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Let X(t) denote the wear of a machine and Y (t) the number of items it produces
per unit time. A system of stochastic di�erential equations is considered for the
vector process (X(t), Y (t)). The aim is to �nd the average time it takes the
two-dimensional di�usion process to hit a certain boundary for the �rst time.
The appropriate Kolmogorov backward equation is solved explicitly by making
use of the method of similarity solutions.
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1. INTRODUCTION

Let X(t) denote the wear of a machine at time t. Because wear cannot
decrease, many authors have used a gamma process, which is a pure-jump
increasing L�evy process, as a model for X(t); see, for instance, [5]. Others have
used one-dimensional di�usion processes, in particular Wiener processes; see [7]
and the references therein. Ghamlouch el al. [2] have proposed a model based
on a jump-di�usion process. Depending on the in�nitesimal parameters of the
di�usion processes, these processes can yield satisfactory results. However, any
one-dimensional di�usion (or jump-di�usion) process will both increase and
decrease in any time interval.

In order to obtain a more realistic model, we will consider (see [6]) two-
dimensional (degenerate) di�usion processes {(X(t), Y (t)), t ≥ 0} de�ned by
the system of stochastic di�erential equations

dX(t) = Y (t)dt,(1)

dY (t) = f [Y (t)]dt+ {v[Y (t)]}1/2dW (t),(2)

where {W (t), t ≥ 0} is a standard Brownian motion and {Y (t), t ≥ 0} is a dif-
fusion process that always remains positive, so that wear always increases, as
required. Y (t) could be, for instance, the operating speed of the machine. The
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function f(·) in Eq. (2) is the in�nitesimal mean of the process {Y (t), t ≥ 0},
while v(·) > 0 is its in�nitesimal variance.

In this note, Y (t) will be taken as the number of items produced by the
machine per unit time (at time t), and we will assume that

(3) dY (t) = −Y (t)dt+ Y (t)dW (t).

Hence, the process {Y (t), t ≥ 0} is a geometric Brownian motion with in�nites-
imal mean −y and in�nitesimal variance y2. As is well known, if Y (0) > 0,
the process will indeed always remain positive. Notice also that Y (t) tends to
decrease (because the in�nitesimal mean is negative), which is realistic.

Next, let

(4) T (x, y) := inf

{
t ≥ 0:

X(t)

Y (t)
= k | X(0) = x, Y (0) = y

}
,

where k, x and y are all positive, and x/y ≤ k. That is, the �rst-passage time
T denotes the �rst time that the ratio X(t)/Y (t) becomes too large, so that the
useful life of the machine is over or, at least, the machine should be repaired.
We see that this could be due to the fact that the machine is too old, or that
its production per unit time has decreased too much.

We are interested in computing the expected value of the random vari-
able T . In reliability theory, perhaps the most important quantity is indeed the
expected lifetime of the machine or, in general, the device of interest. For in-
stance, a manufacturer is interested in knowing this expected lifetime, in order
to estimate the cost of the warranty it o�ers.

Let ρ(t;x, y) denote the probability density function of the random vari-
able T (x, y). This function satis�es the Kolmogorov backward equation

(5)
1

2
y2ρyy(x, y)− yρy(x, y) + yρx(x, y) = ρt(x, y).

It follows that the moment-generating function of T (or the Laplace transform
of its probability density function)

(6) M(x, y; a) := E
[
e−aT (x,y)

]
,

where a is a positive constant, satis�es the partial di�erential equation

(7)
1

2
y2Myy(x, y; a)− yMy(x, y; a) + yMx(x, y; a) = aM(x, y; a)

and is such that (because T (x, y) = 0 if x/y = k)

(8) M(x, y; a) = 1 if x/y = k.

Next, since

(9) E
[
e−aT (x,y)

]
= 1− aE[T (x, y)] +

a2

2
E[T 2(x, y)]− . . . ,



3 Mean of a �rst-passage time for a two-dimensional di�usion process 39

Eq. (7) implies that

(10) m(x, y) := E[T (x, y)]

is a solution of

(11)
1

2
y2myy(x, y)− ymy(x, y) + ymx(x, y) = −1,

subject to the boundary condition

(12) m(x, y) = 0 if x/y = k.

In the next section, we will solve the boundary-value problem (11), (12)
explicitly by making use of the method of similarity solutions.

2. MEAN VALUE OF T (x, y)

As mentioned in the previous section, the functionM(x, y; a):=E[e−aT (x,y)]
satis�es Eq. (7), subject to the boundary condition (8). Using the results in [4],
we could derive an exact and explicit expression for M . From this expression,
we could theoretically obtain the function m(x, y) by computing

(13) m(x, y) = − lim
a↓0

∂M(x, y; a)

∂a
.

However, becauseM is expressed in terms of special functions (Whittaker func-
tions and con�uent hypergeometric functions, to be precise), making use of the
above formula is actually very di�cult. It is much easier to solve directly (11),
(12) instead.

Lefebvre [4] (see also [3]) showed that M(x, y; a) can actually be written
as follows:

(14) M(x, y; a) = N(z; a),

where z := x/y. That is, he used the method of similarity solutions to solve
the partial di�erential equation (7). He also proved that the solution, subject
to the appropriate boundary conditions, was unique.

We will proceed in the same way here. That is, we can assume that

(15) m(x, y) = n(z),

with the similarity variable z being de�ned above. Then, we �nd that Eq. (11)
is transformed into the ordinary di�erential equation

(16)
1

2
z2n′′(z) + (2z + 1)n′(z) = −1.

The boundary condition (12) becomes

(17) n(k) = 0.
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Fig. 1 � Expected value of the random variable T (x, y),

as a function of x/y, when k = 1.

Fig. 2 � Expected value of the random variable T (x, y),

as a function of x/y, when k = 10.

Next, making use of the mathematical software Maple, we �nd that the
solution of (16), (17) may be written as

(18) n(z) = −1

3

∫ k

z

c1e
2/u − 2u3 + 2u2 − 4u+ 8e2/uEi(1, 2/u)

u4
du,

in which c1 is an arbitrary constant and Ei is the exponential integral de�ned
by (see [1, p. 228])

(19) Ei(1, z) =

∫ ∞
1

e−zt

t
dt.

Now, we can show that
∫ k
z
e2/u

u4 du diverges as z decreases to zero. It
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follows that we must choose the constant c1 = 0 in (18). Hence, we can state
the following proposition.

Proposition 2.1. The mean value of the �rst-passage time T (x, y) de-
�ned in (4) is given by

(20) m(x, y) =
2

3

∫ k

x/y

u3 − u2 + 2u− 4e2/uEi(1, 2/u)

u4
du.

To conclude this section, we present in Fig. 1 and Fig. 2 the function
m(x, y) when we choose the constant k = 1 and k = 10, respectively. We see
that it is strictly decreasing, as it should be.

3. AN EXTENSION

In Section 2, we assumed that the wear X(t) of the machine at time t
depended on the variable Y (t). We mentioned that Y (t) could be the operating
speed of the machine. In practice, there can be many variables that in�uence
X(t). For example, in addition to the operating speed, temperature is an
important variable. Moreover, in some applications the variations of X(t) could
also depend on the value ofX(t) itself, and not only on the variables Y1(t), Y2(t),
. . .We could also accept that there are sometimes small decreases in the values
taken by X(t) because of measurement errors, etc. Therefore, we now consider
the system of stochastic di�erential equations

dX(t) =
c∏n

i=1[Yi(t)]
ai
dt+ µ0X(t) dt+ {σ20X2(t)}1/2 dB0(t),(21)

dYi(t) = µiYi(t) dt+ {σ2i Y 2
i (t)}1/2 dBi(t),(22)

where c 6= 0, ai 6= 0, σi > 0 and the processes {Bi(t),≥ 0} are independent
Brownian motions, for i = 0, 1, . . . , n.

We de�ne

(23) T (x, y1, . . . , yn) = inf

{
t ≥ 0 : X(t)

n∏
i=1

[Yi(t)]
ai = k1 or k2

}
,

given that X(0) = x and Yi(0) = yi for i = 1, . . . , n. We assume that k1 ≤
x
∏n
i=1 y

ai
i ≤ k2.

The moment-generating function

(24) Φ(x, y1, . . . , yn; γ) := E
[
e−γT (x,y1,...,yn)

]
satis�es the Kolmogorov backward equation
(25)

1

2

n∑
i=1

σ2i y
2
i Φyiyi +

n∑
i=1

µiyiΦyi +
1

2
σ20 x

2Φxx +

(
c∏n

i=1 y
ai
i

+ µ0x

)
Φx = γΦ,
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subject to the boundary conditions

(26) Φ(x, y1, . . . , yn; γ) = 1 if x
n∏
i=1

yaii = k1 or k2.

Now, based on the above boundary conditions, we look for a solution of
the form

(27) Φ(x, y1, . . . , yn; γ) = Ψ(z),

where

(28) z := x

n∏
i=1

yaii .

Under this assumption, we compute
(29)

∂Φ

∂x
=

n∏
i=1

yaii Ψ′(z),
∂2Φ

∂x2
=

(
n∏
i=1

yaii

)2

Ψ′′(z),
∂Φ

∂yi
= xaiy

ai−1
i

∏
j 6=i

y
aj
j Ψ′(z)

and

(30)
∂2Φ

∂y2i
= x2

aiyai−1i

∏
j 6=i

y
aj
j

2

Ψ′′(z) + xai (ai − 1)yai−2i

∏
j 6=i

y
aj
j Ψ′(z).

Hence, we �nd that the partial di�erential equation (25) is transformed
into the ordinary di�erential equation

1

2

n∑
i=1

σ2i a
2
i z

2Ψ′′(z) +
1

2

n∑
i=1

σ2i ai (ai − 1)zΨ′(z)(31)

+

n∑
i=1

µiaizΨ′(z) +
1

2
σ20 z

2Ψ′′(z) + (c+ µ0z) Ψ′(z) = γΨ(z).

That is, we must solve

1

2

{
σ20 +

n∑
i=1

σ2i a
2
i

}
z2Ψ′′(z)(32)

+

{
c+

[
µ0 +

n∑
i=1

(
1

2
σ2i ai (ai − 1) + µiai

)]
z

}
Ψ′(z) = γΨ(z),

subject to

(33) Ψ(k1) = Ψ(k2) = 1.
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Let

(34) α2 :=
1

2

{
σ20 +

n∑
i=1

σ2i a
2
i

}
and

(35) β := µ0 +
n∑
i=1

(
1

2
σ2i ai (ai − 1) + µiai

)
.

Making once again use of the mathematical software Maple, we can �nd the
general solution of

(36) α2z2Ψ′′(z) + (c+ βz)Ψ′(z) = γΨ(z).

We can therefore state the following proposition.

Proposition 3.1. The function Φ(x, y1, . . . , yn; γ) = Ψ(z) is given by

Ψ(z) = z
α2−∆−β

2α2

{
c1M

(
β + ∆− α2

2α2
,
α2 + ∆

α2
,
c

α2z

)
+ c2U

(
β + ∆− α2

2α2
,
α2 + ∆

α2
,
c

α2z

)}
,(37)

in which

(38) ∆ :=
√
α4 + (4γ − 2β)α2 + β2,

M(·, ·, ·) and U(·, ·, ·) are con�uent hypergeometric functions ([1, p. 504]), and
the constants c1 and c2 are uniquely determined from the boundary conditions
Ψ(k1) = Ψ(k2) = 1.

4. CONCLUDING REMARKS

An exact and explicit expression has been obtained for the expected value
of a random variable that represents the useful life of a machine. In the model
that was considered, the variable X(t) that denotes the wear of the machine
at time t was de�ned in such a way that it was always increasing with time.
To obtain this behaviour, we had to consider a system of two stochastic dif-
ferential equations in which the derivative of X(t) with respect to time was a
deterministic function of another variable, Y (t). The process {Y (t), t ≥ 0} was
assumed to be a geometric Brownian motion, which always remains positive.
We could have used another di�usion process that cannot become negative.
We could also have used a Gaussian process, such has a Wiener process or an
Ornstein-Uhlenbeck process, but with a re�ecting boundary at the origin.



44 Mario Lefebvre 8

If we had worked in discrete time instead, then we could have considered
a one-dimensional Markov chain model for the stochastic process {Xn, n =
0, 1, . . .} such that Xn increases with n. To obtain the expected value of the
random variable that corresponds to T (x, y), we would have to solve a di�erence
equation, subject to the appropriate boundary condition.

Finally, a related problem for an (n + 1)-dimensional di�usion process
was considered and solved explicitly. This problem generalizes the one in [4].
We could next compute the expected value of the �rst-passage time variable
de�ned in this generalization.

Acknowledgements. This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada. The author is grateful to the reviewer of this
paper for providing constructive remarks..

REFERENCES

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables. Dover, New York, 1965.

[2] H. Ghamlouch, A. Grall and M. Fouladirad, On the use of jump-di�usion process for

maintenance decision-making: A �rst step. In: 2015 Annual Reliability and Maintain-
ability Symposium (RAMS). Doi: 10.1109/RAMS.2015.7105099.

[3] M. Lefebvre, First-passage problems involving processes with lognormal density functions.
Rend. Istit. Lombardo Sci. A 130 (1996), 63�78.

[4] M. Lefebvre, First hitting time and place for the integrated geometric Brownian motion.
Int. J. Di�er. Equ. Appl. 9 (2004), 365�374.

[5] K. Le Son, M. Fouladirad and A. Barros, Remaining useful lifetime estimation and noisy

gamma deterioration process. Reliab. Eng. Syst. Safe. 149 (2016), 76�87.

[6] R. Rishel, Controlled wear processes: modeling optimal control . IEEE Trans. Automat.
Control 36 (1991), 1100�1102.

[7] Z.-S. Ye, Y. Wang, K.-L. Tsui and M. Pecht, Degradation data analysis using Wiener

processes with measurement errors. IEEE Trans. Reliab. 62 (2013), 772�780.

Received 28 May 2018 Polytechnique Montr�eal,

Department of Mathematics and

Industrial Engineering,

C.P. 6079, Succursale Centre-ville

Montr�eal, Qu�ebec

Canada H3C 3A7

mlefebvre@polymtl.ca


