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1. INTRODUCTION

A central problem in real geometry consists in �nding an algebraic struc-
ture on a di�erentiable object. On this subject A. Tognoli [20] proved that any
closed (i.e. compact without boundary) smooth (i.e. C∞) manifold admits
an algebraic structure: this means that it is di�eomorphic to a non singular
real algebraic variety. Remark that there exist non-compact manifolds which
are not di�eomorphic to real algebraic varieties, but M. Shiota [18] proved
that any a�ne smooth Nash manifold is Nash di�eomorphic to a non singular
real algebraic variety. In equivariant setting K.H. Dovermann, M. Masuda and
T. Petrie [6] conjectured that, if G is a compact Lie group, then any closed
smooth G-manifold is C∞ G-di�eomorphic to a non singular real algebraic
G-variety of some representation space of G (the so-called �Equivariant Nash
Conjecture�).

Now, following these facts, in this paper we study a problem that natu-
rally comes out: to consider the Equivariant Nash Conjecture in the Cr Nash
category (1 ≤ r ≤ ∞). Thus we formulate this question: Let M be a closed
Cr Nash manifold and let G be a compact a�ne Nash group acting on M . Is
MCr Nash G-di�eomorphic to a non singular real algebraic G-variety of some
Nash representation space of G? If it occurs we say that M has an algebraic
G-variety structure.

In this paper, we solve completely this problem when the G action is free.
Precisely, we prove:

REV. ROUMAINE MATH. PURES APPL. 65 (2020), 1, 1�15



2 Francesco Guaraldo 2

Let G be a compact a�ne Nash group acting freely on a closed Cr Nash
manifold M . Then:

i) If r <∞M has an algebraic G-variety structure;

ii) If r =∞M has an algebraic G-variety structure if and only if some precise
conditions are satis�ed (Theorem 5.3).

If the G action is not free we give an answer to the problem if M has a suitable
global K-slice S, K being a closed subgroup of G. Indeed in Theorem 5.4 we
prove that M has an algebraic G-variety structure if and only S has an a�ne
Nash K-manifold structure (see below for this notion).

These results follow from a detailed study on the existence of a�ne G-
structures on Nash G-manifolds. In fact, in the more general setting of a�ne
Nash G-structures, the question we pose is the following:

Let M be a Cr Nash manifold (1 ≤ r ≤ ∞) and let G be a compact
a�ne Nash group acting on M . We ask whether there exist a Nash represen-
tation of G, with space V , an invariant Cr Nash submanifold L of V and a
Cr Nash G-di�eomorphism M → L. If it occurs we say that M has an a�ne
Nash G-manifold structure. Thus the G-variety structures are particular a�ne
structures but, for free actions, we prove that if M is closed and has an a�ne
G-structure then it also has an algebraic one (Theorem 5.2).

It may be of interest recalling that in the equivariant smooth category a
smooth G-manifold M (G compact Lie group) is equivariantly embeddable in
some representation space of G if and only if G has a �nite number of orbit
types in M [1].

In the smooth Nash setting the analogous result is not true, as the fol-
lowing example shows. Let S1 be the standard circle. It is known that there
exists in it a non a�ne Nash group structure [12]. Let call S1, endowed with
this structure, G. Then consider M = G as a smooth Nash G-manifold where
the action of G is the group multiplication. Thus, G has only one orbit type in
M , but M is not Nash embeddable in any number space.

The key point of this example is, of course, that there exist non a�ne
smooth Nash manifolds. But, what can we say if we restrict our attention to
a�ne smooth Nash manifolds or, in general, to Cr Nash manifolds with r <∞?
Here we give some answers to this question for any action, not necessarily
free. So, we �nd conditions which characterize large classes of a�ne Cr Nash
manifolds (1 ≤ r ≤ ∞), with G action, in order to have an a�ne Nash G-
manifold structure (Theorems 4.1, 4.4, 4.6). In particular, if the G action is
free and M is compact and smooth the previous conditions are the same as in
the algebraic case.

In the last section, we consider G actions with G non-compact. We must
remark that G must be linear in order to equivariantly embed a G-manifold in
a representation space of G (note that a compact a�ne Nash group is automat-
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ically linear) [7,10,14]. In this case, �rst we give a Nash G embedding theorem
for homogeneous Nash G-manifolds (Theorem 6.5), then we characterize the
a�ne Cr Nash G-structures (r ≤ ∞) by means of the existence of global slices
(Theorem 6.6).

2. PRELIMINARY REMARKS

We brie�y recall some de�nitions and facts [3,18,19]. The objects consid-
ered through the paper are of class Cr, 1 ≤ r ≤ ∞.

Let U , V be semialgebraic open sets of Rn and Rm, respectively. A Cr

map f : U → V is said to be a Cr Nash map if its graph is semialgebraic.
We know that if r = ∞ it is analytic. A Cr Nash manifold is a Cr manifold
with a �nite system of charts such that the coordinate changes are given by Cr

Nash maps. A Cr Nash map F : M → N between Cr Nash manifolds is a Cr

map which, in local coordinates, is given by Cr Nash maps. If there exists a
Cr Nash embedding of M into some Rm, we say that M is a�ne. If r <∞M
is always a�ne, but there exist non a�ne smooth (i.e. C∞) Nash manifolds.
If M is a Cr Nash submanifold of Rm then it is semialgebraic in Rm and if
r = ∞ it is analytic. Conversely, a semialgebraic Cr submanifold of Rm is a
Cr Nash manifold.

A C∞ Nash manifold G endowed with a group structure such that the
group operations are C∞ Nash maps is said to be a C∞ Nash group. We
consider only such groups and we call them simply Nash groups. They are a�ne
if the Nash manifolds are a�ne. A Nash subgroup of G will be a subgroup of
G which is a C∞ Nash regular submanifold of G. Of course, it is a Nash group
and it is closed. One de�nes as usual the notion of a Cr Nash action of a Nash
group on a Cr Nash manifold.

We consider also Cr Nash �bre bundles: they are bundles such that base
space, total space, �bre and projection are of class Cr Nash.

3. AN APPROXIMATION THEOREM

In this section, we construct a Nash bundle whose cross-sections are in
bijective correspondence with suitable equivariant maps. It allows to obtain an
approximation theorem of di�erentiable equivariant maps by Nash equivariant
maps and it will be used later in order to obtain a�ne Nash G-structures. Let
us begin with some de�nitions.

De�nition 3.1. Let G be a Nash group and 1 ≤ r ≤ ∞.

1. A Cr Nash G-manifold is a Cr Nash manifold with a given Cr Nash action
of G on it.
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2. A Cr Nash G-map between Cr Nash G-manifolds is an equivariant Cr

Nash map.

3. A (linear) Nash representation of G is a smooth Nash homomorphism
G → GL(n); this means a homomorphism of groups which is a smooth
Nash map.

4. A Cr Nash G-manifoldM is said to be an a�ne Cr Nash G-manifold or to
have an a�ne Nash G-manifold structure if it is Cr Nash G-di�eomorphic
to a G-invariant Cr Nash submanifold L of some representation space V
of G. The space V equipped with the linear action of G via the given
representation is said to be a linear G-space. If L is a non singular real
algebraic variety, M is said to have an algebraic G-variety structure.

Given a Cr Nash G-manifold M , �rst of all we deal with the orbit space M/G.

Theorem 3.2. Let G be a compact Nash group and M an a�ne Cr Nash
manifold on which G acts freely (1 ≤ r ≤ ∞) (Recall that if r < ∞M is
automatically a�ne). Then:

i) The canonical map π: M →M/G is a Cr Nash principal bundle;

ii) Given a Cr Nash manifold L, a map h : M/G→ L is of class Cr or Cr

Nash if and only if h ◦ π is.

Sketch of proof. It is known that M/G is a Cr manifold. Because in a
Nash setting the implicit function theorem and the rank theorem hold true,
we can adapt to the Nash case the proof given by Dieudonn�e in [4, 16.10.3] to
construct di�erentiable charts forM/G. Note thatM is semialgebraic, because
it is a�ne. So, by [18, Proposition I.3.9] and by the proof of 16.10.3 in [4] we
can construct a �nite system {Ux, λx} of Cr Nash charts for M and a �nite
system {π(Ux), γx} of Cr Nash charts for M/G such that λx(Ux) = Vx ×Wx

where Vx(Wx) is a semialgebraic open set of Rn (Rm−n) (m = dimM), and
γx ◦ π ◦ λ−1x = canonical projection Vx ×Wx → Wx. It follows that π is a Cr

Nash map.
To prove that the bundle is Nash locally trivial, we remark that π is a

submersion and hence for any point y ∈M/G there exist an open semialgebraic
set U , y ∈ U , and a Cr Nash cross-section σ : U → M . Therefore the map
φ : U ×G→ π−1(U), φ(u, g) = gσ(u), is a Cr Nash di�eomorphism.

ii) The assertion follows from the Nash local triviality of π. �

Now let M , L be a�ne Cr Nash manifolds (r ≤ ∞) with G action, where
G is a compact Nash group. Let us suppose the action on M free. Following
the topological case, we construct a Nash bundle whose cross-sections are in
one-to-one correspondence with G-maps M → L. This is done by using the
twisted product L ×G M . We recall that it is the orbit space of the action
of G on L × M given by (g, (l,m)) = (lg−1, gm) and it is the total space
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of the bundle associated with the Cr Nash principal bundle π : M → M/G
(3.2) and with L as �bre. It follows that the bundle p : L ×G M → M/G,
p([l,m]) = π(m)([l,m] = orbit of (l,m)), is of class Cr Nash and the total
space is a Nash manifold.

Proposition 3.3. Let G be a compact Nash group acting on the a�ne
Cr Nash manifolds M and L(r ≤ ∞). Let us suppose that G acts freely on M .
Then the cross-sections of class Cr or Cr Nash of the Nash bundle p : L×GM →
M/G are in one-to-one correspondence with the G-maps f :M → L of the same
class.

Proof. The claim is true in the topological setting [2, II Theorem 2.6].
Then we must to prove that, given a G-map f :M → L of class Cr or Cr Nash,
the associated continuous cross-section s is of the same class, and conversely.
To do this, let F :M → L×M be the map F (m) = (f(m),m), which is of the
same class of f , and consider the following commutative diagram

M −−−−→ L×My y
M/G −−−−→ L×G M

where the upper horizontal arrow is F , the horizontal arrow below is s and the
vertical arrows are the canonical projections. Since G acts freely on L×M , by
3.2 ii) we have that s is of the same class of f .

Conversely, let s : M/G → L ×G M be a cross-section of class Cr or
Cr Nash. By [2, II Lemma 2.5] we known that L ×M is homeomorphic to
the pull-back of π and p and, locally, this homeomorphism, say φ, is given
by φ(l, g, u) = (lg, g, u), with inverse given by φ−1(l, g, u) = (lg−1, g, u)(u ∈
U ⊂ M/G). Since these maps are of class Cr Nash, L × M and the pull-
back are Cr Nash di�eomorphic. Because p(s(π(m)) = π(m), by the univer-
sal property of pull-backs there exists an equivariant map ϑ′ : M → pull-
back such that ϑ′(m) = (s(π(m)),m) (ϑ′ is of the class of s). Consider
now φ−1: pull-back → L × M and the equivariant map ϑ = φ−1 ◦ ϑ′ :
M → L × M , m 7→ φ−1(s(π(m)),m). Composing ϑ with the �rst projec-
tion q : L ×M → L we get an equivariant map f = q ◦ φ−1 ◦ ϑ′ : M → L,
associated with s, such that s(π(m)) = [f(m),m] and which is of the same
class of s. �

Using the bundle p : L ×G M → M/G we obtain the following approxi-
mation theorem.

Theorem 3.4. Let G be a compact Nash group that acts on the a�ne Cr

Nash manifolds M and L(r ≤ ∞). Let us suppose M compact and G acting
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freely on it. Then the Cr Nash G-maps M → L are dense in the space of the
Ct(1 ≤ t ≤ r) G-maps endowed with the compact-open topology if we have:

i) r <∞;

ii) r =∞ and the Nash manifolds M/G and L×G M are a�ne.

Proof. Let f :M → L be a Ct G-map. It gives rise to a Ct cross-section s
of the Cr Nash bundle p (3.3). By 3.2M/G and L×GM are Cr Nash manifolds
that are a�ne if r < ∞ or by hypothesis if r = ∞. Therefore there exist Cr

Nash di�eomorphisms α : M/G → S, β : L ×G M → T , where S and T are
analytic Nash manifolds contained respectively in Rp and in Rq [18, III 1.1;
III 1.3]. Now C1 approximate the map β ◦ s ◦ α−1 : S → T by a polynomial
λ : Rp → Rq in such a way λ(S) is contained in an analytic Nash tubular
neighbourhood of T in Rq with Nash retraction γ. So we obtain the Cr Nash
map σ = β−1 ◦ γ ◦ λ ◦ α : M/G → L ×G M which approximates s. If p ◦ σ is
close enough to p ◦ s, it is a Cr Nash di�eomorphism of M/G onto itself. Then
the Cr Nash map S = σ ◦ (p ◦ σ)−1 : M/G → L ×G M is a cross-section of p
which C1 approximates s. Looking now at the proof of 3.3 we have that the
Ct G-map f , associated with s, is f(m) = q(φ−1(s(π(m)),m) (see notation in
3.3) and that F , associated with S, is F (m) = q(φ−1(S(π(m)),m). Thus if s
and S are C1 close, the same is true for f and F . �

4. AFFINE G-STRUCTURES WITH G COMPACT

In this section, we study the problem of the existence of an a�ne Nash
G-structure on a Cr Nash G-manifold (r ≤ ∞) when G is compact a�ne.

Theorem 4.1. Let G be a compact a�ne Nash group acting freely on a
closed Cr Nash manifold M(r <∞). Then M has an a�ne Nash G-manifold
structure given by an analytic Nash G-manifold.

Proof. By [15]M is Cr G-di�eomorphic to a smooth G-manifold N. By [8]
N is C∞ G-di�eomorphic to an analytic Nash G-submanifold L of a Nash
representation space V ofG. Then there exists a Cr G-di�eomorphism f :M →
L. Therefore, by 3.4 we can �nd a Cr Nash G-di�eomorphism F :M → L. �

Remark that the previous theorem gives an equivariant version of a result
by M. Shiota which asserts that a Cr Nash manifold (0 < r < ∞) is Cr Nash
di�eomorphic to an analytic Nash manifold [18, Theorem III.1.3.].

If M is smooth some conditions, that we prove to be necessary and su�-
cient, must be ful�lled in order thatM has an a�ne Nash G-manifold structure.
Before, we need some ingredients. Let G be a compact a�ne Nash group and
K a closed subgroup of G. Then:
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Theorem 4.2. a) G is Nash isomorphic to a closed subgroup of an or-
thogonal group and K is a Nash subgroup of G.

b) The homogeneous space G/K is a smooth Nash G-manifold which has
an algebraic G-variety structure.

c) A smooth representation of G is of class Nash.

d) If M is an a�ne Cr Nash K-manifold, the twisted product G×K M is
a Cr Nash G-manifold.

Proof. See [7, Corollaries 1.5, 1.7; Theorems 2.3, 2.5; Lemma 2.6]. �

We must also recall a result by R. S. Palais on the extension of a repre-
sentation.

Theorem 4.3. Let G be a Lie group which admits a faithful continuous
linear representation in a �nite dimensional real vector space. Let K be a
compact subgroup of G and U a linear K-space. Then there is a linear G-
space V which, considered as a linear K-space by restriction, contains U as an
invariant linear subspace.

Proof. See [14, Theorem 3.1]. �

Now we prove the result we were speaking about.

Theorem 4.4. Let M be a compact a�ne smooth Nash manifold and G
a compact a�ne Nash group acting freely on M . Then M has an a�ne Nash
G-manifold structure if and only if the following conditions hold true:

a) There exists a Nash representation of G, with space Rm, such that the
Nash manifold Rm ×G M is a�ne;

b) There exists a smooth G-embedding f :M → Rm.

Proof. Let us suppose the given conditions are satis�ed. Remark that the
Nash manifoldsM/G and {O}×GM (O ∈ Rm) are Nash di�eomorphic and the
second manifold is a Nash submanifold of Rm×GM . Therefore M/G is a�ne.
Then we can apply 3.4 and approximate f by a Nash G-embedding M → Rm.
So, M has an a�ne Nash G-manifold structure.

Conversely, assume that M has an a�ne Nash G-manifold structure.
Therefore there exist a Nash representation α of G, with space Rm, an invari-
ant smooth Nash submanifold L of Rm and a smooth Nash G-di�eomorphism
M → L.

We prove a). The Nash G-manifold Rm×L is an invariant submanifold of
R2m, which is the representation space of α⊕α. Now, the algebra of R[R2m]G

of G-invariant polynomials on R2m is �nitely generated, say by p1, . . . , ps [21].
Therefore consider the map p : R2m → Rs given by p(x) = (p1(x), . . . , ps(x)).
It is a proper polynomial map which separates the orbits and induces the map
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q : R2m/G → Rs such that q ◦ π = p, where π : R2m → R2m/G is the canon-
ical projection. Then q is a closed topological embedding and, in particular,
q|Rm ×G L is a regular Nash map [16], 3.2 ii). Thus Rm ×G L is embeddable
in Rs. Now it su�ces remarking that Rm ×G M and Rm ×G L are Nash
di�eomorphic.

Since condition b) is satis�ed by the de�nition of an a�ne Nash G-
manifold structure, the claim is proved. �

We can generalize slightly Theorem 4.4. In order to do this, let M be
again a compact a�ne smooth Nash manifold on which a compact a�ne Nash
group G acts. Assume that M has only one orbit type G/H. Let N be the
normalizer of H in G and K = N/H. This is a compact a�ne Nash group by
4.2 a), b), 3.2. Let MH = {x ∈ M ;hx = x for all h ∈ H} be the �xed point
set of H on M . It is a compact smooth Nash submanifold of M [9, Proposition
2.25] and hence it is a�ne. The group K acts freely onMH andMH →MH/K
is a principal Nash K-bundle (3.2) i). Then we have:

Theorem 4.5. Let M,G,K be as above. Then MH has an a�ne Nash
K-manifold structure if and only if the following conditions are satis�ed:

a) There is a Nash representation of K, with space Rm, such that the Nash
manifold Rm ×K MH is a�ne;

b) There exists a smooth K-embedding MH → Rm.

Proof. See proof of 4.4. �

About non free actions we have the following result.

Theorem 4.6. LetM be a Cr Nash manifold (r ≤ ∞), G a compact a�ne
Nash group and K a closed subgroup of G acting on M . Then the following
conditions are equivalent:

i) M has an a�ne Cr Nash K-manifold structure;

ii) The twisted product G×KM has an a�ne Cr Nash G-manifold structure.

Proof. i) ⇒ ii) First note that K is a Nash subgroup of G by 4.2 a). By
hypothesis there exists a Cr Nash K-embedding f : M → Rm in the space
of a Nash representation of K. By 4.2 a) we can suppose G a matrix group;
then by 4.3 there is a continuous representation λ : G → GL(p), with space
Rp, such that Rp, considered as a K-space by restriction, contains the K-space
Rm as an invariant linear subspace. By 4.2 c) λ is a Nash homomorphism and
hence it is a Nash representation of K with space Rp. In this way, we obtain
a Cr Nash K-embedding f : M → Rp. Now, by 4.2 d) G×K M is a Cr Nash
G-manifold; therefore let us consider the Cr G-map α : G×KM → G/K×Rp,
α([g, t]) = (gK, gf(t)). We claim that it is a Cr Nash embedding. To prove
this, �rst consider the G-map β : G ×K M → G ×K Rp, β([g, t]) = [g, f(t)].
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It is a bijection onto its image. Moreover, consider the following commutative
diagram:

G×M −−−−→ G×Rp

ψ
y q

y
G×K M −−−−→ G×K Rp

,

(g, t) −−−−→ (g, f(t))y y
[g, t] −−−−→ [g, f(t)]

.

The vertical arrows are the canonical projections and are Cr Nash maps
by 3.2 i); the arrow below is β. Since β ◦ψ is a Cr Nash map, so is β, by 3.2 ii).
Consider now the Cr Nash map G × f(M) → G × M, (g, y) 7→ (g, f−1(y)),
y ∈ f(M). The map β−1 : G ×K f(M) → G ×K M , is: [g, y] 7→ [g, f−1(y)].
Therefore a diagram similar to the previous one shows that β−1 is a Cr Nash
map. Thus β is a Cr Nash embedding. Consider now the G-map γ : G×KRp →
G/K ×Rp, γ([g, x]) = (gK, gx). It is a smooth Nash di�eomorphism. In fact
it is a bijection and the map γ ◦ q, γ ◦ q(g, x) = (gK, gx), is smooth and
Nash and hence γ is of the same class. The inverse map γ−1 is such that
γ−1(gK, x) = [g, g−1x]. To prove that it is smooth and Nash, consider the
following commutative diagram:

G×Rp −−−−→ G×Rpy y
G/K ×Rp −−−−→ G×K Rp

,

(g, x) −−−−→ (g, g−1x)y y
(gK, x) −−−−→ [g, g−1x]

where the vertical arrows are the canonical projections and the arrow below
is γ−1. Then the claim follows from 3.2 ii). So α = γ ◦ β is of class Cr

Nash. Now, by 4.2 b) there exists a smooth Nash G-embedding of G/K into
the representation space Rs of a Nash representation ϑ of G; therefore, if we
consider the Nash representation λ⊕ϑ : G→ GL(p+s), the manifold G×KM
is Cr Nash G-di�eomorphic to a Nash G-submanifold of Rp+s.

ii)⇒ i) First remark that the canonical K-embedding M → G×KM is a
Cr Nash map because it is the composition of the Nash maps M → G×M →
G ×K M , t 7→ (e, t) 7→ [e, t] (e = identity element of G). Now, by hypothesis
there exists a Cr Nash G-embedding ϕ : G×KM → V into the space of a Nash
representation θ of G. Therefore the restriction ϕ|M is a Cr NashK-embedding
into the space of the representation θ|K. �

5. ALGEBRAIC G-STRUCTURES

We begin by recalling the notion of a global slice. Let G be a Lie group,
K a closed subgroup of G and M a Ch G-manifold, 1 ≤ h ≤ ∞. A K-invariant
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Ch submanifold S of M is said to be a global Ch K-slice in M if the map
G×K S →M, [g, s]→ gs, is a Ch G-di�eomorphism.

We shall use the averaging operator A. Here we recall some basic facts
about it. Let G be a compact Lie group and V , W representation spaces of G.
Denote by Cr(W,V ) the set of all the Cr maps W → V , 0 ≤ r ≤ ∞. Let f
be such a map and x any point of W . Denote the Haar measure on G by dg.
Then

A(f)(x) =

∫
G
g−1f(gx)dg.

Lemma 5.1. 1. A(f) is equivariant and A(f) = f if f is equivariant.

2. The operator A induces a map Cr(W,V )→ Cr(W,V ), f 7→ A(f), that is
continuous with respect to the Whitney Cr topology.

3. If f is a polynomial, then so is A(f).

Proof. See [6, Lemma 4.1]. �

We have seen in 4.2 b) that the homogeneous Nash G-manifold G/K has
an algebraic G-variety structure. In general, if we look for conditions in order
to �nd an algebraic G-variety structure on a Nash G-manifold, next theorems
answer the question for free actions.

Theorem 5.2. Let M be a closed Cr Nash manifold (r ≤ ∞) and G
a compact a�ne Nash group acting freely on M . Then M has an algebraic
G-variety structure if and only if it has an a�ne Nash G-manifold structure.

Proof. We have only to prove �if�. Consequently, assume that M has an
a�ne Nash G-manifold structure. First suppose r =∞. Therefore there exists
a smooth Nash G-embedding f : M → W of M into the space W of a Nash
representation of G. By [5] there is a smooth G-embedding h : M → V of
M into the space V of a representation σ of G and the image h(M) is a non-
singular real algebraic G-variety. Note that by 4.2 c) σ is of class Nash. Now
C1 approximate the smooth G-map α = h ◦ f−1|f(M) : f(M) → h(M) by a
polynomial q : W → V . By 5.1 the G-map A(q)C1 approximates A(α) = α
and is again a polynomial. In this way, using a Nash G-tubular neighbourhood
of h(M) in V , we get a smooth Nash G-map β : f(M) → h(M). If the
approximation is close enough this map is a di�eomorphism and then the Nash
G-di�eomorphism β ◦ f : M → h(M) realizes an algebraic G-variety structure
on M .

Now let r <∞. By [15] there exists a Cr G-di�eomorphism f : M → L,
where L is a smooth G-manifold; by [5] there is a smooth G-di�eomorphism
h : L→ N , where N is a non-singular real algebraic G-variety in the space of a
Nash representation of G. Then consider the Cr G-di�eomorphism h◦f :M →
N . Considering N as a Cr Nash G-manifold and using 3.4, we can obtain a Cr
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Nash G-di�eomorphism M → N and then an algebraic G-variety structure on
M . �

Collecting some results found above, we obtain:

Theorem 5.3. Let M , G be as in 5.2. Then:

i) If r =∞M has an algebraic G-variety structure if and only if the follow-
ing condition holds true:

M is a�ne and there exists a Nash representation of G, with space Rm,
such that the Nash manifold Rm ×G M is a�ne and, moreover, there is
a smooth G-embedding of M into Rm.

ii) If r <∞M has an algebraic G-variety structure.

Proof. i) It follows from 4.4 and 5.2. ii) It follows from 4.1 and 5.2. �

If the G action is not free we obtain the following result.

Theorem 5.4. LetM be a closed Cr Nash manifold (r ≤ ∞), G a compact
a�ne Nash group acting on M and K a closed subgroup of G. Assume that
there exists in M a closed global Cr Nash K-slice S on which K acts freely.
Then M has an algebraic G-variety structure if and only if S has an a�ne Cr

Nash K-manifold structure.

Proof. Suppose that S has an a�ne Nash K-structure. By 5.2 it has an
algebraic K-variety structure. This means that it is Cr Nash K-di�eomorphic
to a non singular real algebraic K-variety T . Now, by [17, Corollary 1.4] the
Nash G-manifold G×KT , considered as a smooth G-manifold, has the structure
of a non singular real algebraic G-variety N . It follows that M and N are Cr

G-di�eomorphic. We want to prove that they are Cr Nash G-di�eomorphic.
From what we have just said, there exist a representation σ of G, with spaceW ,
and a Cr G-embedding f :M →W such that f(M) = N . Note that by 4.2 c)
σ is of class Nash. Since G is compact, it is linear by 4.2 a). Therefore we can
use Theorem 6.6 (see below): from the hypothesis made on S it follows that
M has the structure of an a�ne Cr Nash G-manifold. So there is a Cr Nash
G-embedding h :M → V of M into the space V of a Nash representation of G.
Consider now the Cr G-di�eomorphism f ◦ h−1. Using the averaging operator
A and a Nash G-tubular neighbourhood of N in W , we can obtain a Nash
G-di�eomorphism β : h(M)→ N . Therefore the Nash G-map β ◦ h : M → N
gives an algebraic G-variety structure on M .

Conversely, suppose thatM has an algebraic G-variety structure. So there
is a Nash G-embedding % :M → U ofM into the space of a Nash representation
ϑ of G such that %(M) is a non singular real algebraic G-variety. Therefore %|S
and ϑ|K are what we want. �
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6. AFFINE G-STRUCTURES WITH G NON-COMPACT

As we have already said (see Introduction), in order to equivariantly em-
bed a G-manifold M into a linear G-space G must be linear, G ⊂ GL(n).
Moreover note that a compact subgroup K of a linear Nash group G is a Nash
subgroup of G. In fact K is an algebraic group in the vector space L(n) of
all n× n matrices [13, Theorem 5 p. 133], and hence it is a Nash subgroup of
L(n); so it is a Nash subgroup of G. Now remark that the proof of 4.3 given
by Palais works also in a Nash setting. Therefore, repeating that proof, we get
the following result:

Theorem 6.1. Let G ⊂ GL(n) be a linear Nash group, K a compact
subgroup of G and K → GL(m) a Nash representation of K, with space Rm.
Then there is a Nash representation G → GL(p) of G, with space Rp which,
considered as a K-space by restriction, contains Rm as an invariant subspace.

Theorem 6.2. Let G ⊂ GL(n) be a linear Nash group and K a compact
subgroup of G. Then there exist a Nash representation of G, with space W , and
a point w ∈W such that isotropy group Gw of w is K.

Proof. K is a Nash subgroup of G. Since it is compact and a�ne, by [2,
Theorem 0.3.5] and 4.2 c) we can suppose it is a Nash subgroup of O(n). By [2,
Theorem 0.5.2] there exist a continuous representation φ : O(n) → O(m),
for some m, with space U , and a point u ∈ U such that O(n)u = K. By
4.2 c ) φ is a smooth Nash map. By 6.1 there exists a Nash representation
λ : GL(n) → GL(p), with space Rp which, considered as an O(n)-space by
restriction, contains U as an invariant subspace. Then K = O(n) ∩ GL(n)u.
Consider now the Nash action GL(n) × S(n) → S(n) of GL(n) on the space
S(n) of the n × n symmetric matrices given by (a, b) 7→ abat, where at is the
transpose of the matrix a ∈ GL(n). If e ∈ S(n) is the identity matrix, the
isotropy group GL(n)e of e is O(n). If we identify S(n) with Rq(q = dimS(n))
choosing an order of matrix elements, the previous action gives rise to a Nash
representation σ : GL(n) → GL(q). So, in conclusion, we have the Nash
representation α = λ⊕σ : GL(n)→ GL(p+q), with space W = Rp×Rq, and,
if w = (u, e) ∈ W , it is GL(n)w = GL(n)e ∩ GL(n)u = O(n) ∩ GL(n)u = K.
Finally, we have the Nash representation % = α|G : G → GL(p + q) of G and
it is Gw = K. �

In order to prove the Theorem 6.5 below, let us recall the notions of a
proper G-space and of a Cartan G-space, which is a bit more general than
that of a proper G-space. A locally compact space X on which a Lie group G
acts is said to be a proper G-space, and G is said to act properly on X, if the
set GA = {g ∈ G; gA ∩ A 6= ∅} is a compact subset of G for every compact
subset A of X. This is equivalent to the fact that the map G ×X → X ×X,
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(g, x) 7→ (gx, x) is proper. X is said instead to be a CartanG-space if each point
x ∈ X has a compact neighbourhood A such that GA is a compact subset of G.
The relation between these two notions is given by the following proposition:

Proposition 6.3. If X is a locally compact G-space, the following condi-
tions are equivalent:

1. X is a Cartan G-space and X/G is Hausdor�;

2. X is a proper G-space.

Proof. See [14, Theorem 1.2.9]. �

Let us consider again the Nash action of GL(n) on S(n) given by (a, b) 7→
abat (see proof of 6.2). We have:

Proposition 6.4. Let e ∈ S(n) be the identity matrix. Then the GL(n)-
orbit of e in S(n) is an open set A and GL(n) acts properly on A.

Proof. See [11, Lemma 2.1]. �

Identify now again, as in the proof of 6.2, the space S(n) with Rq(q =
dimS(n)) and let v ∈ Rq be the point which corresponds to the identity e and
Av the open set which corresponds to the open set A ⊂ S(n) of 6.4. Therefore
GL(n) acts properly on Av which is the orbit of v. We obtain the following
equivariant embedding theorem for homogeneous smooth Nash G-manifolds:

Theorem 6.5. Let G ⊂ GL(n) be a Nash linear group and K a compact
subgroup of G. Then the homogeneous space G/K is a smooth Nash G-manifold
which has an a�ne Nash G-manifold structure.

Proof. First of all recall that K is a Nash subgroup of G; second, G/K is
a smooth Nash manifold by 3.2 i); moreover, it is easy to see that the natural
action of G on G/K, (g′, gK) 7→ g′gK is of class Nash. Now, from 6.2 and
its proof we have the following Nash representations of GL(n), and hence of
G : λ : GL(n) → GL(p), σ : GL(n) → GL(q), α : GL(n) → GL(p + q), with
spaces, respectively, Rp,Rq,W = Rp ×Rq and a point w = (u, v) ∈ W such
that Gw = K; moreover GL(n) acts properly on the orbit Av of v in Rq. Since
G is closed in GL(n), G also acts properly on Av. Because a product of a proper
G-space and a G-space is again a proper G-space, G acts properly on Rp×Av.
Therefore consider the Nash map F : G → Rp+q, g 7→ %(g)w, % = α|G, and
the induced G-map f : G/K → Rp+q, gK 7→ %(g)w. If π : G → G/K is the
canonical projection, it is f ◦ π = F and thus f is of class Nash by 3.2 i).
Moreover remark that f(G/K) is the orbit G(w) of w. But the open set Av

of Rq contains the orbit G(v) of v and hence the orbit G(w) is contained in
the proper G-space Rp × Av, open in Rp ×Rq. By 6.4 Rp × Av is a Cartan
G-space and therefore, by [14, Proposition 1.1.5], f is a topological embedding
into Rp × Rq; by [2, VI 1.2] f is a smooth immersion; then, by the inverse
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function theorem in a Nash setting, f is a Nash G-di�eomorphism onto its
image. �

Remark now that the smooth Nash G-manifold G/K, which is a�ne, has
the global Nash slice given by {eK} (e = identity element). A link between
a�ne Nash G-structures and global slices appears in a more general situation,
as the following result shows.

Theorem 6.6. Let M be a Cr Nash manifold (r ≤ ∞), G a linear Nash
group acting on M and K a compact subgroup of G. Assume that there exists
in M a global Cr Nash K-slice S. Then M has an a�ne Cr Nash G-manifold
structure if and only if S has an a�ne Cr Nash K-manifold structure.

Proof. Suppose that S has an a�ne Cr NashK-manifold structure, that is
that there exists a Cr Nash K-embedding q : S → Rm of S into the space of a
Nash representation ofK. By 6.1 there is a Nash representation λ : G→ GL(p)
of G, with space Rp which, considered as a K-space by restriction, contains Rm

as an invariant subspace. Therefore we have the Nash K-embedding q : S →
Rp. Now, by hypothesis M is Cr Nash G-di�eomorphic to G×K S. Consider
the Cr G-map α : G×K S → G/K×Rp, α([g, s]) = (gK, gq(s)). We claim that
it is a Nash embedding. At this point we are in the same situation of the proof
of i) ⇒ ii) in 4.6. Repeating that proof and using at the end the embedding
Theorem 6.5 instead of 4.2 b), we equivariantly embed G ×K S into a Nash
representation space of G.

Conversely, let us suppose that there exists a Cr Nash G-embedding % :
M → V of M into the space of a Nash representation ϑ of G. Therefore the
restrictions %|S and ϑ|K give what we want. �
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