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We �nd a family of K�ahler metrics invariantly de�ned on the radius r0 > 0
tangent disk bundle TM,r0 of any given real space-form M or any of its quotients
by discrete groups of isometries. Such metrics are complete in the non-negative
curvature case and non-complete in the negative curvature case. If dimM = 2
and M has constant sectional curvature K 6= 0, then the K�ahler manifolds
TM,r0 have holonomy SU(2); hence they are Ricci-�at. For M = S2, just this
dimension, the metric coincides with the Stenzel metric on the tangent manifold
TS2 , giving us a new most natural description of this well-known metric.

AMS 2010 Subject Classi�cation: Primary 32Q15, 53C55; Secondary 32Q60,
53B35, 53C28, 58A32.

Key words: K�ahler metric, tangent bundle, space-form.

1. INTRODUCTION

We here bring to light the remarkable Hermitian structure gTM , ω, J ex-
isting on the space TM,r0 and which has a K�ahler manifold structure. The real
manifold is the radius r0 open disk bundle contained in TM , the total space of
the tangent bundle TM −→ M of any given constant sectional curvature K
Riemannian manifold M . Recurring to the canonical horizontal-plus-vertical
decomposition of TTM , we have

(1) gTM =
√
c1 +Kr2 π∗gM +

1√
c1 +Kr2

π?gM ,

where r = ‖u‖M , u ∈ TM , and c1 is any positive constant, r0 =
√
−c1/K

for K < 0 and r0 = +∞ for K ≥ 0. The general almost Hermitian structure
induces a K�ahler metric if and only if the conditions on the above weights
and base are ful�lled. We then try to study the properties and associated
questions of the metric. Conferring the vast literature on the geometry of
tangent bundles, we �nd that it is not completely unaware of the structure.
The present discovery is, in fact, a particular case of the K�ahler metrics found
by V. Oproiu and N. Papaghiuc in [8].
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In the case of non-negative sectional curvature, we must have radius r0 =
+∞ in order to have a complete metric. In the negative case, in order to
have the structure well-de�ned, r0 must be �nite and then it follows the former
cannot be complete.

We prove that the Hermitian structures de�ned on TM,r0 are naturally
preserved by the lift of any isometry of the base manifold M . Indeed the
group of isometries of M lifts to the group of automorphisms of gTM , J , and
thus the K�ahler metric on the tangent manifold becomes an intrinsic object of
space-form geometries and any of their smooth Riemannian quotients.

Using results from [3] we also show the K�ahler metric is non-�at and Ricci-
�at if and only if m = 2 and K 6= 0. In other words, we �nd a non-compact
Calabi-Yau metric or holonomy SU(2) manifold.

Let us emphasise that, for K > 0 and dimM = 2, our metric is shown
to be the well-known Stenzel metric on TS2 . This does not hold in higher
dimensions. Indeed, the metric is Ricci-�at if and only if m = 2 and the Stenzel
or Eguchi-Hanson metric on TSm is always Ricci-�at. Our construction has the
virtue of working with a non-orientable base or with a hyperbolic space H2,
taking the respective adjustments. We do have now explicit SU(2)-holonomy
metrics on TRP2 and TH2,r0 .

We remark that, from its general construction, the new K�ahler manifold
has none of the expected properties of a holomorphic bundle. Both zero-section
and �bres are, simultaneously, R-Lagrangian submanifolds. We obtain a rare
example of an invariantly de�ned �bre bundle K�ahler structure satisfying those
two properties together.

In the last chapter of the article, we endeavour to discover the complex
charts, or just a totally commuting complex frame �eld, which would let us write
for instance the Ricci-form. The former notion is introduced here, for the study
of the cases dimM = 2 and curvature ±1. We conclude this problem must have
a more analytic rather than a geometric approach.

There is also a notable similarity with the Bryant-Salamon G2 metric on
Λ2
−T
∗S4 since its weight functions and those in (1) are very much alike.

We follow notation and the theory introduced in previous works, such
as [1�3].

2. THE TANGENT MANIFOLD
WITH SASAKI-TYPE HERMITIAN METRIC

A smooth linear connection ∇ on a smooth manifold M opens the way
to de�ne new smooth structures on the total space TM of the tangent bundle
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π : TM −→M , arising from the structures on M . Until the end of this article
we assume ∇ is torsion-free.

The canonical charts induced from an atlas of M and the correspond-
ing trivialisations of TM show that the tangent sub-bundle to the �bration
(TM, π,M) agrees with the kernel V of dπ. In particular, we have Vu =
Tu(TxM) = {u} × TxM where x = π(u). The identi�cation of V with π∗TM
thus follows from the very nature of the tangent bundle of M . Furthermore,
we have an exact sequence of vector bundles over TM

(2) 0 −→ V −→ TTM
dπ−→ π∗TM −→ 0.

The linear connection ∇ gives a canonical decomposition of the tangent
bundle of TM into TTM = H∇⊕V , whereH∇ depends on the connection. Since
the restriction dπu| : H

∇
u → TxM is an isomorphism, ∀x ∈M, u ∈ π−1(x), both

sub-bundles H∇ and V are isomorphic to the vector bundle π∗TM . Knowing
this canonical decomposition, we conclude the linear connection π∗∇ ⊕ π∗∇,
denoted ∇∗, is well-de�ned as a linear connection on the manifold TM . Clearly,
the canonical projections are parallel morphisms.

A tautological vector �eld ξ over TM is de�ned by ξu = u, through the
vertical lift. The projection w 7→ wv, w ∈ TTM , (same notation for lift and
projection should not be confusing) coincides with the map π∗∇·ξ : TTM −→ V .
By construction, the horizontal distribution H∇ agrees with the kernel of this
map. The following expresses a fundamental identity of the theory. The torsion
of ∇∗ is

(3) ∇∗wz −∇∗zw − [w, z] = Rξ(w, z) , ∀w, z ∈ TTM ,

where Rξ(w, z) = π∗R(w, z)ξ and R is the curvature tensor of (M,∇). Notice
Rξ is indeed a tensor, depends only on the horizontal parts of z, w, and assumes
only vertical values. Using projections and ∇∗wξ = wv, turns the long proof of
(3) with charts into a more pleasant veri�cation.

Now suppose we have a Riemannian manifold (M, gM ). We let m =
dimRM and denote by ∇ the Levi-Civita connection. We may both pull-back
to horizontals and lift to verticals the given symmetric tensor. We distinguish
the two, respectively, by π∗gM and π?gM .

Any two positive real smooth functions µ, λ de�ned on TM induce a Rie-
mannian metric gTM on TM depending on the canonical decomposition. It is
de�ned by

(4) gTM = µ2π∗gM + λ2π?gM .

The well-known original metric gTM 0
, the case when µ = λ = 1, is the Sasaki

metric.
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A weighted Hermitian structure on the same manifold arises then from a
gTM -compatible almost-complex structure J . At each point u ∈ TM one de�nes
an endomorphism J of TuTM by permuting lifts and by the correspondence,
∀w ∈ Tπ(u)M ,

(5) wh 7−→ µ

λ
wv 7−→ −wh.

This clearly generalises the case µ = λ = 1, denoted J0, which is again due
to Sasaki ( [9]). We call the endomorphism B : TTM −→ TTM de�ned by
Bwh = wv, Bwv = 0 the mirror map. Arising from previous studies, the mirror
map proves to be quite useful since it is indeed a tensor and a ∇∗-parallel one.
We have

(6) J =
µ

λ
B − λ

µ
Bad

where the adjoint is taken with respect to gTM 0
. Now, the associated symplectic

2-forms ω = JygTM and ω0 = J0ygTM 0
satisfy (cf. [2, Proposition 6.1])

(7) ω = µλω0.

Indeed, ω(wv, zh) = gTM (Jwv, zh) = −λ
µµ

2 π∗gM (wh, zh) = λµω0(w
v, zh),

∀w, z ∈ TM , and for other lifts of w, z the computation is quite similar.

The Hermitian structure (J0, gTM 0
) plays an important role. Until the

end of the article the musical isomorphism ·[ : TTM −→ T ∗TM shall refer to
the Sasaki metric gTM 0

. And we assume always m = dimRM = dimC TM > 1.

Theorem 2.1. The non-degenerate 2-form ω is closed if and only if µλ
is a constant.

Proof. Consider the 1-form on TM de�ned by θ(w) = ξ[(Bw). Correcting
∇∗ to a torsion-free connection D∗ = ∇∗ − 1

2R
ξ and recalling Rξ takes values

in V , we �nd

dθ(w, z) = (D∗wθ)z − (D∗zθ)w

= w(θ(z))− θ(∇∗wz)− z(θ(w)) + θ(∇∗zw)

= gTM 0
(wv, Bz)− gTM 0

(zv, Bw)

= −ω0(w, z)

Now clearly dω = d(µλ)∧ω0. And since the wedge of 1-forms with a symplectic
form is injective, the result follows. �

Here follows a heuristic con�rmation of the above. Notice the map ·[ :
TM → T ∗M , v 7→ v[, is a di�eomorphism, invariant for the respective induced
connections ∇∗ arising from the Levi-Civita connection. Simply, because on
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horizontals it is the identity and on verticals the canonical map ·[ : TM → T ∗M
permutes the respective connections. Then one checks that θ is the pull-back by
·[ of the canonical Liouville 1-form ` on the cotangent manifold. Moreover, as
it is well-known, −d` is an exact symplectic form on T ∗M , so the same happens
with the pull-back ω0 = −dθ.

In this article, we assume the smooth functions µ, λ are dependent only
of

(8) r = r(u) = ‖u‖M , u ∈ TM ,

and are continuously di�erentiable at 0. Since r2 = π?gM (ξ, ξ), we easily apply
the gTM 0

metric connection ∇∗ in order to �nd

(9) dr2 = 2ξ[.

Let us now assume we have an isometry f : M −→M .

Proposition 2.1. Under the above conditions, the di�erential df : TM
−→ f∗TM is a vector-bundle isomorphism, which corresponds to a well-de�ned

isometry f? : TM −→ TM and this manifold isometry is pseudo-holomorphic.

In other words, the Hermitian structure gTM , J is invariant under isometries f
of M .

Proof. We de�ne f?(u) = dfπ(u)(u) ∈ Tf(π(u))M and hence the di�erential
of f? coincides with the map df on vertical directions. Due to uniqueness,
the Levi-Civita connection is invariant by the di�eomorphism f and so H∇ is
preserved by df . Hence df?, up to conjugation by dπ|H∇ , also coincides with
df on horizontal directions. Therefore gTM 0

is preserved by f?. Moreover, the
weighted metric gTM with functions λ, µ, functions of r only, is preserved by f?.
Finally, since the horizontal and the vertical distributions are both preserved,
it becomes easy to see that

Jf?(u) ◦ (df?)u = (df?)u ◦ Ju, ∀u ∈ TM .

In other words, f? is pseudo-holomorphic. �

Many functorial properties from the action of isometry groups on M thus
carry over to the Hermitian metric on TM .

3. INTEGRABILITY OF J

For each r0 > 0 let us denote by TM,r0 ⊂ TM the open disk (bundle) of
radius r0:

(10) TM,r0 = {u ∈ TM : ‖u‖ < r0}.
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We may allow the functions µ, λ to be only de�ned on a same interval of R+
0 .

The following Theorem is independent but concerns with a particular case
in [8]. We refer the reader also to this reference for the extensive literature on
the geometry of tangent bundles.

Theorem 3.2. The largest disk bundle TM,r0 where the almost-complex

structure J is de�ned and integrable is obtained with, and only with, the follow-

ing data:

• M has constant sectional curvature K

• µ
λ (r) =

√
c1 +Kr2, ∀r ∈ [0, r0[, where c1 > 0 is any constant

• r0 =
√
− c1
K for K < 0 and r0 = +∞ for K ≥ 0.

Proof. Let us write J = aB − a−1Bad where a = µ
λ . Then a �rst proof

of the analytic integrability is to take, in the notation of [8, Theorem 3], the
values a1 = a2

−1 = a, a3 = a4 = b1 = · · · = b4 = 0 and apply that result.
But here is a second proof obtained easily with our experimented tech-

niques. By the Theorem of Newlander-Nirenberg, the integrability of J is equiv-
alent to the vanishing of the Nijenhuis tensor N(w, z) = J [w, Jz] + J [Jw, z] +
[w, z]− [Jw, Jz] for all tangent vectors at any given point of TM . Since the ten-
sor N is complex anti-linear, it follows that it is enough to see N(w, z) = 0 with
w, z ∈ H∇. Moreover, by tensoriality, we may just take lifts of vector �elds of
M . We have the formula da = a′d(r2) = 2a′ξ[ where a′ is the derivative with
respect to r2. Hence da(w) = 0 and da(Bw) = 2a′ξ[(Bw), ∀w ∈ H∇. Now,
using the torsion-free connection ∇∗ − 1

2R
ξ, we �nd

N(w, z) = J [w, aBz] + J [aBw, z] + [w, z]− [aBw, aBz]

= J
(
∇∗w(aBz)−∇∗aBzw

)
+ J

(
∇∗aBwz −∇∗z(aBw)

)
+∇∗wz −∇∗zw −Rξ(w, z)−∇∗aBw(aBz) +∇∗aBz(aBw)

= −a−1da(w)z −∇∗wz − a2∇∗BzBw + a2∇∗BwBz
+a−1da(z)w +∇∗zw +∇∗wz −∇∗zw −Rξ(w, z)− ada(Bw)Bz

−a2∇∗BwBz + ada(Bz)Bw + a2∇∗BzBw
= −π∗R(w, z)ξ + 2aa′

(
ξ[(Bz)Bw − ξ[(Bw)Bz

)
.

At the base level, integrability is thus equivalent to R(w, z)u = 2aa′(〈z, u〉Mw−
〈w, u〉M z). Since a is a function only of r, even in dimension 2 we must have
constant sectional curvature, say K. Integrating, we �nd a2 = c1 +Kr2. Now
the boundary conditions follow. �

Notice the �at base case (K = 0) is not as trivial as that easily deduced
for J0. Indeed, the condition µ/λ constant may give holonomy equal to o(2m),
cf. [3, Proposition 2.1.i]. However, if µ, λ are constants, then we do have a �at
manifold TM , by [3, Proposition 2.1.iii], which is K�ahler, by Theorem 2.1.
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SupposeM has constant sectional curvatureK. Combining Theorems 2.1,
3.2, we obtain the invariant K�ahler metric on TM,r0 by solving µ/λ =

√
c1 +Kr2,

µλ = c2 > 0 constant. This yields

(11) µ =
c2
λ

=
√
c2

4
√
c1 +Kr2.

Up to a global constant conformal factor the desired metric is

(12) gTM,r0
=
√
c1 +Kr2 π∗gM +

1√
c1 +Kr2

π?gM .

Theorem 3.3. The K�ahler metric gTM,r0
is complete if K ≥ 0 and non-

complete if K < 0.

Proof. It follows by straightforward computations that the �bres are to-
tally geodesic, cf. [3, Proposition 1.3]. Suppose γ denotes a �bre-ray which
issues from 0 to the boundary of TM . The length of the linear curve γ is
l(γ) =

∫ r0
0

1
4
√
c1+Kt2

dt. Then l(γ) = +∞ in the case K ≥ 0, r0 = +∞, and

is �nite in the negative curvature case because the integral converges on [0, r0[
where r0 =

√
− c1
K . Finally, any geodesic may be inde�nitely extended in the

�rst case, whereas in the second some geodesics cannot. �

Improving on the above results, we may also consider the case of the
complementary space TM\TM,r0 whenK > 0, c1 ≤ 0 and r0 =

√
− c1
K . However,

we �nd no complete metric here as well.

Since all structures gTM , J and ω are invariant under the lift of isometries
of M , by Proposition 2.1, our K�ahler metrics may also be found on smooth
quotients of a same invariant construction over the tangent manifold of any
given real space-form.

Finally, the metric (12) has a remarkable resemblance with the well-known
G2-holonomy metric of Bryant-Salamon on the manifolds Λ2

±T
∗M4. The weight

functions are formally the same, with constant scalar curvature replacing K,
and the completeness issues are analogous (cf. [3] and the references therein).

4. FURTHER GEOMETRIC PROPERTIES

A �rst problem with the K�ahler metric found above is to compute the
volume of TM,r0 for any K, r0. This becomes quite easy by simply recalling
from (7) that ω = ω0. Then we may apply the co-area formulae [4, p. 125, 160]
to deduce:

(13) vol(TM,r0) = volg
M

(M)volRm (Dr0(0)) = volg
M

(M)
πm/2rm0

Γ(m/2 + 1)
.
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We may normalise the metric (12) within the constant values of K, c1;
indeed these correspond either to a conformal factor of gM on M and/or to
conformal factors of the metric in H∇ and V . Yet, they are helpful in compu-
tations.

The restriction of π to TM is not a Riemannian submersion in general.
Some curvature related results for gTM may be easily obtained from the theory
in [3], such as the Levi-Civita connection, the curvature on the zero-section and
on the �bres. The �bres are totally geodesic Riemannian submanifolds. From
[3, Section 1.5] we �nd that the m-plane disk Dr0(0) ⊂ Rm with spherically
symmetric metric λ2

∑m
i=1(dy

i)2 has scalar curvature

(14) Scal =
(m− 1)K

4(c1 +Kr2)
3
2

(3(m− 2)Kr2 + 4mc1).

In case m = 2, this is 2Kc1/(c1 + Kr2)
3
2 . And therefore one sees that, in

the boundary, when r ↗ r0, the scalar curvature is 0, if K > 0, and −∞, if
K < 0. Also notice the sectional curvature of the zero-section M ↪→ TM , also
totally geodesic, is clearly K/

√
c1. But this is precisely the sectional curvature

of the �bre Dr0 at 0, so we may wonder of an Einstein metric on TM (we recall,
for Einstein metrics on 4-manifolds, orthogonal planes have the same sectional
curvature).

In searching for Einstein metrics on the whole space, there is a test in [3,
Corollary 2.1] which one may perform when the base manifold is itself Einstein.
Again, like the G2 metrics of Bryant-Salamon, our K�ahler manifolds satisfy
that necessary condition, from the Ricci tensor, and indeed they may well be
Einstein, with Einstein constant

(15) (m− 2)K/2
√
c1.

It is easy to apply the referred test. Certainly, when m 6= 2, the spaces are not
Ricci �at and thus their holonomy is U(m). Let us give an explicit proof of this
result.

Theorem 4.4. In case K = 0, the K�ahler metric gTM,r0
on TM,r0 is �at.

For the case K 6= 0, the metric satis�es:

(i) if m 6= 2, the holonomy is U(m).

(ii) if m = 2, the holonomy is SU(2); in other words, the metric is of the

Calabi-Yau type, this is, non-�at K�ahler and Ricci-�at.

Proof. The result will be achieved by computing the local holonomy on the
zero-section (r = 0). Applying [3, Theorem 2.1] to the obvious vector bundle
and metric with curvature RM (z, w) = −K(z ∧ w), and weights induced by
ϕ1 = logµ, ϕ2 = log λ, we �nd with respect to the canonical decomposition
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H∇ ⊕ V :

R
gTM (zh, wh) =

[ √
c1R

M 0
0 1√

c1
(RM )v

]
,

R
gTM (zv, wv) =

[
1√
c1

(RM )h 0

0 − K
c1
√
c1
zv ∧ wv

]
and

R
gTM (zh, wv) =

[
0 −Q
Qt 0

]
where Q corresponds with

gTM (R
gTM (zh, wv)xh, yv)

=
K

2c1

√
c1〈zh, xh〉M 〈w

v, yv〉M −
K

2
√
c1
〈zv ∧ xv, wv ∧ yv〉M .

These formulae show gTM is indeed �at if K = 0.

Now we �nd that R
gTM (zv, wv) = 1

c1
R
gTM (zh, wh), ∀z, w ∈ TM . Fur-

thermore,

R
gTM (zh, wv)xh =

K

2
(〈zh, xh〉wv − 〈zv, wv〉xv + 〈xv, wv〉zv).

In an gTM 0
-orthonormal frame ei, fi = Bei of horizontals and verticals we see

the latter is

R
gTM (ei, fj) =

K

2
(fj ⊗ ei − δijB + fi ⊗ ej).

These maps are all linearly independent when we restrict to i ≤ j, m 6= 2.
Indeed their trace is a multiple of 2B −mB, since B =

∑
fk ⊗ ek.

Finally, if m 6= 2, the space of skew-symmetric curvature tensors is
spanned by the two linearly independent subspaces of endomorphisms found
above. Their number clearly adds to m2, this is, to dim u(m). Recall we al-
ready know the holonomy algebra is contained in u(m). If m = 2, then the
holonomy algebra has dimension m2 − 1 = 3 and so it is su(2). �

It is agreed the term Calabi-Yau is reserved for compact manifolds.

One is questioned if the above metric, in case m = 2, agrees with the
well-known Eguchi-Hanson metric on TS2 , which in turn is the Stenzel metric.

Theorem 4.5. gT
S2

coincides with the Eguchi-Hanson or Stenzel metric

on TS2.

Proof. Let us recall the canonical gTM 0
-orthonormal coframe α0, α1, α2 on

the unit tangent sphere bundle SS2 of S2. α0, α1 are horizontal, α0 is dual to
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Badξ and α1 = α2 ◦ B. Now TS2 \ 0 identi�es with SO(3) × (0,+∞), so we
�nd for, say K = 1, c1 = 1, our metric (12) can be written as

gTM =
√

1 + r2(α2
0 + α2

1) +
1√

1 + r2
(dr)2 +

r2√
1 + r2

α2
2.

Letting r = sinh τ we get

gTM = cosh τ (α2
0 + α2

1) + cosh τ (dτ)2 + sinh τ tanh τ α2
2.

This is the formula for the referred Stenzel metric in the last page of [10]. A
formula which identi�es the metric with the Eguchi-Hanson metric in dimension
m = 2. �

Notice we have given a new proof that the Stenzel metric has SU(2) holon-
omy, because the last result does not recur to the speci�c complex quadric in
C3 which identi�es with TS2 .

We remark also TH2,1 may be described analogously with the elliptic
trigonometric functions.

It is still an open question how to �nd the complex coordinates of the
space TM in general. Complex geometry properties, like pseudo-convexity, holo-
morphic completeness and the derived functors from holomorphic to real-base
structures, are quite non-trivial issues if the �bres are non-compact and non-
complex. Not only the sheaf of germs of holomorphic functions O is unknown,
also the sheaves Rqπ∗O are very di�cult to grasp.

We have the following result, independent of λ, µ in (4).

Proposition 4.2. Given any two functions f1, f2 on TM , every real m-

plane P , or JP , of the form

(16) Pf1,f2 = {f1xh + f2x
v : x ∈ TM}

is an R-Lagrangian tangent distribution. In particular, H∇ and V are R-
Lagrangian distributions and hence the zero-section and the �bres of TM are

totally geodesic R-Lagrangian submanifolds.

Proof. For any x, x1 ∈ TM , we have

ω(f1x
h + f2x

v, f1x
h
1 + f2x

v
1) = gTM (f1

µ

λ
xv − f2

λ

µ
xh, f1x

h
1 + f2x

v
1)

= (λ2
µ

λ
− µ2λ

µ
)f1f2gM (x, x1) = 0.

For the Riemannian geometry of the �bres or the zero-section cf. [3]. �

In the study of �bre bundles with holomorphic structures we have thus
three classes of C-analytic spaces with three distinct features. Firstly, we have
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the many holomorphic vector bundles over a complex manifold, with all objects
holomorphic. Secondly, we have the Riemannian twistor bundle over a given
Riemannian manifold or the symplectic twistor bundle, with �bre the Siegel
domain, over a given symplectic manifold endowed with a symplectic connec-
tion. In twistor theory the bundle projection is not holomorphic, since the base
may not even be complex. But the �bres are always complex submanifolds.
Now, in the third remarkable class, we have TM , gTM , J , an invariantly de�ned
Hermitian structure, yet a real �bre bundle with �bres just real submanifolds,
well-de�ned even for m odd.

5. ON A RIEMANN SURFACE

We start with a remark on a complex integrable system question. Let us
consider a real 2n-manifold Y and its complexi�ed tangent bundle. Suppose
we are given n linearly independent commuting vector �elds Υi, i = 1, . . . , n,
which span TY c := TY ⊗RC over C together with their conjugates. Then these
Υ1, . . . ,Υn generate the distribution of (0, 1)-vector �elds of an almost-complex
structure J on Y . Indeed, we may see J is real and satis�es J2 = −1. Also J
is integrable, since [Υi,Υj ] = 0, ∀i, j, applying Newlander-Nirenberg Theorem.
In general, however, the vector �elds Υi are not a (0, 1)-totally commuting

complex frame �eld. By this we mean a frame of commuting (0, 1)-vector �elds
commuting also with their conjugates. Now, how to �nd such a frame, that is
the question. Complex charts do exist and so a solution exists. But it is not
easier to solve such problem independently.

For example, over the 2-plane disk {z ∈ R2 : |z| < 1}, let Υ = z∂z + ∂z.
Then Υ and Υ are linearly independent and hence Υ is (0, 1) for an integrable
complex structure J . We have [Υ,Υ] = z∂z− z∂z. On the other hand, on some
open subset, a J-complex chart is given by φ(z, z) = z2 − 2z and hence the
desired solution is ∂

∂φ
. Any (0, 1)-totally complex �eld is both a multiple fΥ,

for some C∞ function f , and a holomorphic multiple of ∂
∂φ
. In particular, we

have the solution f = −1
2(1−|z|2) (one just has to solve fΥ(φ) = 1). On the other

hand, searching merely for f ∈ C∞(C) such that [fΥ, fΥ] = 0 corresponds
with a solution of the, indeed, more complicated equation

(17) |z|2f ∂f
∂z

+ zf
∂f

∂z
− zf ∂f

∂z
− f ∂f

∂z
+ z|f |2 = 0.

Is f = 1
1−|z|2 , up to a constant factor, the only solution of this equation?

For n = 1, in general, we recall that given a Riemann surface with complex
chart z then �nding the complex chart for another complex structure is solved
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by the Beltrami equation. Locally, every J corresponds to an Υ = ∂z − µ∂z
with µ ∈ C∞(C) such that |µ| < 1.

Let us now resume with the geometry of TM as found in Theorem 3.2,
where M is a Riemann surface of constant sectional curvature K = ±1. We
know how to normalise K, so M is essentially CP1 or D1 ⊂ R2.

We may assume to have isothermal coordinates of M and hence take
a complex chart z on an open subset U ⊂ M where the metric is gM =

2
(1±|z|2)2 dz � dz = 4(dx2+dy2)

(1±x2±y2)2 . We thus work on the complexi�ed tangent

bundle of M ; we easily see the Levi-Civita connection is given by (as usual
dz = dx+

√
−1dy, dual to ∂z = 1

2(∂x −
√
−1∂y), ∂z = ∂z)

(18) ∇z∂z = ∓ 2z

1± |z|2
∂z, ∇z∂z = 0.

Since the metric is K�ahler on M , we have a complex chart (z, w) of the tan-
gent bundle manifold TM , over the subset π−1(U), such that π is the 1st-
projection and the vertical tangent subspace V c is spanned by ∂w, ∂w. Ad-
mitting we had found the horizontal sub-bundle H∇, we then have the mirror
map B ∈ End (TTM )c and the induced connection ∇∗ respecting the canonical
decomposition. Immediately, since B∂z = ∂w,

(19) ∇∗∂w = B∇∗∂z ∇∗∂w = B∇∗∂z.

The tautological vector �eld ξ on TM clearly satis�es

(20) ξ(z,w) = w∂w + w∂w.

Solving ∇∗Xξ = 0 in the unknown X = a1∂z + a2∂z + b1∂w + b2∂w, we obtain a
complex basis of (H∇)c:

(21) X1 = ∂z ±
2wz

1± |z|2
∂w, X2 = ∂z ±

2wz

1± |z|2
∂w = X1.

Now we have the adjoint of B respecting the canonical decomposition and so,
for any given real function a of (z, w), we may consider the almost-complex
structure

(22) J = aB − a−1Bad.

Theorem 5.6. The structure J is integrable if and only if with any con-

stant c1 > 0

(23) a =

√
c1 ±

4|w|2
(1± |z|2)2

.

Proof. The previous arguments in Theorem 3.2 regarding the Nijenhuis
tensor apply again. In particular, just one equation decides all. Solving
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N(X1, X2) = 0, we �nd

(24)

{
(1± |z|2)∂a∂z ± 2wz ∂a∂w = 0

(1± |z|2)2a2 ∂a∂w ∓ 2wa± 2zw(1± |z|2)∂a∂z + 4|w|2|z|2 ∂a∂w = 0

whose unique solution is the function a in (23). Notice the �rst equation yields
the last summands in the second to cancel. �

This result is a partial improvement of Theorem 3.2 since the solution a
is not supposed a priori to be dependent uniquely of r = ‖ξ‖ = 2|w|

1±|z|2 . Further

generality must follow from a not pre-arranged base metric.

The domain restrictions of the referred Theorem must apply again; we
assume them from now on and work with J and a =

√
c1 ± r2 de�ned on the

disk bundle TM = TM,r0 . For the negative curvature case, we have r0 =
√
c1.

Notice when |z| → 1 we have w in disk �bres of ray going to in�nite in | · |-norm.

Let us denote (Υi = Xi +
√
−1JXi)

(25) Υ1 = X1 +
√
−1a∂w, Υ2 = X2 +

√
−1a∂w.

Then Υ1,Υ2 span the vector bundle T 0,1TM of −
√
−1-eigenvectors of J .

Proposition 5.3. f ∈ C∞π−1(U)(C) is J-holomorphic if and only if

Υ1(f) = 0, Υ2(f) = 0.

All questions are driven into the realm of complex variables, if we could
�nd holomorphic charts. Some remarkable relations are at hand.

Proposition 5.4. Letting z = 1± |z|2, the following are satis�ed:

(26)
∂a

∂z
= −4z|w|2

az3
∂a

∂w
= ± 2w

az2
X1(a) = X2(a) = 0

(27) [X1, X2] = ± 2

z2
(w∂w − w∂w) = [a∂w, a∂w] [X1, ∂w] = [X2, ∂w] = 0

(28) [Υ1,Υ2] = 0 [Υ1,Υ2] =
√
−1 2a[∂w, X1] = ±

√
−1

4az

z
∂w

(29) [Υ1,Υ1] = 2[X1, X2] = −[Υ2,Υ2].

After checking these simple computations, one may also observe the fol-
lowing. Since the Xi from (21) are horizontal and a found in (23) depends only
of r, the right hand side of (26) comes as expected from (9). The �rst equation
of (27) is the vertical part of (3). More importantly, a (0, 1)-totally commuting
complex frame does not appear easily.
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