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Some conditions for recurrence or transience of a random walk, with the transi-
tion probabilities matrix P, on an in�nite tree T are obtained. Then de�ning a
biexcessive function associated with the random walk as a function q(x) on (T, P )
such that −∆q(x) is an excessive function, a representation for positive (with
respect to a speci�c order) biexcessive functions and some of its consequences
are given.
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1. INTRODUCTION

In an in�nite tree T , a random walk is de�ned by the matrix P = {p(x, y)}
of transition probabilities. Fixing a state e in (T, P ) if we de�ne |x| as the length
of the shortest path from e to x, then for any state x, |x| = n, there is only one
neighbour state x∼ such that |x∼| = n−1.We show here that some restrictions
on the reverse probabilities p(x, x∼) determine the recurrence or the transience
of the random walk. For a real-valued function f(x) on T, the Laplacian is

∆f(x) = Pf(x)− f(x) =
∑
y∼x

p(x, y)f(y)− f(x).

Write f � g if f ≥ g and−∆f ≥ −∆g. Recall that the function f(x) is excessive
if Pf(x) ≤ f(x). Then de�ning a biexcessive function on T as a function u(x)
such that −∆u(x) is excessive, we obtain a unique representation for biexcessive
functions u � 0. Some properties of such biexcessive functions with respect to
random walks on homogeneous trees are derived at the end.

2. PRELIMINARIES

An in�nite graph considered here consists of a countable in�nite number
of vertices and a countable number of edges; two vertices x, y are said to be

REV. ROUMAINE MATH. PURES APPL. 65 (2020), 1, 75�82



76 Victor Anandam 2

neighbours, noted x ∼ y, if and only if there is an edge connecting x, y; if
x ∼ x, then there is a self-loop at x; the graph X is said to be connected if
for any two vertices x, y there is a path {x = x0, x1, x2, ., xn = y} connecting
x, y, xi ∼ xi+1, 0 ≤ i ≤ n−1; the graph is said to be locally �nite if every vertex
has only a �nite number neighbours; a vertex is said to be a terminal vertex if
it has only one neighbour; the graph is a tree if there is no closed path in it,
that is there is no path with distinct vertices of the form {x = x1, x2, ., xn = x}
for n > 3; a tree is a homogeneous tree of order q if every vertex has only q
neighbours; a transition matrix t = {t(x, y)} on X is de�ned by the conditions
t(x, y) ≥ 0 for any pair of vertices x, y and t(x, y) > 0 if and only if x ∼ y; the
transition values t(x, y) and t(y, x) need not be the same.

An in�nite network (X, t) is an in�nite graph that is a locally �nite,
connected graph without self-loops, having an associated transition matrix
t = {t(x, y)}. If u(x) is a real-valued function on an in�nite network (X, t),
then the Laplacian ∆u(x) =

∑
y∼x t(x, y)[u(y) − u(x)]; the function u(x) is

said to be superharmonic at the vertex x if ∆u(x) ≤ 0 and is harmonic at the
vertex x if ∆u(x) = 0. A non-negative superharmonic function p(x) on X is
termed a potential if for any harmonic function h(x) such that 0 ≤ h(x) ≤ p(x)
we necessarily have h = 0. If there exists a potential p(x) > 0 on X, then we say
(see [1]) that (X, t) is a hyperbolic network, otherwise it is called a parabolic
network. If s(x) is a non-negative superharmonic function on the in�nite net-
work, then we have the unique Riesz decomposition s(x) = p(x) + h(x) where
p(x) is a potential and h(x) is a non-negative harmonic function. From this,
using a form of the minimum principle (that is, if a superharmonic function
attains its minimum at a vertex in X then it is a constant) we conclude that
in a parabolic network every non-negative superharmonic function is constant.

The term random walk here signi�es an in�nite network (X,P ) where
X is the state space and P = {p(x, y)} is the probability transition matrix
whose entries p(x, y) denote the transition probabilities from state x to state
y with

∑
y∼x p(x, y) = 1 for every x in X. Write the matrix Pn = P.Pn−1

inductively with P 0 = I. In this framework, a function f(x) is said to be
excessive (Woess [3]) if

Pf(x) =
∑
y

p(x, y)f(y) ≤ f(x).

Since Pf(x)−f(x) = ∆P f(x) where ∆P is the Laplacian of the network (X,P ),
then a real-valued function is excessive if and only if it is superharmonic. Now
de�ne for any two states x, y the Green kernel G(x, y) =

∑∞
n=0 p

n(x, y) where
pn(x, y) is the entry in the matrix Pn. Note that G(x, y) is �nite for every
pair x, y or ∞ for any pair since the matrix is irreducible (that is, the network



3 Random walks on in�nite trees 77

(X,P ) is connected). Since pn(x, y) can be considered as the probability of
the walker starting at the state space y reaches the state space x in n steps,
when G(x, y) is �nite, it is considered as the expected number of visits the
walker makes to x starting from y in a reversible random walk (recall that a
random walk is said to be reversible if there exists a function ϕ(x) > 0 such
that ϕ(x)p(x, y) = ϕ(y)p(y, x) for any two states x, y). When it is the case
that G(x, y) is �nite, the random walk (X,P ) is called a transient walk; when
G =∞, the random walk is called a recurrent walk. Thus in a recurrent walk,
the walker starting at y visits x in�nitely often. Remarking that for a �xed state
e, the function Ge(x) = G(x, e) is excessive, we are led to the conclusion that
the random walk (X,P ) is transient if and only if it is a hyperbolic network.

3. RANDOM WALKS ON INFINITE TREES

In this section are given some conditions on the reverse transition prob-
abilities of random walks on trees which when satis�ed will show whether the
walks are recurrent or transient.

Let (T, P ) be a random walk where T is an in�nite tree and P = {p(x, y)}
is the matrix of transition probabilities. For a �xed state e in T and any state
x ∈ T, let |x| = d(e, x) denote the length of the shortest path connecting e to
x. Remark that for any vertex x, |x| = n ≥ 1, all its neighbours {zi} are such
that |zi| = n+ 1 except one x∼ for which |x∼| = n− 1.

Theorem 3.1. Let (T, P ) be a random walk on an in�nite tree with a

state e �xed. If p(x, x∼) ≥ α
α+1 for some α > 1 and every x, |x| ≥ m for some

integer m, then the random walk is recurrent.

Proof. Let s(x) = αn if |x| = n. For n ≥ m, when |x| = n,

∆s(x) = p(x, x∼)[α(n−1) − αn] + [1− p(x, x∼)][α(n+1) − αn]

= α(n−1)(α− 1)[−p(x, x∼)(α+ 1) + α]

≤ α(n−1)(α− 1)[−α+ α] = 0.

Hence s(x) is superharmonic at every vertex x, |x| ≥ m, and tends to in�nity
at the vertex at in�nity (that is, when |x| → ∞). Hence by [2, Theorem 3.2],
(T, P ) is parabolic (recurrent). �

Examples of recurrent networks:

(1) Let X = {...,−2,−1, 0, 1, 2, ...} be a random walk determined by the
matrix P = {p(x, y)} where p(n, n + 1) = p(−n,−n − 1) = p for all n ≥ 0
and the value of any of the other transition probabilities is q where p+ q = 1.
Suppose q ≥ α

α+1 , α > 1. Then the random walk (X,P ) is recurrent.
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We know that the standard random walk with p = q = 1
2 is recurrent. In

fact, if (T, P ) is a random walk on an in�nite tree T and if p(x, x∼) ≥ 1
2 for every

state x, then the walk is recurrent. Consider the function s(x) = n, if |x| = n.
Note that for x, |x| ≥ 1,∆s(x) = p(x, x∼)[(n−1)−n]+[1−p(x, x∼)][(n+1)−n] ≤
0. Thus s(x) > 0 is superharmonic at every state x, |x| ≥ 1, and tends to in�nity
when |x| → ∞. Hence the random walk is recurrent.

(2) Let X = {0, 1, 2, ...} be a random walk determined by p(0, 1) = 1; and
if n ≥ 1, p(n, n− 1) = qn, and p(n, n+ 1) = 1− qn. Suppose qn ≥ α

α+1 , α ≥ 1.
Then (X,P ) is recurrent.

Theorem 3.2. Let (T, P ) be a random walk on an in�nite tree with �xed

vertex e. If p(x, x∼) ≤ 1
α+1 for |x| ≥ 1, α > 1, then the random walk is transient.

Proof. Consider the function g(x) = α−n, |x| = n ≥ 0. Then for
|x| = n ≥ 1,

∆g(x) = p(x, x∼)[α−n+1 − α−n] + [1− p(x, x∼)][α−n−1 − α−n]

= (α− 1)α−n−1[(α+ 1)p(x, x∼)− 1] ≤ 0.

Hence g(x) is superharmonic at every state x, |x| ≥ 1. When x = e,∆g(e) =
(α−1 − 1) < 0. Hence g(x) > 0 is a non-harmonic superharmonic function on
T, so that (T, P ) represents a transient random walk. �

Corollary 3.3. If (T, P ) represents the random walk on a homogeneous

tree T of order (q + 1), with p(x, y) = 1
q+1 for all pairs, then the random walk

is transient if q ≥ 2.

Proof. Here q ≥ 2 and p(x, x∼) = 1
q+1 ≤

1
3 . Hence taking α = 2 in the

above theorem, we conclude that the random walk (T, P ) is transient. �

4. BIPOTENTIALS AND BIHARMONIC POTENTIALS

ON INFINITE NETWORKS

A function u in the context of a random walk on an in�nite network is
called a biexcessive function if −∆u(x) is an excessive function. We study
in this section the properties of such functions on in�nite homogeneous trees,
among other related developments in in�nite networks.

To start, let us introduce on the space of real-valued functions on an
in�nite network (X, t) an order � to say that f � g if there exists a non-
negative superharmonic function s such that f = g + s. Consequently f � g if
and only if f ≥ g and −∆f ≥ −∆g. In particular, u � 0 denotes that u ≥ 0 is
superharmonic.
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De�nition 4.1. (i) A real-valued function u on X is called bisuperhar-
monic (or biexcessive in the context of random walks) if −∆u = v is
superharmonic (respectively, excessive) on X.

(ii) A potential Q on X is called a bipotential if −∆Q = p is also a potential.

(iii) A potential B on X is called a biharmonic potential if −∆B = h is
harmonic on X.

Theorem 4.2. Let u � 0 be a bisuperharmonic function on an in�nite

network (X, t). Then u is the unique sum of a bipotential, a biharmonic potential

and a nonnegative harmonic function on X.

Proof. If the network is parabolic, then the theorem is a trivial statement.
Take the network as hyperbolic. Since u � 0, it is a superharmonic function;
since u is bisuperharmonic also, then −∆u = s is superharmonic and s ≥ 0.
Hence s is the unique sum of a potential p and a harmonic function h ≥ 0. Now
u ≥ 0 being superharmonic, by using the Green function Gy(x) = G(x, y) we
have a representation for u as follows:

u(x) =
∑
y

Gy(x)[−∆u(y)] + (a harmonic function v ≥ 0)

=
∑
y

Gy(x)s(y) + v(x)

=
∑
y

Gy(x)[p(y) + h(y)] + v(x)

= Q(x) +B(x) + v(x),

where Q(x) is a potential, −∆Q = p; and B(x) is a potential,−∆B = h. Thus
u(x) is the sum of a bipotential Q(x), a biharmonic potential B(x) and a non-
negative harmonic function v(x). The uniqueness of the decomposition of u is
proved using the Laplacian operator. �

It is possible that there does not exist any positive bipotential on (X, t)
even if positive potentials exist on X (as in R3 or R4 in the continuous case).
However if there exists a positive biharmonic potential on X, then there exist
bipotentials on X.

Proposition 4.3. Let B(x) be a positive biharmonic potential on X. Then
there exist bipotentials on X.

Proof. Let −∆B(x) = h(x) where h > 0 is harmonic. Take a non-empty
�nite set A. Then p(x) = RAh (x) = inf{s(x) : s > 0 is superharmonic onX, s ≥
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h on A} is a potential, RAh (x) ≤ h(x). (See [1, Theorem 3.1]). Now,

B(x) =
∑
y

Gy(x)[−∆B(y)]

=
∑
y

Gy(x)h(y)

≥
∑
y

Gy(x)p(y) = Q(x).

Then Q(x) is a potential and −∆Q(x) = p(x) is also a potential. Hence Q(x)
is a bipotential on X. �

Corollary 4.4. There are positive bipotentials on X if and only if there

exists a non-harmonic bisuperharmonic function u � 0 on X.

Proof. Suppose u � 0 is bisuperharmonic but not harmonic. Write using
Theorem 4.2, u = Q + B + v. Since u is not harmonic, both Q and B cannot
be 0. If Q 6= 0, the corollary is valid; if Q = 0, then by the above proposition,
there exist bipotentials on X. On the other hand, every positive bipotential is
a bisuperharmonic function Q � 0 that is not harmonic. �

To give an example of a network on which bipotentials exist but no positive
biharmonic potentials exist (as in Rn, n ≥ 5, in the continuous case) we shall
turn to the standard random walk (T, P ) on a homogeneous tree T of order
(q+1), q ≥ 2, and p(x, y) = 1

q+1 for any two neighbouring states. Fix a state e in

T and, as before, write |x| = d(e, x). Note that there are (q+1)qn−1 states with
|x| = n ≥ 1. When |x| = n ≥ 1, the state x has q neighbours {zi}, |zi| = n+ 1
and one neighbour x∼, |x∼| = n− 1. We have now the following lemma stating
a mean-value property for harmonic functions on T.

Lemma 4.5. Let h(x) be a harmonic function with respect to the ran-

dom walk on (T, P ) where T is the standard homogeneous tree of order (q +
1), and p(x, y) = 1

(q+1) for any pair of neighbouring states. Then h(e) =
1

(q+1)qn−1

∑
|x|=n h(x).

Proof. By induction; assume the equality up to n. Now for |x| = n,

h(x) =
1

(q + 1)
h(x∼) +

∑
i

1

(q + 1)
h(zi).

Consequently,
∑
|x|=n h(x) = q

(q+1)

∑
|x|=n−1 h(x) + 1

(q+1)

∑
|x|=n+1 h(x), since

each x∼ has q neighbours yi, |yi| = n. Now use the induction hypothesis to get

(q + 1)qn−1h(e) =
q

(q + 1)
[(q + 1)qn−2h(e)] +

1

(q + 1)

∑
|x|=n+1

h(x).
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Hence 1
(q+1)

∑
|x|=n+1 h(x) = [(q + 1)qn−1 − qn−1]h(e) = qnh(e).

That is, h(e) = 1
(q+1)qn

∑
|x|=n+1 h(x). �

Theorem 4.6. For a random walk on the homogeneous tree (T, P ) of order
(q + 1), q ≥ 2, with constant transition probabilities 1

(q+1) for the neighbouring

states, there are bipotentials on T but no positive biharmonic potentials.

Proof. i) If p(x) = q−n, |x| = n, it is easy to check that ∆p(x) = 0 for
every x 6= e and ∆p(e) = (q−1 − 1) < 0 so that p(x) > 0 is superharmonic on
T. Since p(x) → 0 when |x| → ∞, then p(x) is a potential on (T, P ) which is
harmonic at every state x 6= e. Consequently, if G(x, y) is the Green kernel of
(T, P ), then G(x, e) = q

(q−1)p(x) = 1
qn−1(q−1) if |x| = n. Then∑

x

G(x, e)p(x) = G(e, e)p(e) +
∑
n

[
∑
|x|=n

G(x, e)p(x)]

= G(e, e) +
∑
n

[
∑
|x|=n

1

qn−1(q − 1)
× 1

qn
]

= G(e, e) +
∑
n

(q + 1)qn−1 × 1

qn−1(q − 1)
× 1

qn

= G(e, e) +
∑
n

q + 1

q − 1
× 1

qn

< ∞ since q ≥ 2.

Consequently, Q(y) =
∑

xG(x, y)p(x) is a potential such that −∆Q = p; that
is Q is a bipotential function on (T, P ).

ii) Now to show there is no positive biharmonic potential on (T, P ):
Suppose h > 0 is harmonic on (T, P ). If there exists a potential B(x) such that
−∆B(x) = h(x), then

B(e) =
∑
x

G(x, e)h(x)

= G(e, e)h(e) +
∑
n≥1

[
∑
|x|=n

G(x, e)h(x)]

= h(e)G(e, e) +
∑
n≥1

[
∑
|x|=n

1

qn−1(q − 1)
h(x)]

= h(e)G(e, e) +
∑
n≥1

[
1

qn−1(q − 1)

∑
|x|=n

h(x)]

= h(e)G(e, e) +
∑
n≥1

[
1

qn−1(q − 1)
(q + 1)qn−1h(e)]
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= h(e)G(e, e) +
∑
n≥1

q + 1

q − 1
h(e) =∞,

a contradiction. Hence there is no positive biharmonic potential on (T, P ). �
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