(x)x2 + ξ3(x)x3 is identically zero in a
neighborhood of 0 in R3. In particular, we have ξ1(x1, 0, 0)x1 = 0 and therefore
ξ1(x1, 0, 0) = 0, so ξ1(0, 0, 0) = 0. Similarly, we have also ξ2(0, 0, 0) = 0 and
ξ3(0, 0, 0) = 0. This leads a contradiction.

De�nition 2.10 (Jacobians of frontals and cofrontals). Let f : (N, a) →
(M, b) be a frontal or a cofrontal. Then a generator λ ∈ Ea of Jf is called
a Jacobian (or a singularity identi�er) of the cofrontal f , which is uniquely
determined from f up to multiplication of a unit in Ea.

Remark 2.11. The singular locus S(f) = {x ∈ (N, a) | rank(Txf : TxN →
Tf(x)M) < min{n,m}} of a frontal or a cofrontal f is given by the zero-locus
of the Jacobian λ of f .

Remark 2.12. Let f : (N, a)→ (M, b) be a cofrontal and K a kernel �eld
of f . Set

K⊥x := {α ∈ T ∗xN | α(v) = 0 for any v ∈ Kx}.
Then K⊥ is a germ of subbundle of the cotangent bundle T ∗N of rank

m. Let α1, α2, . . . , αm be a local frame of K⊥.
Then there is a unique λ ∈ Ea such that

df1 ∧ df2 ∧ · · · ∧ dfm = λα1 ∧ α2 ∧ · · · ∧ αm.
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Then λ generates Jf and therefore λ is a Jacobian of the cofrontal f .

De�nition 2.13 (Fair frontals and cofrontals). A frontal or a cofrontal f :
(N, a) → (M, b) is called fair if the singular locus S(f) is nowhere dense in
(N, a).

Remark 2.14. A cofrontal f is fair if and only if a reduction f (De�nition
2.5) is fair. In fact if f = f ◦ π for a submersion-germ π : (N, a) → (Rm, 0),
we have S(f) = π−1(S(f)), and therefore S(f) is nowhere dense in (N, a) if
and only if S(f) is nowhere dense in (Rm, 0). If a cofrontal f is reduction-�nite
(De�nition 2.5), then f is fair, since a reduction f is K-�nite so is necessarily
fair.

Remark 2.15. In [10,11], a frontal with nowhere dense singular locus was
called proper. However in the global study the terminology �proper� is rather
confusing, in particular for the study of cofrontals, since its usage is di�erent
from the ordinary meaning of properness (inverse images of any compact is
compact). Therefore, in this paper, we use the terminology �fair� instead of
�proper�.

Lemma 2.16. Let f : (N, a) → (M, b) be a fair cofrontal or dim(N) =
dim(M). Then the kernel �led K of f is uniquely determined and the reduction

f of f (De�nition 2.5) is uniquely determined up to right equivalence.

Proof. On the regular locus N \ S(f), there is the unique kernel �eld K
de�ned by Kx := Ker(Txf : TxN → Tf(x)M). Let f be a fair cofrontal. Then
N \S(f) is dense in (N, a). Therefore the extension of K to (N, a) is unique if it
exists. Let n = m. Then the unique kernel �eld K is de�ned by the zero-section
of TN (Example 2.2 (2)). Then the submersion π : (N, a) → (Rm, 0) induced
by K is uniquely determined up to left equivalence. Let π′ : (N, a) → (Rm, 0)

be induced by K and f and f
′
be both reductions of f with f = f ◦π = f

′ ◦π′.
Then π′ = σ ◦ π for some di�eomorphism-germ σ : (Rm, 0) → (Rm, 0) and

f ◦ π = (f
′ ◦ σ) ◦ π. Since π is a submersion, we have f = f

′ ◦ σ. �

Let f : (N, a) → (M, b) be a cofrontal (resp. a fair cofrontal) and K :
(N, a)→ Gr(n−m,TM) be a kernel �eld of f . Recall that K ⊂ TN is a germ
of integrable subbundle of rank n−m.

De�nition 2.17 (Adapted coordinates). A system (x1, . . . , xm, xm+1, . . . ,
xn) of local coordinates of N centered at a is called adapted to a kernel �eld K
of a cofrontal f , or simply, to f , if

Kx=

〈(
∂

∂xm+1

)
x

, . . . ,

(
∂

∂xn

)
x

〉
R
={v ∈ TxN | dx1(v) = 0, . . . , dxm(v)=0},

for any x ∈ (N, a).
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Since a kernel �eld K of a cofrontal is assumed to be integrable, we have

Lemma 2.18. Any cofrontal f : (N, a)→ (M, b) has an adapted system of

local coordinates on (N, a).

Remark 2.19. For an adapted system of coordinates (x1, . . . , xm, xm+1, . . . ,

xn) of f , the Jacobian λ is given by the ordinary Jacobian ∂(f1,...,fm)
∂(x1,...,xm) .

3. GLOBAL COFRONTALS

We will de�ne the class of (co)frontal maps and fair (co)frontal maps, and
we make clear the di�erence of these classes of mappings.

De�nition 3.1 (Global cofrontal mappings). Let N,M be smooth mani-
folds of dimension n,m respectively.

Suppose n ≥ m. A smooth mapping f : N →M is called a cofrontal map

or a cofrontal brie�y if the germ fa : (N, a)→ (M,f(a)) at a is a cofrontal for
any a ∈ N (De�nition 2.1). A cofrontal f : N →M is called fair if fa is a fair
cofrontal for any a ∈ N , i.e. if the singular locus S(f) := {x ∈ N | rank(Txf :
TxN → Tf(x)M) < m} is nowhere dense in N (De�nition 2.13).

Suppose n ≤ m. A smooth mapping f : N →M is called a frontal map or
a frontal brie�y if the germ fa : (N, a)→ (M,f(a)) is a frontal for any a ∈ N .
A frontal f : N → M is called fair if fa is a fair frontal for any a ∈ N , i.e.
if the singular locus S(f) := {x ∈ N | rank(Txf : TxN → Tf(x)M) < n} is
nowhere dense in N .

Example 3.2. (1) Any submersion is a cofrontal. Any immersion is a
frontal.

(2) Any constant mapping N → M is a cofrontal of a frontal depending
on dim(N) ≥ dim(M) or dim(N) ≤ dim(M).

(3) Let F be a foliation of codimension m on a manifold N of dimension
n. If a mapping f : Nn → Mm is constant on any leaf of F , then f is a
cofrontal.

(4) As a motivating example from symplectic geometry, consider a La-
grangian foliation L on a symplectic manifold N2n and a system of functions
f1, . . . , fn on N . Then f = (f1, . . . , fn) : N → Rn is a cofrontal if f is constant
along each leaf of L.

First we observe �unfair� (co)frontal maps are not so restrictive in topo-
logical or homotopical sense. In what follows, we suppose N is compact for
simplicity.
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Proposition 3.3 (C0-approximation). Any smooth (C∞) map f : N →
M is C0-approximated by a frontal or a cofrontal g : N → M , i.e., for any

open neighborhood U of f , for C0-topology on the space C∞(N,M) of all C∞

mappings, there exists a frontal or a cofrontal g which belongs to U . More-

over any smooth map f : N → M is homotopic to a frontal or a cofrontal

g : N →M .

Example 3.4. Let S2 ⊂ R3 be the unit sphere and g : S2 → R the height
function, i.e. g(x1, x2, x3) = x3. Then g is never a cofrontal. Let ε > 0. Let
ϕ : [−1, 1] → [−1, 1] be any smooth map satisfying that ϕ(y) = −1(−1 ≤
y − 1 + ε), ϕ(y) = 1(1 − ε ≤ y ≤ 1), and that ϕ is a di�eomorphism from
(−1 + ε, 1− ε) to (−1, 1). Then f = ϕ ◦ g is a cofrontal. See the �gure: In the
right picture, f restricted to the north (resp. south) gray part is constant.

-1

1

1

f

graph of ϕ. A cofrontal on the sphere.

Note that f can be taken to be arbitrarily near g in C0-topology.
Similar construction can be applied to any proper Morse function g : N →

R and we have a cofrontal which is a C0-approximation to g.

Proof of Proposition 3.3. Let f : N → M be a smooth mapping. Take
any open neighborhood U of f in C∞(N,M) for C0-topology. Then, for any
neighborhood U ′ of f for C∞-topology, there exist a mapping f ′ : N → M
which belongs to U ′ such that f ′ has a Thom strati�cation (S, T ) satisfying
the following conditions:

(1) S is a Whitney strati�cation of N and T is a Whitney strati�cation
of M .

(2) For any S ∈ S, there exists a T ∈ T such that f ′|S : S → T is a
surjective submersion.

(3) The critical locus

Σ(f ′) := {x ∈ N | rank(Txf
′ : TxN → Tf(x)M) < m}

is a union of strata of S and, for any stratum S ∈ S in Σ(S), f |S : S → M is
an immersion.
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(4) There exists a compatible tubular system (πS , ρS)S∈S for S, i.e., a
normed normal bundle ES → S to S inN , a positive smooth function ε : S → R
and a di�eomorphism φS : (ES)<ε → N on on the image US = ΦS((ES)<ε),
which is a tubular neighborhood of S in N . Here (ES)<ε := {v ∈ ES | v ∈
TxN, ‖v‖ < ε(x)} and ρS(v) = ‖v‖2. The projection πS is regarded as the
projection from the tubular neighborhood US to S via φS , and ρS is the squared
norm function on a normed normal bundle of S, which is regarded as a function
on the tubular neighborhood. Then compatibility condition means that, for any
S, S′ ∈ S with S′ ⊆ S,

πS′ ◦ πS = πS′ , ρS′ ◦ πS = ρS ,

in the intersection of a tubular neighborhood of S and that of S′, and that for
any S, S′ ∈ S with dim(S) = dim(S′), the intersection US ∩ US′ = ∅.

f’US0

US1
1

US1
2

US1
3

US1
4

This is obtained as a byproduct of the proof of the topological stability
theorem due to Mather [15�17]. In fact, the argument goes as follows: First f
is C∞-approximated by a mapping f ′′ ∈ U ′ of �nite singularity type (Propo-
sition 7.1 of [17]). Then f ′′ has an unfolding (F,N ′,M ′, i, j) such that F is
proper and in�nitesimally stable (Proposition 7.2 of [17]). Here i : N → N ′

and j : M →M ′ are embeddings and

N
i−→ N ′

f ↓ ↓ F
M

j−→ M ′

is a �bre-product. For the in�nitesimally stable mapping F , the restriction of F
to the singular locus Σ(F ) is proper and uniformly �nite-to-one (Proposition 1.1
of [17]). Then F has a strati�cation (S ′, T ′) satisfying the conditions (1)(2)(3)
(Proposition 11.4 of [16], �3 of [17]). Since S ′ is obtained as the pull-back of T ′,
S ′ is Thom regular over F by the condition (3). Therefore (S ′, T ′) is a Thom
strati�cation of F . Then, by perturbing j, a C∞-approximation f ′ : N → P of
f ′′, f ′ ∈ U ′ is obtained. Moreover, as the restriction of (S ′, T ′), the required
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Thom strati�cation (S, T ) of f ′ is obtained. Then the condition (4) is satis�ed
by Proposition 6.3 of [16]. (See also [4, 15]. )

Now, since U is open for C∞-topology, we can take f ′ from U . For 0 ≤
i ≤ n, denote by S(i) is the i-skeleton of S, i.e. the union of all strata of S
of dimension ≤ i. Set U (i) = N \ Si, the union of all strata of S of dimension
> i. We will modify f ′ �rst on U (n−1) and then U (n−2) and so on to get the
approximation g.

Actually, we perform as follows: First we suppose n > m. Let τ be
a su�ciently small positive real number and τ = τδ : [0, 1] → R a smooth
function such that τ(t) = 0(0 ≤ t < δ), τ(t) = 1(1 − δ < t ≤ 1. De�ne
fn−1 : U (n−1) →M by

fn−1(x) := f

(
φS

(
τ

(
1

ε(πS(φ−1
S (x)))

‖φ−1
S (x)‖

)
φ−1
S (x)

))
,

for x ∈ US∩U (n−1) with dim(S) = n−1, and by fn−1(x) = f(x) otherwise. Note
that, by the mapping fn−1, the mapping f is modi�ed along points near S ∈ S
with dim(S) = n− 1 contracts to S and then mapped by f . The modi�ed map
fn−1 is a smooth map and a cofrontal. Also we have that fn−1 is homotopic
to f |U(n−1) . Moreover note that fn−1 is not a C∞-approximation but a C0-
approximation of f on U (n−1). De�ne fn−2 : U (n−2) → M by setting fn−2(x)
similar as above for x ∈ US∩U (n−2) with dim(S) = n−2, by fn−2(x) = fn−1(x)
otherwise. Then fn−2 is a smooth map, a cofrontal and a C0 approximation
of f on U (n−2). Iterating this procedure we have f0 : U (0) → M and �nally
f−1 : U (−1) = N → M , which is a smooth map, a cofrontal, belongs to U and
is homotopic to f .

If n = m, then we have nothing to do.
Suppose n < m. Note that in this case Σ(f) = N . Then by the same

procedure as above, we have a frontal fi which is a C0-approximation of f |U (i)

and is homotopic to f |U (i) for i = n−1, n−2, . . . , 0,−1. Note that we may take
as a Legendre lift of fi any extension of the Legendre lift of f |S ,dim(S) = i
over US . Thus we have a frontal f which belongs to U and is homotopic
to f . �

4. GLOBAL FAIR COFRONTALS

Contrary to the case of �unfair� cofrontals, the following lemmata show
that the sauce space of a fair cofrontal must be very restrictive.

Lemma 4.1. Let f : N →M be a fair cofrontal. Then there exists a unique

kernel �eld K of f , i.e. there exists a unique integrable subbundle K ⊆ TN of

rank n−m such that Kx ⊆ Ker(Txf : TxN → Tf(x)M) for any x ∈ N .
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Proof. By Lemma 2.16, the germ of kernel �eld is uniquely determined
for each x ∈ N . By the local existence and uniqueness, we have the global
existence of the kernel �eld of f . �

Lemma 4.2. Let f : N → M be a fair cofrontal and K the kernel �eld of

f . Let F be the foliation induced by the integrable subbundle K of TN of rank

n−m. Then the closure of any leaf of F is nowhere dense in N .

Proof. Let L be a leaf of F . Then f restricted to L is constant. (See
the proof of Proposition 2.4. Note that L is assumed to be connected by the
de�nition of leaves.) Then f restricted to the closure L of L is constant just
by the continuity of f . Assume L has an interior point. Then also S(f)
necessarily has an interior point. This leads us to a contradiction with the
fairness. �

Remark 4.3. Let N,M be smooth manifolds with dim(N) = n ≤ m =
dim(M). Suppose that N is compact or both N,M are non-compact. Then
there exists a proper fair frontal f : N → M . In fact take any closed sub-
manifold N ′ ⊆ M of dimension n and its inclusion i : N ′ ↪→ M . Take any
proper smooth map g : N → N ′ whose singular locus S(g) is nowhere dense,
for instance, g is a topologically stable map. Then f := i ◦ g is a proper fair
frontal map.

The following is clear.

Lemma 4.4. Let g : L→M be a cofrontal and π : N → L be a submersion.

Then g ◦ π : N →M is a cofrontal. g ◦ π is fair if and only if g is fair.

De�nition 4.5 (Reducible and irreducible cofrontals). Let f : N → M be
a cofrontal with dim(N) = n > m = dim(M). The frontal f is called reducible

if there exists a submersion π : N → Ñ to an `-dimensional manifold Ñ and a
cofrontal g : Ñ →M with n > ` ≥ m such that f = g ◦ π. A cofrontal is called
irreducible if it is not reducible.

Proposition 4.6. Let f : N → M be a fair cofrontal with n > m and

K its kernel �eld. If the leaf space forms an m-dimensional manifold N and

π : N → N is a surjective smooth submersion such that Ker(π∗) = K, then f
is reducible. In fact, there exists a smooth map g : N →M such that f = g ◦π.

Proof. Since f is constant on each leaf of K, we have a map g : N → M
such that f = g ◦ π. Take any leaf L of K and any point x ∈ L, then the
reduction of the germ of f at x is given by the germ of g at L ∈ N . Therefore
g is smooth at L (see Proposition 2.4). Thus g is a smooth map. �

Example 4.7 (Irreducible fair frontals). (1) Let the open M�obius band N is
given as the quotient of R2 by the cyclic action generated by the transformation
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ψ : R2 → R2, ψ(x1, x2) = (x1 + 1,−x2). Then (x1, x2) 7→ x2
2 induces a well-

de�ned map f : N → R which is an irreducible fair cofrontal.

(2) Let T = R2/Z2 be the torus. Let K be the Klein bottle de�ned as the
quotient by the involution ϕ : T → T , ϕ([x1, x2]) := [x1 + 1

2 , 1 − x2]. De�ne
f : K → R by f([[x1, x2]]) := (x2 − 1

2)2. Here [x1, x2] (resp. [[x1, x2]]) be the
point on T (resp. K) represented by (x1, x2) ∈ R2. Then f is well-de�ned
smooth mapping which is an irreducible fair cofrontal.

Example 4.8 (Cofrontal of reduction-non-�nite). Let ϕ : R → R be a
smooth such that ϕ(t) = t, (t < 1

3 , t
2
3 < t), 1

3 < |ϕ(t)| < 2
3 and that ϕ−1(1

2)
is an in�nite set having just one point t = 1

2 as a non-isolated point. Then
de�ne f : T 2 = R2/Z2 → S1 = R/Z by f([t1, t2]) = [ϕ(t2)] modulo Z, where
t2 ∈ [0, 1]. Then f is a fair cofrontal such that f is not reduction-�nite and the
�ber f−1([1

2 ]) has in�nite many connected components.

5. CLASSIFICATION OF COFRONTALS

OF FIBER-DIMENSION ONE

To give a target-local classi�cation theorem of cofrontals, we start with
an algebraic consideration. Let Di�(N, a) denote the group of di�eomorphisms
(N, a)→ (N, a).

De�nition 5.1. Let f : (N, a)→ (M, b) be a smooth map-germ. Then the
right symmetry group Gf of f is de�ned by

Gf := {σ ∈ Di�(N, a) | f ◦ σ = f}.

Lemma 5.2. Let f : (N, a)→ (M, b) and g : (N ′, a′)→ (M ′, b′) be smooth

map-germs. If f and g are right-left equivalent (A-equivalent), then Gf and Gg
are isomorphic as groups.

Proof. Suppose τ ◦f = g◦σ for di�eomorphism-germs σ : (N, a)→ (N ′, a′)
and τ : (M, b)→ (M ′, b′). Let ϕ ∈ Gf . Then

g◦(σ◦ϕ◦σ−1) = (g◦σ)◦ϕ◦σ−1 = (τ ◦f)◦ϕ◦σ−1 = τ ◦(f ◦ϕ)◦σ−1τ ◦f ◦σ−1 = g.

Therefore σ ◦ ϕ ◦ σ−1 ∈ Gg. The correspondence Gf → Gg de�ned by ϕ 7→
σ ◦ ϕ ◦ σ−1 induces a group isomorphism. �

Example 5.3. (1) Let f : (R2, 0) → (R2, 0) be a fold which is de�ned by
f(x1, x2) = (x1, x

2
2). Then the right symmetry group Gf ∼= Z/2Z.

(2) Let f : (R2, 0) → (R2, 0) be a cusp which is de�ned by f(x1, x2) =
(x1, x

3
2 + x1x2) [22]. Then Gf is trivial, i.e. Gf consists of only the identity

map-germ on (R2, 0). This can be seen, for instance, as follows: There are
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natural strati�cation (S, T ) of f such that S has four open strata U1, U2, U3

and U4 , T has two open strata V1 and V2, each Ui, i = 1, 2, 3, is mapped to V1,
and U4 to V2 respectively by f , and that each restriction of f is injective.

f

U

U

U

U

1

2

3

4 V V1 2

Let σ ∈ Gf . Since σ preserves inverse images of f for each point in
the target, σ must be the identity on U4, and it permutes three points from
U1, U2, U3. However, by the continuity of f , σ maps each Ui to itself. Thus σ
restricted to each �ber of f turns to be the identity, and therefore σ itself turns
to be the identity.

(3) Let f : (R2, 0) → (R2, 0) be de�ned by f(x1, x2) = (x2
1, x

2
2). Then

Gf ∼= Z/2Z× Z/2Z.
(4) Let f : (R2, 0) = (C, 0) → (C, 0) = (R2, 0) be de�ned by f(z) =

z`, (z ∈ C). Then we have Gf ∼= Z/`Z.
(5) Let G be a �nite re�ection group on Rn and h1, h2, . . . , hn be a system

of generators of the invariant ring of G consisting of homogeneous polynomials
(cf. Chevalley's theorem [6]). Then the right symmetry group Gh of h =
(h1, . . . , hn) : (Rn, 0)→ (Rn, 0) is isomorphic to G.

Proposition 5.4 (Construction of cofrontals of �ber-dimension one). Let
h : (Rm, 0) → (M, b) be a smooth map-germ and σ ∈ Gh. Let h : U → M and

σ : U → U be representatives of h and σ respectively such that h ◦ σ = h on

U . Set N = ([0, 1] × U)/∼ where (0, x) ∼ (1, σ(x)). Then N is a (m + 1)-
dimensional manifold and f = fh,σ : N → M,f([t, x]) = h(x) is well-de�ned

and is a cofrontal.

In general, let h1, . . . , hs : (Rm, 0) → (M, b) be smooth map-germs and

σi ∈ Ghi , (1 ≤ i ≤ s). Let hi : Ui → M and σi : Ui → Ui be representatives

of hi and σi, (1 ≤ i ≤ s) respectively, such that hi ◦ σi = hi on Ui. Set Ni =
([0, 1]×Ui)/∼ where (0, x) ∼ (1, σi(x)). Take the disjoint union N =

⋃s
i=1Ni.

which is an (m+1)-dimensional manifold. De�ne f = fh1,...,hs;σ1,...,σs : N →M
by f([t, x]) = hi(x) for [t, x] ∈ Ni, 1 ≤ i ≤ s. Then f is well-de�ned and f is a

cofrontal.
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L i

Ui

Wi

Proof. Since σi ∈ Ghi , f is well-de�ned and smooth. Moreover the t-
direction de�nes well-de�ned subbundleK ⊂ TN of ranks 1. Since f is constant
along K, we see that f is a cofrontal. �

De�nition 5.5 (Reduction-�nite cofrontals.). A cofrontal f : N → M
is called reduction-�nite if any germ of cofrontal fa : (N, a) → (M,f(a)) is
reduction-�nite in the sense of De�nition 2.5.

Remark 5.6. The cofrontal f in Proposition 5.4 is fair if and only if all
hi, i = 1, . . . , s are fair. Moreover f is reduction-�nite if and only if all hi, i =
1, . . . , s are K-�nite.

De�nition 5.7 ([18]). Let f : N →M,f ′ : N ′ →M ′ be smooth map-germs
and b ∈ M, b′ ∈ M ′. Then the germ of f over b is right-left equivalent to the
germ of f ′ over b′, if there exists an open neighborhood U of b in M , an open
neighborhood U ′ of b′ in M ′, a di�eomorphism Φ : f−1(U) → f ′−1(U ′) and a
di�eomorphism ϕ : U → U ′ such that the diagram

f−1(U)

f

��

Φ // f ′−1(U ′)

f ′

��
U ϕ

// U ′

commutes.

Remark 5.8. The right-left equivalence class of the germ of fg,σ : N →M
over b ∈ M in Proposition 5.4 depends only on the right-left equivalence class
of the germ g and the conjugacy class of σ in Gg. Similarly the right-left
equivalence class of the germ of fh1,...,hs;σ1,...,σs : N →M over b ∈M the right-
left equivalence class of the multi-germ (g1, . . . , gs) from the disjoint union of
s-copies of (Rm, 0) to (M, b), and the conjugacy classes of σi in Ggi .

Theorem 5.9 (Classi�cation theorem of cofrontals with one-dimensional
�bers). Let N be a compact smooth manifold of dimension m + 1, and M a
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smooth manifold of dimension m. Let f : N → M be any reduction-�nite

cofrontal and b ∈ M . Then the germ f over b is right-left equivalent to the

germ fh1,...,hs;σ1,...,σs over b for some non-negative integer s, K-�nite map-germs

hi : (Rm, 0)→ (M, b) and elements σi ∈ Ggi of �nite order (1 ≤ i ≤ s).

Lemma 5.10. Let h : (Rm, S)→ (M, b) be a multi-germ with S = {x1, . . . ,
xs}. Suppose all germ hi = hxi : (Rm, xi)→ (Rm, 0) are K-�nite. Let σi ∈ Ghi .
Then there exist open neighborhood V of b, open neighborhood Ui of xi and

representatives hi : Ui →M of hi and σi : Ui → Ui such that h−1
i (V ) = Ui and

hiσi = hi on Ui for i = 1, . . . , s.

Proof. Let g : (Rm, 0) → (M, b) be a K-�nite map-germ. Then mk
0 ⊂

f∗(mb) for some positive integer k. Then there exist α > 0, C > 0 such that
C‖x‖α ≤ ‖g(x)‖ on a neighborhood of 0 ∈ Rm. Therefore, for any representa-
tive g : W → M of g, and for any neighborhood W ′ of 0 with W ′ ⊆ W , there
exists an open neighborhood V of b such that g−1(V ) ⊂ W ′. For each hi take
such an open neighborhood Vi of b such that hi ◦ σi = hi holds on h−1(Vi).
Then set V = ∩si=1Vi and Ui = h−1

i (V ). Then σ(Ui) = Ui and hi ◦ σi = hi
on Ui. �

Lemma 5.11. Let f : N →M be a cofrontal of reduction-�nite, N compact

and b ∈M . Then the �ber f−1(b) over b consists of a �nite number of disjoint

circles in N . Each connected component has an open neighborhood consisting

of leaves of a kernel �eld of f .

Proof. First we remark that, since the cofrontal f is reduction-�nite, f
is fair and therefore there exists the unique global kernel �eld K of f . Take
any a ∈ N . Let L be the leaf through a of the foliation F de�ned by K.
Then the germ fa has a K-�nite reduction. Then there exists an adapted open
neighborhoodWa of form U×V,dim(U) = m,dim(V ) = n−m such that {p}×V
is contained in a leaf of F for any p ∈ U . If we take U su�ciently small, then
Wa ∩ f−1(b) = Wa ∩L, since f is reduction-�nite. Set W = ∪a∈LWa. Then W
is an open set in N and W ∩ f−1(b) = W ∩ L. Thus we have seen that L is a
closed, therefore compact submanifold in N . In particular L is di�eomorphic
to the circle S1. Moreover L has an open neighborhood consists of leaves of F .
Then we have that the number of connected components is �nite. �

Proof of Theorem 5.9. SinceN is compact and the cofrontal f is reduction-
�nite, f−1(b) consists of a �nite number of disjoint circles L1, L2, . . . Ls in N
by Lemma 5.11. Each Li has an open neighborhood Wi consisting of leaves of
the foliation F of the kernel �eld K of f . By taking each Wi small enough, we
have that Wi ∩Wj = ∅ for i 6= j. Now f is locally constant on each leaf of F .
(See the proof of Lemma 4.2.) Since each leaf is assumed to be connected, f is
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constant on each leaf of F . Take a transversal Ui of dimension m to the leaves
on Wi through a point on Li. Then we have the Poincar�e map σi : Ui → Ui
by moving along leaves of F . We have that f ◦ σi = σi on Ui. Set hi = f |Ui .
Then we have that the germ of f over b is right-left equivalent to fg1,...,gs;σ1,...,σs

over b. Taking Ui su�ciently small, then the number of �bers of hi is bounded
(Remark 2.7). Then any σi-orbit on Ui has bounded period. Therefore σi must
be of �nite order. �
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