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In this article, we introduce the space D([0, 1];D) of functions de�ned on [0, 1]
with values in the Skorohod space D, which are right-continuous and have left
limits with respect to the J1 topology. This space is equipped with the Skorohod-
type distance introduced in [13]. Following the classical approach of [4, 5], we
give several criteria for tightness of probability measures on this space, by char-
acterizing the relatively compact subsets of this space. In particular, one of
these criteria has been used in the recent article [1] for proving the existence of a
D-valued α-stable L�evy motion. Finally, we give a criterion for weak convergence
of random elements in D([0, 1];D), and a criterion for the existence of a process
with sample paths in D([0, 1];D) based on its �nite-dimensional distributions.
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1. INTRODUCTION

The area of limit theorems for stochastic processes has been growing
steadily in the last 50 years, especially after the publication of Billingsley's
seminal monograph [4]. This area has developed from the original investiga-
tions of Donsker [7] and Skorohod [11, 12] regarding the asymptotic behaviour
of the partial sum process associated with independent identically distributed
(i.i.d.) random variables. These results state that if the variables have �nite
variance, the partial sum process converges in distribution to the Brownian
motion, whereas if the variables have regularly varying tail probabilities with
index α ∈ (0, 2), the partial sum process converges in distribution to an α-stable
L�evy motion.

In the recent article [1], we proved an extension of this later result to
random elements with values in the Skorohod space D = D[0, 1] of c�adl�ag
functions on [0, 1] (i.e. right-continuous functions with left limits), the limit
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being an in�nite-dimensional process called the D-valued α-stable L�evy motion.
This study was motivated by the fact that nowadays, data is no longer observed
at �xed moments at time, but is recorded continuously over a �xed period of
time (or a region in space), which can be modeled by the interval [0, 1]. This
approach was initiated in article [6] in which the authors considered the example
of the high-tide water level observed continuously at any location along the
northern coast of the Netherlands. Another example is the evolution of a stock
price which is monitored continuously between 9 a.m and 5 p.m. when the stock
market operates; if the price is likely to exhibit a sudden drop or increase, then
its behaviour over this 8-hour window can be viewed as the sample path of a
random process with values in D.

In [1], we proved that the D-valued α-stable L�evy motion {Z(t)}t∈[0,1]

arises as the limit in distribution of the partial sum process {Sn(t) = a−1
n∑[nt]

i=1Xi}t∈[0,1] associated with a sequence (Xi)i≥1 of i.i.d. random elements
in D, which are �regularly varying� in the sense introduced in [9]. Moreover,
the sample paths of this process belong to the space D([0, 1];D) of functions
de�ned on [0, 1] with values in D, which are right-continuous and have left-limits
with respect to Skorohod J1-topology on D. Therefore, the law of {Z(t)}t∈[0,1]

is a probability measure on D([0, 1];D). For any element x = {x(t)}t∈[0,1] in
D([0, 1];D), x(t) is a c�adl�ag function denoted by x(t) = {x(t, s)}s∈[0,1]. We
interpret t as the time variable and s as the space variable.

The goal of the present article is to provide some of the technical details
which are missing from the companion article [1], related to the weak conver-
gence and tightness of probability measures on the space D([0, 1];D), providing
in this way some useful tools for developing new limit theorems for random
elements in D. In order to do this, we need �rst to develop a compactness
criterion for subsets of D([0, 1];D). We note that the space D([0, 1];D) is en-
dowed with a Skorohod-type topology which was introduced in [13] for spaces
of the form D([0, 1];S), where S is a Polish space, i.e. a complete separable
metric space. The main result of the present article is Theorem 3.4 which gives
a criterion for tightness of probability measures on D([0, 1];D). This result is
new in the literature and has been used in the recent article [1] for proving the
existence of the D-valued α-stable L�evy motion with α > 1 (see the proof of
Theorem 3.14 of [1]). The problem of weak convergence and tightness for prob-
ability measures on the space D([0,∞);S) of c�adl�ag functions de�ned on [0,∞)
with values in a Polish space S was also studied in [8] (Chapter 3, Sections 5�9),
but the particular result that we obtained when S = D is not discussed in this
reference.

Although it does not have a direct relationship with the results that we
present here, we should mention that a version of the It�o-Nisio theorem for the
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sum of i.i.d. random processes with sample paths in D([0, 1];E) was proved
in [2], when E is a separable Banach space. The space D equipped with the
uniform norm is a Banach space, but is not separable, and therefore the result
of [2] does not apply to D([0, 1];D).

This article is organized as follows. In Section 2, we introduce the space
D([0, 1];D) and discuss some of its properties. In Section 3, we present some cri-
teria for tightness and weak convergence of probability measures on D([0, 1];D).
One of these criteria, namely Theorem 3.8 below, has been used in the proof
of Theorem 3.14 of [1]. In Section 4, we re�ne the criterion for weak conver-
gence and we derive a result about existence of a process with sample paths
in D([0, 1];D). These results generalize classical results from [4, 5] and may be
useful in future investigations.

2. BASIC PROPERTIES OF D([0,1];D)

In this section, we introduce the space D([0, 1];D) of c�adl�ag functions on
[0, 1] with values in D (equipped with the J1-topology), and we examine its
properties following very closely the discussion contained in Section 12 of [5]
for c�adl�ag functions with values in R.

We begin by recalling some basic properties of the Skorohod space D, the
space of functions x : [0, 1]→ R which are right-continuous and have left limits.
On this space, we consider the supremum norm: ‖x‖ = sups∈[0,1] |x(s)|.

The Skorohod distance dJ1 on D is de�ned as follows: for any x, y ∈ D,

dJ1(x, y) = inf
λ∈Λ
{‖λ− e‖ ∨ ‖x− y ◦ λ‖},

where Λ the set of strictly increasing continuous functions from [0, 1] onto [0, 1]
and e is the identity function on [0, 1]. The space D equipped with distance
dJ1 is separable, but it is not complete. There exists another distance d0

J1
on

D, which is equivalent to dJ1 , under which D is complete and separable. This
distance is given by (see (12.16) of [5]):

(1) d0
J1(x, y) = inf

λ∈Λ
{‖λ‖0 ∨ ‖x− y ◦ λ‖},

for any x, y ∈ D, where ‖λ‖0 = sups<s′
∣∣∣log λ(s′)−λ(s)

s′−s

∣∣∣. Note that:
(2) sup

s∈[0,1]
|λ(s)− s| ≤ e‖λ‖0 − 1 for all λ ∈ Λ,

and therefore

(3) d(x, y) ≤ ed
0
J1

(x,y) − 1 for all x, y ∈ D.
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Taking λ = e in (1), we obtain:

(4) d0
J1(x, y) ≤ ‖x− y‖ for all x, y ∈ D.

Note that

(5) dJ1(x, 0) = d0
J1(x, 0) = ‖x‖ for all x ∈ D.

For functions (xn)n≥1 and x in D, we write xn
J1→ x if d0

J1
(xn, x)→ 0.

For any set T ⊂ [0, 1] and for any x ∈ D(D), we let

w(x, T ) = sup
s1,s2∈T

|x(s1)− x(s2)|.

A set {ti}0≤i≤v with 0 = t0 < t1 < . . . < tv = 1 is called δ-sparse if
min1≤i≤v(ti − ti−1) > δ. For any δ ∈ (0, 1), we consider the following moduli
of continuity of a function x ∈ D:

(6) w′(x, δ) = inf
{ti}

max
1≤i≤v

w(x, [ti−1, ti)),

where the in�mum is taken over all δ-sparse sets {ti}0≤i≤v, and

(7) w′′(x, δ) = sup
s1≤s≤s2,s2−s1≤δ

(
|x(s)− x(s1)| ∧ |x(s2)− x(s)|

)
.

We denote by D the Borel σ-�eld of D, which coincides with the σ-�eld
generated by the projections πt : D→ R, t ∈ [0, 1] given by πt(x) = x(t).

We introduce now the set D([0, 1];D) of functions x : [0, 1]→ D such that:

(i) x is right-continuous with respect to J1, i.e. for any t ∈ [0, 1) and for

any (tk)k≥1 ⊂ [0, 1] with tk → t and tk ≥ t for all k, we have x(tk)
J1→ x(t);

(ii) x has left limits with respect to J1, i.e. for any t ∈ (0, 1], there exists
x(t−) ∈ D such that for any (tk)k≥1 ⊂ [0, 1] with tk → t and tk < t for all k,

we have x(tk)
J1→ x(t−).

For any t ∈ [0, 1], x(t) is an element of D, which we denote by {x(t, s); s ∈
[0, 1]}. In applications, t may be interpreted as time variable, and s as space
variable (see [1]).

The next result shows that a function in D([0, 1];D) is uniformly bounded
in t and s.

Lemma 2.1. For any x ∈ D([0, 1];D), the set {x(t); t ∈ [0, 1]} is relatively
compact in (D, J1), and therefore supt∈[0,1] ‖x(t)‖ <∞.

Proof. Let A = {x(t); t ∈ [0, 1]} and {x(tn)}n≥1 be an arbitrary sequence
in A. There exists a monotone subsequence (tnk

)k≥1: either tnk
↓ t or tnk

↑ t.
Then either x(tnk

)
J1→ x(t) or x(tnk

)
J1→ x(t−). This shows that any sequence

in A has a J1-convergent subsequence. So, A is relatively compact in (D, J1).
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The last part follows by the characterization of relative compactness in (D, J1)
given by Theorem 12.3 of [5]. �

We denote by ‖ · ‖D the super-uniform norm on D([0, 1];D) given by:

‖x‖D = sup
t∈[0,1]

‖x(t)‖.

We let dD be the Skorohod distance on D([0, 1];D), given by relation (2.1)
of [13]:

(8) dD(x, y) = inf
λ∈Λ
{‖λ− e‖ ∨ ρD(x, y ◦ λ)},

where ρD is the uniform distance on D([0, 1];D):

(9) ρD(x, y) = sup
t∈[0,1]

d0
J1(x(t), y(t)).

By relation (5), it follows that for any x ∈ D([0, 1];D),

(10) dD(x, 0) = ρD(x, 0) = ‖x‖D.

Note that for any x, y ∈ D([0, 1];D), we have:

(11) dD(x, y) ≤ ρD(x, y) ≤ ‖x− y‖D.

By de�nition, dD(xn, x)→ 0 if and only if there exists a sequence (λn)n≥1

⊂ Λ such that

(12) sup
t∈[0,1]

|λn(t)− t| → 0 and sup
t∈[0,1]

d0
J1(xn(λn(t)), x(t))→ 0.

Similarly to D, the uniform topology on D([0, 1];D) is stronger than the Skoro-
hod topology on this space: if ρD(xn, x) → 0 then dD(xn, x) → 0 (take λn = e
in (12)). The following result is also similar to the classical case.

Lemma 2.2. a) If dD(xn, x) → 0, then xn(t)
J1→ x(t) for any continuity

point t of x (with respect to J1).

b) If dD(xn, x) → 0 and x is continuous on [0, 1] with respect to J1, then

ρD(xn, x)→ 0.

Proof. Let (λn)n≥1 ⊂ Λ be such that (12) holds. a) Then

d0
J1(xn(t), x(t)) ≤ d0

J1(xn(t), x(λn(t))) + d0
J1(x(λn(t)), x(t))→ 0.

b) Since x is continuous on the compact set [0, 1], it is also uniformly
continuous. Hence

ρD(xn, x) ≤ sup
t∈[0,1]

d0
J1(xn(t), x(λn(x(t))))+ sup

t∈[0,1]
d0
J1(x(λn(x(t))), x(t))→ 0. �

The next result shows that the super-uniform norm is continuous on
D([0, 1];D).
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Lemma 2.3. If (xn)n≥1 and x are functions in D([0, 1];D) such that

dD(xn, x)→ 0 as n→∞, then ‖xn‖D → ‖x‖D as n→∞.

Proof. Let (λn)n≥1 ⊂ Λ be such that (12) holds. By (10), we have:

|‖xn ◦ λn‖D − ‖x‖D| = |ρD(xn ◦ λn, 0)− ρD(x, 0)| ≤ ρD(xn ◦ λn, x)→ 0.

The conclusion follows since ‖xn ◦ λn‖D = ‖xn‖D (because λn is a one-to-one
map). �

For any set T ⊂ [0, 1] and for any x ∈ D([0, 1];D), we let

wD(x, T ) = sup
t1,t2∈T

d0
J1(x(t1), x(t2)).

The following result is proved similarly to Lemma 1 (page 122) of [5].

Lemma 2.4. For any x ∈ D([0, 1];D) and ε > 0, there exist 0 = t0 < t1 <
. . . < tv = 1 such that

wD(x, [ti−1, ti)) < ε for all i = 1, . . . , v.

A consequence of this result is that for x ∈ D([0, 1];D) and ε > 0, there
can be at most �nitely many points t ∈ [0, 1] such that d0

J1
(x(t), x(t−)) > ε.

Hence, any function x ∈ D([0, 1];D) has a countable set of discontinuities with
respect to J1, which we denote by Disc(x). The maximum jump of x is de�ned
by:

j(x) = sup
t∈[0,1]

d0
J1(x(t), x(t−))

For any δ ∈ (0, 1) and x ∈ D([0, 1];D), we let

(13) w′D(x, δ) = inf
{ti}

max
1≤i≤v

wD(x, [ti−1, ti)),

where the in�mum is taken over all δ-sparse sets {ti}0≤i≤v.
Clearly, the function w′D(x, ·) is non-decreasing. The following two results

give some further properties of w′D(x, δ).

Lemma 2.5. For any x ∈ D([0, 1];D),

(14) lim
δ→0

w′D(x, δ) = 0

w′D(x, δ) ≤ wD(x, 2δ) for any δ ∈ (0, 1/2),
wD(x, δ) ≤ 2w′D(x, δ) + j(x) for any δ ∈ (0, 1).

Proof. To prove the �rst relation, let ε > 0 be arbitrary and {ti}0≤i≤v
be the sequence given by Lemma 2.4. Pick 0 < δε < min0≤i≤v(ti−ti−1). For any
δ ∈ (0, δε), {ti}0≤i≤v is δ-sparse, and hence w′D(x, δ) ≤ max1≤i≤v wD(x, [ti−1, ti))
< ε. The last two relations are proved similarly to (12.7) and (12.9) of [5], using
the triangle inequality in (D, d0

J1
). We omit the details. �
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Lemma 2.6. w′D(·, δ) is upper-semicontinuous on D([0, 1];D) equipped with

dD.

Proof. Let x ∈ D([0, 1];D) and ε > 0 be arbitrary. We have to prove that
there exists η > 0 such that w′D(y, δ) < w′D(x, δ) + ε for any y ∈ D([0, 1];D)
such that dD(x, y) < η. This follows by the same argument as in Lemma 4
(page 130) of [5], replacing |y(t) − x(λ(t))| by d0

J1
(y(t), x(λ(t))) and using the

triangle inequality in (D, d0
J1

). �

The space D([0, 1];D) equipped with dD is separable, but it is not com-
plete. Similarly to the distance d0

J1
on D, we consider another distance d0

D on
D([0, 1];D), given by:

(15) d0
D(x, y) = inf

λ∈Λ
{‖λ‖0 ∨ ρD(x, y ◦ λ)}.

Then dD(x, y) ≤ ed0D(x,y) − 1 for all x, y ∈ D([0, 1];D).

Similarly to Theorems 12.1 and 12.2 of [5], and using the fact that D is
separable and complete under d0

J1
, we obtain the following result. (See also

Theorem 2.6 of [13].)

Theorem 2.7. The metrics dD and d0
D are equivalent. The space D([0, 1];

D) is separable under dD and d0
D, and is complete under d0

D.

The following result characterizes the relatively compact subsets of
D([0, 1];D), being the analogue of Theorem 12.3 of [5].

Theorem 2.8. A set A ⊂ D([0, 1];D) is relatively compact with respect to

dD if and only if it satis�es the following three conditions:

(i) supx∈A ‖x‖D <∞;

(ii) limδ→0 supx∈A supt∈[0,1]w
′(x(t), δ

)
= 0;

(iii) limδ→0 supx∈Aw
′
D(x, δ) = 0.

Proof. Note that conditions (i) and (ii) are equivalent to saying that the
set U = {x(t);x ∈ A, t ∈ [0, 1]} is relatively compact in (D, J1) (see Theo-
rem 12.3 of [5]).

Suppose that A is relatively compact in D([0, 1];D). We �rst prove that
U is relatively compact in (D, J1). Let {xn(tn)}n≥1 be an arbitrary sequence
in U , with xn ∈ A and tn ∈ [0, 1]. Since A is relatively compact, there exists
a subsequence N ⊂ N such that dD(xn, x) → 0 as n → ∞, n ∈ N . Let
(λn)n≥1 ⊂ Λ such that (12) hold as n→∞, n ∈ N . The sequence (tn)n∈N has
a monotone convergent sub-sequence (tn)n∈N ′ with N ′ ⊂ N : either tn ↑ t or
tn ↓ t as n → ∞, n ∈ N ′. Since λ−1

n is strictly increasing, either λ−1
n (tn) ↑ t

or λ−1
n (tn) ↓ t as n → ∞, n ∈ N ′. Therefore, either x(λ−1

n (tn))
J1→ x(t−) or
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x(λ−1
n (tn))

J1→ x(t) as n→∞, n ∈ N ′. In the �rst case,

d0
J1

(
xn(tn), x(t−)

)
≤ d0

J1

(
xn(tn), x(λ−1

n (tn))
)

+ d0
J1

(
x(λ−1

n (tn)), x(t−)
)
→ 0,

as n→∞, n ∈ N ′. In the second case, d0
J1

(
xn(tn), x(t)

)
→ 0 as n→∞, n ∈ N ′.

This shows that the sequence {xn(tn)}n≥1 has a J1-convergence subsequence.
To prove (iii), we apply Dini's theorem, as stated in Appendix M8 of

[5]. Since w′D(·, 1/n) is upper semi-continuous for any n, and w′D(x, 1/n) ↓ 0
for any x ∈ D([0, 1];D), this convergence is uniform on compact sets. Hence
supx∈Aw

′
D(x, n−1) → 0 as n → ∞. Condition (iii) follows since w′D(x, ·) is

non-decreasing.
Next, suppose that the set A satis�es conditions (i)�(iii). Since D([0, 1];D)

is complete with respect to d0
D, the closure A of A is also complete. To show

that A is compact, it su�ces to show that A is totally bounded with respect
to d0

D (see Theorem of Appendix M5 of [5]). This follows as in the su�ciency
part of the proof of Theorem 12.3 of [5], by choosing H to be a �nite ε-net of
the set U in D. �

To give a second characterization of the relatively compact subsets of
D([0, 1];D), we consider the following modulus of continuity: for any x ∈
D([0, 1];D) and δ ∈ (0, 1),

(16) w′′D(x, δ) = sup
t1≤t≤t2, t2−t1≤δ

(
d0
J1(x(t), x(t1)) ∧ d0

J1(x(t2), x(t))
)
.

We have the following result.

Lemma 2.9 (Lemma 2.2 of [1]). For any x, y ∈ D([0, 1];D), we have:

w′′D(x+ y, δ) ≤ w′′D(x, δ) + 2‖y‖D.

As in the classical case, it follows that w′′D(x, δ) ≤ w′D(x, δ) (see the proof
of (12.28) of [5]). The following result is the analogue of Theorem 12.4 of [5].

Theorem 2.10. A set A ⊂ D([0, 1];D) is relatively compact with respect

to dD if and only if it satis�es the following three conditions:

(i) supx∈A ‖x‖D <∞;

(ii′) 
(a) limδ→0 supt∈[0,1]w

′′(x(t), δ) = 0

(b) limδ→0 supx∈A supt∈[0,1] |x(t, δ), x(t, 0)| = 0

(c) limδ→0 supx∈A supt∈[0,1] |x(t, 1−), x(t, 1− δ)| = 0;

(iii′) 
(a) limδ→0w

′′
D(x, δ) = 0

(b) limδ→0 supx∈A d
0
J1

(x(δ), x(0)) = 0

(c) limδ→0 supx∈A d
0
J1

(x(1−), x(1− δ)) = 0.
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Proof. If A is relatively compact, then conditions (i)�(iii) of Theorem 2.8
hold. Condition (ii′) follows by applying inequality (12.31) of [5] to the function
x(t) ∈ D, for any t ∈ [0, 1]. Condition (iii′) follows by the following inequality
(proved similarly to (12.31) of [5]):

(17) w′′D(x, δ) ∨ d0
J1

(
x(δ), x(0)

)
∨ d0

J1

(
x(1−), x(1− δ)

)
≤ w′D(x, 2δ).

Suppose that conditions (i), (ii′) and (iii′) hold. The fact that A is rela-
tively compact will follow by Theorem 2.8, once we show that conditions (ii)
and (iii) of this theorem hold. Condition (ii) follows from (ii′) by applying
inequality (12.32) of [5] to the function x(t) ∈ D for any t ∈ [0, 1]. Condition
(iii′) follows by the following inequality

(18) w′D(x, δ/2) ≤ 12{w′′D(x, δ) + d0
J1

(
x(δ), x(0)

)
+ d0

J1

(
x(1−), x(1− δ)

)
}.

This is proved similarly to inequality (12.32) of [5], using the triangle inequality

in D and the fact that xn
J1→ x implies that d0

J1
(xn, y) → d0

J1
(x, y) for any

y ∈ D. �

We conclude this subsection with a discussion about measurability and
�nite-dimensional sets in D([0, 1];D). Let DD be the Borel σ-�eld of D([0, 1];D)
with respect to dD. For any t ∈ [0, 1], we let πDt : D([0, 1];D)→ D be the projec-
tion given by πDt (x) = x(t). By Lemma 2.3 of [13], πDt is DD/D-measurable for
any t ∈ [0, 1]. By Theorem 2.7 of [13], DD coincides with the σ-�eld generated
by the projections πDt for t ∈ [0, 1]. Similarly to the classical case, the function
πDt has the following continuity properties.

Lemma 2.11. a) πD0 and πD1 are continuous with respect to dD.
b) For any t ∈ (0, 1), πDt is continuous at x with respect to dD if and only

if x is continuous at t with respect to J1.

Proof. a) Assume that dD(xn, x)→ 0. Let (λn)n≥1 ⊂ Λ be such that (12)
holds. In particular, since λn(0) = 0, we obtain: d0

J1
(xn(0), x(0)) → 0. This

shows that πD0 (xn)
J1→ π0(x). Similarly, πD1 (xn)

J1→ π1(x).
b) Suppose that x is continuous at t with respect to J1. Assume that

dD(xn, x) → 0. Then πDt (xn)
J1→ πDt (x), by Lemma 2.2.a). Suppose next that

x is discontinuous at t with respect to J1, i.e. d0
J1

(x(t−), x(t)) > 0. Let
λn ∈ Λ be such that λn(t) = t− 1/n, and λ is linear on [0, t] and [t, 1]. De�ne
xn(s) = x(λn(s)). Then dD(xn, x) → 0, and πDt (xn) = xn(t) = x(λn(t)) =

x(t−1/n)
J1→ x(t−), and so πDt (xn) does not converge in J1 to x(t). This shows

that πDt is discontinuous at x with respect to dD. �

For an arbitrary set T ⊂ [0, 1], we letDD
f,T be the class of �nite-dimensional

sets of the form (πDt1,...,tk)−1(H) for some 0 ≤ t1 < . . . < tk ≤ 1, ti ∈ T , H ∈ Dk
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and k ≥ 1. Note that the σ-�eld generated by DD
f,T coincides with σ{πDt ; t ∈ T},

the minimal σ-�eld with respect to which the maps πDt , t ∈ T are measurable.

Theorem 2.12. If T ⊂ [0, 1] is such that 1 ∈ T and T is dense in [0, 1],
then:

a) DD is the σ-�eld generated by DD
f,T ;

b) DD
f,T is a separating class of DD, i.e. if P and Q are two probability

measures on (D,DD) such that P (A) = Q(A) for any A ∈ DD
f,T , then P = Q.

Proof. a) Since πDt is DD-measurable, σ{πDt ; t ∈ T} ⊂ DD. To prove
the other inclusion, it su�ces to show that the identity i : D([0, 1];D) →
D([0, 1];D) given by i(x) = x is σ{πDt ; t ∈ [0, 1]}/DD-measurable. For this,
we use the same argument as in the proof of Theorem 12.5.(iii) of [5]. For any
σ = {ti}i=0,...,k such that 0 = t0 < t1 < . . . < tk = 1, we de�ne the map

Aσ : D([0, 1];D) → D([0, 1];D) by Aσ(x) =
∑k

i=1 x(ti−1)1[ti−1,ti) + x(1)1{1}(t).
Similarly to Lemma 3 (page 127) of [5], it can be proved that

(19) max1≤i≤k(ti − ti−1) ≤ δ implies that dD(Aσ(x), x) ≤ δ ∨ w′D(x, δ).

For any σ as above, we consider also the map Vσ : Dk+1 → D([0, 1];D)
given by Vσ(α) =

∑k
i=1 αi−11[ti−1,ti)(t)+αk1{1}(t), for α = (α0, . . . , αk) ∈ Dk+1.

The function Vσ : Dk+1 → D([0, 1];D) is ρD-continuous (hence
dD-continuous), where Dk+1 is endowed with the product topology: if αn, α ∈
Dk are such that αni

J1→ αi as n→∞, for i = 0, . . . , k, then

ρD(Vσ(αn), Vσ(α)) = sup
t∈[0,1]

d0
J1

(
Vm(αn)(t), Vm(α)(t)

)
= max

0≤i≤k
d0
J1(αni , αi)→ 0.

It follows that Vσ is Dk+1/DD-measurable. If ti ∈ T for all i, then Aσ is
σ{πDt ; t ∈ T}/DD-measurable, since Aσ = Vσ ◦ πDt0,...,tk and πDt0,...,tk is σ{πDt ; t ∈
T}/Dk+1

D -measurable.

For any m ≥ 1, choose σm = {tmi }i=0,...,km such that tmi ∈ T and
maxi(t

m
i − tmi−1) < 1/m. By (14) and (19), it follows that dD

(
Aσm(x), x

)
→ 0

as m → ∞. This proves that the identity map i is the pointwise limit (with
respect to dD) of the sequence (Aσm)m≥1 of σ{πDt ; t ∈ T}/DD-measurable
maps. Since DD is the Borel σ-�eld corresponding to dD, it the map i is also
σ{πDt ; t ∈ T}/DD-measurable.

b) This follows by Theorem 3.3 of [3], since DD
f,T is a π-system generating

DD. �

The characterization of tightness of probability measures on D([0, 1];D)
given in Section 3 relies on certain events involving the functions w′D(·, δ) and
w′′D(·, δ). Measurability of these functions is essential for this purpose. Before
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establishing this, we need the following simple result (which is valid in any
metric space).

Lemma 2.13. The map Φ : D × D → [0,∞) given by Φ(x, y) = d0
J1

(x, y)
is continuous with respect to the product of J1-topologies on D× D.

Proof. If xn
J1→ x and yn

J1→ y, then d0
J1

(xn, yn)→ d0
J1

(x, y) since

|d0
J1(xn, yn)− d0

J1(x, y)| ≤ |d0
J1(xn, yn)− d0

J1(x, yn)|+ |d0
J1(x, yn)− d0

J1(x, y)|
≤ d0

J1(xn, x) + d0
J1(yn, y). �

Lemma 2.14. The functions w′D(·, δ) and w′′D(·, δ) are DD-measurable.

Proof. The measurability of w′D(·, δ) follows by Lemma 2.6. For w′′D(·, δ),
note that in the de�nition (16) of w′′D(x, δ), we may take t1, t, t2 to be rational
numbers. By Lemma 2.13, Φ is D×D-measurable, and so the map Φ◦πDt,t1 given
by x 7→ d0

J1
(x(t), x(t1)) is DD-measurable, for any t1, t ∈ [0, 1]. Therefore, the

map x 7→ d0
J1

(x(t), x(t1)) ∧ d0
J1

(x(t2), x(t)) is DD-measurable, for any rational
numbers t1, t, t2 ∈ [0, 1] with t1 ≤ t ≤ t2. The conclusion follows since the
supremum of a countable collection of measurable functions is measurable. �

Finally, we recall the de�nition of a random element in D([0, 1];D).

De�nition. Let (Ω,F , P ) be a probability space. A map X : Ω →
D([0, 1];D) is called a random element in D([0, 1];D) if X is F/DD-measurable,
i.e. X(t) is F/D-measurable for any t ∈ [0, 1].

3. WEAK CONVERGENCE AND TIGHTNESS

In this section, we study the weak convergence and tightness of probability
measures on the space

(
D([0, 1];D),DD

)
, following the discussion contained in

Section 13 of [5] for probability measures on (D,D). We provide some of the
details which are missing from [5]) since they are more delicate and require
special attention in our situation.

Recall that if (Pn)n≥1 and P are probability measures on
(
D([0, 1];D),DD

)
,

we say that (Pn)n≥1 converges weakly to P if
∫
fdPn →

∫
fdP for any dD-

continuous bounded function f : D([0, 1];D) → R. In this case, we write
Pn

w→ P . Since D([0, 1];D) is separable, there is a distance on the set of proba-
bility measures on

(
D([0, 1];D),DD

)
(called the Prohorov distance), which gives

rise to the topology of weak convergence (see page 72 of [5]).

If (Xn)n≥1 and X are random elements in D([0, 1];D) (possibly de�ned
on di�erent probability spaces) with respective laws denoted by (Pn)n≥1 and
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P , we say that (Xn)n≥1 converges in distribution to X if Pn
w→ P . In this case,

we write Xn
d→ X.

For any probability measure P on
(
D([0, 1];D),DD

)
, we let TP be the set

of t ∈ [0, 1] for which the projection πDt is dD-continuous a.s. with respect to P .
Note that 0, 1 ∈ TP . If t ∈ (0, 1), then t ∈ TP if and only if P (Jt) = 0, where
Jt = {x ∈ D([0, 1];D); t ∈ Disc(x)}.

Using the same argument as in the classical case (page 238 of [5]), it can
be shown that P (Jt) > 0 is possible for at most countably many t ∈ (0, 1).
Hence, the complement of TP in [0, 1] is countable. The following result follows
by the continuous mapping theorem.

Lemma 3.1. Let (Pn)n≥1 and P be probability measures on
(
D([0, 1];D),

DD
)
such that Pn

w→ P . Then Pn ◦ (πDt1,...,tk)−1 w→ P ◦ (πDt1,...,tk)−1 for any

t1, . . . , tk ∈ TP .

We recall the following de�nitions.

De�nition. A family Π of probability measures on
(
D([0, 1];D),DD

)
is

tight if for every η > 0, there exists a dD-compact set K in D([0, 1];D) such
that P (K) ≥ 1− η for all P ∈ Π.

De�nition. A family Π of probability measures on
(
D([0, 1];D),DD

)
is

relatively compact if for every sequence (Pn)n≥1 in Π, there exists a subsequence
(Pnk

)k≥1 which converges weakly to a probability measure Q (which is not
necessarily an element of Π).

The following result follows by Prohorov's theorem, since D([0, 1];D) is
separable and complete (see Theorems 5.1 and 5.2 of [5]).

Theorem 3.2. A family Π of probability measures on
(
D([0, 1];D),DD

)
is

tight if and only if it is relatively compact.

The next result is an important tool for proving weak convergence in
D([0, 1];D). Its proof is the same as in the classical case (see Theorem 13.1
of [5]). We include it for the sake of completeness.

Theorem 3.3. Let (Pn)n≥1 and P be probability measures on
(
D([0, 1];D),

DD
)
such that

(20) Pn ◦ (πDt1,...,tk)−1 w→ P ◦ (πDt1,...,tk)−1 in Dk, for any t1, . . . , tk ∈ TP

and (Pn)n≥1 is tight. Then Pn
w→ P .

Proof. It is enough to prove that for any subsequence (nk)k≥1, there

exists a further sub-subsequence (kl)l≥1 such that Pnkl

w→ P as l→∞ (see e.g.
Appendix 5.1.2 of [10]).
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Let (nk)k≥1 be an arbitrary subsequence. By Theorem 3.2, (Pn)n≥1 is
relatively compact. Hence, there exists a sub-subsequence (kl)l≥1 such that

Pnkl

w→ Q as l →∞, for some probability measure Q on
(
D([0, 1];D),DD

)
. By

hypothesis, Pnkl
◦ (πDt1,...,tk)−1 w→ P ◦ (πDt1,...,tk)−1 as l→∞, for any t1, . . . , tk ∈

TP . By Lemma 3.1, Pnkl
◦ (πDt1,...,tk)−1 w→ Q ◦ (πDt1,...,tk)−1 as l → ∞, for any

t1, . . . , tk ∈ TQ. Uniqueness of the limit implies that:

P ◦ (πDt1,...,tk)−1 = Q ◦ (πDt1,...,tk)−1 for all t1, . . . , tk ∈ TP ∩ TQ.

The set T = TP∩TQ contains 0 and 1, and is dense in [0, 1] (since its complement
in [0, 1] is countable). By Theorem 2.12, Df,T is a separating class of DD, and
hence P = Q. �

We continue now with a discussion about tightness. The next result gives
a criterion for tightness, being the analogue of Theorem 13.2 of [5] for the
space D([0, 1];D). This result has been used in the recent article [1] for the
construction of the D-valued α-stable L�evy motion with α > 1 (see the proof of
Theorem 3.14 of [1]). Conditions (i) and (iii) of this result are similar to (13.4)
and (13.5) of [5], but (ii) is a new condition, due to the space variable s of an
element in D([0, 1];D). Recall that w′

(
x(t), δ

)
is given by (6), whereas w′D(x, δ)

is given by (13), for any x ∈ D([0, 1];D) and t ∈ [0, 1].

Theorem 3.4. A sequence (Pn)n≥1 of probability measures on
(
D([0, 1];

D),DD
)
is tight if and only if it satis�es the following three conditions:

(i) We have:

(21) lim
a→∞

lim sup
n→∞

Pn
(
{x; ‖x‖D ≥ a}

)
= 0.

(ii) For any ε > 0,

(22) lim
δ→0

lim sup
n→∞

Pn
(
{x; w′

(
x(t), δ

)
≥ ε for some t ∈ [0, 1]}

)
= 0.

(iii) For any ε > 0,

(23) lim
δ→0

lim sup
n→∞

Pn
(
{x; w′D(x, δ) ≥ ε}

)
= 0.

Proof. We use a similar argument as in the proof of Theorem 13.2 of [5]
(see also the proof of Theorem 7.3 of [5]). Suppose that (Pn)n≥1 is tight. Let
η > 0 and ε > 0 be arbitrary. We have to prove that there exist a > 0, δ ∈ (0, 1)
and an integer n0 ≥ 1 such that for all n ≥ n0,

(24)


(a) Pn

(
{x; ‖x‖D ≥ a}

)
≤ η

(b) Pn
(
{x; w′

(
x(t), δ

)
≥ ε for some t ∈ [0, 1]}

)
≤ η

(c) Pn
(
{x; w′D(x, δ) ≥ ε

)
≤ η.
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We will show that (a)�(c) hold with n0 = 1. By Theorem 3.2, (Pn)n≥1

is relatively compact. Hence, there exists a compact set K in D([0, 1];D) such
that Pn(K) ≥ 1−η for all n ≥ 1. The setK is characterized using Theorem 2.8.
More precisely, we know that:

(25)


(a′) supx∈K ‖x‖D <∞
(b′) limδ→0 supx∈K supt∈[0,1]w

′(x(t), δ
)

= 0

(c′) limδ→0 supx∈K w
′
D(x, δ) = 0

Due to (a′), we can choose a > supx∈K ‖x‖D arbitrary. Then K ⊂ {x; ‖x‖D <
a} and so,

Pn
(
{x; ‖x‖D ≥ a}

)
≤ Pn(Kc) ≤ η for all n ≥ 1.

By (b′), there exists δ ∈ (0, 1) such that w′(x(t), δ) < ε for all x ∈ K, t ∈ [0, 1].
Hence, K ⊂ {x; w′(x(t), δ) < ε for all t ∈ [0, 1]}, and so

Pn
(
{x; w′

(
x(t), δ

)
< ε for some t ∈ [0, 1]}

)
≤ Pn(Kc) ≤ η for all n ≥ 1.

By (c′), there exists δ ∈ (0, 1) such that w′D(x, δ) < ε for all x ∈ K. Hence,
K ⊂ {x; w′D(x, δ) < ε}, and so

Pn
(
{x; w′

(
x, δ
)
< ε}

)
≤ Pn(Kc) ≤ η for all n ≥ 1.

Suppose next that conditions (i)�(iii) hold. Let η > 0 and ε > 0 be
arbitrary. Then there exist a′ > 0, δ′ ∈ (0, 1) and an integer n0 ≥ 1 such that
(24) holds for all n ≥ n0 (with a′ and δ′ replacing a and δ). We �rst prove that
(24) actually holds for all n ≥ 1, for some values a and δ which will be given
below. Fix i ∈ {1, . . . , n0 − 1}. Since D([0, 1];D) is separable and complete,
the single probability measure Pi is tight, and therefore it satis�es conditions
(i)�(iii). Hence, there exists ai > 0 and δi ∈ (0, 1) such that

Pi
(
{x; ‖x‖D ≥ ai}

)
≤ η

Pi
(
{x; w′

(
x(t), δi

)
≥ ε for some t ∈ [0, 1]}

)
≤ η

Pi
(
{x; w′D(x, δi) ≥ ε

)
≤ η.

Then (24) holds for all n ≥ 1, with a = max{a′,maxi≤n0−1 ai} and δ =
min{δ′,mini≤n0−1 δi}.

Let B = {x; ‖x‖D < a}. Then Pn(B) ≥ 1− η for all n ≥ 1. By parts (b)
and (c) of (24) with ε = 1/k and η replaced by η/2k, there exists δk ∈ (0, 1)
such that for all n ≥ 1,

Pn(Bk) ≥ 1− η

2k
and Pn(Ck) ≥ 1− η

2k
,

where Bk = {x; supt∈[0,1]w
′(x(t), δk) < 1/k} and Ck = {x;w′D(x, δk) < 1/k}.

Let A = B ∩
(
∩k≥1 Bk

)
∩
(
∩k≥1 Ck

)
and K = A. For any n ≥ 1, Pn(K) ≥
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Pn(A) ≥ 1− 3η, since

Pn(Ac) ≤ Pn(Bc) +
∑
k≥1

Pn(Bc
k) +

∑
k≥1

Pn(Cck) ≤ η +
∑
k≥1

η

2k
+
∑
k≥1

η

2k
= 3η.

We show that K is compact in D([0, 1];D). By Theorem 2.8, this is equivalent
to showing that K satis�es (25). Since ‖x‖D < a for any x ∈ B and A ⊂ B, we
have supx∈A ‖x‖D < a. This shows that (a′) holds. Note that for any k ≥ 1,
supx∈A supt∈[0,1]w

′(x(t), δk) < 1/k (since A ⊂ Bk), and so (b′) holds. Finally,
for any k ≥ 1, supx∈Aw

′
D(x, δk) < 1/k (since A ⊂ Ck), and hence (c′) holds.

This proves that (Pn)n≥1 is tight. �

The following result gives a replacement for condition (i) in Theorem 3.4.
This condition is the analogue of (13.6) of [5].

Corollary 3.5. Condition (i) of Theorem 3.4 can be replaced by the

following condition:

(i′) for each t in a dense subset T of [0, 1] which contains 1, we have:

(26) lim
a→∞

lim sup
n→∞

Pn
(
{x; ‖x(t)‖ ≥ a}

)
= 0.

Proof. Suppose that condition (i) of Theorem 3.4 holds. Then (i′) clearly
holds, since {x; ‖x(t)‖ ≥ a} ⊂ {x; ‖x‖D ≥ a} for any t ∈ T .

Suppose next that conditions (i′) and (iii) hold. We prove that (i) holds,
using a similar argument as in the Corollary on page 140 of [5]. Let η > 0 be
arbitrary. By condition (iii), there exist δ ∈ (0, 1) and an integer n1 ≥ 1 such
that

(27) Pn
(
{x;w′D(x, δ) ≥ 1}

)
≤ η for all n ≥ n1.

Let {ti}i=1,...,v be a δ-sparse set with 0 = t0 < t1 < . . . < tv = 1 such
that wD(x, [ti−1, ti)) ≤ w′D(x, δ) + 1 for all i = 1, . . . , v. Choose points 0 = s0 <
s1 < . . . < sk = 1 such that sj ∈ T and sj − sj−1 < δ for all k = 1, . . . , k. Let
m(x) = max1≤j≤k ‖x(sj)‖. By (26), lima→∞ lim supn→∞ Pn

(
{x;m(x) ≥ a}

)
=

0. So, there exist a > 0 and n2 ≥ 1 such that

(28) Pn
(
{x;m(x) ≥ a}

)
≤ η for all n ≥ n2.

We claim that for any x ∈ D([0, 1];D),

(29) ‖x‖D ≤ w′D(x, δ) + 1 +m(x).

To see this, note that since {ti}i is δ-sparse, each interval [ti−1, ti) contains at
least one point sj , that we call sji . For any i = 1, . . . , v and for any t ∈ [ti−1, ti),

‖x(t)‖ = d0
J1

(
x(t), 0

)
≤ d0

J1

(
x(t), x(sji)

)
+ d0

J1

(
x(sji), 0

)
= d0

J1

(
x(t), x(sji)

)
+ ‖x(sji)‖.
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Hence,

sup
t∈[ti−1,ti)

‖x(t)‖ ≤ wD(x, [ti−1, ti)) + ‖x(sji)‖ ≤ w′D(x, δ) + 1 +m(x).

Relation (29) follows since ‖x‖D = max{max1≤i≤v supt∈[ti−1,ti) ‖x(t)‖, ‖x(1)‖}.
Let n0 = max(n1, n2). From (27), (28) and (29), we infer that

Pn
(
{x; ‖x‖D ≥ a+2}

)
≤ Pn

(
{x;w′D(x, δ)+m(x) ≥ a+1}

)
≤ 2η for all n ≥ n0.

This concludes the proof of (i). �

The following result is the analogue of relation (13.8) of [5] (or Theo-
rem 15.3 of [4]), and it plays a crucial role in article [1] (see Theorem 2.4 of [1]).

Theorem 3.6. A sequence (Pn)n≥1 of probability measures on
(
D([0, 1];

D),DD
)
is tight if and only if it satis�es condition (i) of Theorem 3.4 and the

following two conditions:

(ii′) For any ε > 0,
(a) limδ→0 lim supn→∞ Pn({x; w′′(x(t), δ) ≥ ε for some t ∈ [0, 1]}) = 0;
(b) limδ→0 lim supn→∞ Pn({x; |x(t, δ)− x(t, 0)| ≥ ε for some t ∈ [0, 1]})=0;
(c) limδ→0 lim supn→∞ Pn({x; |x(t, 1−)− x(t, 1− δ)| ≥ ε

for some t ∈ [0, 1]}) = 0.

(iii′) For any ε > 0,
(a) limδ→0 lim supn→∞ Pn({x; w′′D(x, δ) ≥ ε}) = 0;
(b) limδ→0 lim supn→∞ Pn({x; d0

J1

(
x(δ), x(0)

)
≥ ε}) = 0;

(c) limδ→0 lim supn→∞ Pn({x; d0
J1

(
x(1−), x(1− δ)

)
≥ ε}) = 0.

Proof. This follows directly from Theorem 3.4. To see this, note that
(ii′) is equivalent to (ii) of Theorem 3.4, due to inequalities (12.31) and (12.32)
of [5]), whereas (iii′) is equivalent to (iii) of Theorem 3.4, due to inequalities
(17) and (18). �

The following result is the analogue of Theorem 13.3 of [5].

Theorem 3.7. Let (Pn)n≥1 and P be probability measures on D([0, 1];D)
such that (20) holds, (Pn)n≥1 satis�es parts (ii′) and (iii′.a) of Theorem 3.6,

and P satis�es

(30) lim
δ→0

P
(
{x; d0

J1

(
x(1), x(1− δ)

)
≥ ε}

)
= 0 for all ε > 0.

Then Pn
w→ P .

Proof. By Theorem 13.1, it is enough to prove that (Pn)n≥1 is tight. For
this, we use Theorem 3.6. We �rst check condition (i′) given by Corollary 3.5,
with T = TP . Let t ∈ TP be arbitrary. The sequence {Pn ◦ (πDt )−1}n≥1 is
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relatively compact in D being weakly convergent. By Prohorov theorem, this
sequence is tight. Hence, for any η > 0, there exists a compact set K in
D such that [Pn ◦ (πDt )−1](Kc) ≤ η for all n ≥ 1. By Theorem 12.3 of [5],
M := supy∈K ‖y‖ <∞. For any a > M , {y ∈ D; ‖y‖ ≥ a} ⊂ Kc and

Pn
(
{x; ‖x(t)‖ ≥ a}

)
≤ [Pn ◦ (πDt )−1](Kc) ≤ η for all n ≥ 1.

Next, we check that part (b) of (iii′) holds. Let ε > 0 and η > 0 be arbi-
trary. By the right continuity of elements in D([0, 1];D), P

(
{x; d0

J1

(
x(δ), x(0)

)
≥

ε}
)
→ 0 as δ → 0. Choose δ ∈ TP small such that P

(
{x; d0

J1

(
x(δ), x(0)

)
}
)
< η.

By (20), Pn ◦ (πD0,δ)
−1 w→ P ◦ (πD0,δ)

−1 in D2. By Lemma 2.13, the set A =

{(y1, y2) ∈ D2; d0
J1

(y1, y2) ≥ ε} is closed in D2 with respect to the product of
J1-topologies. By Portmanteau theorem, it follows that

lim sup
n→∞

Pn
(
{x; d0

J1

(
x(δ), x(0)

)
}
)
≤ P

(
{x; d0

J1

(
x(δ), x(0)

)
}
)
< η.

We prove that part (c) of (iii′) holds. By the left continuity of elements in
D([0, 1];D), P

(
{x; d0

J1

(
x(1−), x(1− δ)

)
≥ ε}

)
→ 0 as δ → 0, for any ε > 0. By

(30), it follows that P
(
{x; d0

J1

(
x(1), x(1−)

)
≥ ε}

)
= 0, for any ε > 0. Hence,

P
(
{x; d0

J1

(
x(1), x(1−)

)
> 0}

)
= 0. The rest of the argument is the same as for

part (b). �

The previous theorem can also be stated in terms of random elements, as
follows.

Theorem 3.8. Let (Xn)n≥1 and X be random elements in D([0, 1];D)
de�ned on the same probability space. Let TX = {t ∈ [0, 1];P (X(t) = X(t−)) =
1}. Suppose that:

a)
(
Xn(t1), . . . , Xn(tk)

) d→
(
X(t1), . . . , X(tk)

)
in Dk, for any t1, . . . , tk ∈

TX ;

b) d0
J1

(
X(1), X(1− δ)

) P→ 0 as δ → 0;

c) for any ε > 0,
limδ→0 lim supn→∞ P

(
{w′′

(
Xn(t), δ

)
≥ ε for some t ∈ [0, 1]}

)
= 0,

limδ→0 lim supn→∞ P (|Xn(t, δ)−Xn(t, 0)| ≥ ε for some t ∈ [0, 1]) = 0,
limδ→0 lim supn→∞ P (|Xn(t, 1−)−Xn(t, 1− δ)| ≥ ε for some t ∈ [0, 1]) = 0;

d) for any ε > 0,

(31) lim
δ→0

lim sup
n→∞

P (w′′D(Xn, δ) ≥ ε) = 0 for all ε > 0.

Then Xn
d→ X in D([0, 1];D) equipped with dD.
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Remark. Hypothesis c) of Theorem 3.8 may be di�cult to verify in prac-
tice. In the proof of Theorem 3.14 of [1], this hypothesis is veri�ed by showing
that

(32) inf
n0≥1

sup
n≥n0

P (‖Xn −Xn0‖D ≥ ε) = 0 for all ε > 0.

Since for any n0 ≥ 1, the single probability measure P ◦X−1
n0

is tight in
D([0, 1];D), part (ii′) of Theorem 3.6 gives:

limδ→0 P
(
{w′′

(
Xn0(t), δ

)
≥ ε for some t ∈ [0, 1]}

)
= 0,

limδ→0 P (|Xn0(t, δ)−Xn0(t, 0)| ≥ ε for some t ∈ [0, 1]) = 0,
limδ→0 P (|Xn0(t, 1−)−Xn0(t, 1− δ)| ≥ ε for some t ∈ [0, 1]) = 0;

Hypothesis c) then follows from (32), using the following inequalities:

w′′
(
Xn(t), δ

)
≤ w′′

(
Xn0(t), δ

)
+ 2‖Xn −Xn0‖D

|Xn(t, δ)−Xn(t, 0)| ≤ |Xn0(t, δ)−Xn0(t, 0)|+ 2‖Xn −Xn0‖D
|Xn(t, 1−)−Xn(t, 1− δ)| ≤ |Xn0(t, 1−)−Xn0(t, 1− δ)|+ 2‖Xn −Xn0‖D.

4. CRITERIA FOR EXISTENCE AND CONVERGENCE

In this section, we give a criterion for weak convergence of random ele-
ments in D([0, 1];D), and a criterion for the existence of a process with sample
paths in D([0, 1];D) based on its �nite-dimensional distributions. Both these
results rely on some maximal inequalities which are of independent interest.

The �rst two results are analogue of Theorems 10.3 and 10.4 of [5], stated
in terms of the Skorohod distance d0

J1
.

Theorem 4.1. Let T be a Borel set in [0, 1] and {X(t)}t∈T a collection of

random elements in D de�ned on the same probability space (Ω,F , P ) such that

the map T 3 t 7→ X(ω, t) is right-continuous with respect to J1, for any ω ∈ Ω.

(If T is �nite, this imposes no restriction.) For any r, s, t ∈ T with r ≤ s ≤ t,
let

(33) mJ1
rst = d0

J1

(
X(r), X(s)

)
∧ d0

J1

(
X(s), X(t)

)
and LJ1(X) = supr,s,t∈T ; r≤s≤tm

J1
rst. Suppose that there exist α > 1/2, β ≥ 0

and a �nite measure µ on T such that for any λ > 0 and for any r, s, t ∈ T
with r ≤ s ≤ t,

(34) P (mJ1
rst ≥ λ) ≤ 1

λ4β
{µ(T ∩ (r, t])}2α.

Then there exists a constant K depending on α and β such that for any λ > 0,

(35) P (LJ1(X) > λ) ≤ K

λ4β
µ2α(T ).
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Proof. We follow the same idea as in the proof of Theorem 10.3 of [5],
replacing increments of the form |X(t)−X(s)| by d0

J1
(X(t), X(s)).

Case 1. T = [0, 1] and µ is the Lebesgue measure. Let Dk = {i/2k; 0 ≤
i ≤ 2k}. De�ne Bk be the maximum of allmJ1

t1t2t3
for all t1, t2, t3 ∈ Dk with t1 ≤

t2 ≤ t3 and Ak be the maximum of mJ1
t1t2t3

with t1 = (i− 1)/2k, t2 = i/2k and
t3 = (i+1)/2k, for i = 1, . . . , 2k−1. It can be proved that Bk ≤ 2(A1+. . .+Ak)
for any k ≥ 1. Note that Bk ≤ Bk+1 for all k ≥ 1. We claim that:

(36) LJ1(X) = lim
k→∞

Bk.

To see this, let ε > 0 be arbitrary. Let t1, t2, t3 ∈ T be such that t1 ≤ t2 ≤ t3.
For each k ≥ 1, there exist tk1, t

k
2, t

k
3 ∈ Dk with tk1 ≤ tk2 ≤ tk3 such that

tki ↓ ti as k → ∞, for i = 1, 2, 3. Since t 7→ X(t) is right-continuous with

respect to J1, X(tki )
J1→ X(ti) as k → ∞, for i = 1, 2, 3. By Lemma 2.13,

ak = d0
J1

(
X(tk1), X(tk2)

)
→ a = d0

J1

(
X(t1), X(t2)

)
as k → ∞ and bk =

d0
J1

(
X(tk2), X(tk3)

)
→ b = d0

J1

(
X(t2), X(t3)

)
as k → ∞. Hence, there exists

kε such that ake ≥ a− ε and bkε ≥ b− ε. So, a ∧ b ≤ ake ∧ bke + ε ≤ Bke + ε.
Since t1, t2, t3 were arbitrary, we obtain that LJ1(X) ≤ Bke + ε.

From (36), it follows that LJ1(X) ≤ 2
∑

k≥1Ak. From this, we deduce
relation (35) using (34) to estimate the tail probability of Ak (see page 110
of [5]).

The other cases follow as in the proof of Theorem 10.3 of [5]. �

Corollary 4.2. If condition (34) of Theorem 4.1 only holds for t− r <
2δ, then

P (LJ1(X, δ) > λ) ≤ 2K

λ4β
µ(T ) sup

0≤t≤1−2δ
µ2α−1

(
T ∩ [t, t+ 2δ]

)
,

where LJ1(X, δ) is the supremum of mJ1
rst for all r, s, t ∈ T with r ≤ s ≤ t

and t − r < δ, and mJ1
rst is given by (33). In particular, if T = [0, 1], then

LJ1(X, δ) = w′′D(X, δ).

The following result gives a criterion for convergence in distribution in the
space D([0, 1];D). being the analogue of Theorem 13.5 of [5].

Theorem 4.3. Let (Xn)n≥1 and X be random elements in D([0, 1];D) de-
�ned on the same probability space, such that hypotheses a),b),c) of Theorem 3.8

hold. If there exist α > 1/2, β ≥ 0 and a non-decreasing continuous function

F on [0, 1] such that for any r, s, t ∈ [0, 1] with r ≤ s ≤ t, for any λ > 0 and

for any n ≥ 1,

P
(
d0
J1(Xn(r), Xn(s)) ∧ d0

J1(Xn(s), Xn(t)) ≥ λ
)
≤ 1

λ4β
[F (t)− F (r)]2α,

then Xn
d→ X in D([0, 1];D) equipped with dD.
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Proof. We apply Theorem 3.8. Hypothesis (31) of this theorem is veri�ed
using Corollary 4.2 with T = [0, 1]. �

The goal of the remaining part of this section is to give a criterion for the
existence of a process with sample paths in D([0, 1];D). For this, we �rst need
to state a variant of Theorem 4.1 using the uniform norm ‖ · ‖ on D (instead of
the Skorohod distance d0

J1
).

Theorem 4.4. Let T be a Borel set in [0, 1] and {X(t)}t∈T a collection

of random elements in D de�ned on the same probability space (Ω,F , P ) such

that the map T 3 t 7→ X(ω, t) is right-continuous with respect to the uniform

norm on D, for any ω ∈ Ω. (If T is �nite, this imposes no restriction.) For

any r, s, t ∈ T with r ≤ s ≤ t, let
(37) mu

rst = ‖X(r)−X(s)‖ ∧ ‖X(s)−X(t)‖
and Lu(X) = supr,s,t∈T ; r≤s≤tm

u
rst. Suppose that there exist α > 1/2, β ≥ 0

and a �nite measure µ on T such that for any λ > 0 and for any r, s, t ∈ T
with r ≤ s ≤ t,

(38) P (mu
rst ≥ λ) ≤ 1

λ4β
{µ(T ∩ (r, t])}2α.

Then there exists a constant K depending on α and β such that for any λ > 0,

(39) P (Lu(X) > λ) ≤ K

λ4β
µ2α(T ).

Corollary 4.5. If condition (38) of Theorem 4.4 only holds for t− r <
2δ, then

P (Lu(X, δ) > λ) ≤ 2K

λ4β
µ(T ) sup

0≤t≤1−2δ
µ2α−1

(
T ∩ [t, t+ 2δ]

)
,

where Lu(X, δ) is the supremum of mu
rst for all r, s, t ∈ T with r ≤ s ≤ t

and t − r < δ, and mu
rst is given by (37). In particular, if T = [0, 1], then

Lu(X, δ) = w′′u(X, δ), where

w′′u(x, δ) = sup
t1≤t≤t2,t2−t1≤δ

(
‖x(t)− x(t1)‖ ∧ ‖x(t2)− x(t)‖

)
for any x ∈ D([0, 1];D).

In the particular case when T is a �nite set, we obtain the following result,
which is of independent interest.

Theorem 4.6. Let ξ1, . . . , ξn be random elements in D([0, 1];D), Sk =
ξ1 + . . . + ξk for k = 1, . . . , n, and S0 = 0. Suppose that there exist α ≥ 1/2,
β > 0 and ui ≥ 0, i = 1, . . . , n such that for any λ > 0,

P
(
‖Sj − Si‖ ∧ ‖Sk − Sj‖ ≥ λ

)
≤ 1

λ4β

( k∑
j=i+1

uj

)2α
.
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Then there exist a constant K depending on α and β such that for any λ > 0,

P (Mn ≥ λ) ≤ K

λ2β

( n∑
i=1

ui

)2α
,

where Mn = max0≤i≤j≤k≤n
(
‖Sj − Si‖ ∧ ‖Sk − Sj‖

)
.

We are now ready to state the criterion for existence of a process with
sample paths in D([0, 1];D).

Theorem 4.7. Let {X(t)}t∈[0,1] be a collection of random elements in D
de�ned on the same probability space (Ω,F , P ) such that:

a) there exist α > 1/2, β ≥ 0 and a non-decreasing continuous function F
on [0, 1] such that for any t1, t2, t3 ∈ [0, 1] with t1 ≤ t2 ≤ t3 and for any λ > 0,

P
(
‖X(t)−X(t1)‖ ∧ ‖X(t2)−X(t)‖ ≥ λ

)
≤ 1

λ4β
[F (t2)− F (t1)]2α;

b) for any ε > 0,

lim
δ→0

lim sup
n→∞

P
(
w′
(
X(i/2n), δ

)
≥ ε for some 0 ≤ i ≤ 2−n

)
= 0;

c) for any t ∈ [0, 1) and for any sequence (tn)n≥1 in [0, 1] with tn → t and

tn+1 ≤ tn for any n ≥ 1, d0
J1

(
X(tn), X(t)

) p→ 0.

Then, there exists a collection {Y (t)}t∈[0,1] of random elements in D de-

�ned on the another probability space (Ω′,F ′, P ′), such that the map t 7→
Y (ω′, t) is in D([0, 1];D) for any ω′ ∈ Ω′, and the vectors (X(t1), . . . , X(tk)) and
(Y (t1), . . . , Y (tk)) have the same distribution in Dk, for any t1, . . . , tk ∈ [0, 1]
and for any k ≥ 1.

Proof. We argue as in the proof of Theorem 13.6 of [5]. We consider two
cases.

Case 1. Suppose that there exists δ0 ∈ (0, 1/2) such that for all h ∈ (0, δ0),

(40) P (X(0) = X(h)) = 1 and P (X(1) = X(1− h)) = 1.

Let T = ∪n≥1Tn, where Tn = {tni ; i = 0, 1, . . . , 2n} and tni = i/2n. For
any n ≥ 1, we de�ne

(41) Xn(t) = X(tni ) for all t ∈ [tni , t
n
i+1)

for i = 0, 1, . . . , 2n − 1, and Xn(1) = X(1). Note that

(42) t ∈ Tk implies that Xn(t) = X(t) for all n ≥ k.

We will prove that

(43) (P ◦X−1
n )n≥1 is tight in D([0, 1];D).
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By Prohorov's theorem, it will follow that (P ◦X−1
n )n≥1 is relatively com-

pact in D([0, 1];D). Hence, there exist a subsequence (nk)k≥1 and a probability

measure Q on (D([0, 1];D),DD) such that Pnk

w→ Q. Let {Y (t)}t∈[0,1] be a col-
lection of random elements in D with law Q, de�ned on the other probability
space (Ω′,F ′, P ′). For instance, we may take (Ω′,F ′, P ′) =

(
D([0, 1];D),DD, Q

)
and Y (t) = πDt for all t ∈ [0, 1]. Then (X(t1), . . . , X(tk)) and (Y (t1), . . . , Y (tk))
have the same distribution in Dk, for any t1, . . . , tk ∈ A, and the same thing
remains true for arbitrary points t1, . . . , tk in [0, 1] due to hypothesis c) and the
right continuity of the sample paths of {Y (t)}t∈[0,1] with respect to J1, since
for each ti ∈ [0, 1), i = 1, . . . , k there exists a sequence (tmi )m≥1 ⊂ A such that
tmi ↓ ti as m→∞.

It remains to prove (43). For this, we apply Theorem 3.6 to Pn = P ◦X−1
n .

Condition (ii′) of this theorem is equivalent to condition (ii) of Theorem 3.4,
which is the same as our hypothesis b) (using de�nition (41) of Xn(t)).

We begin by checking condition (iii′) of Theorem 3.6. Let ε > 0 and η > 0
be arbitrary. We prove that there exist δ ∈ (0, 1) and an integer n0 ≥ 1 such
that for all n ≥ n0,

(44)


(a) P (w′′D(Xn, δ) ≥ ε) ≤ η
(b) P (d0

J1

(
Xn(δ), Xn(0)

)
≥ ε) ≤ η

(c) P (d0
J1

(
Xn(1−), Xn(1− δ)

)
≥ ε) ≤ η.

For part b), let δ < δ0 and n ≥ 1 be arbitrary. Choose k such that
k/2n ≤ δ < (k+1)/2n. ThenXn(δ) = X(k/2n) = X(0) a.s. andXn(0) = X(0).
Hence d0

J1

(
Xn(δ), Xn(0)

)
= 0 a.s. For part c), let δ < δ0/2 and n ≥ n0 where

n0 is such that 2−n0 ≤ δ0/2. Choose l such that l/2n ≤ 1 − δ < (l + 1)/2n.
Then Xn(1− δ) = X(l/2n) = X(1) a.s. since 1− l/2n = δ + (1 − δ − l/2n) <
δ + 1/2n < δ0. Since δ < δ0 is arbitrary, this also shows that Xn(1−) = X(1)
a.s. for any n ≥ n0. Hence, d

0
J1

(
Xn(1−), Xn(1− δ)

)
= 0 a.s.

To prove part (a) of (44), it su�ces to show that P (w′′u(Xn, δ) ≥ ε) ≤ η
since w′′D(x, δ) ≤ w′′u(x, δ) for any x ∈ D([0, 1];D). This can be proved exactly
as on page 144 of [5], by applying Corollary 4.5 to the discrete-time process
{Yn(t)}t∈Tn given by Yn(t) = Xn(t) = X(t), and the measure µn on Tn given
by µn({tni }) = F (tni ) − F (tni−1). The process Yn satis�es hypothesis (38) of
Corollary 4.5, due to our hypothesis a). Note that w′′u(Xn, δ) ≤ L(Yn, 2δ).

Finally, we prove that condition (i) of Theorem 3.4 holds. Let η > 0 be
arbitrary. We will prove that there exist a > 0 and an integer n0 ≥ 1 such that

P (‖Xn‖D ≥ a) ≤ 2η for all n ≥ n0.

Let ε > 0 be arbitrary. Choose δ ∈ (0, 1) and n0 ≥ 1 such that part (a)
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of (44) holds. Choose k ≥ 1 such that 2−k ≤ δ. We claim that for all n ≥ k,

(45) ‖Xn‖D ≤ w′′D(Xn, δ) + max
i≤2k
‖X(i/2k)‖.

To see this, note that clearly ‖Xn(1)‖ ≤ maxi≤2k ‖X(i/2k)‖. Let t ∈
[0, 1) be arbitrary. Say i/2k ≤ t < (i + 1)/2k. We have two situations:
d0
J1

(
Xn(t), Xn(i/2k)

)
is either smaller or larger than d0

J1

(
Xn(t), Xn((i+1)/2k)

)
.

We consider only the case when it is smaller, the other case being similar. By
(5) and the triangle inequality in D, we have

‖Xn(t)‖ ≤ d0
J1

(
Xn(t), Xn(i/2k)

)
+ ‖Xn(i/2k)‖ ≤ w′′D(Xn, δ) + max

i≤2k
‖Xn(i/2k)‖.

From (45) and part (a) of (44), it follows that for all n ≥ n0,

P (‖Xn‖D > a) ≤ P (w′′D(Xn, δ) + max
i≤2k
‖X(i/2k)‖ > a,w′′D(Xn, δ) < ε)

+ P (w′′D(Xn, δ) ≥ ε)
≤ P (max

i≤2k
‖X(i/2k)‖ > a− ε) + P (w′′D(Xn, δ) ≥ ε) ≤ 2η,

for all a>a0 and some a0 > ε large enough, since limA→∞ P (maxi≤2k ‖X(i/2k)‖
> A) = 0.

Case 2. In the absence of condition (40), let δ0 ∈ (0, 1/2) be arbitrary.
For any t ∈ [0, 1], de�ne X̃(t) = X(f(t)) where

f(t) =


0 if t ∈ [0, δ0)
(t− δ0)/(1− 2δ0) if t ∈ [δ0, 1− δ0]
1 if t ∈ (1− δ0, 1]

Since the map φ : [δ0, 1− δ0]→ [0, 1] given by φ(t) = (t− δ0)/(1− 2δ0) is
a bijection, X(s) = X̃(δ0 + (1− 2δ0)s) for all s ∈ [0, 1]. The process X̃ satis�es
hypotheses a), b), c) of the theorem, and also condition (40). Therefore, by
Case 1, there exists a collection {Ỹ (t)}t∈[0,1] of random elements in D de�ned

on the another probability space (Ω′,F ′, P ′), such that the map t 7→ Ỹ (ω′, t)
is in D([0, 1];D) for any ω′ ∈ Ω′, and the vectors (X̃(t1), . . . , X̃(tk)) and
(Ỹ (t1), . . . , Ỹ (tk)) have the same distribution in Dk, for any t1, . . . , tk ∈ [0, 1]
and for any k ≥ 1. We de�ne Y (s) = Ỹ (δ0 + (1− 2δ0)s) for all s ∈ [0, 1]. �
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