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A SIGNATURE INVARIANT FOR STABLE MAPS

OF 3-MANIFOLDS INTO SURFACES
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Based on the signature formula for stable maps of closed oriented 4�manifolds
into 3�manifolds, the author de�ned a Vassiliev type invariant of order one for
stable maps of closed oriented 3�manifolds into surfaces. In this paper, we give
an intrinsic formula for the invariant in terms of a certain linking form associated
with a stable map for the 3�manifold. As a corollary, we get a signature formula
for 4�manifolds with boundary in terms of their singular �bers of stable maps.
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1. INTRODUCTION

In this paper, we consider di�erentiable maps of class C∞ between C∞

manifolds. For such maps, Vassiliev [23] introduced a class of invariants which
are now called Vassiliev type invariants: they are invariants for certain generic
maps and behave nicely under generic deformations. For such an invariant, we
have the notion of its order : for example, if the invariant is de�ned for C∞

stable maps and behaves nicely under generic deformations that pass through
unstable loci �transversely�, then it is of order one.

For maps of 3�manifolds into surfaces, Z2�valued Vassiliev type invariants
of order one have been thoroughly studied by Minoru Yamamoto in [25] by
using singular �bers [17]. Here, a singular �ber is a map germ along the full
inverse image of a singular value. More precisely, he formulated the notion of a
semi-local invariant of order one for maps of a closed orientable 3�manifold into
R2, and completely classi�ed them: in fact, the space of such invariants is of
dimension eight over Z2 and he explicitly identi�ed the generating invariants.
Unfortunately, he obtained only Z2�valued invariants and the orientations of
the source 3�manifolds did not play an essential role.
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On the other hand, in the �nal chapter of [17], a Z�valued Vassiliev type

invariant of order one for maps of an oriented 3�manifold into R2 has been

introduced. (In fact, it was Mikio Furuta that proposed the invariant.) Such

an invariant had not appeared in Minoru Yamamoto's work [25]. For a C∞

stable map f : M → R2 of a closed oriented 3�manifold M , this integer valued

invariant, denoted by σ(f), is de�ned by using a generic extension F : V →
R2 × [0,∞) of f , where V is a compact oriented 4�manifold with ∂V = M ,

F |∂V = f : ∂V → R2 × {0}, and F |IntV : IntV → R2 × (0,∞) is a proper

C∞ stable map. More precisely, σ(f) is de�ned as the di�erence between the

signature of V and the algebraic number of singular �bers of type III8 (for

notations of singular �ber types, the reader is referred to [17]). Then, we can

show that this invariant does not depend on particular choices of V nor F .

In fact, this well-de�nedness is a consequence of the signature formula for C∞

stable maps of closed oriented 4�manifolds into R3: for such a stable map, the

signature of the source closed oriented 4�manifold coincides with the algebraic

number of singular �bers of type III8 [18, 19].

In this paper, we consider the invariant σ(f) ∈ Z for C∞ stable maps

f : M → N of closed oriented 3�manifolds into surfaces, and show that σ(f)

coincides with the signature of a certain linking form associated with f de-

�ned for the source 3�manifold M (Theorem 4.3). This enables us to compute

σ(f) without using dimension four. Furthermore, as a consequence, we obtain

a signature formula for generic maps of compact oriented 4�manifolds with

boundary into 3-manifolds with boundary (Corollary 4.7).

The paper is organized as follows. In Section 2, we �rst review certain

characterizations of C∞ stable maps of 3� and 4�dimensional manifolds. We

also recall the notion of singular �bers, and then recall the signature formula for

C∞ stable maps of closed oriented 4�manifolds into 3�manifolds. In Section 3,

we recall the de�nition of the invariant σ and give its basic properties. In Sec-

tion 4, we state and prove our main theorem. Our idea is to construct a generic

extension F as above �canonically� in a certain sense. Finally, in Section 5,

we give explicit examples. We also give an explicit path in the mapping space

which passes through a certain unstable locus transversely exactly once and for

which the value of the invariant σ changes by ±1. As an application of such an

explicit path, we will construct a new explicit C∞ stable map of CP 2 into R3.

Throughout the paper, manifolds and maps are di�erentiable of class C∞

unless otherwise indicated. For a topological space X, idX denotes the identity

map of X. All (co)homology groups are with integer coe�cients unless other-

wise indicated. The symbol �∼=� means an appropriate isomorphism between

algebraic objects or a di�eomorphism between smooth manifolds.
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2. PRELIMINARIES

Throughout the paper, the following notion of a C∞ stable map (or stable
map, for short) plays an important role.

De�nition 2.1. Let f : M → N be a smooth map between smooth mani-
folds. Such a map is C∞ stable (or stable, for short) if there exists a neighbor-
hood Uf of f in the space C∞(M,N) of all smooth maps ofM into N endowed
with the Whitney C∞�topology such that for every g ∈ Uf , there exist dif-
feomorphisms Φ : M → M and ϕ : N → N that make the following diagram
commutative:

M
Φ−−−−→ M

f

y yg
N

ϕ−−−−→ N.

About stable maps, the reader is referred to [5] for more details.

For stable maps in low dimensions, the following is known. (For details,
the reader is referred to [9,17], for example.) In the following, we suppose that
the source manifolds are closed, i.e. they are compact and have no boundary.
Furthermore, for a smooth map f , we denote by S(f) the set of singular points
of f .

Remark 2.2. (1) A function f : M → R on a closed manifold of dimension
n ≥ 1 is stable if and only if it has only non-degenerate critical points and the
critical values are all distinct, i.e. f is a Morse function.

(2) Let M be a closed 3�manifold and N a surface. A map f : M → N
is stable if and only if it has only fold and cusp singularities, f |S(f)rC(f) is
an immersion with normal crossings, and f−1(f(x)) ∩ S(f) = {x} for each
x ∈ C(f), where C(f) is the set of cusp singular points. Here, a fold (or
cusp) singularity is a singular point of f around which f is locally of the form
(x, y, z) 7→ (x, y2 ± z2) (resp. (x, y3 + xy − z2)) with respect to certain local
coordinates. Note that in this case, S(f) is a closed non-singular 1�dimensional
submanifold of M and C(f) is a �nite set of points.

(3) LetM be a closed 4�manifold and N a 3�manifold. A map f : M → N
is stable if and only if it has only fold, cusp and swallowtail singularities, and
f |S(f) : S(f)→ N has only the multi-germs as described in Fig. 1. Here, a fold

(resp., cusp or swallowtail) singularity is a singular point of f around which f
is locally of the form (x, y, z, w) 7→ (x, y, z2 ±w2) (resp. (x, y, z3 + yz −w2) or
(x, y, z4 + xz2 + yz ±w2)) with respect to certain local coordinates. Note that
in this case, S(f) is a closed non-singular 2�dimensional submanifold of M .
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Fig. 1. List of local forms of f(S(f)) for stable maps f of 4�manifolds into 3�manifolds.

(4) In all the above situations, it is known that the set of all stable maps
forms an open dense subset of the mapping space. Therefore, any smooth map
can be approximated by a stable map. Furthermore, it is also known that if
a smooth map g satis�es the above conditions on a neighborhood of a closed
subset C ofM , then such an approximating stable map f can be chosen in such
a way that f |C = g|C .

In this paper, the notion of �bers also plays an important role. (For
details, the reader is referred to [17].)

De�nition 2.3. Let f : M → N be a smooth map. For a point y ∈ N ,
the �ber of f over y is the map germ f : (M,f−1(y))→ (N, y) along the whole
pre-image f−1(y). When y ∈ f(S(f)), we say that it is a singular �ber.

Let us consider two maps fi : Mi → Ni and take yi ∈ Ni, i = 0, 1. The
�bers of f0 and f1 over y0 and y1, respectively, are said to be equivalent if
there exist di�eomorphism germs Ψ and ψ that make the following diagram
commutative:

(M0, f
−1
0 (y0))

Ψ−−−−→ (M1, f
−1
1 (y1))

f0

y yf1
(N0, y0)

ψ−−−−→ (N1, y1).

Note that in [17], singular �bers of stable maps of closed orientable 3�
manifolds into surfaces and those of closed orientable 4�manifolds into 3�
manifolds have been completely classi�ed.

Furthermore, in [18,19], a signature formula as described below has been
obtained. Let M be a closed oriented 4�manifold, N a 3�manifold, and f :
M → N a stable map. Then, in the classi�cation list of singular �bers of such
maps, we have a class of singular �bers of type III8, which appears discretely;
in other words, there are always �nitely many such singular �bers for a given
f . (Refer to [17] about the notations for singular �bers. See also Fig. 2.)
Moreover, using the given orientation of M , we can de�ne a sign, positive or
negative, for each III8�type singular �ber. (Note that this does not depend
on a local orientation of N .) We denote by ||III8(f)|| the number of III8�type
singular �bers of f counted with signs. Then, we have
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Fig. 2. III8�type singular �ber.

(2.1) sign(M) = ||III8(f)||,

where sign(M) is the signature of the intersection form

QM : H2(M ;Q)×H2(M ;Q)→ Q

of M , and is called the signature of the 4�manifold M .

3. INVARIANT σ

In this section, we recall the de�nition of an invariant of stable maps of
closed oriented 3�manifolds into surfaces and give some of its basic properties.

Let f : M → N be a stable map of a closed oriented 3�manifold M into
a (possibly non-compact) surface N without boundary. It is known that there
always exists a compact oriented 4�manifold V such that ∂V = M as oriented
manifolds (see [14, 20]). Let P be a (possibly non-compact) 3�manifold with
∂P = N .

De�nition 3.1. A smooth map F : V → P is called a generic null-

cobordism of f if it satis�es the following.

(1) F−1(∂P ) = ∂V = M .

(2) For small collar neighborhoods C(∂V ) = M × [0, ε) and C(∂P ) = N ×
[0, ε) of ∂V in V and ∂P in P , respectively, with 0 < ε << 1, we have that
F |C(∂V ) : C(∂V )→ C(∂P ) can be identi�ed with f×id[0,ε) : M×[0, ε)→
N × [0, ε).

(3) The restriction F |IntV : IntV → IntP is a proper stable map.

Lemma 3.2. For a stable map f : M → N of a closed oriented 3�manifold

M into a surface N , there always exists a generic null-cobordism F : V → P
for some V and P .
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Proof. Since the oriented bordism group Ω3(N) vanishes (see [2]), there
exists a continuous map V → N extending f for some compact oriented 4�
manifold V with ∂V = M . Then, for P = N × [0,∞), we can construct a
smooth map F1 : V → P that satis�es ((1)) and ((2)) above (with F being
replaced by F1). This map F1 can be approximated by a smooth map F such
that F |C(∂V ) = F1|C(∂V ) and F |IntV : IntV → N × (0,∞) is a proper stable
map as required. �

De�nition 3.3. Let f : M → N be a stable map of a closed oriented
3�manifold M into a surface N . We de�ne the integer σ(f) by

σ(f) = sign(V )− ||III8(F )||,

where F : V → P is a generic null-cobordism of f , sign(V ) is the signature
of the compact oriented 4�manifold V with boundary, and ||III8(F )|| is the
number of singular �bers of type III8 of F counted with signs.

Lemma 3.4. The integer σ(f) ∈ Z is well de�ned; i.e. it does not depend

on the choice of a generic null-cobordism F as above.

Proof. Suppose that we have another generic null-cobordism F ′ : V ′ → P ′

of f as above. Then (−F ) ∪ F ′ : (−V ) ∪ V ′ → P ∪ P ′ is a stable map of
the closed oriented 4�manifold (−V ) ∪ V ′ into the 3�manifold P ∪ P ′ without
boundary. Here, −V denotes the 4�manifold V with the reversed orientation,
(−V ) ∪ V ′ is the closed oriented 4�manifold obtained by attaching −V and
V ′ along their boundary 3�manifold M orientation reversingly, P ∪ P ′ is the
3�manifold obtained by attaching P and P ′ along N , and −F : −V → P is
identical to F (see Fig. 3). Then, by the signature formula (2.1) for singular
�bers of stable maps of closed oriented 4�manifolds into 3�manifolds [18, 19],
we have

sign((−V ) ∪ V ′) = ||III8((−F ) ∪ F ′)||.
Now, by Novikov additivity (for example, see [4, 24]), we have

sign((−V ) ∪ V ′) = − sign(V ) + sign(V ′).

Furthermore, we also have

||III8((−F ) ∪ F ′)|| = −||III8(F )||+ ||III8(F ′)||,

since reversing the orientation of the source 4�manifold changes the signs of all
III8�type singular �bers. Hence, we have

sign(V )− ||III8(F )|| = sign(V ′)− ||III8(F ′)||.

This completes the proof. �
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Fig. 3. Stable map (−F ) ∪ F ′ : (−V ) ∪ V ′ → P ∪ P ′

Note that the invariant σ is originally de�ned in [17, �16.2].1

The following proposition is straightforward and the proof is left to the
reader.

Proposition 3.5. (1) The value σ is invariant under R+L�equivalence:
i.e., for two stable maps fi : Mi → Ni, i = 0, 1, of closed oriented 3�manifolds

into surfaces, if there exist di�eomorphisms Φ : M0 → M1 and ϕ : N0 → N1

such that Φ is orientation preserving and f0 = ϕ−1 ◦ f1 ◦ Φ, then we have

σ(f0) = σ(f1).

(2) For a stable map f : M → N of a closed oriented 3�manifold into a

surface, we have σ(−f) = −σ(f), where −f : −M → N is given by the map f
with −M being the 3�manifold M with the orientation reversed.

(3) The invariant σ is additive under disjoint union.

De�nition 3.6. Let fi : Mi → Ni, i = 0, 1, be stable maps of closed
oriented 3�manifolds into (unoriented) surfaces. A generic cobordism between
f0 and f1 is a smooth map F : V → P of a compact oriented 4�manifold
V with ∂V = (−M0) ∪M1 into a 3�manifold P with ∂P = N0 ∪ N1 which
satis�es the following conditions, where −M0 denotes the 3�manifold M0 with
the orientation reversed.

(1) F−1(Ni) = Mi, i = 0, 1.

1The author is indebted to Mikio Furuta for the idea of construction of the invariant σ.
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(2) For a small collar neighborhood C(M0) = M0 × [0, ε) of M0 in V (resp.
C(M1) = M1 × (1 − ε, 1] of M1 in V ), and a small collar neighborhood
C(N0) = N0 × [0, ε) of N0 in P (resp. C(N1) = N1 × (1 − ε, 1] of N1

in P ), 0 < ε << 1, we have that F |C(M0) = f0 × id[0,ε) and F |C(M1) =
f1 × id(1−ε,1].

(3) The map F |IntV : IntV → IntP is a proper stable map.

Lemma 3.7. Let fi : Mi → Ni, i = 0, 1, be stable maps of closed oriented

3�manifolds into surfaces. If there exists a generic cobordism F : V → P
between f0 and f1, then we have

σ(f1)− σ(f0) = sign(V )− ||III8(F )||.

Proof. Let F0 : V0 → P0 be a generic null-cobordism of f0. Then the
map F ∪ F0 : V ∪ V0 → P ∪ P0 gives a generic null-cobordism of f1, where
V ∪ V0 is the compact oriented 4�manifold obtained by gluing V and V0 along
M0 orientation reversingly, and P ∪ P0 is the 3�manifold obtained by gluing
P and P0 along N0 = ∂P0. Note that ∂(V ∪ V0) = M1 and ∂(P ∪ P0) = N1.
Then, we have

σ(f1) = sign(V0) + sign(V )− (||III8(F )||+ ||III8(F0)||)

and
σ(f0) = sign(V0)− ||III8(F0)||.

Therefore, we get the desired result. (We could also show the lemma by
regarding F as a generic null-cobordism for (−f0) ∪ f and by using Proposi-
tion 3.5.) �

Lemma 3.8. The invariant σ de�nes a Vassiliev type invariant of order

one for stable maps in C∞(M,N).

Proof. Let ft : M → N , t ∈ [0, 1], be a generic smooth 1�parameter
family of smooth maps connecting stable maps f0 and f1 such that it intersects
codimension 1 unstable strata of C∞(M,N) �transversely� at �nitely many
parameter values and that it does not intersect unstable strata of codimension
≥ 2 (for more details, see [12, 13], for example). Then, the map F : M ×
[0, 1] → N × [0, 1] de�ned by F (x, t) = (ft(x), t), (x, t) ∈ M × [0, 1], gives a
generic cobordism with vanishing signature between f0 and f1. Therefore, if
ft does not pass through a codimension 1 unstable stratum corresponding to
a III8�type singular �ber of F , then we have σ(f0) = σ(f1). In general, by
Lemma 3.7, σ(f1) − σ(f0) coincides with the intersection number of the path
ft in C

∞(M,N) with the co-oriented codimension 1 strata CIII8 corresponding
to III8�type singular �bers in such a way that the co-orientation is de�ned by
using the sign of the singular �bers (see Fig. 4). In such a sense, σ de�nes a
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Fig. 4. Intersection of a generic path ft and the codimension 1 strata CIII8 , where CIII8

corresponds to the thick curves. In this example, we have σ(f1)− σ(f0) = 2.

Vassiliev type invariant of order one, since the di�erence σ(f1)−σ(f0) does not
depend on the choice of the generic path connecting f0 and f1. �

4. MAIN THEOREM

In this section, we state and prove the main theorem of this paper, i.e.
an intrinsic formula for the invariant σ. Let f : M → N be a stable map of a
closed oriented 3�manifold M into a surface.

De�nition 4.1. Let us consider the following equivalence relation for M .
Two points in M are equivalent if they lie in the same connected component of
the pre-image of a point in N by f . Let Wf denote the quotient space of M
with respect to this equivalence relation and qf : M → Wf the quotient map.
Then, we see easily that there exists a unique continuous map f : Wf → N
such that f = f ◦ qf . The commutative diagram

M
f−−−→ N

qf↘ ↗ f

Wf

is called the Stein factorization of f and the space Wf is called the quotient

space or the Reeb space of f . Note that Wf can be regarded as the space of
connected components of f��bers. The continuous map f is sometimes called
the Reeb map of f .
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It is known thatWf is a compact polyhedron and its local structures have
been completely determined (see [7, 9]). More precisely, every point of Wf has
a regular neighborhood as depicted in Fig. 5.

Fig. 5. Local structures of the quotient space Wf . The green lines indicate the
qf�image of de�nite fold points and the red ones that of inde�nite fold points.
The Reeb map f corresponds to the planar projection in the vertical direction.

Set Σf = qf (S(f)), which is a 1�dimensional sub-polyhedron of Wf . De-
note by N(Σf ) the regular neighborhood of Σf in Wf and by Rf the closure
of Wf r N(Σf ). Then, each component R of Rf is a compact surface with
boundary and a natural smooth structure is given so that the Reeb map f is
an immersion.

Remark 4.2. A component R of Rf may have no boundary. This occurs
if and only if f restricted to the component M0 of M containing q−1

f (R) is
a submersion. In such a case, R is a closed connected surface and the map
f̄ : R→ f(M0)(⊂ N) is a covering map.

Take a point pR in the interior of each orientable component R of Rf .
Note that q−1

f (pR) is di�eomorphic to the circle S1. Furthermore, q−1
f (pR)

has a natural framing given by q−1
f (p′R), where p′R ∈ IntR is a point close to

pR. (This kind of a framing has already appeared in [16].) Let Lf denote the
union of all q−1

f (pR) over all orientable components R of Rf . By the above
observations, we see that Lf is a framed link in the source 3�manifold M . Let
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i : Lf →M denote the inclusion map and consider the induced homomorphism
i∗ : H1(Lf ) → H1(M). Set Kf = Ker i∗, which is a free abelian group of
�nite rank. For two elements α and β ∈ Kf , we de�ne their linking number

lk(α, β) ∈ Z as follows. Take representatives a and b of α and β, respectively,
which are framed and oriented links in M with integer multiplicities. By using
their framings and by giving them appropriate orientations, we can slightly
modify the components of a and b inside M so that they have multiplicity 1
and that they are all disjoint. (For example, if a component of a has multiplicity
−3, then we take two distinct points p′R and p′′R close to pR and di�erent from
pR, and consider the three component link consisting of the pre-images of the
three points pR, p

′
R and p′′R by qf , and with reversed orientations, where R is

the component corresponding to that component of a.) As α is an element of
Kf = Ker i∗, there exists a 2�chain A in M with ∂A = a. We may assume
that A intersects b �transversely� at �nitely many points. Then, the linking
number lk(α, β) ∈ Z is de�ned to be the sum of all the signs (= ±1) over all
the intersection points of A with b.

We can show that this is well-de�ned as follows. Let A′ be another 2�chain
as above. Then, A − A′ forms a 2�cycle of M . As b is null-homologous in M ,
the intersection number of A − A′ with b must vanish. Hence the intersection
number of A with b and that of A′ with b coincide.

By a standard argument, we can also show that lk(α, β) = lk(β, α). Thus,
the linking number de�nes a symmetric bilinear form

lk : Kf ×Kf → Z

over the integers.

Our main result of the present paper is the following.

Theorem 4.3. Let f : M → N be a stable map of a closed oriented 3�
manifold into a surface. Then the invariant σ(f) coincides with the signature

of the linking form lk : Kf ×Kf → Z.

Proof. We shall construct a compact oriented 4�manifold V with ∂V = M
and a generic null-cobordism F : V → N × [0,∞) of f : M → N × {0} such
that F has no singular �ber of type III8 as follows.

Let R be a component of Rf , which might be non-orientable. Recall that
by f̄ : Wf → N , the compact surface R is immersed into N . Furthermore,
the map qf : q−1

f (R) → R is the projection of a smooth S1�bundle over R.

Note that we may assume that the structure group of such an S1�bundle is
reduced to the group of rotations O(2), since, as is well known, the group of
di�eomorphisms of S1 has O(2) as a deformation retract.

Set M1 = q−1
f (N(Σf )) and M2 = q−1

f (Rf ). Note that M = M1 ∪ M2

attached along the boundaries, and that M1 ∩M2 = ∂M1 = ∂M2 is the total
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space of an S1�bundle over ∂Rf . Consider the map f × id[0,2] restricted to
V1 = (M1 × [0, 2]) ∪ (M2 × [0, 1]), which we denote by F1 : V1 → N × [0,∞).

The corresponding quotient map qF1 : V1 → WF1 is an S1�bundle over R̃f =

qF1((∂M2 × [1, 2]) ∪ (M2 × {1})) ⊂ WF1 , where R̃f can be naturally identi�ed
with Rf ∪ (∂Rf × [1, 2]) attached along ∂Rf = ∂Rf × {1}. Note also that
V1 (after the corners being smoothed) is di�eomorphic to M × [0, 1], which we
orient in such a way that ∂V1

∼= (M × {0}) ∪ (−M × {1}).
Let E be the D2�bundle associated with the above S1�bundle over R̃f .

Note that, although E might not be orientable as a D2�bundle, E can be
oriented as a 4�manifold in such a way that the induced orientation on q−1

F1
(R̃f )

matches that of M × {1}. We denote by V2 the compact oriented 4�manifold

obtained by attaching E to V1 along the S1�bundle over R̃f . By using the
standard map D2 → [1, 1+ε], for a su�ciently small ε > 0, de�ned by (x, y) 7→
1 + ε(1 − (x2 + y2)) on each �ber, we can extend the map qF1 : V1 → WF1 to
q2 : V2 → W2, where D

2 is the unit 2�disk in R2, and W2 is the union of WF1

and R̃f×[1, 1+ε] attached along R̃f = R̃f×{1}. Note thatW2 can be naturally
embedded intoWf× [0, 2] (see Fig. 6, which schematically depicts the structure
of W2). Then, by post-composing the map f̄ × id[0,2] : Wf × [0, 2]→ N × [0,∞)
restricted to W2, we get a smooth map F2 : V2 → N × [0,∞).

Fig. 6. Polyhedron W2. The green lines depict the image
of the newly introduced de�nite fold points.
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By construction, we may assume that F2 gives a generic cobordism be-
tween a smooth map f2 : M2 → N × {2} and f , where M2 = F−1

2 (N × {2}) is
a closed oriented 3�manifold. (By modifying F2 near M2 if necessary, we may
assume that f2 is stable.)

Lemma 4.4. The signature sign(V2) of the compact oriented 4�manifold

V2 coincides with the signature of the linking form lk : Kf ×Kf → Z.

Proof. Set E′ = E ∩ V1, which is an S1�bundle over R̃f . Let us consider
the Meyer�Vietoris exact sequence associated with the pair (V1, E):

H2(M× [0, 1])⊕H2(E)
ι−−−→H2(V2)

ρ−−−→H1(E′)
τ−−−→H1(M× [0, 1])⊕H1(E).

(Recall that V1
∼= M × [0, 1].)

Let us �rst consider the case where each component of Rf is orientable
and has non-empty boundary. In this case, Rf is homotopy equivalent to a
1�dimensional complex, and E and E′ are trivial bundles. Thus, we get the
exact sequence

H2(M×[0, 1])
ι−−−→H2(V2)

ρ−−−→H1(S1×Rf )
τ−−−→H1(M×[0, 1])⊕H1(D2×Rf ).

As can be easily observed, Ker τ can be naturally identi�ed with Kf ,
which is free abelian of �nite rank. Therefore, we get the split short exact
sequence

0−−−→ Im ι−−−→H2(V2)−−−→Kf−−−→0.

Thus, we can choose a basis of the free part of H2(V2) consisting of a basis
B1 of the free part of Im ι together with a set B2 of elements corresponding to a
basis of Kf . Let us take an arbitrary member α of the basis B1 of the free part
of Im ι. Then, we can �nd a 2�cycle a representing α in M × [0, 1] ∼= V1. This
implies that its intersection number with all the members of the above basis
B1 ∪ B2 vanishes, since we can displace the 2�cycle a in the [0, 1]�direction.
Therefore, the intersection matrix of V2 with respect to the above basis coincides
with the direct sum of a 0�matrix corresponding to B1 and the intersection
matrix corresponding to B2.

Furthermore, by the construction of the linking form lk forKf , we see that
the intersection form on the free abelian group generated by B2 coincides with
the linking form. This can be seen by observing that the intersection number of
two 2�chains in M × [0, 1] bounding 1�cycles in M ×{1} representing elements
of Kf coincides with their linking number in M .

Hence, the signature of V2 coincides with the signature of the linking
form lk.

If a component R of Rf is non-orientable and has non-empty boundary,
then an S1��ber of q−1

f (R) represents a homology class in H1(q−1
f (R)) which
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is of order two. Therefore, by an argument using the Meyer�Vietoris exact
sequence as above, we see that such a component does not contribute to the
free part of H2(V ). Thus, we can ignore such a component R when computing
the signature of V2.

Finally, suppose that a component R of Rf has no boundary. By the
additivity of the signature and that of the linking form, we may assume that
M is connected. Then, by Remark 4.2, q−1

f (R) coincides with M and is an S1�
bundle over a closed surface R. Hence, V2 is di�eomorphic to the associated
D2�bundle over R. If R is non-orientable, then we see easily that the signature
of V2 is equal to zero, since its second homology group vanishes. If R is ori-
entable, let e denote the Euler number of the S1�bundle. In this case, H2(V2)
is in�nite cyclic and is generated by the class represented by the zero-section
of the D2�bundle. As its self-intersection number coincides with e, we see that
the signature of V2 is equal to 1, 0 or −1 if e is positive, zero or negative, respec-
tively. On the other hand, Lf is a framed link consisting of a framed S1��ber,
and |e| times the corresponding homology class generates Kf . Furthermore, we
can show that the self-linking number of that generator is equal to e as follows.
Let D be a small 2�disk in R and set R◦ to be the closure of RrD. Then, M
is di�eomorphic to the 3�manifold obtained by attaching S1 ×D and S1 ×R◦
along their boundaries by a di�eomorphism S1 × ∂D → S1 × ∂R◦ which pre-
serves the �bers S1 × {∗} and which sends {∗} × ∂D to a simple closed curve
in S1 × ∂R◦ winding once in the direction of {∗} × ∂R◦ and e times in the
direction of S1×{∗} homologically. Therefore, the above-mentioned generator
of Kf bounds a 2�chain consisting of {∗} × D and {∗} × R◦. This 2�chain
intersects the |e| parallel copies of an S1��ber of S1 ×D at |e| points. Taking
into account the orientations, we see that the relevant linking number is equal
to e. Hence, we have the desired result in this case as well.

This completes the proof. �

In view of Lemma 3.7, for the proof of the theorem, it su�ces to show
that σ(f2) vanishes, since F2 has no singular �ber of III8�type. Note that the
quotient space Wf2 is homeomorphic to N(Σf ) (see Fig. 6).

By deforming f2 by a generic homotopy in the space C∞(M2, N), we can
realize the move of the quotient space in the Stein factorization as depicted in
Fig. 7 (1). This corresponds to the reverse deformation of the elimination of a
pair of cusps [8]. Note that for this move, one of the two overlapping sheets is
split into two, and that we can choose either of them for the move. This kind
of moves give a generic cobordism F3 : M2× [2, 3]→ N × [2, 3] between f2 and
a stable map f3 : M2 → N .

Furthermore, by constructing an appropriate cobordism, we can realize
the move as depicted in Fig. 7 (2) as well. This corresponds to attaching a
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3�handle to M2 × [2, 3]. Let us explain the details as follows.

Fig. 7. Moves for the quotient space. The red lines depict the image of inde�nite fold points
and the green ones that of de�nite fold points.

Suppose that the quotient space Wf3 of the stable map f3 : M2 → N

contains a sub-polyhedron T as in the left hand side picture of Fig. 7 (2). Then,

q−1
f3

(T ) is di�eomorphic to S2 × [−1, 1]. Let F ′4 : V ′4 → N × [3, 4] be a smooth

map of a compact oriented 4�manifold with boundary whose quotient space

WF ′4
is as depicted in Fig. 8, where F ′4 restricted to (F ′4)−1(N × {3}) coincides

with f3 restricted to q−1
f3

(T ), and the vertical direction corresponds to that of

[3, 4]. Note that the green sheet on the boundary of WF ′4
corresponds to the

de�nite fold image, and that outside of that sheet qF ′4 is a smooth S1�bundle.

Note also that V ′4 is di�eomorphic to D3 × [−1, 1].

Now, consider F3 : M2 × [2, 3] → N × [2, 3] and we attach the map F ′4
along q−1

f3
(T ) × {3}. Then, the resulting map, after a suitable modi�cation,

gives a generic cobordism F4 between f2 and a stable map f4 : M4 → N × {4}
of a closed oriented 3�manifold in such a way that Wf4 is homeomorphic to the

polyhedron obtained from Wf3 by applying the move as in Fig. 7 (2).

By repeating this kind of a procedure �nitely many times, we get a quo-
tient space which is a �nite disjoint union of small connected polyhedrons, each
of which is homeomorphic to one of the polyhedrons as depicted in Fig. 9. Each
such polyhedron will be said to be elementary.



556 Osamu Saeki 16

Fig. 8. Quotient space WF ′
4
of F ′4. The green sheet in front

and on the back corresponds to the de�nite fold image.

Fig. 9. Elementary polyhedrons.

Then, by generic homotopies of the Reeb maps, we may assume that the
images of these elementary polyhedrons are disjoint and that on each elemen-
tary polyhedron, the Reeb map corresponds to the projection to the horizontal
planes in Fig. 9.
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As to an elementary polyhedron as in Fig. 9 (2), by a death deformation,
we can turn it into that of Fig. 9 (1). As to (3), by a swallow-tail deformation,
we can turn it into that of (1) as well. As to (4) and (5), by a swallow-tail
deformation, we get (2), and then we get (1). For these deformations of the
quotient space, the reader is referred to [10].

Note that in the deformations used in the above constructions, Reide-
meister III type deformation for singular value curves never occurs so that the
associated smooth map into N× [0,∞) does not have any singular �ber of type
III8. Furthermore, the corresponding 4�manifold is constructed by attaching
several 3�handles to M2 × [2, 3].

Finally, we can attach a 4�disk corresponding to each elementary poly-
hedron of the form as depicted in Fig. 9 (1). The resulting map F5 : V5 →
N × [2,∞) gives a generic null-cobordism of f2 : M2 → N × {2}.

By construction, the 4�manifold V5 is di�eomorphic to the union of M2×
[2, 3] and a 4�dimensional handlebody consisting of several 0� and 1�handles.
Therefore, V5 has vanishing signature. This implies that σ(f2) = 0.

This completes the proof. �

In order to give a corollary to Theorem 4.3, let us �rst prove a lemma which
simpli�es the computation of the signature of the linking form, as follows.

For a stable map f : M → N of a closed oriented 3�manifold into a surface,
we denote by R1

f the union of those components of Rf such that the closure of
the corresponding component ofWfrΣf does not have the image of any de�nite
fold point. Let L1

f be the (framed) sublink of Lf corresponding to R1
f . Let

i1 : L1
f → M be the inclusion map and set K1

f = Ker(i1∗ : H1(L1
f ) → H1(M)),

which is a subgroup of Kf .

The following lemma helps to simplify the computation of the σ�invariant.

Lemma 4.5. Let f : M → N be a stable map of a closed oriented 3�
manifold into a surface. Then, the signature of the linking form lk : Kf×Kf →
Z coincides with that of the linking form lk |K1

f×K
1
f

: K1
f ×K1

f → Z.

Proof. Set R0
f = Rf r R1

f and let R be a component of R0
f . Let R̃ be

the closure of the component of Wf r Σf containing R. Then, for a point

pR ∈ IntR, there is an arc α embedded in R̃ which connects pR and the image
of a de�nite fold point d ∈ Σf and which intersects Σf transversely at d, where

α∩∂R̃ = {d}. Then, q−1
f (α) is a 2�disk bounded by the regular �ber component

q−1
f (pR) and is consistent with the framing of the �ber component. Therefore,

the homology class represented by q−1
f (pR) belongs to Kf . This means that we

have Kf = K1
f ⊕H1(L0

f ), where L0
f = Lf ∩ q−1

f (R0
f ).
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Furthermore, since the 2�disks are disjoint and do not intersect the com-
ponents of L1

f , we see that the linking form lk on Kf is isomorphic to the direct

sum of the form lk |K1
f×K

1
f
and the zero form on H1(L0

f )×H1(L0
f ). Hence, the

result follows. �

Then, we have the following corollary immediately.

Corollary 4.6. For a stable map f : M → N of a closed oriented 3�
manifold into a surface, we always have

|σ(f)| ≤ ]π0(R1
f ),

where ]π0(R1
f ) is the number of components of R1

f .

As a corollary to De�nition 3.3, we have the following.

Corollary 4.7. Let V be a compact oriented 4�manifold possibly with

boundary, Q be a 3�manifold possibly with boundary, and F : V → Q be a

smooth map with the following properties.

(1) F−1(∂Q) = ∂V .

(2) f = F |∂V : ∂V → ∂Q is a stable map.

(3) For small collar neighborhoods C(∂V ) = ∂V × [0, ε) and C(∂Q) = ∂Q×
[0, ε) of ∂V in V and of ∂Q in Q, respectively, 0 < ε << 1, we have that

F |C(∂V ) = f × id[0,ε).

(4) The map F |IntV : IntV → IntQ is a proper stable map.

Then, we have

sign(V ) = ||III8(F )||+ σ(f).

Compare Corollary 4.7 with the formula (2.1), which is valid only for
closed oriented 4�manifolds. When the 4�manifold has nonempty boundary,
then we need the correction term, which is given by σ(f), where f is the stable
map on the boundary 3�manifold, and σ(f) can be computed by Theorem 4.3.

5. EXAMPLE

In this section, let us apply Theorem 4.3 to an explicit example.

Example 5.1. Let h : S3 → S2 be a (positive) Hopf �bration and pr :
S2 → R2 the restriction of the natural orthogonal projection R3 → R2 to the
unit 2�sphere S2. Then, the composition g = pr ◦ h : S3 → R2 is not stable,
since its singular point set is of dimension 2. However, we can construct a stable
map f : S3 → R2 which is a slight perturbation of g and whose quotient space
Wf is a polyhedron as depicted in Fig. 10. Such a stable map is constructed,
for example, in [11, Example 2.5].
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Fig. 10. Quotient space of the stable map f : S3 → R2.

Fig. 11. Change in quotient space for a generic path connecting f0 and f .

In fact, we can construct such a path for which the corresponding quotient
space changes as depicted in Fig. 11.

Then, for f ,Rf consists of three componentsR1, R2 andR3. SinceH1(S3)
vanishes, we have Kf

∼= Z3. For the disk components R1 and R2, we see that
q−1
f (pR1)∪ q−1

f (pR2) is a positive Hopf link and that the framing of each of the
two components is given by +1. Furthermore, for the annulus component R3,
we see that q−1

f (pR3) is a split unknot component and its framing is given by
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zero. Therefore, the linking matrix with respect to the natural basis of Kf is
given by 1 1 0

1 1 0
0 0 0

 .

(Note that this conforms to the argument given in the proof of Lemma 4.5: the
component q−1

f (pR3) has no contribution to the signature.) Then, a straight-
forward calculation shows that it has signature +1, and hence that σ(f) = 1.

Now, let us give an explicit path in the mapping space C∞(S3,R2) con-
necting a standard map to f . The standard map that we consider here is the
special generic map f0 : S3 → R2 given by the restriction of the natural or-
thogonal projection R4 → R2 to the unit 3�sphere S3. (For the terminology
�special generic map�, the reader is referred to [1].)

In Fig. 11, the modi�cation (a) corresponds to a path passing through
the �birth transition� three times and the �swallow-tail transition� three times
(for example, see [10, 15]). In other words, as a path in C∞(S3,R2), it passes
through the strata of unstable maps six times in total. In Fig. 11, the modi�ca-
tion (b) corresponds to a path passing through the �cusp elimination transition�
(see [8]) three times. The modi�cation (c) is most important: it corresponds to
a path passing through the III8�transition exactly once, i.e. it passes through
a stratum of CIII8 transversely at one point in the positive direction. Finally,
the modi�cation (d) corresponds to a path passing through the �swallow-tail
transition� three times.

These transitions can be veri�ed by using known results [8, 15], except
for the III8�transition. In fact, in order that we can apply a III8�transition at
(c), we need to apply the cusp eliminations in (b) beforehand appropriately as
follows.

After the modi�cation (b), the behavior of the map restricted to the in-
verse image of a neighborhood of the central triangle in the quotient space
depends on the so-called �gleam� attached to the triangle region. (For details
of the notion of a gleam, the reader is referred to [3, 21, 22].) A gleam is an
element of (1/2)Z, the set of half integers, and is attached to each component
of R1

f . This corresponds to a certain Euler class of the S1�bundle over the cor-
responding component with respect to a certain �bi-section� over the boundary
determined by the map.

In our explicit case, for each of the three cusp elimination transitions in
(b), we need to choose a path in S3 connecting the two relevant cusp points
(see [8, 15]). Such a path goes through a 1�parameter family of regular S1�
�bers: then, we have the freedom to choose how many times (or in which
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direction) the path winds around regular S1��ber direction. This allows us
to change the gleam of the central region by an arbitrary integer. On the
other hand, we can easily check that the neighborhood of the triangular region
in the quotient space is homeomorphic to that appearing in a III8�transition.
Hence, the di�erence that should be adjusted must be an integer. Therefore, by
appropriately choosing the paths for cusp eliminations, we can arrange so that
the resulting gleam coincides with the one appropriate for a III8�transition to
occur. In this way, the above construction is realized.

By Lemma 4.5 together with Theorem 4.3, we see immediately that σ(f0) =
0, which can also be derived by directly using the de�nition. Therefore, we can
deduce that σ(f) = 1, which conforms to the above calculation.

Remark 5.2. To be more precise, we note that the �nal stable map ap-
pearing in Fig. 11, say f ′, may not exactly coincide with f ; however, we can
show that f ′ is R+L�equivalent to f as follows. We can observe that f ′ in-
duces a �bered 2�component link with annulus �ber, by virtue of the structure
of Wf ′ . Then, since the ambient space must be homeomorphic to S3, we see
that the monodromy must be the Dehn twist along the center circle of the
annulus. Therefore, taking into account the orientation, we can construct an
R+L�equivalence between f ′ and f .

Fig. 12. An explicit stable map CP 2 → R2 ×R.
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As a byproduct of the above construction of an explicit path, we can
construct a stable map F : CP 2 → R2 ×R with the following properties (see
Fig. 12).

(1) We have M = F−1(R2 × {0}) ∼= S3 and the stable map f is R+L�
equivalent to the map F |M : M → R2.

(2) We have V+ = F−1(R2 × [0,∞)) ∼= D4.

(3) The map F |V+ : V+ → R2 × [0,∞) gives a generic null-cobordism for −f
and has exactly one (positive) III8�type singular �ber, where −f is the
map f but with the orientation of the source 3�manifold reversed.

(4) We have V− = F−1(R2 × (−∞, 0]) ∼= CP 2 r IntD4.

(5) The map F |V− : V− → R2 × (−∞, 0] gives a generic null-cobordism for
f : M → R2, and has no singular �ber of type III8.

As far as the author knows, this gives a new explicit example of a stable
mapCP 2 → R3. Note that Kobayashi [6] has already constructed some explicit
stable maps of CP 2 → R3.
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