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1. INTRODUCTION

A central problem in real geometry consists in finding an algebraic struc-
ture on a differentiable object. On this subject A. Tognoli [20] proved that any
closed (i.e. compact without boundary) smooth (i.e. C°°) manifold admits
an algebraic structure: this means that it is diffeomorphic to a non singular
real algebraic variety. Remark that there exist non-compact manifolds which
are not diffeomorphic to real algebraic varieties, but M. Shiota [18] proved
that any affine smooth Nash manifold is Nash diffeomorphic to a non singular
real algebraic variety. In equivariant setting K.H. Dovermann, M. Masuda and
T. Petrie [6] conjectured that, if G is a compact Lie group, then any closed
smooth G-manifold is C*° G-diffeomorphic to a non singular real algebraic
G-variety of some representation space of G (the so-called “Equivariant Nash
Conjecture”).

Now, following these facts, in this paper we study a problem that natu-
rally comes out: to consider the Equivariant Nash Conjecture in the C™ Nash
category (1 < r < o0). Thus we formulate this question: Let M be a closed
C" Nash manifold and let G be a compact affine Nash group acting on M. Is
MC"™ Nash G-diffeomorphic to a non singular real algebraic G-variety of some
Nash representation space of G7 If it occurs we say that M has an algebraic
G-variety structure.

In this paper, we solve completely this problem when the G action is free.

Precisely, we prove:

REV. ROUMAINE MATH. PURES APPL. 65 (2020), 1, 1-15



2 Francesco Guaraldo 2

Let G be a compact affine Nash group acting freely on a closed C" Nash

manifold M. Then:
i) If r < coM has an algebraic G-variety structure;
ii) If r = coM has an algebraic G-variety structure if and only if some precise

conditions are satisfied (Theorem 5.3).

If the G action is not free we give an answer to the problem if M has a suitable
global K-slice S, K being a closed subgroup of GG. Indeed in Theorem 5.4 we
prove that M has an algebraic G-variety structure if and only S has an affine
Nash K-manifold structure (see below for this notion).

These results follow from a detailed study on the existence of affine G-
structures on Nash G-manifolds. In fact, in the more general setting of affine
Nash G-structures, the question we pose is the following:

Let M be a C" Nash manifold (1 < r < o0) and let G be a compact
affine Nash group acting on M. We ask whether there exist a Nash represen-
tation of G, with space V, an invariant C” Nash submanifold L of V and a
C" Nash G-diffeomorphism M — L. If it occurs we say that M has an affine
Nash G-manifold structure. Thus the G-variety structures are particular affine
structures but, for free actions, we prove that if M is closed and has an affine
G-structure then it also has an algebraic one (Theorem 5.2).

It may be of interest recalling that in the equivariant smooth category a
smooth G-manifold M (G compact Lie group) is equivariantly embeddable in
some representation space of G if and only if G has a finite number of orbit
types in M [1].

In the smooth Nash setting the analogous result is not true, as the fol-
lowing example shows. Let S! be the standard circle. It is known that there
exists in it a non affine Nash group structure [12]. Let call S, endowed with
this structure, G. Then consider M = G as a smooth Nash G-manifold where
the action of G is the group multiplication. Thus, G has only one orbit type in
M, but M is not Nash embeddable in any number space.

The key point of this example is, of course, that there exist non affine
smooth Nash manifolds. But, what can we say if we restrict our attention to
affine smooth Nash manifolds or, in general, to C™ Nash manifolds with r < co?
Here we give some answers to this question for any action, not necessarily
free. So, we find conditions which characterize large classes of affine C” Nash
manifolds (1 < r < 00), with G action, in order to have an affine Nash G-
manifold structure (Theorems 4.1, 4.4, 4.6). In particular, if the G action is
free and M is compact and smooth the previous conditions are the same as in
the algebraic case.

In the last section, we consider G actions with G non-compact. We must
remark that G must be linear in order to equivariantly embed a G-manifold in
a representation space of G (note that a compact affine Nash group is automat-
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ically linear) [7,10,14]. In this case, first we give a Nash G embedding theorem
for homogeneous Nash G-manifolds (Theorem 6.5), then we characterize the
affine C" Nash G-structures (r < oo) by means of the existence of global slices
(Theorem 6.6).

2. PRELIMINARY REMARKS

We briefly recall some definitions and facts [3,18,19]. The objects consid-
ered through the paper are of class C", 1 < r < cc.

Let U, V be semialgebraic open sets of R™ and R, respectively. A C”
map f : U — V is said to be a C" Nash map if its graph is semialgebraic.
We know that if » = oo it is analytic. A C" Nash manifold is a C" manifold
with a finite system of charts such that the coordinate changes are given by C”
Nash maps. A C" Nash map F : M — N between C" Nash manifolds is a C”
map which, in local coordinates, is given by C" Nash maps. If there exists a
C" Nash embedding of M into some R™, we say that M is affine. If r < coM
is always affine, but there exist non affine smooth (i.e. C°) Nash manifolds.
If M is a C" Nash submanifold of R™ then it is semialgebraic in R and if
r = oo it is analytic. Conversely, a semialgebraic C” submanifold of R™ is a
C™ Nash manifold.

A C* Nash manifold G endowed with a group structure such that the
group operations are C'*° Nash maps is said to be a ¢ Nash group. We
consider only such groups and we call them simply Nash groups. They are affine
if the Nash manifolds are affine. A Nash subgroup of G will be a subgroup of
G which is a C*° Nash regular submanifold of GG. Of course, it is a Nash group
and it is closed. One defines as usual the notion of a C" Nash action of a Nash
group on a C" Nash manifold.

We consider also C” Nash fibre bundles: they are bundles such that base
space, total space, fibre and projection are of class C" Nash.

3. AN APPROXIMATION THEOREM

In this section, we construct a Nash bundle whose cross-sections are in
bijective correspondence with suitable equivariant maps. It allows to obtain an
approximation theorem of differentiable equivariant maps by Nash equivariant
maps and it will be used later in order to obtain affine Nash G-structures. Let
us begin with some definitions.

Definition 3.1. Let G be a Nash group and 1 < r < cc.
1. A C" Nash G-manifold is a C™ Nash manifold with a given C" Nash action
of G on it.
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2. A C" Nash G-map between C" Nash G-manifolds is an equivariant C”
Nash map.

3. A (linear) Nash representation of G is a smooth Nash homomorphism
G — GL(n); this means a homomorphism of groups which is a smooth
Nash map.

4. A C" Nash G-manifold M is said to be an affine C™ Nash G-manifold or to
have an affine Nash G-manifold structure if it is C" Nash G-diffeomorphic
to a G-invariant C" Nash submanifold L of some representation space V'
of G. The space V equipped with the linear action of G via the given
representation is said to be a linear G-space. If L is a non singular real
algebraic variety, M is said to have an algebraic G-variety structure.

Given a C" Nash G-manifold M, first of all we deal with the orbit space M/G.

THEOREM 3.2. Let G be a compact Nash group and M an affine C™ Nash
manifold on which G acts freely (1 < r < o) (Recall that if r < ooM s
automatically affine). Then:

i) The canonical map w: M — M/G is a C" Nash principal bundle;
ii) Given a C" Nash manifold L, a map h : M/G — L is of class C" or C"
Nash if and only if hom is.

Sketch of proof. It is known that M/G is a C" manifold. Because in a
Nash setting the implicit function theorem and the rank theorem hold true,
we can adapt to the Nash case the proof given by Dieudonné in [4, 16.10.3| to
construct differentiable charts for M/G. Note that M is semialgebraic, because
it is affine. So, by [18, Proposition 1.3.9] and by the proof of 16.10.3 in [4] we
can construct a finite system {Uz, Ay} of C" Nash charts for M and a finite
system {m(Uy),7z} of C" Nash charts for M/G such that A\, (Uy) = Vy x Wy
where V,,(WW,) is a semialgebraic open set of R (R™™") (m = dim M), and
Nz O O )\;1 = canonical projection V, x W, — W,. It follows that = is a C”
Nash map.

To prove that the bundle is Nash locally trivial, we remark that m is a
submersion and hence for any point y € M /G there exist an open semialgebraic
set U, y € U, and a C" Nash cross-section ¢ : U — M. Therefore the map
¢:U xG— a7 YU), ¢(u,g) = go(u), is a C" Nash diffeomorphism.

ii) The assertion follows from the Nash local triviality of #. O

Now let M, L be affine C" Nash manifolds (r < co) with G action, where
G is a compact Nash group. Let us suppose the action on M free. Following
the topological case, we construct a Nash bundle whose cross-sections are in
one-to-one correspondence with G-maps M — L. This is done by using the
twisted product L xg M. We recall that it is the orbit space of the action
of G on L x M given by (g,(l,m)) = (Ig~!,gm) and it is the total space
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of the bundle associated with the C" Nash principal bundle 7 : M — M/G
(3.2) and with L as fibre. It follows that the bundle p : L xg M — M/G,
p([l,m]) = w(m)([l,m] = orbit of (I,m)), is of class C" Nash and the total
space is a Nash manifold.

PROPOSITION 3.3. Let G be a compact Nash group acting on the affine
C" Nash manifolds M and L(r < o0). Letl us suppose that G acts freely on M.
Then the cross-sections of class C" or C" Nash of the Nash bundlep : LxgM —
M/G are in one-to-one correspondence with the G-maps f : M — L of the same
class.

Proof. The claim is true in the topological setting |2, IT Theorem 2.6].
Then we must to prove that, given a G-map f : M — L of class C" or C" Nash,
the associated continuous cross-section s is of the same class, and conversely.
To do this, let F': M — L x M be the map F(m) = (f(m), m), which is of the
same class of f, and consider the following commutative diagram

M — LxM

| |

M/G E— LXGM

where the upper horizontal arrow is F', the horizontal arrow below is s and the
vertical arrows are the canonical projections. Since G acts freely on L x M, by
3.2 ii) we have that s is of the same class of f.

Conversely, let s : M/G — L xg M be a cross-section of class C" or
C" Nash. By [2, II Lemma 2.5] we known that L x M is homeomorphic to
the pull-back of 7 and p and, locally, this homeomorphism, say ¢, is given
by ¢(l,g,u) = (lg,g,u), with inverse given by ¢=1(l,g,u) = (Ig~ !, g,u)(u €
U C M/G). Since these maps are of class C" Nash, L x M and the pull-
back are C" Nash diffeomorphic. Because p(s(mw(m)) = m(m), by the univer-
sal property of pull-backs there exists an equivariant map 9 : M — pull-
back such that ¢¥'(m) = (s(w(m)),m) (9 is of the class of s). Consider
now ¢~ ' pull-back — L x M and the equivariant map ¢ = ¢~ o :
M — L x M, m — ¢~ Y(s(m(m)),m). Composing ¥ with the first projec-
tion ¢ : L x M — L we get an equivariant map f = qo ¢ tod : M — L,
associated with s, such that s(mw(m)) = [f(m), m] and which is of the same
class of s. O

Using the bundle p : L xg M — M /G we obtain the following approxi-
mation theorem.

THEOREM 3.4. Let G be a compact Nash group that acts on the affine C”
Nash manifolds M and L(r < 00). Let us suppose M compact and G acting
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freely on it. Then the C" Nash G-maps M — L are dense in the space of the
C'(1 <t <r) G-maps endowed with the compact-open topology if we have:

i) r < ooy

ii) » = oo and the Nash manifolds M /G and L xg M are affine.

Proof. Let f : M — L be a C* G-map. It gives rise to a C! cross-section s
of the C" Nash bundle p (3.3). By 3.2 M/G and L xg M are C" Nash manifolds
that are affine if r < oo or by hypothesis if » = co. Therefore there exist C”
Nash diffeomorphisms o : M/G — S, B : L xg M — T, where S and T are
analytic Nash manifolds contained respectively in R? and in R? [18, III 1.1;
III 1.3]. Now C! approximate the map Bosoa~!:S — T by a polynomial
A : RP — RY in such a way A(S) is contained in an analytic Nash tubular
neighbourhood of T'in R? with Nagh retraction v. So we obtain the C™ Nash
map 0 = B oyoloa: M/G — L xg M which approximates s. If po o is
close enough to pos, it is a C" Nash diffeomorphism of M /G onto itself. Then
the C" Nash map S = oo (poo)™t: M/G — L xg M is a cross-section of p
which C! approximates s. Looking now at the proof of 3.3 we have that the
C' G-map f, associated with s, is f(m) = q(¢~!(s(m(m)), m) (see notation in
3.3) and that F, associated with S, is F(m) = q(¢~1(S(w(m)), m). Thus if s
and S are C! close, the same is true for f and F. [

4. AFFINE G-STRUCTURES WITH G COMPACT

In this section, we study the problem of the existence of an affine Nash
G-structure on a C" Nash G-manifold (r < co) when G is compact affine.

THEOREM 4.1. Let G be a compact affine Nash group acting freely on a
closed C" Nash manifold M (r < o). Then M has an affine Nash G-manifold
structure given by an analytic Nash G-manifold.

Proof. By [15] M is C" G-diffeomorphic to a smooth G-manifold N. By [§]
N is C*° G-diffeomorphic to an analytic Nash G-submanifold L of a Nash
representation space V of G. Then there exists a C" G-diffeomorphism f : M —
L. Therefore, by 3.4 we can find a C™ Nash G-diffeomorphism F': M — L. 0O

Remark that the previous theorem gives an equivariant version of a result
by M. Shiota which asserts that a C” Nash manifold (0 < r < o0) is C" Nash
diffeomorphic to an analytic Nash manifold [18, Theorem III.1.3.].

If M is smooth some conditions, that we prove to be necessary and suffi-
cient, must be fulfilled in order that M has an affine Nash G-manifold structure.
Before, we need some ingredients. Let G be a compact affine Nash group and
K a closed subgroup of G. Then:
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THEOREM 4.2. a) G is Nash isomorphic to a closed subgroup of an or-
thogonal group and K is a Nash subgroup of G.

b) The homogeneous space G/K is a smooth Nash G-manifold which has
an algebraic G-variety structure.

c) A smooth representation of G is of class Nash.

d) If M is an affine C" Nash K-manifold, the twisted product G x g M is
a C" Nash G-manifold.

Proof. See |7, Corollaries 1.5, 1.7; Theorems 2.3, 2.5; Lemma 2.6]. O

We must also recall a result by R. S. Palais on the extension of a repre-
sentation.

THEOREM 4.3. Let G be a Lie group which admits a faithful continuous
linear representation in o finite dimensional real vector space. Let K be a
compact subgroup of G and U a linear K-space. Then there is a linear G-
space V' which, considered as a linear K-space by restriction, contains U as an
nvariant linear subspace.

Proof. See |14, Theorem 3.1]. O
Now we prove the result we were speaking about.

THEOREM 4.4. Let M be a compact affine smooth Nash manifold and G
a compact affine Nash group acting freely on M. Then M has an affine Nash
G-manifold structure if and only if the following conditions hold true:

a) There exists a Nash representation of G, with space R™, such that the
Nash manifold R™ xg M is affine;
b) There exists a smooth G-embedding f : M — R™.

Proof. Let us suppose the given conditions are satisfied. Remark that the
Nash manifolds M/G and {O} xg M (O € R™) are Nash diffeomorphic and the
second manifold is a Nash submanifold of R™ x M. Therefore M /G is affine.
Then we can apply 3.4 and approximate f by a Nash G-embedding M — R™.
So, M has an affine Nash G-manifold structure.

Conversely, assume that M has an affine Nash G-manifold structure.
Therefore there exist a Nash representation « of G, with space R™, an invari-
ant smooth Nash submanifold L of R and a smooth Nash G-diffeomorphism
M — L.

We prove a). The Nash G-manifold R x L is an invariant submanifold of
R?™ which is the representation space of a @ . Now, the algebra of R[R?™]¢
of G-invariant polynomials on R?™ is finitely generated, say by p1,...,ps [21].
Therefore consider the map p : R*™ — R? given by p(z) = (p1(z), ..., ps(z)).
It is a proper polynomial map which separates the orbits and induces the map



8 Francesco Guaraldo 8

q: R? /G — R* such that g o7 = p, where 7 : R?™ — R?"/G is the canon-
ical projection. Then ¢ is a closed topological embedding and, in particular,
g|R™ x ¢ L is a regular Nash map [16], 3.2 ii). Thus R™ X L is embeddable
in R®. Now it suffices remarking that R™ xg M and R™ X L are Nash
diffeomorphic.

Since condition b) is satisfied by the definition of an affine Nash G-
manifold structure, the claim is proved. [

We can generalize slightly Theorem 4.4. In order to do this, let M be
again a compact affine smooth Nash manifold on which a compact affine Nash
group G acts. Assume that M has only one orbit type G/H. Let N be the
normalizer of H in G and K = N/H. This is a compact affine Nash group by
4.2 a), b), 3.2. Let M = {x € M;hx = z for all h € H} be the fixed point
set of H on M. It is a compact smooth Nash submanifold of M |9, Proposition
2.25] and hence it is affine. The group K acts freely on M and M* — MH /K
is a principal Nash K-bundle (3.2) i). Then we have:

THEOREM 4.5. Let M, G, K be as above. Then M™ has an affine Nash
K-manifold structure if and only if the following conditions are satisfied:
a) There is a Nash representation of K, with space R™, such that the Nash
manifold R™ x g MY is affine;
b) There exists a smooth K-embedding MH — R™.

Proof. See proof of 4.4. [
About non free actions we have the following result.

THEOREM 4.6. Let M be a C™ Nash manifold (r < o0), G a compact affine
Nash group and K a closed subgroup of G acting on M. Then the following
conditions are equivalent:

i) M has an affine C" Nash K-manifold structure;
ii) The twisted product G x x M has an affine C" Nash G-manifold structure.

Proof. 1) = ii) First note that K is a Nash subgroup of G by 4.2 a). By
hypothesis there exists a C" Nash K-embedding f : M — R™ in the space
of a Nash representation of K. By 4.2 a) we can suppose G a matrix group;
then by 4.3 there is a continuous representation A\ : G — GL(p), with space
RP, such that RP, considered as a K-space by restriction, contains the K-space
R™ as an invariant linear subspace. By 4.2 ¢) A is a Nash homomorphism and
hence it is a Nash representation of K with space RP. In this way, we obtain
a C" Nash K-embedding f: M — RP. Now, by 4.2 d) G xg M is a C" Nash
G-manifold; therefore let us consider the C” G-map o : G xxg M — G/K x RP,
a(lg,t]) = (gK,gf(t)). We claim that it is a C" Nash embedding. To prove
this, first consider the G-map 5 : G xg M — G xx RP, B([g,t]) = [g, f(t)].
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It is a bijection onto its image. Moreover, consider the following commutative
diagram:

GxM —— GxRP (9;t) —— (g, f(1))
v | |
Gxxk M —— G xgRP [9,t] —— g, f(¥)]

The vertical arrows are the canonical projections and are C” Nash maps
by 3.2 i); the arrow below is 3. Since So1) is a C" Nash map, so is 3, by 3.2 ii).
Consider now the C" Nash map G x f(M) — G x M, (g,y) — (g, (v)),
y € f(M). The map 7' : G xx f(M) = G xx M, is: [g,y] = [, f ' ()]-
Therefore a diagram similar to the previous one shows that 3~! is a C" Nash
map. Thus g is a C" Nash embedding. Consider now the G-map v : Gx g RP —
G/K x RP, v([g,z]) = (9K, gz). It is a smooth Nash diffeomorphism. In fact
it is a bijection and the map v o q, 7o q(g,2) = (9K, gz), is smooth and
Nash and hence 7 is of the same class. The inverse map 7! is such that
v 1(gK,r) = [g,97'2]. To prove that it is smooth and Nash, consider the
following commutative diagram:

GxR’ —— GxRP (g,2) —— (9,9 ')
G/KxRP —— GxgRPF  (gK,z) —— [g,9 2]

where the vertical arrows are the canonical projections and the arrow below
is 7~!. Then the claim follows from 3.2 ii). So a = v o 8 is of class C”
Nash. Now, by 4.2 b) there exists a smooth Nash G-embedding of G/K into
the representation space R® of a Nash representation 9 of G; therefore, if we
consider the Nash representation A@9 : G — GL(p+ s), the manifold G x g M
is C" Nash G-diffeomorphic to a Nash G-submanifold of RP*S,

ii) = i) First remark that the canonical K-embedding M — G xx M is a
C" Nash map because it is the composition of the Nash maps M — G x M —
G xg M, t— (e, t) — [e,t] (e = identity element of G). Now, by hypothesis
there exists a C™ Nash G-embedding ¢ : G X x M — V into the space of a Nash
representation 6 of G. Therefore the restriction ¢|M is a C" Nash K-embedding
into the space of the representation 0| K. O

5. ALGEBRAIC G-STRUCTURES

We begin by recalling the notion of a global slice. Let G be a Lie group,
K a closed subgroup of G and M a ch G-manifold, 1 < h < co. A K-invariant
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Ch submanifold S of M is said to be a global C* K-slice in M if the map
G xg S — M,|g,s] — gs, is a C* G-diffeomorphism.

We shall use the averaging operator A. Here we recall some basic facts
about it. Let G be a compact Lie group and V', W representation spaces of G.
Denote by C"(W, V) the set of all the C" maps W — V, 0 < r < oco. Let f
be such a map and x any point of W. Denote the Haar measure on G by dg.
Then

A(f)(x) = /G g f(gz)dg.

LeMMA 5.1, 1. A(f) is equivariant and A(f) = f if f is equivariant.
2. The operator A induces a map C"(W,V) — C"(W, V), f — A(f), that is
continuous with respect to the Whitney C” topology.
3. If f is a polynomial, then so is A(f).

Proof. See [6, Lemma 4.1]. O

We have seen in 4.2 b) that the homogeneous Nash G-manifold G/K has
an algebraic G-variety structure. In general, if we look for conditions in order
to find an algebraic G-variety structure on a Nash G-manifold, next theorems
answer the question for free actions.

THEOREM 5.2. Let M be a closed C" Nash manifold (r < oo) and G
a compact affine Nash group acting freely on M. Then M has an algebraic
G-variety structure if and only if it has an affine Nash G-manifold structure.

Proof. We have only to prove “if”. Consequently, assume that M has an
affine Nash G-manifold structure. First suppose r = oo. Therefore there exists
a smooth Nash G-embedding f : M — W of M into the space W of a Nash
representation of G. By [5] there is a smooth G-embedding h : M — V of
M into the space V of a representation o of G and the image h(M) is a non-
singular real algebraic G-variety. Note that by 4.2 ¢) o is of class Nash. Now
C! approximate the smooth G-map o = ho f~Y[f(M) : f(M) — h(M) by a
polynomial ¢ : W — V. By 5.1 the G-map A(q)C" approximates A(a) = «
and is again a polynomial. In this way, using a Nash G-tubular neighbourhood
of h(M) in V, we get a smooth Nash G-map § : f(M) — h(M). If the
approximation is close enough this map is a diffeomorphism and then the Nash
G-diffeomorphism o f : M — h(M) realizes an algebraic G-variety structure
on M.

Now let 7 < co. By [15] there exists a C" G-diffeomorphism f: M — L,
where L is a smooth G-manifold; by [5] there is a smooth G-diffeomorphism
h: L — N, where N is a non-singular real algebraic G-variety in the space of a
Nash representation of G. Then consider the C™ G-diffeomorphism ho f : M —
N. Considering N as a C" Nash G-manifold and using 3.4, we can obtain a C"
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Nash G-diffeomorphism M — N and then an algebraic G-variety structure on
M. O

Collecting some results found above, we obtain:

THEOREM 5.3. Let M, G be as in 5.2. Then:

i) If r = coM has an algebraic G-variety structure if and only if the follow-
ing condition holds true:
M 1is affine and there exists a Nash representation of G, with space R™,
such that the Nash manifold R™ xXg M 1is affine and, moreover, there is
a smooth G-embedding of M into R™.

ii) If r < ooM has an algebraic G-variety structure.

Proof. 1) It follows from 4.4 and 5.2. ii) It follows from 4.1 and 5.2. O

If the G action is not free we obtain the following result.

THEOREM 5.4. Let M be a closed C™ Nash manifold (r < o0), G a compact
affine Nash group acting on M and K a closed subgroup of G. Assume that
there exists in M a closed global C" Nash K-slice S on which K acts freely.
Then M has an algebraic G-variety structure if and only if S has an affine C”
Nash K-manifold structure.

Proof. Suppose that S has an affine Nash K-structure. By 5.2 it has an
algebraic K-variety structure. This means that it is C" Nash K-diffeomorphic
to a non singular real algebraic K-variety T. Now, by |17, Corollary 1.4] the
Nash G-manifold G x g T, considered as a smooth G-manifold, has the structure
of a non singular real algebraic G-variety N. It follows that M and N are C”
G-diffeomorphic. We want to prove that they are C" Nash G-diffeomorphic.
From what we have just said, there exist a representation o of G, with space W,
and a C" G-embedding f : M — W such that f(M) = N. Note that by 4.2 ¢)
o is of class Nash. Since G is compact, it is linear by 4.2 a). Therefore we can
use Theorem 6.6 (see below): from the hypothesis made on S it follows that
M has the structure of an affine C™ Nash G-manifold. So there is a C" Nash
G-embedding h : M — V of M into the space V of a Nash representation of G.
Consider now the C” G-diffeomorphism f o h~!. Using the averaging operator
A and a Nash G-tubular neighbourhood of N in W, we can obtain a Nash
G-diffeomorphism 5 : h(M) — N. Therefore the Nash G-map foh: M — N
gives an algebraic G-variety structure on M.

Conversely, suppose that M has an algebraic G-variety structure. So there
is a Nash G-embedding ¢ : M — U of M into the space of a Nash representation
¥ of G such that o(M) is a non singular real algebraic G-variety. Therefore g|S
and ¥|K are what we want. [
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6. AFFINE G-STRUCTURES WITH G NON-COMPACT

As we have already said (see Introduction), in order to equivariantly em-
bed a G-manifold M into a linear G-space G must be linear, G C GL(n).
Moreover note that a compact subgroup K of a linear Nash group G is a Nash
subgroup of G. In fact K is an algebraic group in the vector space L(n) of
all n x n matrices [13, Theorem 5 p. 133|, and hence it is a Nash subgroup of
L(n); so it is a Nash subgroup of G. Now remark that the proof of 4.3 given
by Palais works also in a Nagh setting. Therefore, repeating that proof, we get
the following result:

THEOREM 6.1. Let G C GL(n) be a linear Nash group, K a compact
subgroup of G and K — GL(m) a Nash representation of K, with space R™.
Then there is a Nash representation G — GL(p) of G, with space RP which,
considered as a K-space by restriction, contains R™ as an invariant subspace.

THEOREM 6.2. Let G C GL(n) be a linear Nash group and K a compact
subgroup of G. Then there exist a Nash representation of G, with space W, and
a point w € W such that isotropy group Gy, of w is K.

Proof. K is a Nash subgroup of G. Since it is compact and affine, by |2,
Theorem 0.3.5] and 4.2 ¢) we can suppose it is a Nash subgroup of O(n). By [2,
Theorem 0.5.2] there exist a continuous representation ¢ : O(n) — O(m),
for some m, with space U, and a point v € U such that O(n), = K. By
4.2 ¢ ) ¢ is a smooth Nash map. By 6.1 there exists a Nash representation
A : GL(n) — GL(p), with space RP which, considered as an O(n)-space by
restriction, contains U as an invariant subspace. Then K = O(n) N GL(n),.
Consider now the Nash action GL(n) x S(n) — S(n) of GL(n) on the space
S(n) of the n x n symmetric matrices given by (a,b) — aba!, where a’ is the
transpose of the matrix a € GL(n). If e € S(n) is the identity matrix, the
isotropy group GL(n). of e is O(n). If we identify S(n) with R?(¢ = dim S(n))
choosing an order of matrix elements, the previous action gives rise to a Nash
representation ¢ : GL(n) — GL(q). So, in conclusion, we have the Nash
representation « = A@o : GL(n) — GL(p+q), with space W = RP x R?, and,
if w= (u,e) € W, it is GL(n), = GL(n). N GL(n), = O(n) NGL(n), = K.
Finally, we have the Nash representation o = a|G : G — GL(p + q) of G and
itisGy =K. O

In order to prove the Theorem 6.5 below, let us recall the notions of a
proper G-space and of a Cartan G-space, which is a bit more general than
that of a proper G-space. A locally compact space X on which a Lie group G
acts is said to be a proper G-space, and G is said to act properly on X, if the
set G4 = {g € G;gAN A # 0} is a compact subset of G for every compact
subset A of X. This is equivalent to the fact that the map G x X — X x X,
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(9,x) — (gx, ) is proper. X issaid instead to be a Cartan G-space if each point
x € X has a compact neighbourhood A such that G4 is a compact subset of G.
The relation between these two notions is given by the following proposition:

PRrOPOSITION 6.3. If X s a locally compact G-space, the following condi-
tions are equivalent:
1. X is a Cartan G-space and X/G is Hausdorff;

2. X 1s a proper G-space.
Proof. See [14, Theorem 1.2.9]. O

Let us consider again the Nash action of GL(n) on S(n) given by (a,b) —
aba' (see proof of 6.2). We have:

PROPOSITION 6.4. Let e € S(n) be the identity matriz. Then the GL(n)-
orbit of e in S(n) is an open set A and GL(n) acts properly on A.

Proof. See [11, Lemma 2.1]. O

Identify now again, as in the proof of 6.2, the space S(n) with R%(q =
dim S(n)) and let v € R? be the point which corresponds to the identity e and
A, the open set which corresponds to the open set A C S(n) of 6.4. Therefore
GL(n) acts properly on A, which is the orbit of v. We obtain the following
equivariant embedding theorem for homogeneous smooth Nash G-manifolds:

THEOREM 6.5. Let G C GL(n) be a Nash linear group and K a compact
subgroup of G. Then the homogeneous space G /K is a smooth Nash G-manifold
which has an offine Nash G-manifold structure.

Proof. First of all recall that K is a Nash subgroup of G; second, G/K is
a smooth Nash manifold by 3.2 i); moreover, it is easy to see that the natural
action of G on G/K, (¢',gK) — ¢'gK is of class Nash. Now, from 6.2 and
its proof we have the following Nash representations of GL(n), and hence of
G: \X:GL(n) - GL(p),o : GL(n) — GL(q),a : GL(n) — GL(p + q), with
spaces, respectively, RP, R, W = RP x R? and a point w = (u,v) € W such
that G, = K; moreover GL(n) acts properly on the orbit A, of v in RY. Since
G is closed in GL(n), G also acts properly on A,. Because a product of a proper
G-space and a G-space is again a proper G-space, G acts properly on RP x A,.
Therefore consider the Nash map F : G — RP™, g — o(g9)w, 0 = |G, and
the induced G-map f : G/K — RPT gK  o(g)w. If 7 : G — G/K is the
canonical projection, it is f om = F and thus f is of class Nash by 3.2 i).
Moreover remark that f(G/K) is the orbit G(w) of w. But the open set A,
of R? contains the orbit G(v) of v and hence the orbit G(w) is contained in
the proper G-space R? x A,, open in RP x RY. By 6.4 RP x A, is a Cartan
G-space and therefore, by [14, Proposition 1.1.5], f is a topological embedding
into R? x R%; by [2, VI 1.2] f is a smooth immersion; then, by the inverse
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function theorem in a Nash setting, f is a Nash G-diffeomorphism onto its
image. O

Remark now that the smooth Nash G-manifold G/K, which is affine, has
the global Nash slice given by {eK} (e = identity element). A link between
affine Nash G-structures and global slices appears in a more general situation,
as the following result shows.

THEOREM 6.6. Let M be a C" Nash manifold (r < o), G a linear Nash
group acting on M and K a compact subgroup of G. Assume that there exists
i M a global C" Nash K-slice S. Then M has an affine C" Nash G-manifold
structure if and only if S has an affine C™ Nash K-manifold structure.

Proof. Suppose that S has an affine C” Nash K-manifold structure, that is
that there exists a C” Nash K-embedding ¢ : S — R™ of S into the space of a
Nash representation of K. By 6.1 there is a Nash representation A : G — GL(p)
of G, with space RP which, considered as a K-space by restriction, contains R™
as an invariant subspace. Therefore we have the Nash K-embedding ¢ : S —
RP. Now, by hypothesis M is C™ Nash G-diffeomorphic to G xx S. Consider
the C" G-map a : Gxg S — G/K xRP, a([g, s]) = (9K, gq(s)). We claim that
it is a Nash embedding. At this point we are in the same situation of the proof
of i) = ii) in 4.6. Repeating that proof and using at the end the embedding
Theorem 6.5 instead of 4.2 b), we equivariantly embed G x g S into a Nash
representation space of G.

Conversely, let us suppose that there exists a C” Nash G-embedding o :
M — V of M into the space of a Nash representation 9 of G. Therefore the
restrictions g|S and Y| K give what we want. [J

REFERENCES

[1] N. Bourbaki, Eléments de mathématique. Groupes et algébres de Lie. Masson, Paris,
1982.

[2] G.E. Bredon, Introduction to Compact Transformation Groups. Pure Appl. Math. 46,
Academic Press, New York, London, 1972.

[3] J. Bochnak, M. Coste and M.-F. Roy, Géométrie algébrique réelle. Ergeb. Math. Gren-
zgeb. (3), Springer-Verlag, Berlin, Heidelberg, New York, 1987.

[4] J. Dieudonné, Eléments d’analyse, Tome 3. Cahiers scientifiques 33, Gauthier-Villars,
Paris, 1970.

[6] K.H. Dovermann and M. Masuda, Algebraic realization of manifolds with group actions.
Adv. Math. 113 (1995), 304-338.

[6] K.H. Dovermann, M. Masuda and T. Petri, Fized point free algebraic actions on varieties
diffeomorphic to R™. Progr. Math. 80 (1990), 49-80.

[7] F. Guaraldo, On representations of real Nash groups. J. Math. Soc. Japan 64 (2012),
927-939.

[8] T.Kawakami, Nash G-manifold structures of compact or compactifiable C* G-manifolds.
J. Math. Soc. Japan 48 (1996), 321-331.



15

Algebraic and affine G-structures on Nash G-manifolds 15

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

21]

T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of
the real numbers. Topology Appl. 123 (2002), 323-349.

M. Kankaanrinta, On embeddings of proper smooth G-manifolds. Math. Scand. 74
(1994), 208-214.

M. Kankaanrinta, Equivariant real analytic approzimation. Rep. Dep. Math. Preprint
145, University of Helsinki, 1997.

J.J. Madden and C.M. Stanton, One-dimensional Nash groups. Pacific J. Math. 154
(1992), 331-344.

A L. Onishchik and E.B. Vinberg, Lie groups and algebraic groups. Springer Series in
Soviet Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1990.

R.S. Palais, On the exzistence of slices for actions of non-compact groups. Annals of
Math. 73 (1961), 295-323.

R.S. Palais, C' actions of compact Lie groups on compact manifolds are C*-equivalent
to C*° actions. Amer. J. Math. 92 (1970), 748-760.

G.W. Schwarz, Smooth functions invariant under the action of a compact Lie group.
Topology 14 (1975), 63-68.

G.W. Schwarz, Algebraic quotients of compact group actions. J. Algebra 244 (2001),
365-378.

M. Shiota, Nash Manifolds. Lecture Notes in Math. 1269, Springer-Verlag, Berlin,
1987.

M. Shiota, Nash functions and manifolds. In: F. Broglia (Ed.), Lectures in Real
Geometry. De Gruyter Exp. Math. 23, De Gruyter, Berlin, 1996.

A. Tognoli, Su una congettura di Nash. Ann. Sc. Norm. Super. Pisa Cl. Sci. 27 (1973),
167-185.

H. Weyl, The classical groups, their invariants and representations, 2nd Ed. Princeton
Math. Ser. 1, Princeton Univ. Press, Princeton, N.J., 1946.

Received 24 January 2018 Sapienza Universita di Roma
Dipartimento SBAI
Via Scarpa, 16
00161 Roma, Italy
francesco.guaraldo @gmasil.com



