
AN OLD MAN'S MATHEMATICAL STORIES
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Laurentiu insisted that I should give a talk. His idea was that a residue value
of an old man is that he may have some stories to tell the younger generations,
whence the title.

I believe what he actually meant was that the only residue value an old
man like me might still have is to tell stories which might be of some interest to
you.

Most stories took place a very long time ago, they may not be 100%
accurate.
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1. THE CHICAGO LECTURE SERIES
�HOW TO DO RESEARCH�

This lecture series was organised by Professor Saunders MacLane in 1962,
when I was half way through a Ph.D program. He was, of course, the �rst
speaker, the others were: Albert, Calder�on, Halmos, Kaplansky, Steenrod (vis-
iting professor) and Zygmund.

The purpose was to advise us graduate students how to do research.
Hence, only we were allowed to attend. Yet many junior sta�s still sneaked into
the room, hid behind us; some were caught, but none was actually thrown out.

Every speaker, including MacLane himself, began his lecture by saying �I
don't know how to do research�, and changed the title to �How I Do Research�.
(So much the better!) However, there were many common advices. Some
impressive advices are as follows.

(i) Compute And Think. That is, begin with an idea, compute ex-
amples; try to understand the meaning; design more examples, compute again,
then try to understand, etc..

MacLane showed us the amount of paper, some 2 feet thick, he spent
computing the homology of the Eilenberg-MacLane spaces K(π, n), case by
case, dimension by dimension.
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Steenrod, with his �nger pointing at us, said: �I have computed more H∗,
H∗ than all of you put together.� We happily accepted the humiliation, for
we learned Algebraic Topology as a kind of general abstract non-sense, knowing
only a handful of simple examples.

(ii) Every Theorem Is An Exercise. This method of learning was very
much emphasised by MacLane, Calder�on, Halmos and Steenrod. A theorem is
the tip of a pyramid, based on examples, counterexamples and the idea of proof.
In order to appreciate the structure of the pyramid one must try to �nd a proof.
A theorem sails through the reefs of counterexamples.

Calder�on told us when he was a student (in Argentina), he came across
a theorem of Zygmund, he found a proof, hence did not bother to read Zyg-
mund's paper. When he came to Chicago, one day he discussed this theorem
with Zygmund, he was amazed to �nd that his proof was actually better than
Zygmund's original one.

Of course, there are too many theorems in the world. Hence, in order to
do research, one must ignore almost all theorems; a theorem is an exercise only
if it is relevant to you.

(iii) Steenrod: Ask Questions Which Need Not Make Sense. We
all laughed. But Steenrod was serious. This was what he told us: �Around 1940,
Algebraic Topology amounted to computation of H∗(X), H∗(X), for all kinds
of X.

I asked myself: Can I axiomatise the theory? This question did not make
sense.

In 1945, Eilenberg-MacLane's Category Theory paper appeared. I was so
excited. This paper had more impact on me than any other paper; it completely
changed my way of thinking. Now, H∗, H

∗ are functors, cup product, Sqi, etc.
are natural transformations.

This was precisely the language I need for the axiomatisation.�

This he and Eilenberg did in their book Foundation of Algebraic Topology
(1952).

I was impressed and inspired by this advice of Steenrod.

Non-standard Analysis appeared in the 1960's. In order not to use (ε, δ) in
Calculus, A. Robinson introduced galaxy, galaxy of galaxies, ..., of in�nitesimals
(logic symbols).

I asked myself: Can I give geometric meaning to in�nitesimals?

This question now makes sense in the Newton-Puiseux In�nitesimal Anal-
ysis [13]; a fractional power series generates an irreducible curve-germ, a geo-
metric in�nitesimal. See (9.2).

I believe the geometric in�nitesimals, being self-similar (as in Fractal
Geometry), can be used to teach Calculus, and to build models (�pictures�) in
Quantum Mechanics.
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Another question which did not make sense was: Are the classical dis-
criminants

b2 − 4ac, 4p3 − 27q2, ...,

one for each degree of polynomial, related in some way?
Thanks to Koike and Parusi�nski [14], this question will make sense once we

know the canonical strati�cation of Jω(2, 1); the discriminant varieties appear
amid the strata (�7).

2. NO DEFINITION IS WRONG?

Steenrod gave a lecture; his paper appeared in L'Enseignement Math.,
153�178 (1962).

In 1956, Cartan and Eilenberg wrote the �rst book on Homological Alge-
bra. At the very beginning of this book they de�ne the cohomology algebra as
the in�nite direct sum

H∗(X) := H0(X)⊕ · · · ⊕Hp(X)⊕ · · · ,

and call the cup product �anti-commutative�:

up ∪ vq = (−1)pqvq ∪ up ∈ Hp+q.

It is then awkward to compare

(u0 + · · ·+ up) ∪ (v0 + · · ·+ vq) with (v0 + · · ·+ vq) ∪ (u0 + · · ·+ up).

Similarly, although Sqi(up ∪ vq) has a beautiful expansion, there isn't one
for

Sqi[(u0 + · · ·+ up) ∪ (v0 + · · ·+ vq)].

Steenrod: �Adding cohomology classes of di�erent dimensions has
no geometric meaning. The de�nition is wrong, hence the whole book
is wrong.�

Steenrod's Correction: The cohomology algebra is, by de�nition, a graded
algebra

H∗(X) := {H0(X), ...,Hp(X), ...}.

A graded algebra is commutative if, by de�nition ,

up · vq = (−1)pqvq · up,

and connected if H0 is isomorphic to the ground �eld. Then everything goes
smoothly.

MacLane adopted Steenrod's de�nition in his book Homology (1963).
Unfortunately, even nowadays we still see meaningless expressions like dx +
dx ∧ dy.
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3. CHEVALLEY AND THOM: IN GENERAL POSITION

In 1954(?), when Thom (then a young man) was visiting IAS, Chevalley
(Columbia) invited him to dinner. Like every good Frenchman, they had co�ee
after the meal.

Chevalley: �The notion in general position in Algebraic Geometry can
be transplanted to Di�erential Topology.�

Thom was inspired, leading to his Transversality Theorem, and then the
Stability Theory of mappings. A branch of modern mathematics thus grew out
of a cup of co�ee.

A short conversation with a big master can keep us busy for a very long
time.

This notion is also used in the development of Strati�cation Theory.
See �8.

4. THOM VS. GROTHENDIECK (PRIDE AND PREJUDICE)

In 1964(?) Shih WeiShu overheard a conversation in the tea room of IHES.

Thom: Does your theory help understand algebraic varieties in Rn?
Grothendieck: No.
Thom: Then, what is your theory good for?

The conversation was of course in French. Shih WeiShu told me in Chinese
in 1965. The above is my translation. Some years later, the book Structural
Stability and Morphogenesis appeared [34]. On p. 35, Thom wrote: �in the
case of any natural phenomenon governed by an algebraic equation it is of
paramount importance to know whether this equation has solutions, real roots,
and precisely this question is suppressed when complex scalars are used ....� He
then gave a number of examples.

I used to have a copy of Whitney's book Complex Analytic Varieties
(1972). I was amazed to �nd in the Preface: �This (book) is a prerequisite
for a full study of the real case.�

Thom and Whitney indicated to us a new frontier : Real Algebraic Ge-

ometry.
How to do research? Have Pride and Prejudice!

The �rst classical result of this kind is Sturm's Theorem. This is an
algorithm to compute the number of real roots of a given p(x) ∈ R[x] in a given
interval [a, b].

Another one is Harnack's Theorem [5] which gives the maximum possible
number of connected components of a curve Cn in R2, de�ned by a polynomial
of degree n.
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In his renowned 1979 M. Sc thesis [24,25], S. McCallum generalised Sturm's
theorem to R2. He created an algorithm to determine the topological struc-
ture of Cn in a given compact rectangle D (some components can be isolated
points). More precisely, he constructed a simplicial pair (S,R) homeomorphic
to (D,Cn ∩D).

Nowadays, Real Algebraic Geometry is an active �eld of research. See,
e.g., [1, 3].

5. EQUIVALENCE OF SINGULARITIES
(EQUI-SINGULARITIES)

Regardez les singularit�es, il n'y a que �ca qui compte.

G. Julia.

The late Professor Roger Richardson had a very interesting observation.
He pointed out to me that Zariski and Whitney were colleagues at Harvard.
(Whitney moved to IAS later.) They actually worked on the same research
project, namely, to understand singular algebraic varieties; but their approaches
were very di�erent. Roger was quite right.

Zariski followed the traditional approach: blow-up, blow-up, ..., till all
singular points disappear, to achieve a parametrisation. His student Hironaka
�nally succeeded.

I see Whitney as an �environmentalist�, who would not break anything,
let alone blow things up. He kept singular points as they are, only to classify
them: equi-singularities. His idea was to de�ne P ∼ P ′ on a given variety if
they have the �same local environment�.

Whitney's Project: Find a de�nition for �same local environ-

ment�.

(Two professors, one tried to prove a theorem, the other devoted himself
to �nding a de�nition. Between theorem and de�nition, which one is more
di�cult?)

Let us explain Whitney's idea on two typical singular varieties in R3:

(5.1) Va : y2 = x2(x+ z2) and Vb : y2 = z2x3 + x5.

A section of Va by z = c, c 6= 0, is an α-shaped curve, crossing itself at
0; that with c = 0 is the cusp y2 = x3; that with y = 0 is x = −z2 plus the
z-axis. Take smooth points P1, P2 on Va, and P3, P4 on the z-axis, not 0. The
equivalence relation “ ∼ � must be such that

P1 ∼ P2 6∼ P3 ∼ P4 6∼ 0.
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As for Vb, each section by z = c, c 6= 0, is analytically equivalent to
y2 = x3; that by z = 0 is a sharper cusp y2 = x5. The origin 0 should have the
worst local environment.

Question: When should we call two Taylor series �equivalent�?

Once an equivalence relation is chosen, we can do the following. Take any
variety V , de�ned, say, by f(x) = 0. Consider the Taylor expansions fP , fP ′

of f at P , P ′ resp.. We say P , P ′ have �the same local environment� on V if
fP and fP ′ are equivalent.

The equivalence relation should be so good that it induces a �nite decom-
position

V = M1 ∪ · · · ∪MN , Mi being the equivalence classes,

where Mi are manifolds, patching up in a nice way.

That is, we are searching for a �universal strati�cation� of va-

rieties. The power series rings, with the equivalence relation, are

�universal objects�.

(In Algebraic Topology, K(π, n) are universal objects for cohomology op-
erations. We do not know whether or not �universal object� has been formally
de�ned in Category Theory.)

6. ON THE ROAD TO UNIVERSAL STRATIFICATION

There are hurdles on the road, due toWhitney, Koike, Paunescu, Kobayashi,
etc.

The Whitney Hurdle [37, 38]. Consider

(6.1) Wt(x, y) = xy(x− y)(x− ty) : (R2, 0) −→ (R, 0), 1 < t <∞.

Take t 6= t′. It is intuitively clear (and not hard to prove) that there exists

h : (R2, 0) −→ (R2, 0), Wt′ ◦ h = Wt,

where h is a homeomorphism sending

x = 0 to x = 0; y = 0 to y = 0; x = y to x = y; and x = ty to x = t′y.

Whitney: Such h can never be a C1-di�eomorphism.

For a proof, suppose h is C1. Then the linear approximation at 0 must
be

dh|0 =

[
λ 0
0 µ

]
=

[
λ 0
0 λ

]
, a contradiction, proof complete.
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This hurdle was �blown away� in [19] as follows. Let

(6.2) β : (M 2, C) −→ (R2, 0)

be the blow-up of R2 at 0, where M 2 is the M�obius band, C the centre circle.

A (real) analytic isomorphism Ψ and a homeomorphism h were found
such that

(M 2, C) (M 2, C)

(R2, 0) (R2, 0)

(R, 0)

Ψ

β β

h

Wt Wt′

is commutative. That is, as observed on M 2, the Whitney hurdle is no longer
there.

It is, therefore, tempting to propose the following de�nition. We say

(6.3) f, g : (Rn, 0) −→ (R, 0)

are blow-analytically equivalent, f ∼b.a. g, if there exist β̃1, β̃2, each being a �nite
composition of blow-ups, an analytic isomorphism Ψ, and a homeomorphism h
such that the diagram

(M1, E1) (M2, E2)

(Rn, 0) (Rn, 0)

(R, 0)

Ψ

β̃1 β̃2

h

f g

is commutative, where Ei are the exceptional divisors (like the centre circle C
in M 2).

Unfortunately, we don't know how to prove∼b.a. is an equivalence relation.
This involves an open question in Algebraic Geometry. Namely, let

β̃i : Mi −→M , i = 1, 2, (�nite compositions of blow-ups)

be given. Can we �nd

β̃′i : M̃ −→Mi, i = 1, 2,

such that
β̃1 ◦ β̃′1 = β̃2 ◦ β̃′2 ?
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That is, in the category where morphisms are blow-downs, do �pullbacks�
exist?

In order to avoid this hurdle we used �modi�cations� instead of blow-ups
in [20].

The next hurdle is much more serious. Koike, in [12], found that the
Brian�con-Spader family is blow-analytically trivial, but tangential arcs are car-
ried to transverse arcs. This result shows that the de�nition has to be substan-
tially strengthened. (See [6].)

Another renowned hurdle is the Paunescu blow-analytic homeomor-
phism [30]

(6.4) P : (R3, 0) −→ (R3, 0), (x, y, z) 7→ (x, y, z − xy5(x4 + y6)−1),

(arc-analytic components) carrying a cusp to a smooth curve: (t3, t2, 0) →
(t3, t2, t).

Hurdles also exist in R2. Kobayashi, in [10, 11], constructed

β̃i : M −→ R2, i = 1, 2,

such that β̃2 ◦ β̃−1
1 , like P, carries a cusp to a straight line. See also Valle [36].

Accordingly, Laurentiu, mimicking Steenrod, once said: �the de�nition of
blow-analyticity is wrong, hence the whole theory is wrong.�

Can we still �nd the universal strati�cation? I think �Yes�. But hard
works lie ahead.

Philosophers say: Every observation is made through a pair of glasses (tele-
scopes, microscopes, naked eyes, etc.). Of course we all know wrong glasses give
misleading images.

In mathematics, coordinate systems are glasses. When teaching Calculus,
we all use

(6.5) f : R2 −→ R, (x, y) 7→ x2y(x2 + y2)−1,

(Cartesian glasses) to show students that a good looking function need not
be C1.

However, if we wear the polar glasses, we actually see a beautiful analytic
function:

Cylinder −→ R2 −→ R : (r, θ) 7→ (r cos θ, r sin θ) 7→ r cos2 θ sin θ.

With the M�obius glasses (6.2), f ◦ β is also analytic. What we proved
in [19] is that if we wear the M�obius glasses, the Whitney hurdle is not there
anymore.

We now believe if we wear the Newton-Puiseux glasses, or perhaps the
Fukui glasses (9.4), the other hurdles may also disappear. Laurentiu and I
have taken the �rst step in [21].
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7. BEYOND A THEOREM OF KOIKE-PARUSI�NSKI

A signi�cant theorem of Koike�Parusi�nski [14,15] asserts that in the case
n = 2, if f ∼b.a. g then there exists a commutative diagram

MN MN−1 · · · · M1 (R2, 0)

(R, 0)

M ′
N M ′

N−1 · · · · M ′
1 (R2, 0)

βN

Ψ hN−1

βN−1 β2 β1

h1 h0

f

β′N β′N−1 β′2 β′1

g

where hi are homeomorphisms, βi, β
′
i are blow-ups, and Ψ is an analytic iso-

morphism.

It follows that ∼b.a is an equivalence relation in R{x, y}. Moreover, by
Theorem 5.1 [14], there is no hurdle. Hence the de�nition of ∼b.a. is a �correct"
one in R{x, y}.

As a result, we can already propose two research projects in R{x, y}.
The �rst one is to �nd the equivalence classes. This amounts to �nding the

strata of the (blow-analytic) canonical strati�cation of Jω(2, 1) [32]. (Compute
and Think! )

Each stratum is a generalised discriminant variety. Are they related?

Here is a Steenrod type question:Are there operations on the strata to
enhance the structure of Jω(2, 1), whence connecting the discriminants? (In Al-
gebraic Topology, Cartan used cohomology operations, such as Sqi, to enhance
the structure of the Eilenberg�MacLane algebra H∗(π, n). Can something sim-
ilar also happen here?)

The second project is to develop the universal unfolding theory in R{x, y}.
When Thom introduced the notion of universal unfolding in his book [34],

he was too much ahead of his time. There was no language to properly express
his ideas.

We now have the language to develop the theory in R{x, y}. Following
Thom, let

f(x, y) = H2(x, y) + · · ·+Hm(x, y) + · · · ∈ R{x, y}

be given, 0 being an isolated singularity. Let m be the smallest integer such
that

f(x, y) ∼b.a. H2(x, y) + · · ·+Hm(x, y) (blow-analytic truncation).
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The set of blow-analytic equivalence classes of

H2(x, y) + · · ·+Hm(x, y) +
∑

i+j≤m aijx
iyj , aij indeterminates,

is the (blow-analytic) universal unfolding of f(x, y).

Project. Find the universal unfoldings in R{x, y}. (Compute and Think! )

The seven elementary catastrophes arise from strata of co-dim ≤ 4; they
appear in space-time R4. The strata of co-dim ≥ 5 will produce catastrophe
models in RN , N ≥ 5.

Of course, the ultimate goal is to �nd the canonical strati�cation of the
general jet space Jω(n, p), and compute the universal unfoldings. But the
�correct� equivalence relation is, as yet, to be de�ned. (Perhaps use the Newton-
Puiseux/Fukui glasses?)

In mathematics, we come across de�nitions and theorems. For a student,
theorems are much harder than de�nitions; for us, however, de�nitions are
much harder than theorems.

8. FROM WHITNEY-THOM TO PARUSI�NSKI-PAUNESCU

Whitney, blocked by his hurdle, took a di�erent approach. He de�ned
his (a,b)-regularity conditions in [37,38]. Thom wrote two papers [32,33], with
his Isotopy Theorems. These are the foundation papers of the Whitney-Thom
Strati�cation Theory [8, 27, 35].

Whitney's de�nition works well on Va. But Vb is (a, b)-regular over the
entire z-axis [17]; that is, all points on the z-axis have the �same local envi-
ronment�. Following Steenrod, we say:�the de�nition is wrong, hence the whole
theory is wrong.� (Pride and Prejudice! )

(Moving to w-regularity would not help: y4 = z2x5 +x7 is w-regular over
the entire z-axis. Koike has pointed out that y2 = x2(x2 + z2) is also w-regular
over the z-axis.)

In a remarkable paper [29], Parusi�nski and Paunescu de�ned what we call
the PaPa regularity condition. This condition asks for the existence of an arc-
analytic foliation along each stratum. Their fundamental theorem asserts that
every algebraic/analytic variety admits a PaPa regular strati�cation. Neither
Va nor Vb are PaPa regular over the z-axis at 0.

The new theory is de�nitely better than the classical theory of Whitney-
Thom.

As in every theory, there should be a criterion for the foundation de�-
nition. We suggest a way to �nd one, inspired by a simple example of Thom
([34], p. 30). Consider

f(x, y) = x2 +H3(x, y) +H4(x, y) + · · · ∈ R{x, y}.
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If H3 = y3, then terms of degree ≥ 4 can be topologically (also analyti-
cally) deleted:

x2 + y3 + [H4 + · · · ] ∼top x2 + y3.

If H3 = 2xy2, then terms of degree ≥ 4 cannot be ignored:

x2 + 2xy2 + [y4 ± y100] = (x+ y2)2 ± y100.

But if H3 = 2xy2 + εy3, ε 6= 0, then, again,

x2 + (2xy2 + εy3) + [H4 + · · · ] ∼top x2 + (2xy2 + εy3) ∼top x2 + εy3.

Observation. The (0-dimensional) projective varieties H2 = 0, H3 = 0 in
RP 1 are �in general position� in the �rst and the third cases, but not so in the
second case.

It was proved that if Hp = 0, Hq = 0 are �in general position� in RPn−1,
then

(8.1) V := {(x, t) ∈ Rn × R |Hp(x) +Hq(x) + t[Hq+1(x) + · · · ] = 0}

is Whitney (a,b)-regular over the t-axis [16, 18]. (This led to the �Ratio Test�
in [17].)

Question. Suppose Hp = 0, Hq = 0 are �in general position� in RPn−1.
Is the above V PaPa-regular over the entire t-axis?

I am sure the answer is �Yes�, and will lead to a criterion for the PaPa
regularity.

A Steenrod type question: Is the PaPa-condition �ultimate�, i.e., cannot
be �improved� anymore? (In [22], a Grassmann blow-up improves the Trotman
ts-condition. We do not know how to de�ne ts-regularity for s < 0. Is the PaPa
condition also the answer?)

9. THE CURVE SELECTION LEMMA AND I

The Curve Selection Lemma plays a vital r�ole in the development of Mod-
ern Mathematics.

It is also the most powerful tool in Singularity Theory. To prove an
analytic germ f(x) has property P , it su�ces to show that f(λ(t)) has property
P for every analytic arc λ.

By an analytic arc at 0 ∈ Rn we mean

(9.1) λ : [0, ε) −→ Rn, λ(t) = (a1(t), ..., an(t)), λ(0) = 0,

where ai(t) are convergent power series.
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The discovery of this lemma, as I see it, might have begun with a min-max
problem.

Let p(x, y) ∈ R{x, y} be given. Suppose p(at, bt) is minimum at t = 0, for
all given constants a, b. Then, is it true that p(x, y) is minimum at (0, 0)?

Lagrange (1736�1813) said �Yes�. Later, Peano (1858�1936) found a coun-
terexample:

p(x, y) = (y − x2)(y − 3x2),
where p(x, y) < 0 between the two parabolas. For more details see [9].

Let us modify the question. Suppose p(a(t), b(t)) is minimum at t = 0
for every analytic arc (a(t), b(t)) at 0. Is it true that p(0, 0) is a minimum of
p(x, y)?

Peano's counterexample is no longer one, since p(t, 2t2) < 0. In fact, now
the answer is actually �Yes�. This is an easy consequence of

The Curve Selection Lemma (Bruhat-Cartan-Wallace, 1957-8, [26]).
Suppose

S = {x ∈ Rn | p1(x) ≥ 0, ..., pk(x) ≥ 0, pk+1(x) > 0, ..., pk+s(x) > 0}

contains points arbitrarily close to 0, where pi are analytic. Then there exists
λ at 0,

0 6= λ(t) ∈ S for t > 0.

If Peano had gone one step farther, namely considered analytic arcs (a(t),
b(t)), then, being Peano, he might have been led to discover the Lemma.
(Missed it by two parentheses?)

Let me tell you how I learned this lemma from Bochnak and Lojasiewicz.

In 1969, I was in Manchester, I knew the converse of the so-called Kuiper-
Kuo Theorem [16] must be true. I struggled to �nd a proof, but failed. There
was a hurdle.

In 1970, Bochnak and Lojasiewicz came to attend the Liverpool Singu-
larities Semester (March-August). In June, Bochnak gave a seminar, proving
what I could not prove [4].

When I �nished my lecture in Manchester, rushed to Liverpool, the sem-
inar was already over, the room was empty. But Bochnak wrote small, the
entire lecture was still on the six blackboards. I sat there and read. I was the
only audience, and there was no speaker anymore. But this is one of the most
inspiring lectures I have ever attended.

What Bochnak wrote on the �rst couple of blackboards was known to
me, and I saw they were approaching the same hurdle. Then he wrote: �by the
Curve Selection Lemma, we can choose an analytic arc along which ....� Ah, in
this way they got around the hurdle!
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As I had circled around this lemma so hard for so long without knowing

it, once I learned it, I fully appreciate its meaning and power. I have used it

all the time ever since.

It completely changed my way of thinking; e.g., in order to study f(x, y),

I now study

fF : F −→ F, ξ 7→ f(ξ, y),

where F is the �eld of fractional power series in y. (Eliminating t from (9.1)

gives

x = ξ(y) := c1y
n1/N + c2y

n2/N + · · · ∈ F, N ≥ 1, n1 < n2 < · · · .)

This fF is a function of one variable in the Newton-Puiseux In�nitesimal

Analysis, where de�nitions and theorems are found as extensions of those in

Calculus/Complex Variables.

Fractional power series are �in�nitesimals�. Examples of real in�nitesi-

mals at 0 ∈ R:

(9.2) x = 0� x = y5/2 < x = 2y5/2 � x = y2, y > 0.

In order to express my appreciation to them, I introduced the name

�Bochnak-Lojasiewicz arc� in my paper [18]. (Thence Bochnak called me his

best friend.)

Let me tell you a few more stories to end my talk.

Koike told me that M. Suzuki has an interesting principle: in many cases,

a topological property in the complex case corresponds to a blow-analytic prop-

erty in the real case.

The hurdle (6.1) is blow-analytically trivial, the complex case is topolog-

ically trivial.

There are several examples of this kind which I learned from Koike, e.g., a

theorem of Oka in the complex case [28] led Suzuki to �nd his theorem in [31].

The renowned Zariski Conjecture led Suzuki to conjecture that

(9.3) f, g ∈ R{x1, ..., xn}, f ∼b.a g =⇒ m(f) = m(g) (same multiplicity).

He proved some special cases. Then, Fukui, in [7], gave an ingenious proof

of the general case. The key idea of Fukui is to consider the induced mapping,

the Fukui glasses:

(9.4) fM : Mn −→M, λ(t) 7→ f(λ(t)),

where M is the maximal ideal of R{t}. The following is clearly true:

m(f) = min{Ot(p(t)) | p(t) ∈ Im(fM )}.
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An analytic arc at 0 ∈ Rn lifts via β̃1 to one in M1 at E1, where Ψ carries

it to one in M2 at E2, then blow-down by β̃2. Whence Im(fM ) = Im(gM ),

(9.3) follows.

The Fukui glasses may be more useful than the Newton-Puiseux glasses;

as we see in his proof, y1/N is magni�ed to t, the Puiseux denominator N is

not a hurdle.

In 1988, Kurdyka explained to me the notion of arc-analyticity, which

grew out of his arc-symmetry theory [23]. A blow-analytic germ is obviously

arc-analytic. He pointed out to me that a kind of converse must be true. (For

meromorphic functions, such as (6.4), (6.5), the converse is true by Hironaka's

Theorem.)

Then Bierstone-Milman [2] proved the converse is indeed true under some

mild conditions. Hence blow-analyticity and arc-analyticity are, more or less,

equivalent notions.

Arc-analyticity, Blow-analyticity, the Curve Selection Lemma, and the

Newton-Puiseux In�nitesimal Analysis are closely related.

I spent many years trying in vain to prove the existence of blow-analytic

strati�cations. This attempt is perhaps no longer relevant. The PaPa strati�-

cation (arc-analytic foliations) should be su�cient for all purposes of strati�-

cation.

My attempt, though failed, led to an interesting problem: A proper ana-

lytic mapping

f : M1 −→M2 (real/complex manifolds)

is given, with critical points Cf , and critical values Vf . Can f be �desingu-

larised �?

That is to say, we would like to �nd

β̃i : M̃i −→Mi, i = 1, 2, (compositions of blow-ups)

to desingularise Cf , Vf such that the following is true. The exceptional divisor

Ei of β̃i is a normal crossing family of hypersurfaces, whence providing a strat-

i�cation of M̃i, the strata being called �canonical �, i = 1, 2. There exists an

analytic mapping Φ such that

(M̃1, E1) (M̃2, E2)

(M1, Cf ) (M2,Vf )

Φ

β̃1 β̃2

f

is commutative; and Φ is a strati�ed submersion, i.e., each canonical stratum of
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M̃1 is mapped submersively onto one of M̃2. (If dim M2 = 1, this is Hironaka's

Theorem.)

H. King also came across this problem in his research on Real Algebraic

Goemetry ; he explained to me a proof when dim M2 = 2.

10. THE LOCAL-TO-GLOBAL DIALECTICS

We are all familiar with the notion of being �local� and �global�, although

this is not formally de�ned. Big theorems in Global Analysis assert a passage

from �local� to �global� (Gauss-Bonnet, Hadamard, Liebmann, Morse, etc.).

Examples also appear elsewhere:

(1) If f : (a, b)→ R is di�erentiable, f ′(x) ≥ 0, then f is increasing;

(2) A �nitely generated abelian group is a product of cyclic groups;

(3) A closed, connected, locally convex set in Rn is (globally) convex.

Question. Can we de�ne (perhaps in Category Theory) � local-to-global type

theorem�?

11. EILENBERG-MAC LANE'S CATEGORY THEORY PAPER

MacLane was very proud of their Category Theory. He told us when

the paper, some 63 pages long, was submitted for publication, the referee,

G. Mackey (Harvard), held it up for a very long time. So he and Eilenberg

invited Mackey to eat lunch and asked him why. Mackey's reply: �I have never

seen such a long paper so trivial.�

12. THE STONE AGE OF MATHEMATICS

Soon after World War II ended in 1945, Professor Marshall H. Stone

was appointed Chairman of the Mathematics Department, the University of

Chicago.

In the American system, the chairman has very big power. Some chairmen

just do their administrative duties. There are also some who feel insecure; if

they want to be number one in the department, they can cause a lot of damage.

Professor Stone was not like that. Besides, he had a very good sense

in identifying good mathematics and good mathematicians. He was able to

hire such top mathematicians like Chern, MacLane, Weil, Zygmund, etc. (He

almost succeeded in getting Whitney.) He made the Chicago Mathematics

Department one of the two best in the world.
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Professor Stone was very much respected and admired. The era of his
chairmanship has since been called �The Stone Age of Mathematics at the Uni-
versity of Chicago�.
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