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Let (R, RUS, SVR, S) be a Morita context. We study the connection between
the classes of preradicals PR(R) and PR(S) of the categories of modules R-Mod
and S-Mod. Two mappings between PR(R) and PR(S) are constructed from
the functors HomR(U, -) and HomS(V, -). We investigate several properties of
these mappings, in particular their behavior relative to the order, intersection
and heredity. Similar methods were used earlier for preradicals in an adjoint
situation.
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1. INTRODUCTION. PRELIMINARY DEFINITIONS

AND FACTS

The purpose of this article is the elucidation of relations between the
preradicals of two module categories R-Mod and S-Mod in the case when there
is given an arbitrary Morita context (R, RUS, SVR, S). Then the functors H

U =
HomR(U, -) and HV = HomS(V, -) between these categories are considered

and two mappings PR(R)
(−)∗ // PR(S)

(−)∗
oo are de�ned by them between

the classes of preradicals of the categories R-Mod and S-Mod.

The main results of this work show the properties of these mappings, in
particular the preservation of order relations, of intersections and of heredity of
preradicals. The special cases of preradicals de�ned by the trace ideals of the
given context are studied. Some similar results were proved earlier for adjoint
functors [4, 8, 9]. The torsions in Morita contexts are studied in [5�8].

Now we shall describe more precisely the notions and the situation to be
studied. Let R be a ring with unity and R-Mod be the category of unitary
left R-modules. The homomorphisms of left R-modules are written on the
right of elements. The product (composition) of R-morphisms f :M→N and
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g : N → P is denoted as f · g : M → P , where (m)(f · g) def
== (mf) g for

every m ∈M .
A preradical r of R-Mod is a subfunctor of the identity functor

1R : R-Mod → R-Mod, i.e. r is a function which separates in every mod-
ule M ∈ R-Mod a submodule r(M) ⊆ M such that [r(M)]f ⊆ r(M ′) for
every R-morphism f : M →M ′ of R-Mod. We denote by PR(R) the class of
all preradicals of the category R-Mod [1,4].

The Morita context (R, RUS, SVR, S) consists of two rings R and S, and
of two bimodules RUS and SVR with bimodular morphisms:

(, ) : U ⊗S V → R, [, ] : V ⊗R U → S,

which satisfy the relations of associativity:

(u, v)u′ = u [v, u′], [v, u] v′ = v (u, v′)

for u, u′ ∈ U and v, v′ ∈ V [2, 3, 10, 11].
The images of these morphisms I = (U, V ) / R and J = [V,U ] / S are

ideals in R and S, respectively, and are called the trace ideals of the given
Morita context.

The notion of Morita context is widely used in algebra with diverse goals
and has its origin in the investigations of K. Morita on equivalence of module
categories. Each bimodule de�nes a pair of adjoint functors. The preradicals
in an adjoint situation are studied, in particular, in [4, 8, 9].

For Morita contexts in [5,6,8] a bijection is shown between two sublattices
of the lattices of torsions of R-Mod and S-Mod. It is de�ned by the action of
the functors HU and HV to the injective cogenerators of torsions.

In the present paper, we will analyze the connection between the prerad-
icals of the categories R-Mod and S-Mod, determined by the pair of functors:

R-Mod
HU=HomR(U,-) // S-Mod,
HV =HomS(V,-)

oo

where (R, RUS, SVR, S) is an arbitrary Morita context. The pair (HU, HV ) is
accompanied by two natural transformations:

ϕ : 1R−Mod → HVHU , ψ : 1S−Mod → HUHV ,

which are de�ned as follows. For every module X ∈ R-Mod we have the
R-morphism ϕX : X → HVHU(X) determined by the rule:

(1.1) u
(
v(xϕX )

) def
== (u, v)x,

where x ∈ X, v ∈ V , u ∈ U . Similarly, for every module Y ∈ S-Mod the
S-morphism ψY : Y → HUHV (Y ) is de�ned by the rule:
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(1.2) v
(
u(y ψY )

) def
== [v, u] y,

where y ∈ Y , u ∈ U , v ∈ V .
The natural transformations ϕ and ψ are compatible with the functors

HU and HV in the following sense. For every module X ∈ R-Mod we have the
relation:

(1.3) HU(ϕX) = ψHU(X).

Similarly, for every module Y ∈ S-Mod the following holds:

(1.4) HV (ψY) = ϕHV(Y ).

2. MAPPINGS BETWEEN THE CLASSES OF PRERADICALS

Let (R, RUS, SVR, S) be an arbitrary Morita context. We consider the

functors R-Mod
HU=HomR(U,-) //

HV =HomS(V,-)
oo S-Mod with the natural transformations

ϕ : 1R−Mod → HVHU and ψ : 1S−Mod → HUHV , de�ned by the rules (1.1) and
(1.2). In this situation, we will de�ne two mappings:

PR(R)
(−)∗ // PR(S)

(−)∗
oo

between the classes of preradicals of categories R-Mod and S-Mod.
The mapping r  r∗ from PR(R) to PR(S) is de�ned as follows. Let

r ∈ PR(R) and Y ∈ S-Mod. Applying HV and using r, we obtain in R-Mod
the exact sequence:

0→ r
(
HV(Y )

) ir
HV(Y )−−−−→
⊆

HV(Y )
πr
HV(Y )−−−−−→
nat

HV(Y )
/
r
(
HV(Y )

)
→ 0,

where ir
HV(Y )

is the inclusion and πr
HV(Y )

is the natural epimorphism. Further,

we apply the functor HU , adding the morphism ψY :

Y

ψ
Y

�� **
0 −→ HU

(
r
(
HV(Y )

)) HU
(
ir
HV(Y )

)
// HUHV(Y )

HU
(
πr
HV(Y )

)
// HU

[
HV(Y )

/
r
(
HV(Y )

)]
.

Definition. For every preradical r ∈ PR(R) we de�ne in S-Mod the
function r∗ by the rule:

(2.1) r∗(Y )
def
== Ker [ψY ·H

U(πr
HV(Y )

)]

for every module Y ∈ S-Mod.
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The other form of the module r∗(Y ) is indicated in

Lemma 2.1. r∗(Y ) =
{
y ∈ Y |U(y ψY ) ⊆ r

(
HV(Y )

)}
.

Proof. By the de�nition we have:

y ∈ r∗(Y )⇔ ∀u ∈ U, u(y ψY ) + r
(
HV(Y )

)
= 0⇔ ∀u ∈ U,

u(y ψY ) ∈ r
(
HV(Y )

)
⇔ U(y ψY ) ⊆ r

(
HV(Y )

)
. �

Remark. If y ∈ r∗(Y ), then [V,U ] y ⊆ V
(
r
(
HV(Y )

))
.

Indeed, by Lemma 2.1:

y ∈ r∗(Y )⇒ U(y ψY ) ⊆ r
(
HV(Y )

)
⇒ V

(
U(y ψY )

)
⊆ V

(
r
(
HV(Y )

))
.

Now by the de�nition of ψ (see (1.2)) we obtain: V
(
U(y ψY )

)
= [V,U ] y,

therefore [V,U ] y ⊆ V
(
r
(
HV(Y )

))
.

Further, the exactness of the sequence from the previous diagram permits
us to show the other possibility to express the function r∗.

Lemma 2.2. For every preradical r ∈ PR(R) and every Y ∈ S-Mod the

following relation holds:

(2.2) r∗(Y ) = [ImHU(ir
HV(Y )

)]ψ−1Y .

Proof. Since ImHU(ir
HV(Y )

) = KerHU(πr
HV(Y )

), we have:

[ImHU(ir
HV(Y )

)]ψ−1Y = [KerHU(πr
HV(Y )

)]ψ−1Y

= Ker [ψY ·H
V (πr

HV(Y )
)]

def
== r∗(Y ). �

Theorem 2.3. For every preradical r ∈ PR(R) the function r∗ de�ned

by the rule (2.1) (or (2.2)) is a preradical of the category S-Mod.

Proof. Let r ∈ PR(R) and g : Y → Y ′ be an arbitrary morphism of
S-Mod. Using HV and r we obtain in R-Mod the commutative diagram:

0 // r
(
HV(Y )

)
r(HV(g))

��

⊆

ir
HV(Y )// HV(Y )

HV(g)

��

nat

πr
HV(Y ) // HV(Y )

/
r
(
HV(Y )

)
(1/r)(HV(g))

��

// 0

0 // r
(
HV(Y ′)

)
⊆

ir
HV(Y ′)// HV(Y ′)

nat

πr
HV(Y ′)// HV(Y ′)

/
r
(
HV(Y ′)

)
// 0,

where r
(
HV(g)

)
is the restriction of HV(g) (by the de�nition of preradical),

which implies the morphism (1/r)
(
HV(g)

)
.
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Now by HU and ψ we have in S-Mod the commutative diagram:

r∗(Y )

g

��

⊆
// Y

g

��

ψ
Y // HUHV (Y )

HUHV(g)

��

HU(πr
HV(Y )

)
// HU

[
HV (Y )

/
r
(
HV (Y )

)]
HU[(1/r)(HV(g))]

��
r∗(Y ′)

⊆
// Y ′

ψ
Y ′ // HUHV (Y ′)

HU(πr
HV(Y ′)

)
// HU

[
HV (Y ′)

/
r
(
HV (Y ′)

)]
.

By the de�nition of r∗(Y ) it is clear that
(
r∗(Y )

)[
ψY ·HU(πr

HV(Y )
)] = 0,

therefore
(
r∗(Y )

)[
ψY ·HU(πr

HV(Y )
) ·HU [(1/r) (HV(g))]

]
= 0. Since the diagram

commutes, we obtain
(
r∗(Y )

)[
g · ψ

Y ′
· HU(πr

HV(Y ′)
)] = 0. This means that(

r∗(Y )
)
g ⊆ Ker

[
ψ
Y ′
·HU(πr

HV(Y ′)
)]

def
== r∗(Y ′) for every g : Y → Y ′. Therefore

r∗ is a preradical of S-Mod. �

In that way for the given Morita context (R, RUS, SVR, S) the mapping

PR(R) (−)∗−−−−−−−→ PR(S) is de�ned by the functors HU and HV , using the
natural transformation ψ. In a completely similar manner we can de�ne the

inverse mapping PR(S) (−)∗−−−−−−−→ PR(R) with the help of the same functors
HU and HV , using the natural transformation ϕ.

Namely, if s ∈ PR(S) and X ∈ R-Mod, then in S-Mod we have the
sequence:

0→ s
(
HU(X)

) is
HU(X)−−−−−→
⊆

HU(X)
πs
HU(X)−−−−−→
nat

HU(X)
/
s
(
HU(X)

)
→ 0.

Applying HV and adding ϕX we obtain in R-Mod the situation:

X

ϕ
X

�� **
0 −→ HV

(
s
(
HU(X)

)) HV
(
is
HU(X)

)
// HVHU(X)

HV
(
πs
HU(X)

)
// HV [HU(X)

/
s
(
HU(X)

)
].

We de�ne the function s∗ by the rule:

(2.3) s∗(X)
def
== Ker

[
ϕX ·H

V
(
πs
HU(X)

)]
,

or

(2.4) s∗(X)
def
==

[
ImHV

(
is
HU(X)

)]
ϕ−1
X
.

From the complete symmetry of the studied situation and of used methods, it
is clear that the function s∗ is a preradical of R-Mod.
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Thus we have two mappings PR(R)
(−)∗ // PR(S)

(−)∗
oo which are com-

pletely similar and this fact permits us to investigate only one of them, trans-
ferring without proofs the results from one mapping to the other.

3. PARTICULAR CASES

With the purpose of illustrating the previous constructions, we will show
now the action of the de�ned mappings in some particular cases: for the extreme
(trivial) preradicals and 1, and also for the preradicals de�ned by the trace
ideals I / R and J / S of the given Morita context. The ideal I = (U, V ) of
R de�nes the preradical (pretorsion) r(I) of R-Mod by the rule:

r(I)(X) = {x ∈ X | Ix = 0} = KerϕX ,

for every X ∈ R-Mod ([10]). Similarly, the ideal J = [V,U ] of S de�nes in
S-Mod the preradical (pretorsion) r(J) such that:

r(J)(Y ) = {y ∈ Y | Jy = 0} = KerψY ,

where Y ∈ S-Mod.
a) Let r = R, i.e. r(X) = 0 for every X ∈ R-Mod. Then for Y ∈S-Mod

we have r
(
HV(Y )

)
= 0, therefore HU

(
πr
HV(Y )

)
= 1HUHV(Y ) and by the de�ni-

tion r∗(Y ) = KerψY , where ψY : Y → HUHV (Y ) and

KerψY = {y ∈ Y | y ψY = 0} = {y ∈ Y | [V,U ]y = 0} = {y ∈ Y | Jy = 0}.

This means that ∗
R = r(J). By symmetry we have: ∗

S = r(I). We remark
that r(J) is the least preradical of the form r∗ for some r ∈ PR(R).

b) Let r=1R, i.e. r(X)=X for every X ∈ R-Mod. Then for Y ∈S-Mod
we have HV(Y ) = r

(
HV(Y )

)
, so πr

HV(Y )
= 0. Therefore HU

(
πr
HV(Y )

)
= 0 and

ψY · HU
(
πr
HV(Y )

)
= 0. Then Ker

[
ψY · HU

(
πr
HV(Y )

)]
= Y and by the de�nition

r∗(Y ) = Y for every Y∈S-Mod, which means that 1 ∗R = 1S. By the symmetry:
1
∗
S = 1R.

c) Let r = r(I) ∈ PR(R) and we show the corresponding pre-
radical r ∗(I) ∈ PR(S). For Y ∈ S-Mod by the de�nition r ∗(I) (Y ) =

Ker
[
ψY ·HU

(
π
r
(I)

HV(Y )

)]
, where π

r
(I)

HV(Y )
: HV(Y ) → HV(Y )

/
r(I)
(
HV(Y )

)
is the

natural epimorphism. By the de�nition of r(I) for every f ∈ HV(Y ) we have:

(3.1) f ∈ r(I)
(
HV(Y )

)
⇔ (U, V ) f = 0.

Using this fact and the de�nition of ψY (see (1.2)) we obtain:

r ∗(I) (Y ) =
{
y ∈ Y

∣∣ y ψY ∈ KerHU
(
π
r
(I)

HV(Y )

)}
=
{
y ∈ Y

∣∣ y ψY · πr(I)HV(Y )
= 0
}
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=
{
y ∈ Y

∣∣U(y ψY ) ⊆ Kerπ
r
(I)

HV(Y )
= r(I)

(
HV(Y )

)}
(3.1)
==

{
y ∈ Y

∣∣ (U, V )
(
U(y ψY )

)
= 0
}
=
{
y ∈ Y

∣∣(U [V,U ]
)
(y ψY ) = 0

}
(1.2)
==

{
y∈Y

∣∣ [V,U [V,U ]
]
y = 0

}
=
{
y∈Y

∣∣ ([V,U ] · [V,U ]
)
y = 0

}
= r(J2)(Y ).

Therefore r ∗(I) = r(J2). Similarly: r ∗(J) = r(I2).
Summarizing the four cases mentioned above, now we can represent the

general situation as follows:

PR(R)
(−)∗ // PR(S)

(−)∗
oo

Proposition 3.1. a) ∗
R = r(J),

∗
S = r(I);

b) 1
∗

R = 1S, 1
∗
S = 1R;

c) r ∗(I) = r(J2), r ∗(J) = r(I2). �

Further we will show the relation between the preradicals r(I) ∈ PR(R)
and r(J) ∈ PR(S). For that we will de�ne a mapping r r′ such that to every
preradical r ∈ PR(R) corresponds a function r′ de�ned on ImHU⊆ S-Mod.
Namely, having r ∈ PR(R) and X ∈ R-Mod we consider the inclusion

irX : r(X)
⊆−−→ X and the image HU(irX) : HU

(
r(X)

)
→ HU(X) in S-Mod.

We de�ne the function r′ by the rule:

(3.2) r′
(
HU(X)

) def
== Im

(
HU(irX)

)
.

Then r′ acts in ImHU ⊆ S-Mod and separates the submodule r′
(
HU(X)

)
in

H(X) for every X ∈ R-Mod. This function possesses the following property,
which shows its concordance with the morphisms of R-Mod.

Proposition 3.2. For every preradical r ∈ PR(R) and every R-mor-

phism f : X → X ′ the following relation holds:[
r′
(
HU(X)

)](
HU(f)

)
⊆ r′

(
HU(X ′)

)
.
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Proof. For r ∈ PR(R) and f : X → X ′ we have the diagram:

r(X)
irX

⊆
//

f
��

X

f

��
r(X ′)

ir
X′

⊆
// X ′,

where f is the restriction of f . Then in S-Mod we obtain the situation:

HU
(
r(X)

) HU(irX)

**

HU(f )
��

// ImHU(irX)

HU(f)

��

⊆ // HU(X)

HU(f)

��
HU
(
r(X ′)

)
HU(ir

X′
) 44

// ImHU(ir
X′)

⊆ // HU (X ′).

Therefore:

Im
[
HU
(
i rX ·HU(f)

)]
= Im [HU(f) ·HU(i r

X′)] ⊆ H
U(i r

X′),

i.e.
[
ImHU(i rX)

](
HU(f)

)
⊆ ImHU(i r

X′), which by the de�nition (see (3.2))
means that

[
r′
(
HU(X)

)](
HU(f)

)
⊆ r′

(
HU(X ′)

)
. �

Let (r, s) be a pair of preradicals, where r ∈ PR(R) and s ∈ PR(S). We
will say that these preradicals are conjugated if r′

(
HU(X)

)
= s

(
HU(X)

)
and s′

(
HV(Y )

)
= r

(
HV(Y )

)
for every X ∈ R-Mod and Y ∈ S-Mod. Then

the connection between the preradicals r(I) and r(J) can be expressed as follows.

Proposition 3.3. The preradicals r(I) ∈ PR(R) and r(J) ∈ PR(S) are

conjugated, i.e. ImHU(i
r(I)
X ) = r(J)

(
HU(X)

)
and ImHV(i

r(J)
Y ) = r(I)

(
HV(Y )

)
for every X ∈ R-Mod and Y ∈ S-Mod.

Proof. For X ∈ R-Mod by the de�nition r(I)(X) = KerϕX . We consider
in R-Mod the exact sequence:

0 −−−→ KerϕX
i
r(I)
X−−−−→
⊆

X
ϕ
X−−−−→ HVHU(X),

which implies in S-Mod the exact sequence:

0 // HU(KerϕX)
HU(i

r(I)
X )

// HU(X)
HU(ϕ

X
)
// HUHVHU(X),//

ψ
HU(X)

where HU(ϕX) = ψHU(X) (see (1.3)). Therefore:

ImHU(i
r(I)
X ) = KerHU(ϕX) = KerψHU(X)

def
== r(J)

(
HU(X)

)
.

By symmetry the second relation of proposition also holds using (1.3). �
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For every preradical r ∈ PR(R) we denote by

P(r) = {X ∈ R-Mod | r(X) = 0}
the class of all r-torsionfree modules. From the last proposition we get the

Corollary 3.4. HU(P(r(I))) ⊆ P(r(J)), HV(P(r(J))) ⊆ P(r(I)).

Proof. If X ∈ P(r(I)), then r(I)(X) = KerϕX = 0 and i
r(I)
X = 0. There-

fore ImHU(i
r(I)
X ) = r(J)

(
HU(X)

)
= 0, i.e. HU(X) ∈ P(r(J)). �

To conclude this section we show the connection between the mappings
r  r′ and r  r∗ de�ned above.

Proposition 3.5. For every preradical r ∈ PR(R) and for every module

X ∈ R-Mod we have the relation:

r′
(
HU(X)

)
⊆ r∗

(
HU(X)

)
.

Proof. In the given conditions we consider the diagram:

X
ϕ
X // HVHU(X)

r(X)

irX⊆

OO

ϕ
X // r

(
HVHU(X)

)
.

⊆ i
r

HVHU(X)

OO

By HU it implies in S-Mod the situation:

HU(X)
HU(ϕ

X
)

// HUHVHU(X)//
ψ
HU(X)

HU
(
r(X)

)HU(irX)

OO

HU(ϕ
X
)
// HU

[
r
(
HVHU(X)

)]
,

HU(ir
HVHU(X)

)

OO

where HU(ϕX ) = ψHU(X). By the de�nitions it follows that:

r∗
(
HU(X)

) def
==

[
ImHU

(
ir
HVHU(X)

)]
ψ−1
HU(X)

,

r′
(
HU(X)

) def
== ImHU(irX).

Since the diagram commutes, we have:

Im [HU(irX) ·HU(ϕX )] = [Im [HU(irX) · ψHU(X)]

= Im
[
HU(ϕ

X
) ·HU

(
ir
HVHU(X)

)]
⊆ ImHU

(
ir
HVHU(X)

)
.

Applying ψ−1
HU(X)

we obtain:

ImHU(irX) ⊆ {Im [HU(irX) · ψHU(X)]}ψ−1HU(X)
⊆
[
ImHU

(
ir
HVHU(X)

)]
ψ−1
HU(X)

,

which by the de�nitions means that r′
(
HU(X)

)
⊆ r∗

(
HU(X)

)
. �
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4. �STAR� MAPPINGS AND ORDER RELATIONS

Now we will verify the behavior of the mappings PR(R)
(−)∗ // PR(S)
(−)∗
oo

de�ned above relative to the partial order in the classes of preradicals of R-Mod
and S-Mod. Recall that the partial order in PR(R) is de�ned as follows:

r1 ≤ r2 ⇔ r1(X) ⊆ r2(X)

for every module X ∈ R-Mod.

Theorem 4.1. If r1, r2 ∈ PR(R) and r1 ≤ r2, then in the class PR(S)
we have r ∗1 ≤ r ∗2 , i.e. the mapping r  r∗ is monotone.

Proof. Let Y ∈ S-Mod. Then the relation r1 ≤ r2 implies the inclusion

i : r1
(
HV(Y )

) ⊆−−−→ r2
(
HV(Y )

)
and we have in R-Mod the situation:

r1
(
HV(Y )

)
i1
⊆

&&

i⊇

��

HV(Y )
/
r1
(
HV(Y )

)
π

��

HV(Y )

π1

nat

66

π2
nat

((
r2
(
HV(Y )

) i2⊆
88

HV(Y )
/
r2
(
HV(Y )

)
,

where π is de�ned by the inclusion i. By HU and ψ we obtain in S-Mod the
diagram:

HU
[
HV(Y )

/
r1
(
HV(Y )

)]
HU(π)

��

Y
ψY // HUHV(Y )

H
U(π1

)
44

HU(π2)

**
HU
[
HV(Y )

/
r2
(
HV(Y )

)]
,

where ψY · HU(π1) · HU(π) = ψY · HU(π2), so the kernels of these morphisms
coincide. Therefore

Ker [ψY ·H
U(π1)] ⊆ Ker [ψY ·H

U(π1) ·HU(π)] = Ker [ψY ·H
U(π2)].

By the de�nition this means that r ∗1 (Y ) ⊆ r ∗2 (Y ) for every Y ∈ S-Mod, i.e.
r ∗1 ≤ r ∗2 . �
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By symmetry we conclude that the inverse mapping PR(S) (−)∗−−−−→ PR(R)
also is monotone: s1 ≤ s2 ⇒ s ∗1 ≤ s ∗2 .

In connection with the order relations in the classes of preradicals we
mention one more fact on the �star� mappings.

Theorem 4.2. For every preradical r ∈ PR(R) the following relation

holds: r ≤ r∗∗.

Proof. Let r ∈ PR(R) and X ∈ R-Mod. By the rule (2.1) for Y =

HU(X) we have r∗
(
HU(X)

) def
== Ker

[
ψHU(X) · HU(πr

HVHU(X)

)]
, where the natural

epimorphism

πr
HVHU(X)

: HVHU(X) −−−−→ HVHU(X)
/
r
(
HVHU(X)

)
implies in S-Mod the composition of morphisms:

HU(X)
ψ
HU(X)−−−−→ HUHVHU(X)

HU (πr
HVHU(X)

)

−−−−−−−−−→ HU
[
HVHU(X)

/
r
(
HVHU(X)

)]
.

Now we apply the mapping PR(S) (−)∗−−−−−−→ PR(R) to the preradical r∗ ∈
PR(S) and module X ∈ R-Mod (see (2.3) or (2.4)).

Using HU and r∗ we have in S-Mod the natural epimorphism πr
∗

HU(X)
:

HU(X) −−−−→ HU(X)
/
r∗
(
HU(X)

)
. By HV and ϕ now we obtain in R-Mod

the composition of morphisms:

X
ϕ
X−−−−→ HVHU(X)

HV (πr
∗

HU(X)
)

−−−−−−−−−−→ HV
[
HU(X)

/
r∗
(
HU(X)

)]
.

By the de�nition: r∗∗(X)
def
== Ker

[
ϕX · HV

(
πr
∗

HU(X)

)]
.

To establish the relation of this module with r(X) we consider in R-Mod
the following commutative diagram:

0 // r(X)

r(ϕ
X
)

��

⊆

i // X

ϕ
X

��

nat

πrX // X
/
r(X)

(1/r)(ϕ
X
)

��

// 0

0 // r
(
HVHU(X)

)
⊆

j // HVHU(X)
nat

πr
HVHU(X)// HVHU(X)

/
r
(
HVHU(X)

)
// 0,

where the lateral morphisms are implied by ϕX and r. Applying HU we obtain
in S-Mod the commutative diagram:
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r∗
(
HU(X)

) ⊆
−−−−→ HU(X)

HU(πrX )

��

πr
∗

HU(X)

++HU(ϕ
X
)

//

f

**

ψ
HU(X)

// HUHVHU(X)

HU
(
πr

HVHU(X)

)
��

HU(X)
/
r∗

(
HU(X)

)
∼=

��

g

uu
HU

(
X
/
r(X)

) HU[(1/r) (ϕ
X
) ]
// HU[HVHU(X)

/
r
(
HVHU(X)

)]
Imf ,

⊇oo

where by f is denoted the composition ψHU(X) · HU
(
πr
HVHU(X)

)
, therefore

r∗
(
HU(X)

) def
== Ker f . By the �rst isomorphism theorem we have

HU(X)
/
r∗
(
HU(X)

) ∼= Imf . We denote by g the composition of this isomor-
phism with the inclusion Imf ⊆ HU

[
HVHU(X)

/
r
(
HVHU(X)

)]
. Then it is

clear that πr
∗

HU(X)
· g = f and that g is a monomorphism.

Now we observe that by the relation (2.3) we have HU(ϕX) = ψHU(X) and
using the commutativity of diagram it follows that:

ψHU(X) ·HU
(
πr
HVHU(X)

)
= HU(ϕX) ·H

U
(
πr
HVHU(X)

)
= HU(πrX) ·HU [(1/r)(ϕX)],

therefore πr
∗

HU(X)
·g = HU(πrX) ·HU [(1/r)(ϕX)]. Using HV and ϕ we obtain now

in R-Mod the commutative diagram:

r∗∗(X)
⊆ // X

πrX

��

ϕ
X // HVHU(X)

HVHU(πrX)

��

HV
(
πr

∗

HU(X)

)
// HV

[
HU(X)

/
r∗
(
HU(X)

)]
HV(g)

��
X
/
r(X)

ϕ
X/r(X)// HVHU

(
X
/
r(X)

) HVHU[(1/r)(ϕ
X
)]
// HVHU

[
HVHU(X)

/
r
(
HVHU(X)

)]
.

Since HV(g) is a monomorphism, from the commutativity it follows that:

r∗∗(X)
def
== Ker

[
ϕX ·H

V
(
πr
∗

HU(X)

)]
= Ker

[
ϕX ·H

V
(
πr
∗

HU(X)

)
·HV(g)

]
= Ker

[
πrX · ϕX/r(X)

·HVHU [(1/r)(ϕX)]
]
⊇ KerπrX = r(X).

Thus r∗∗(X) ⊇ r(X) for every X ∈ R-Mod, i.e. r∗∗ ≥ r. �

By symmetry we have the relation s∗∗ ≥ s for every preradical s ∈ PR(S).

5. INTERSECTION AND HEREDITY FOR �STAR� MAPPINGS

In this section, we will show other examples of good behavior of �star�
mappings, namely the preservation of intersection of preradicals, as well as of
hereditary property for preradicals.
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Let {rα | α ∈ A} ⊆ PR(R) be an arbitrary family of preradicals of R-Mod.
The intersection

∧
α∈A

rα of these preradicals is de�ned by the rule:

(∧
α∈A

rα
)
(X) =

⋂
α∈A

rα(X)

for every X ∈ R-Mod. Further we intend to verify the preservation of this lat-
tice operation by the �star� mappings de�ned above. For that we formulate two
preliminary statements, which show the concordance of kernels and preimages
with the intersection of submodules (Lemmas 5.1 and 5.2).

For the family of preradicals {rα | α ∈ A} ⊆ PR(R) in the construction
of r ∗α and (

∧
α∈A

rα)
∗ the following natural epimorphisms are used:

πrα
HV(Y )

: HV(Y ) −→ HV(Y )
/
rα
(
HV(Y )

)
,

π

∧
α∈A

rα

HV(Y )
: HV(Y ) −→ HV(Y )

/(∧
α∈A

rα
)(
HV(Y )

)
,

where Y ∈ S-Mod. For these morphisms the following relation holds.

Lemma 5.1. Ker
[
HU
(
π

∧
α∈A

rα

HV(Y )

)]
=
⋂
α∈A

[
KerHU

(
πrα
HV(Y )

)]
.

Proof. By the de�nition of HU we see that HU
(
π

∧
α∈A

rα

HV(Y )

)
transfers every

morphism f : U→HV(Y ) in the composition f · π

∧
α∈A

rα

HV(Y )
. Therefore:

KerHU
(
π

∧
α∈A

rα

HV(Y )

)
=
{
f : U → HV(Y ) | f · π

∧
α∈A

rα

HV(Y )
= 0
}

=
{
f : U→ HV(Y ) |Uf⊆

(∧
α∈A

rα
)(
HV(Y )

) def
==
⋂
α∈A

rα
(
HV(Y )

)}
.

Similarly, for every rα (α ∈ A) we have:

KerHU
(
πrα
HV(Y )

)
=
{
f : U → HV(Y ) | f · πrα

HV(Y )
= 0
}

=
{
f : U → HV(Y ) |Uf ⊆ Ker πrα

HV(Y )
= rα

(
HV(Y )

)}
.

Therefore:⋂
α∈A

[
Ker HU

(
πrα
HV(Y )

)]
=

{
f : U → HV(Y ) | Uf ⊆ rα

(
HV(Y )

)
∀α ∈ A

}
=
{
f : U → HV(Y ) | Uf ⊆

⋂
α∈A

rα
(
HV(Y )

)}
.
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Comparing the obtained expressions we see the relation indicated in the
lemma. �

A similar property holds for the preimages of morphisms.

Lemma 5.2.
[ ⋂
α∈A

KerHU
(
πrα
HV(Y )

)]
ψ−1Y =

⋂
α∈A

[(
Ker HU

(
πrα
HV(Y )

))
ψ−1Y

]
.

Proof. By the de�nitions we have:

y ∈
[ ⋂
α∈A

Ker HU
(
πrα
HV(Y )

)]
ψ−1Y ⇔ y ψY ∈

⋂
α∈A

Ker HU
(
πrα
HV(Y )

)
⇔ y ψY ∈ Ker HU

(
πrα
HV(Y )

)
∀α ∈ A⇔ y∈

[
Ker HU

(
πrα
HV(Y )

)]
ψ−1Y ∀α ∈ A

⇔ y ∈
⋂
α∈A

[(
Ker HU

(
πrα
HV(Y )

))
ψ−1Y

]
. �

Theorem 5.3. For every family of preradicals {rα | α ∈ A} ⊆ PR(R) we

have the relation:
( ∧
α∈A

rα
)∗

=
∧
α∈A

r ∗α .

Proof. For every module Y ∈ S-Mod by the de�nition we have r ∗α (Y ) =

Ker
[
ψY ·HU

(
πrα
HV(Y )

)]
and

( ∧
α∈A

rα
)∗
(Y ) = Ker

[
ψY ·HU

(
π

∧
α∈A

rα

HV(Y )

)]
. Using Lem-

mas 5.1 and 5.2 we obtain:( ∧
α∈A

rα
)∗
(Y ) = Ker

[
ψY ·H

U
(
π

∧
α∈A

rα

HV(Y )

)]
=
[
Ker HU

(
π

∧
α∈A

rα

HV(Y )

)]
ψ−1Y

5.1
==

[⋂
α∈A

KerHU
(
πrα
HV(Y )

)]
ψ−1Y

5.2
==

⋂
α∈A

[(
KerHU

(
πrα
HV(Y )

))
ψ−1Y

]
=

⋂
α∈A

Ker
[
ψY ·H

U
(
πrα
HV(Y )

)] def
==

⋂
α∈A

r ∗α (Y ) =
(∧
α∈A

r ∗α
)
(Y ),

for every Y ∈ S-Mod, which means that
(∧
α∈A

rα
)∗

=
∧
α∈A

r ∗α . �

The similar property is true for the inverse �star� mapping:
(∧
α∈A

sα
)∗

=∧
α∈A

s ∗α for every family {sα | α ∈ A} ⊆ PR(S).

Further we will study the behavior of �star� mappings relative to the
hereditary property of preradicals. Recall that the preradical r ∈ PR(R)
is called hereditary (or: r is a pretorsion) if r(M) = r(X) ∩ M for ev-
ery module X ∈ R-Mod and every submodule M ⊆ X. This means that
class of r-torsion modules R(r) = {X ∈ R-Mod | r(X) = X} is hereditary
(i.e. is closed under submodules).
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Theorem 5.4. If the preradical r ∈ PR(R) is hereditary, then the corre-

sponding preradical r∗ ∈ PR(S) also is hereditary.

Proof. Let r ∈ PR(R) be an hereditary preradical. We will prove that

for every inclusion n : N
⊆−−→ Y of S-Mod the relation r∗(N) = r∗(Y ) ∩ N

holds.
Applying the functor HV to n and using r we obtain in R-Mod the

commutative diagram with exact sequences:

0 // r
(
HV(N)

)
r(HV(n))

��

⊆

ir
HV(N) // HV(N)

HV(n)

��

nat

πr
HV(N)// HV(N)

/
r
(
HV(N)

)
(1/r)(HV(n))

��

// 0

0 // r
(
HV(Y )

)
⊆

ir
HV(Y ) // HV(Y )

nat

πr
HV(Y )// HV(Y )

/
r
(
HV(Y )

)
// 0,

where the lateral morphisms are de�ned by HV(n) and r, in particular
(1/r)

(
HV(n)

)
acts as follows: for every m + r

(
HV(N)

)
∈ HV(N)

/
r
(
HV(N)

)
we have:(

m+ r
(
HV(N)

))[
(1/r)

(
HV(n)

)] def
== (m)

(
HV(n)

)
+ r
(
HV(Y )

)
.

It is obvious that HV(n) is a monomorphism.
Using the heredity of r ∈ PR(R) now we will show that

(1/r)
(
HV(n)

)
also is a monomorphism. Indeed, the left square of the above

diagram can be completed as follows:

r
(
HV(N)

)
∼=
��

r(HV(n))

��

⊆

ir
HV(N) //

∼=
��

HV(N)

∼=
��

HV(n)

��

r
(
ImHV(n)

)

⊇

��

⊆ // ImHV(n)

⊇

��
r
(
HV(Y )

)
⊆

ir
HV(Y ) // HV(Y ).

Since r is hereditary, for the inclusion ImHV(n) ⊆ HV(Y ) we have:

(5.1) r
(
ImHV(n)

)
= ImHV(n) ∩ r

(
HV(Y )

)
.

Let m = m + r
(
HV(N)

)
∈ Ker [(1/r)

(
HV(n)

)
]. Then (m)

(
HV(n)

)
∈

r
(
HV(Y )

)
and so (m)

(
HV(n)

)
∈ ImHV(n) ∩ r

(
HV(Y )

) (5.1)
== r

(
ImHV(n)

) ∼=
r
(
HV(N)

)
. Therefore m ∈ r

(
HV(N)

)
, i.e. m = 0 and Ker

[
(1/r)

(
HV(n)

)]
=

0, which means that (1/r)
(
HV(n)

)
is a monomorphism.
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Now by the �rst diagram of this proof, applying HU and using ψ, we
obtain in S-Mod the commutative diagram:

r∗(N)

⊇ n′

��

⊆ // N
⊇ n

��

ψ
N // HUHV(N)

HUHV(n)

��

HU(πr
HV(N)

)
// HU

[
HV(N)

/
r
(
HV(N)

)]
HU
[
(1/r)

(
HV(n)

)]
��

r∗(Y )
⊆ // Y

ψ
Y // HUHV(Y )

HU(πr
HV(Y )

)
// HU

[
HV(Y )

/
r
(
HV(Y )

)]
,

where r∗(N)
def
== Ker

[
ψN ·HU

(
πr
HV(N)

)]
and r∗(Y )

def
== Ker

[
ψY ·HU

(
πr
HV(Y )

)]
.

Since (1/r)
(
HV(n)

)
is a monomorphism, it is clear that HU

[
(1/r)

(
HV(n)

)]
also

is a monomorphism.
Now we can prove that the preradical r∗ is hereditary, i.e. r∗(N) =

r∗(Y ) ∩ N for every inclusion N ⊆ Y . The relation r∗(N) ⊆ r∗(Y ) ∩ N is
trivial, so it is su�cient to verify that r∗(Y ) ∩N ⊆ r∗(N).

Let y ∈ r∗(Y ) ∩N . Then:

(y)
[
n · ψY ·H

U
(
πrHV(Y )

)]
= (y)

[
ψY ·H

U
(
πrHV(Y )

)]
= 0.

By the commutativity of the diagram we have:

(y)
[
ψN ·H

U
(
πrHV(N)

)
·HU[(1/r)

(
HV(n)

)
]
]
= 0.

Since HU [(1/r)
(
HV(n)

)
] is a monomorphism, it is obvious that

(y)
[
ψN · HU

(
πr
HV(N)

)]
= 0, which means that y ∈ r∗(N). So we have

r∗(Y ) ∩N ⊆ r∗(N), therefore r∗ is a hereditary preradical. �

As a general conclusion now we can a�rm that for every Morita context
(R, RUS, SVR, S) there exists a good connection between the preradicals of the
categories R-Mod and S-Mod. It is obtained in the form of two (�star�) map-
pings between the classes of preradicals PR(R) and PR(S), which are de�ned by
the Hom-functors HU and HV (Theorem 2.3). These mappings possess some
useful properties, in particular they preserve the order relation, intersection
and hereditary (Theorems 4.1, 5.3, 5.4). The indicated results supplement the
known facts on the preradicals in an adjoint situation.

REFERENCES

[1] L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals. Lecture Notes in
Pure and Applied Mathematics 75, Marcel Dekker, New York, 1982.

[2] P.M. Cohn, Morita Equivalence and Duality. Queen Mary College Mathematics Notes,
London, 1966.

[3] C. Faith, Algebra: Rings, Modules and Categories I. Die Grundlehren der mathematis-
chen Wissenschaften, Springer-Verlag, Berlin�Heidelberg�New York, 1973.



17 Preradicals in modules and Morita contexts 101

[4] A.I. Kashu, Radicals and torsions in modules. Kishinev, �Stiin�ta, 1983 (in Russian).

[5] A.I. Kashu, Morita contexts and torsions of modules. Mat. Zametki 28 (1980), 4,
491�499 (in Russian).

[6] A.I. Kashu, Classes of modules and torsion theories in Morita contexts. Mat. Issled. 91
(1987), 3�14 (in Russian).

[7] A.I. Kashu, On localizations in Morita contexts. Mat. Sb. 133 (175), 1(5), 1987,
127�133 (in Russian).

[8] A.I. Kashu, Functors and Torsions in Module Categories. Academy of Sciences of Rep.
of Moldova, Institute of Mathematics, Kishinev, 1997 (in Russian).

[9] A.I. Kashu, On correspondence of preradicals and torsions in adjoint situation. Mat.
Issled. 56 (1980), 62�84 (in Russian).

[10] K. Morita, Duality for modules and its applications to the theory of rings with minimum
condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 150, 83�142.

[11] K. Morita, Localizations in categories of modules I, III. Math. Z. 114 (1970), 121�144;
119 (1971), 313�320.

Received 25 January 2019 Institute of Mathematics and Computer,
Science �Vladimir Andrunachievici�

Academiei str., 5, MD�2028, Chishinev,
Moldova

alexei.kashu@math.md


