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THE GEOMETRY OF A MODULI SPACE OF BUNDLES

ANDREI TELEMAN

Let X be a class VII surface with b2(X) > 0. Following ideas developed in
previous articles, we study the moduli space

Mx = M (E),

where E is a differentiable rank 2 bundle on X with c2(E) = 0, and det(E) =
K x, the underlying differentiable line bundle of the canonical line bundle x. In
this article we are interested in the non-minimal case: assuming that the minimal
model of X is a primary Hopf surface, we prove that any point in the moduli
space is a line bundle extension, and we give explicit geometric descriptions of
Mx for ba(X) € {1,2}.

Our motivation comes from the classification theory of class VII surfaces.
Let Xo be a minimal class VII surface with positive b2 which is the deformation
in large of a family of blown up primary Hopf surfaces. In other words X is the
central fiber of a holomorphic family (X.).ep, where X, is a blown up primary
Hopf surface for any z # 0. The classification of minimal class VII surfaces with
this property is still an open problem.

The moduli space M x, associated with an unknown such surface Xo will
be “the limit” of the family (M x_).epe of moduli spaces associated with blown
up primary Hopf surfaces.
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1. INTRODUCTION

In this section we explain the notions, the terminology and the formalism
used in this article, and we present the main results and their motivation.

1.1. Moduli spaces of polystable bundles on Gauduchon surfaces

By surface we mean a compact, connected, complex manifold of dimension
2 [3]. It is well known ([26], [11], [12]) that a complex surface is K&hlerian, i.e.
it admits a Kéhler metric, if and only if b;(X) is even.

Let X be a complex surface. We will denote by Kx the canonical line
bundle of X, i.e. the line bundle of holomorphic 2-forms. The Picard group
of X is the group of isomorphism classes of holomorphic line bundles on X;
it can be identified with H'(X, O%), has the natural structure of a complex
Lie group, and will be denoted by Pic(X). The first Chern class map defines
a group morphism

c1 : Pie(X) - H*(X,Z)
whose image is the Neron-Severi group

NS(X) = ker(H*(X,Z) — H*(X,Ox)).

For a class ¢ € NS(X) we denote by Pic®(X) < Pic(X) the fiber over ¢ of the
morphism ¢;. The kernel Pic®(X) of this morphism is the identity component
of Pic(X); it can be identified with the quotient H' (X, Ox)/2niH'(X,Z), and
is compact if and only if b1 (X)) is even (see for instance [35, Appendix]).

A Hermitian metric g on X is called Gauduchon if dd‘w, = 0, where
wy € AYL(X) is the Kéhler form of g. An important result of Gauduchon [17]
states that any conformal class of Hermitian metrics contains such a metric, so
there is no obstruction to the existence of Gauduchon metrics. A Gauduchon
metric g on X gives a degree map

(1) deg, : Pic(X) - R
defined by
deg, ([£]) = f e1(Lyh) A wy )

where h is a Hermitian metric on £, and ¢1 (£, h) is the first Chern form of the
Chern connection associated with h. Since dd‘w, = 0, the right hand term in
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(1) is independent of h, so deg,, is well defined. The degree map is a morphism
of real Lie groups; it is a topological invariant (i.e. it vanishes on Pic?(X)) if
and only if b (X) is even.

For a coherent sheaf 7 on X one defines

deg,(F) = deg,(det(F)),
where det(F) is the determinant line bundle (invertible sheaf) of F (see [20]).

Definition 1.1. Let (X, g) be a complex surface endowed with a Gaudu-
chon metric. A holomorphic bundle £ on X is called

1. stable, if, for any non-trivial coherent subsheaf 7 < £ with torsion free
quotient, one has

deg, (F) < ﬂ{ég)degg(f)).

b

rk(F)

2. polystable, if it decomposes as a direct sum & = @le &;, where &; are
stable bundles with @degg(&;) = %degg(g).

The Kobayashi-Hitchin correspondence ([15], [14], [10], [21], [22]) states
that a holomorphic vector bundle £ is polystable if and only if it admits a
Hermitian metric A such that the associated Chern connection Ay, is Hermite-
FEinstein.

Let (E,h) be a differentiable Hermitian vector bundle of rank r over
X. Fix a holomorphic structure D on the determinant line bundle det(E).
We will denote by M3 (E), M%St(E) the moduli spaces of stable, respectively
polystable holomorphic structures on E inducing the fixed holomorphic struc-
ture D on det(E), modulo the complex gauge group of SL-automorphisms of
E.

Note that MS5(E) has the natural structure of a complex space [22], but,
in the non-Kéahlerian framework, M%St(E) is not always a complex space (see
[29], [32], [9] and the results in this article).

Let a be the Chern connection of the pair (D, det(h)), and let M2SP(E. h)
(MASP(E, h)*) be the moduli space of (respectively irreducible) projectively
ASD Hermitian connections on (E,h) inducing the fixed connection a on
det(E), modulo the real gauge group of SU-automorphisms of F (see for in-
stance [29], [34] for details).

The Kobayashi-Hitchin correspondence can be reformulated in terms of
moduli spaces [22]: it gives a bijection

KH : M2SP(B)= MBY(E)
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which restricts to a real analytic isomorphism M2SP(E)* = MSY(E). We will
endow M%St(E) with the topology which makes K H a homeomorphism; this
topology is metrizable, because the instanton moduli space MASP(E) has this
property [14].
The complement
R = MEY(E)\M(E)

is the space of isomorphism classes of split polystable bundles in the moduli
space, and can be identified via the Kobayashi-Hitchin correspondence with
the space of reducible projectively ASD Hermitian connections on (E, h). This
complement will be called the space of reductions in the moduli space.

Stability theory for bundles has been studied intensively on projective
algebraic surfaces: in this framework the theory found important applications
in 4-dimensional differential topology, for instance the first computation of
Donaldson invariants [15]. Moreover, in algebraic geometry we have classical
tools which, in many cases, allow a complete classification of bundles with fixed
topological invariants.

In the non-algebraic, and especially non-Kéahlerian framework, the situ-
ation is more difficult. A major difficulty is the appearance of non-filtrable
bundles, for which we do not have a general classification method (see section
1.4). However nowadays several explicit descriptions of moduli spaces of stable
and polystable bundles on non-Ké&hlerian surfaces are known. We mention in
particular [4], [28], [22, Sections 6.3, 6.4], [1], [2], [5]-[6].

This article is concerned with certain moduli spaces of polystable bundles
on class VII surfaces which play an important role in our programme to com-
plete the classification of this class of surfaces up to deformation equivalence
[32], [34].

1.2. Class VII surfaces

We recall that, in the theory of complex surfaces [3], the class VII is the
class of surfaces X with b;(X) = 1 and x(X) = —oo. The former condition
is topological, and implies that such a surface is not Kéahlerian. The latter is
equivalent to the vanishing of h° (IC?(”), for all positive integers n.

Class VII surfaces are not classified yet. It is known [27] that any class
VII surface with bo = 0 is biholomorphic to either a Hopf surface, or an Inoue
surface, but the method of proof does not generalize to surfaces with positive bs.
We have an interesting class of “known” minimal class VII surfaces with by > 0,
namely the Kato surfaces. By definition, a Kato surface is a minimal class VII
surface X with positive bs which contains a global spherical shell, i.e. an
open submanifold which does not disconnect the surface, and is biholomorphic
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to a standard neighborhood of S in C2. Note that Kato surfaces are well
understood ([18], [19], [13] [35]).

The classification will be completed if the following fundamental conjec-
ture of the theory is proved:

CONJECTURE. Any minimal class VII surface with by > 0 is a Kato
surface.

The conjecture has been proved for by = 1 [29]. Note that all Kato
surfaces with fixed by are deformation equivalent, and they are deformations in
large of blown up primary Hopf surfaces; more precisely for any Kato surface X
there exists a proper holomorphic submersion p : X — D such that p~1(0) ~ X,
and p~!(z) is a blown up primary Hopf surface for any z # 0.

A weaker conjecture, which will solve the classification problem up to
deformation equivalence, states that any minimal class VII surface with ba > 0
s a deformation in large of blown up primary Hopf surfaces.

This weaker conjecture has been proved for b < 3 (see [32], [34]) using
ideas introduced in [29]: For an unknown minimal class VII surface X one
studies geometric properties of the moduli space M%S;(E), where F is a rank
2 differentiable bundle on X with c3(E) = 0, det(E) = Kx, where K is the
underlying differentiable line bundle of the canonical holomorphic line bundle
Kx.

In this article we will study the same moduli space, but on a surface
which is a blown up primary Hopf surface, hence a known surface. We believe
that the obtained results are useful for understanding M%S; (E) on an unknown
class VII surface X which is a deformation in large of a family of blown up
primary Hopf surfaces.

1.3. Standard properties of class VII surfaces

In this section we explain briefly standard results on the intersection
form, Chern numbers, the Picard group and the Gauduchon degree of a class
VII surface.

Let X be a class VII surface. The condition x(X) = 0 implies the van-
ishing of the geometric genus py(X) == h%(Kx). Since X is non-Kéhlerian it
follows that b, (X) = 0, so the intersection form

(H*(X,Z)/Tors) x (H*(X,Z)/Tors) — Z
of the underlying oriented, differentiable 4-manifold is negative definite. There-

fore, by Donaldson’s first theorem ([16], [14]), this intersection form is standard
over 7Z, i.e. there exists a basis (e1,...,e,) of H*(X,Z)/Tors (with b :== ba(X))
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such that e; - e; = —d;;. Using the fact that ¢;(Kx) is a lift of w(X), one can
prove that there exists a basis (e1, ..., ep) of H?(X,Z)/Tors such that

b
€€ = _5ij7 Cl(lcx) + Tors = 2 €; -
i=1
A basis satisfying these two conditions is unique up to order, and will be called
a standard basis of H?(X,7)/Tors.

In general, the second Chern number c3(X) of a complex surface coincides
with its topological Euler characteristic. For a class VII surface X we obtain
c2(X) = b2(X). On the other hand, for a class VII surface X we obtain
h'(Ox) =1 (see for instance [35, Appendix]) which, together with py(X) = 0,
gives

(2) x(Ox) = 0.

By the Noether formula we obtain the following formula for the Chern numbers:

(3) (X)) = —ca(X) = —by(X).

Note also that, by Serre duality H°(Kx) = 0 implies H2(Ox) = 0, which
shows that on a class VII surface we have
(4) NS(X) = H*(X,Z).

In other words any class ¢ € H?(X,Z) is the Chern class of a holomorphic line
bundle.

We also need an explicit description of the group PicO(X ). Note first that,
for a class VII surface X, the canonical morphism H'(X,C) — H(X,O) is
an isomorphism ([29], [35]). Fixing an isomorphism f : Hi(X,Z)/Tors — Z,
we obtain associated isomorphisms v : Z > HY(X,Z), v¢ : C = H'(X,C)
given by the universal coefficients formula, and also an induced isomorphism

7¢.C* = C/2miz = HY(X,C)/2niHY(X,Z) = Pic’(X).

Fix 29 € X. For ¢ € C* the element 7°(¢) € Pic®(X) is the isomorphism class of
the flat line bundle £ associated with the representation p¢ : 71 (X, z9) — C*
which corresponds to ¢ via the composition
C* = Hom(Z,C*) B, Hom(H; (X, Z)/Tors, C*) —
— Hom(H;(X,Z),C*) = Hom(m1 (X, z0), C*).
Using the identification
C* 2 ¢ [L] = 75(C) € Pic (X)),
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the restriction to Pic’(X) of the degree map associated with a Gauduchon
metric g on X is given by

(5) degg(CC) :V91n|<|7

where v, € R* is a constant depending smoothly on g, and whose sign is
independent of g [22]. We will choose the initial isomorphism S such that
vg > 0, and with this choice the identification Pic?(X) ~ C* becomes canonical
(intrinsically associated with X).

1.4. Main results

We recall that a holomorphic rank » bundle £ is filtrable if it admits a
filtration (&;)1<i<r by coherent subsheaves such that rk(&;) =7 for 1 <i <r
(see [7, section 4.2]). On a projective surface any bundle is filtrable, but on
non-algebraic surfaces this is no longer true. This is a substantial difficulty in
understanding moduli spaces of bundles over non-algebraic surfaces, because
we have no general classification method for non-filtrable bundles.

Remark 1.2. Let & be a filtrable bundle of rank = 2 on a complex surface
X. Any rank 1 subsheaf of £ is contained in a rank 1 subsheaf M c £ with
torsion free quotient. Such a subsheaf M is invertible, and £/M is isomorphic
to LRZLz, where L is invertible and Z < X is a O-dimensional locally complete
intersection. Therefore £ fits in a short exact sequence of the form

0> M—->E->LRI; — 0,

where £, M are invertible sheaves, and Z < X is a 0-dimensional locally
complete intersection.

The main result of this article is (see section 2.2):

THEOREM 2.7. Let X be complex surface whose minimal model is a pri-
mary Hopf surface. Let {ey, ..., ey} be a standard basis of H*(X,Z). Then any
holomorphic rank 2 bundle € with c2(€) =0, det(€) ~ Kx on X fits in a short

exact sequence of the form
(6) 0->Kx®L - E—->L—-0,

where L is a line bundle on X with c1(L) = e; = Y, e for a subset I
{1,...,b}. In particular any such bundle is filtrable.

Note that the conclusion of the theorem in not true on minimal class VII
surfaces. For instance, using the results of [29] one can prove:
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Example 1.3. Let X be an Enoki surface with b = 1, and g be a Gaudu-
chon metric on X with deg,(Kx) < 0. The moduli space M%S;(E) can be
identified with a compact disk, whose boundary corresponds to the reduction
space R. The center of this disk corresponds to a twisted reduction [31, section

1.4], [32, section 1.3] which is not filtrable.

For the proof of Theorem 2.7 we make use of techniques developed by
Brussee in the algebraic framework. As in [8] we construct 2-bundles on a
blown up surface using an elementary transformation along the exceptional di-
visor. Brussee’s main result identifies the moduli stable of stable bundles (with
suitable topological invariants) over the blown up Yy of a projective algebraic
surface Y with a fiber bundle over a moduli space of stable bundles over the
original surface Y. Unfortunately such an identification cannot be obtained in
our (non-Kéhlerian) framework.

Let again X be a blown up primary Hopf surface. For any I < {1,...,b},
any line bundle £ with ¢;(£) = ey and any extension class € € Ext! (£, KQL") =
HY (K ® £L72) we obtain a rank 2 bundle £ which is the central term of an
extension of the form (6) with extension class €. Theorem 2.7 states that, on
blown up primary Hopf surfaces, all bundles £ with c2(£) = 0, det(€) ~ Kx
can be obtained in this way. The result can be used to describe explicitly
the moduli space M%St(E) at least for surfaces with small by, but important
difficulties remain: first, one has to select the pairs (£, ) as above which give
a polystable bundle; second, one has to control isomorphisms between bundles
associated with different pairs. The main tool used here is [30, Proposition
4.8], which allows one to classify all line subbundles of the 2-bundle associated
with a given extension class.

We will illustrate the method and the difficulties in section 3, in which we
describe explicitly the moduli space on blown up Hopf surfaces with by € {1, 2}
under the assumption deg,(Kx) < 0. This assumption is not restrictive: using
the construction of [22, p. 163], one obtains Gauduchon metrics on X for which
this inequality holds.

The case by = 1 will be treated in detail. The final result is simple (see
Theorem 3.9): denoting by D the exceptional divisor, and putting v = vy,
§ = deg, (Ox (D)), the moduli space M%S; (E) can be naturally identified with
the disk D(1 + e_g, 1-— e_g) bounded by the ellipse I'(1 + e_g, 1-— e_%) of
semi-axes (1 + efg, 1-— 67%). The boundary of the disk corresponds to the

unique circle of reductions.
In the case by = 2, the moduli space M3t (F) can be identified with

the complement of an ellipse in the product D(1 + e_%, 1-— e‘g) x P!, and
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M%S; (E) with the space obtained from D(1 + e*g, 1-— e*%) x P! by collapsing

the fiber over each point z € I'(1 + 67%, 1— 67%) to a point p, (see Theorem
3.12, Proposition 3.13).

2. GENERAL RESULTS
2.1. Filtrable bundles

We start with the following theorem, which concerns 2-bundles £ with
C?(S ) = C? (Kx) on an arbitrary class VII surface X. The theorem states that
any such a bundle has c; = 0, and any such bundle with ¢ = 0 which is
filtrable is a line bundle extension of a very special type.

THEOREM 2.1. Let X be a class VII surface, and (ey, ..., ep) be a standard
basis of H*(X,Z)/Tors. Let & be a holomorphic rank 2 vector bundle on X with

c1(€) + Tors = ¢1(Kx) + Tors
in H*(X,Z)/Tors. Then

1. 62(5) = 0.

2. Suppose that co(E) = 0, € is filtrable, and let M be a rank 1 subsheaf
of € with torsion free quotient (see Remark 1.2). Then L = E/M is
locally free, and c1(L) + Tors = ey = >, ;e; for a subset I — {1,...,b}.
Therefore £ fits in a short exact sequence

0—det()®L — & — L —0,

where L is an invertible sheaf with c¢i1(L) + Tors = ey for a subset I <
{1,...,b}.

Proof. (1) Taking into account that x(Ox) = 0 (see section 1.3), the
Hirzebruch-Riemann-Roch theorem gives
1 1
X(€) = 5(1(€)* = 205(6)) = 51 (E)er(Kx) = —ca(€) -
If co(E) < 0, we get x(£) > 0, s0 h°(€) > 0 or h2(&) = O (Kx ®EY) > 0. In
both cases it follows that £ is filtrable so, by Remark 1.2, it fits in an exact
sequence of the form

(7) 0>M—E—>LRT; 0,

where Z < X is a 0-dimensional local complete intersection, and £, M are line

bundles. Put | == ¢;(L£) + Tors, m = ¢1(M) + Tors, k = ¢1(Kx) + Tors. The

short exact sequence (7) gives
l

(8) +m=k, l-m+|Z| =c(E).
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Expanding with respect to (e, ...,e;) we obtain | = 2?21 x;e; with z; € Z,
and (8) gives
b
Dlwi(wi — 1)+ |Z] = ca(E).
i=1
But the left-hand side is non-negative, so the assumption c2(€) < 0 leads to a
contradiction.

(2) By Remark 1.2 the quotient £/M is isomorphic to LR Zz, where L is
invertible and Z < X is a 0-dimensional local complete intersection. Therefore
we obtain a short exact sequence of the form (7). The same computation as
above gives
b

.%'z(.TUZ — 1) + ’Z’ =0,
i=1
so x; € {0,1} for 1 < i < b, and Z = . On the other hand (7) gives
M =det(€) ® L. Putting [ = {i € {1,...,b}| z; = 1} the claim is proved.
O

2.2. 2-Bundles on blown up surfaces

In this section we make use of complex geometric analogues of the tech-
niques developed in [8, section 2| for bundles on projective algebraic surfaces.
Note that Brussee’s main result ([8, Corollary 5]) cannot be extended to our
non-Kéhlerian framework.

PROPOSITION 2.2. Let Y be a complex surface, yeY and m: X — Y be
the blow up at y with exceptional divisor D < X. Let L be a holomorphic line
bundle on'Y, and € be a holomorphic 2-bundle on X with det(€) = n*(L)(D).
One has

1. det(m(€)™) ~ L.
2. co(ms(£)™) = ca(E) — (WO (RI7i(€)) + hO(Q)), where Q = my (€)™ /T4 (E).

Proof. (1) The restriction of the line bundles det (74 (€)"") and £ to Y'\{y},
are isomorphic, so, by Hartogs theorem, they are isomorphic on Y.

(2) The Grothendieck-Riemann-Roch theorem for proper holomorphic mor-
phisms [24] gives:

9) ch(mE)td(Y) = 7y (ch(£)td(X)).
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Let 9 € HYY,Z), X € H*(X,Z) be the standard generators of H*(Y,Z),
H*(X,7) (the Poincaré duals of the standard generators of Hy(Y,Z), Ho(X,Z)).
Putting [ == ¢1(L), d = ¢1(O(D)), the hypothesis det(£) = 7*(L)(D) gives

61(5) = W*(l) +d.
The Chern character of a 2-bundle F on Y with ¢1(F) = [, co(F) = c2(E) is

1
(10) ch(F)=2+1+ 5(12 —2¢2(€)).
Using the formulae

td(X) = 7*(td(Y)) — %d, T (H*(Y,Q))-d =0, d* = -X,

ch(€) = 7*(ch(F)) + d + %dQ ,

we obtain:

7 (ch(E)td(X)) = 7, (ch(S)(w*(td(Y))—%d)) - w*(ch(E))td(Y)—%w* (ch(€)d) =

= ch(F)td(Y) — DY) + 1 = ch(F)id(Y).
Formula (9) becomes:
(11) ch(m(&)) = ch(F).
On the other hand one has
ch(m&) = ch(m4(&)) — ch(R w4 (£)) .

The sheaf 7, (&) is torsion free, so its singularity set Z is 0-dimensional;
it fits in an exact sequence

00— m(E) > ()" > Q—0,
where Q is a torsion sheaf whose support is Z. This exact sequence gives:
ch(m«(€)) = ch(m(E)”) — ch(Q).

For a torsion sheaf S on Y with O-dimensional support, the Hirzebruch-Riemann-
Roch theorem for coherent sheaves [23] gives the general formula

ch(S) = —c2(S) = h'(S)Y .
Therefore
(12)
ch(m«(E)™) = ch(mx(£)) + h°(Q)Y = ch(m&) + (R (R'm.(E)) + h°(Q))Y =
= ch(F) + (W’ (R'm(€)) + h°(Q))D.
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By part (1) proved above we have c1(m«(€)") = [, so

(13) ch(ma(E)™) = 24+ 1 + %(ﬂ — 2ey(ma(E)™)).
Formulae (10), (13) (12) give (via the usual identification H*(Y,Z) = Z):
ea(me(€)7) = e2(€) — (h*(R'mu(€)) + h(Q)) -
O]
COROLLARY 2.3. Under the assumptions of Proposition 2.2, one has

det(m4(E)) ~ L, and co(m4(£)Y) < c2(E) with equality if only if R (E) =0
and 74 (&) is locally free.

Let Y be a complex surface, and 7 : X = Yy — Y be the blow up at
y €Y. Let F be a holomorphic rank 2 vector bundle on Y with det(F) = L, let
w < F(y) be a 1-dimensional linear subspace, and ¢, : F(y) = Qu = F(y)/w
be the associated quotient. Lifting to X we obtain an epimorphism

quw,p T (F)p =O0p®F(y) = Op ® Qu,
so an epimorphism
Gw.0(D) : 7*(F)(D)p = O(D)p @ F(y) = O(D)p ® Qu -

The kernel
Fuw = ker(qy)
of the composition

7 (F)(D) ——— 7*(F)(D)p =2,

\/7

Juw

O(D)D @ Qw

is locally free of rank 2, and comes with a canonical epimorphism
q : Fuw — ker(quwp(D)) = O(D)p @ w

(see [9, section 6.1.1]). In the terminology of [9] the pair (F,,q’) is the ele-
mentary transformation of the pair (7*(F)(D), qy). The short exact sequence

0> Fp =7 (F)(D) > OD)p®Qyw — 0
gives
det(Fy) = det(n*(F)(D))(—D) = 7*(det(F))(D), ca(Fuw) = ca(F).

Using [9, Proposition 6.3] it follows that the restriction F,,p fits in a short
exact sequence

0> 0p®Qy — wD—>O(D)D®w—>0.
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Note that O(D)D®’UJ ~ OD(—l), Op®Q, ~ Op. Since Eth(OD(—l),OD) =
H'(Op(1)) vanishes, it follows that this exact sequence splits, so

Fubp ~0Op @ OD(—l) .

PROPOSITION 2.4. Let Y be a complex surface, y €Y and m: X — Y
be the blow up at y with exceptional divisor D < X. Let L be a holomorphic
bundle on'Y, and € be a holomorphic 2-bundle on X with det(€) = 7*(L)(D).
If R'my(€) = 0, then

1. &b~ Op ®Op(—1).
2. () is locally free.

3. Putting F = m(E) = m(E)", there exists w € P(F(y)) such that & ~
Fu-

Proof. (1) One has det(€)p ~ 7*(L)(D)p = O(D)p ~ Op(—1). Let M
be the maximal destabilizing line bundle of £p, and

(14) 0->M—=Ep-LH Ep/M —0

be the corresponding short exact sequence. Since M destabilizes £p and
deg(ép) = —1, one has deg(M) = 0, so M ~ Op(k) with & > 0. Denot-
ing by g the composition

£ Ep —L— Ep/M,
\/

q

one obtains the short exact sequence
(15) 0— U :=ker(q) = & Ep/M — 0,
which gives the exact sequence

R, () —» R'mu(Ep/ M) — R*mi(U) .

Since the all the fibers of m have dimension < 1, we have R%m,(U) = 0, so the
hypothesis R'7,(€) = 0 implies R'7.(Ep/M) = 0, where

gD/M ~ det(ED) ®Mv >~ OD(—l — k‘)
But the stalk of Rl7,(Ep/M) at y is
H'(Ep/M) ~ H' (Op(—1—k)) ~ H(Op(k - 1))",

where for the last isomorphism we used Serre duality. Since k > 0, we see
that the vanishing of this space implies k = 0. Therefore in the exact sequence
(14) we have M ~ Op, Ep/M ~ Op(—1). Since Ext},(Op(—1),0p) = 0, this
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short exact sequence splits, which proves the claim.

(2) The short exact sequence (15) gives the exact sequence

Since Ep/M ~ Op(—1) we obtain m(Ep/M) = 0, so m(U) = m(E). Using
again [9, section 6.1.1] it follows that U := ker(q) comes with an epimorphism
q : U — ker(q) = M, the pair (4, q’) is the elementary transformation associ-
ated with the pair (£, q), and the restriction Up fits in a short exact sequence
of the form
0— (Ep/M)(—=D) - Up > M — 0.

We have (ép/M)(—D) ~ Op, M ~ Op, so this short exact sequence splits,
and Up ~ OF?. Therefore, by [25, Theorem] it follows that m. (i) is locally

free, and the canonical morphism
T (m(U)) > U

is an isomorphism. Thus 7, (&) is locally free, too.

(3) [9, Proposition 6.3 (3)] gives an isomorphism ker(q") ~ £(—D). Tensorizing
with O(D) the short exact sequence 0 — ker(q') — U = M — 0, and putting
F = m(U) = m+(E), we obtain a short exact sequence

0 — ker(q')(D) ~ & - 7n*(F)(D) - M(D) ~ O(D)p — 0.

It suffices to note that the kernel of any epimorphism 7*(F)p — Op has the
form Op ® w for a line w < F(y). O

PRrROPOSITION 2.5. Let Y be a class VII surface, yeY, andm: X - Y
be the blow up at y with exceptional divisor D < X. Let € be a holomorphic
2-bundle on X with c2(€) = 0, det(E) = Kx. The sheaf F = m(E) is locally
free, has cao(F) = 0, det(F) = Ky, and there exists w € P(F(y)) such that
E~F,.

Proof. Note that det(€) = 7*(Ky)(D) so Corollary 2.3 applies with £ =
Ky . By this corollary the bundle F = m,(£)" on Y has det(F) = Ky, and
c2(F) < c2(€) = 0. By Theorem 2.1 (1) we have ca(F) = 0 so, using Corollary
2.3 again, we obtain that R'm.(£) = 0 and 7, (&) is locally free. The claim
follows by Proposition 2.4. O

LEMMA 2.6. Let Y be a primary Hopf surface, and £ be a holomorphic
2-bundle on'Y with ca = 0, det(€) = Ky. Then & fits in a short exact sequence
of the form

0->Ky®LY -E—>L—0,
with ¢1(L£) = 0.
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Proof. Taking into account Theorem 2.1 (2), it suffices to prove that &
is filtrable. If £ is not filtrable, it will be stable with respect to any Gaudu-
chon metric g on X. Therefore, fixing such a metric g, the Kobayashi-Hitchin
correspondence (see section 1.1) gives a Hermitian metric h on £ such that
the associated Chern connection Ay on the underlying differentiable bundle £
is Hermite-Einstein. Since A(E) = 4co(E) — ¢2(E) = 0, it follows that A, is
projectively flat (see [34, Remark 1.4]). Let yg € Y, v: [0,1] — Y be a smooth
loop representing a generator of the fundamental group m(Y,yo) ~ Z, and
X~ € U(Ey,, hy,) be the holonomy automorphism along v. Let w < Ey, be the
line generated by an eigenvector of h,. Therefore w is invariant with respect to
the whole holonomy group of Ay at yg. Applying to w parallel transport with
respect to Ay, along smooth paths starting at yg, one obtains a line subbundle
M < &, which will be parallel with respect to Ay, in particular holomorphic.
This contradicts the assumption “£ is not filtrable”. O

Now we can prove our main result:

THEOREM 2.7. Let X be a complex surface whose minimal model is a
primary Hopf surface. Let {e1,...,ep} be a standard basis of H*(X,Z). Then
any holomorphic rank 2 bundle € with c2(€) = 0, det(£) ~ Kx on X fits in a
short exact sequence of the form

0-Kx®L -E—-L—0,

where L is a line bundle on X with ¢1(L) = ey for a subset I < {1,...,b}. In
particular any such bundle is filtrable.

Proof. Induction with respect to bo(X): If bo(X) = 0, X is a primary
Hopf surface, so the claim follows by Lemma 2.6.

If by(X) > 0, then X = Yy for a surface Y whose minimal model is still
a primary Hopf surface, and one has by(Y) = bo(X) — 1. By Proposition 2.5
we have & ~ F,,, where F = m(€) = m4(€)" and w € P(F(y)). Moreover, we
have det(F) = Ky, ca(F) = 0 so, by induction, we know that F is filtrable.
Let j : M — F be a sheaf monomorphism, where M is a line bundle on Y.
The image of the composition

(M) s 7% (F) - x*(F)(D)

is contained in ker(q,) = Fu, so & is filtrable. The claim follows now from
Theorem 2.1 (2).
O
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2.3. Regularity results

We refer to [34, Propositions 2.6 (1)] for the following regularity result:

THEOREM 2.8. Let (X, g) be a complex surface endowed with a Gaudu-
chon metric g such that degg(lCX) < 0. For any polystable holomorphic bundle
E on X one has H*(Endy(£)) = 0.

COROLLARY 2.9. Under the assumptions of Theorem 2.8, let E be a dif-
ferentiable vector bundle on X, and D a holomorphic structure on det(E). The
moduli space MES(E) is a smooth complex manifold.

Moreover, using the comparison theorem [34, Propositions 2.6 (2)], it
follows that, under the assumption deg,(Kx) < 0, any reducible point in
MASP(E) = MY(E) is regular in the sense of [34, Definition 1.3]. Using
this result one obtains an explicit topological description of M%St (E) around
the reducible locus

R = MEY(E)\M(E).
Let X be a class VII surface with b :== b2(X) > 0, and let (e1,...,e,) be a
standard basis of H%(X,Z)/Tors. The set
Hx = {ce H¥(X,Z)| 3T c {1,...,b}, c+ Tors = e;}

comes with an obvious surjection p : Hx — P({1,...,b}) which identifies the

power set P({1,...,b}) with the quotient Hx /Tors. The involution Hx — Hx

given by ¢ — ¢ = ¢;(Kx) — c lifts the involution I ~ I = {1,...,b}\I on

P({1,...,b}). Denote by $Hx the quotient of Hx by the involution ¢ — ¢.
Recall that the (topological) cone of a topological space B is

Cp = [0,1] x B)/{O} < B

The vertex of the cone Cp is the point vg € Cp which corresponds to the
collapsed end {0} x B. With these preparations we can state (see [33] [34]):

COROLLARY 2.10. Let X be a class VII surface with b := by(X) > 0, and
g be a Gauduchon metric on X. Let E be a rank 2-bundle with c3(E) = 0,
det(E) = Kx, and R be the reducible locus in M%S; (E). Then

1. One has a natural bijection Hx — 7(R).

2. The connected component Ry.z associated with an element {c,c} € Hx
1s homeomorphic to a circle.

3. Suppose deg,(K)x) < 0. For any connected component Ry.z < R there

exists an open neighborhood Uy, zy of Ryc e in M%S; (E), and a homeo-
morphism R a % C]P,%ﬂ — U{cqp which induces the obvious identification

R{c,é} X {UP%_I} — R{C7é}.



17 The geometry of a moduli space of bundles 385

Remark 2.11. In the special case when Hy(X,Z) ~ Z, for instance when
the minimal model of X is a Hopf surface or a Kato surface, one has Tors = 0,
so p is a bijection. In this case we can identify Hx with P({1,...,b}), and
$Hx with the quotient B({1,...,b}) of P({1,...,b}) by the involution I — I.
PB({1,...,b}) is just the set of unordered two-term partitions of {1,...,b}.
Therefore in this case the circles of reductions in the moduli space are param-
eterized by unordered pairs {I, I}.

We will denote by R;r the circle associated with the unordered pair
{I,1}.

3. EXAMPLES OF MODULI SPACES

In this section we give explicit geometric descriptions of the moduli space
M, (E) for a blown up primary Hopf surface X with be(X) € {1, 2}.

3.1. M%S;(E) on blown up primary Hopf surfaces with by = 1
Let Y be a primary Hopf surface of the form
2
(16) y=C \{0}/<f>’ where f(z1,292) = (o121, agze) with |a;| < 1.

The images of the coordinate lines C x {0}, {0} xC in Y are elliptic curves,
which will be denoted by C, Cs respectively. One has a canonical isomorphism
Ky ~ O(—Cq — Cy).

Recall that (see for instance [7, Theorem 2.7, 2.13, Proposition 2.26]):

Remark 3.1. Let Y be a primary Hopf surface of the form (16). The
following conditions are equivalent:

1. There exists (k1, k2) € Nog x N5 such that o/fl = aé”.
2. a(Y) > 0, where a(Y") is the algebraic dimension on Y.
3. There exists a non-constant meromorphic function on Y.
4. Y is an elliptic surface.

5. There exists a line bundle A" on Y such that h°(N) > 2.

In order to avoid technical (but unessential) complications, we will assume
that Y is not elliptic, so that h°(N') < 1 for any line bundle A" on Y. Moreover,
this assumption also implies that the only irreducible curves on Y are C; and
Cs.
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Fix a point y € Y\(C1 U Cy), let 7 : X = Yy — Y be the blow up at y,
and D < Y be the exceptional divisor. We will denote by the same symbols
the lifts of the curves C; to X. Put d = ¢1(Ox (D)) = c1(Kx).

Remark 3.2. The assignment (m,ni,ng) — mD + n1Cy + nyCy defines
a bijection between N3 and the set of effective divisors on X. In particular
HY(L) = 0 for any line bundle on X with c;(£) € Zod.

Using the isomorphism Ky ~ Oy (—C; — C3) we obtain
(17) Kx ~Ox(D—Cy —Cy).
Denote by £, 9 € Pic?(X), ¢; € Pic’(X) the isomorphism classes of the

line bundles Kx, Ox (D), Ox(C;) respectively. Let g be a Gauduchon metric
on X, and

K= deg,(Kx), 6 = deg,(Ox(D)), v = deg,(Ox(C;))-
Using [22, Proposition 1.3.5] we obtain d > 0, v; > 0. Formula (17) implies
(18) E=0®q'®cg, k=0—71 — 2.
By Theorem 2.7 we know that any rank 2-bundle £ on X with c2(€) =0,
det(€) = Kx fits in a short exact sequence
(19) 0-Kx®L 5L £50

with ¢;(£) € {d,0}. For fixed L, the extensions of the form (19) are classified
by elements in

Ext' (L, Kx ®L) = H{(Kx ® L7?).
The Riemann-Roch and Serre duality theorems combined with formula (2)
give:

1
RHKx ®L72) = -3 (GF(Kx @ L) —c1(Kx @ L)1 (Kx)) +
+h'(Kx ® L7%) + n0(L?).
Taking into account Remark 3.2, we obtain

) 1+ hO(L2) it e(l)=d
(20)  Al(Kx®L 2)={ WO (Kx ® £L72) + hO(L?) if ci(£)=0 '

The component Pic?(X) of the Picard group comes with a natural invo-
lution ¢ : Pic?(X) — Pic?(X) given by
(=t

and whose fixed points are the two square roots [, [ of the equation I? = £®0d.
Consider the analytic subset

A= {l = [£] € Pic!(X)| h°(L2 @ K(—D)) > 0} c Pict(X).
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Note that
(21) Aniu(A) = {[’, [”}.

Put B := A\{l',1"}. Using Remark 3.2, it follows easily that this set is empty
when § < min(y1,y2).

PROPOSITION 3.3. Let [ := [£] € Pic?(X) with h°(£?) = 0. Then
1. All non-trivial extensions of L by K & L” are isomorphic.
2. Let € be a non-trivial extension of L by K&Q LY. Then

(a) € has a line subbundle L' isomorphic to L(—D), if and only if | ¢
((B).

(b) For I ¢ 1(B) the line subbundle L' is unique. The corresponding
extension of Kx @ L ~ Kx ® L(D) by L' ~ L(—D) is split if and
only if l € B.

Proof. (1) Taking into account the hypothesis, formula (20) gives
dim(Ext' (£, Kx ® L)) = 1.

Recalling that the canonical C*-action on the extension space of two bundles
does not change the isomorphism class of the central term, the claim follows.

(2) (a) Suppose first that £ has a line subbundle isomorphic to £(—D). In
other words there exists a bundle embedding j : £L(—D) — £. We have to
prove that [ ¢ ((B). Consider the diagram

0 — Kkx®L ——& L1 0

i)
L(-D)

in which the horizontal row is the non-trivial extension defining £, and denote
by € € H'(Kx ® L£L72) the corresponding extension class.

If te {I, 1"} we have [ ¢ ((B), so the claim is proved.

If [ ¢ {I',["}, then [ is not a fixed point of ¢, so L(—D) # Kx ® L".
Therefore j does not factorize through 4 (if it did factorize, the obtained mor-
phism £(—D) - Kx ® L would be an isomorphism), so po j does not vanish.
Rescaling if necessary, we may suppose that p o j is the canonical monomor-
phism £(—D) — L, so j is a lift of this canonical monomorphism.

By [30, Proposition 4.8] this canonical sheaf monomorphism has a lift j
to &£ if and only if there exists 0 € H*(Kx ® £L~2(D)p) which is mapped to
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via the connecting morphism p in the canonical exact sequence
(22) 0->HKx®L? - H(Kx®L D)% H(Kx® L *D)p) %
B H(Kx®L7?) — ...

If, by reductio ad absurdum [ € «(B), then [ € +(A), ie. h'(Kx ®
L£72(D)) > 0. This gives Kx ® L72(D) ~ O(n1C1 + n2C3) with n; € N,
and Kx ® L72 ~ O(—=D + n1Cy + naCy), which implies

WKx®L?) =0, W (Kx®L*D)) = 1.
On the other hand ¢;(Kx ® £L72(D)) = 0, so (since D is a projective line) we
get (Kx ® L72(D)p ~ Op, and h°(Kx ® L72(D)p) = 1. This shows that in
the canonical exact sequence above u is an isomorphism, so i vanishes. Since
€ # 0 by assumption, it follows that ¢ cannot have a lift via pu.

Conversely, suppose that [ ¢ ((B). Therefore either [ € {I',["} or [ ¢ 1(A),
i.e. h9(Kx ® L72(D)) = 0. In the former case one has K ® L* ~ L(—D), so it
suffices to take £ :== i(KX® L"). In the latter case it follows that the morphism
p in (22) is an isomorphism. Therefore ¢ has a lift in 0 € HY(Kx ® L72(D)p),
so the canonical monomorphism £(—D) — £ has a lift j : £L(—D) — £. Since
o is nowhere vanishing (because (Kx ® L72(D)p ~ Op), it follows by [30,
Proposition 4.8 (5)] that j is a bundle embedding.

2)(b) Suppose [ ¢ +(B). We prove first the unicity of £'. We have two cases:
(

(i) Le {I',1"}. Suppose by reductio ad absurdum that £ admits a line subbundle
L' ~ L(—D) which does not coincide with i(x ® LY). We get a bundle
embedding j : L(—D) — £ with poj # 0. As in the proof of (3)(a) we may
assume that p o j is the canonical monomorphism £(—D) — £. But in this
case Kx ® L72(D) ~ Ox, Kx ® L72 ~ Ox(—D), and the same method as
above shows that this canonical monomorphism does not admit a lift to £.
(ii) [ ¢ ¢(A). Since in this case [ ¢ {I',["}, any line subbundle £ ~ L£(—D)
of £ is the image of a lift of the canonical monomorphism £(—D) — L. The
difference of two such lifts belongs to

Hom(L(~D), Kx®L") = H*((L(~D)) ®(Kx®L")) = H'(Kx®L (D)) = 0,

which proves the claim.

It remains to prove that the obtained extension of Kx ® £ by L' is split
if and only if [ € B. Suppose [ € B. We have

(23) Hom(Kx ® L', L(-D)® (Kx ® L'(D))) = (Kx ® L%(—D)) ® O(D).

The condition [ € B is equivalent to Ky ® £L2(—=D) ~ O(C), where C =
n1Cy + neCo with (n1,n2) € N x N\{(0,0)}. Since C n D = &, formula (23)
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shows that there exists a bundle embedding
Kx®L — L(-D)® (Kx®L(D)),
so the direct sum £(—D)® (Kx ® LY(D)) can be written as an extension of £
by Kx ® L, which must be non-trivial, because, since C # (7,
L(-D)®(Kx®L' (D)) #(Kx®L)DL.

Taking into account part (1) proved above, it follows

L(-D)®(Kx®L(D)) ~E&.
Conversely, if £ is a trivial extension of Cx®L"Y ~ KxQLY(D) by L ~ L(—D),
there exists a bundle embedding Kx ® L” — L(—D)® (Kx ® LY(D)), so, using
(23), we obtain HO(K®L2(—D)) # 0, so [ € A. Moreover, [ ¢ {I',["}, because,
for [e {l', 1"} we know that L = i(Kx®L"), so the extension associated with £’

can be identified with the initial extension defining £. But this initial extension
was non-trivial. Therefore [ € A\{l', "} = B. O

Put
S={l=[£]ePicd(X)| PRt '®0! =" ®c," with (n1,n2) € N* x N*}.
Note that the sets {l',1"}, B, «(B), S, «(S) are pairwise disjoint. Using the
same method as in the proof of Proposition 3.3, we obtain:

PROPOSITION 3.4. Let [ == [£] € Pic?(X) with h°(£2?) = 0, and € be a
non-trivial extension of L by Kx ® L. Then

L Iftg {U,1I"} U BuuB)uSul), € has exactly two line subbundles,
which are isomorphic to Kx ® L and L(—D) respectively.

2. If Le {I',1"} U u(B) = t(A), € has exactly one line subbundle which is
isomorphic to Kx ® L.

3. Letle S, and (n1,ns) € N* x N* be such that PQE1I1®07! = 1 ®@c; ™.
Then £ has exactly three line subbundles, which are isomorphic to Kx ®
LY, L(—D) and L(—n1C1) respectively.

4. Let | € «(S), and (n1,n2) € N* x N* be such that P @t ' @071 =
¢; "'®cy?. Then £ has exactly three line subbundles, which are isomorphic
to Kx ® LY, L(—D) and L(—n2C2) respectively.

We can now prepare our geometric description of the moduli space. The
open subset

Q= {1 = [£] e Pic*(X)] g < deg(L) < g + 6} < Pic(X)

is -invariant, and contains the fixed point locus {I', "} of «.
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Remark 3.5. Suppose deg,(Kx) < 0. For any [£] € Q one has h°(L?) = 0.

Proof. If h°(£?) > 0, Remark 3.2 gives £2 = O(2D + n1Cy + noCs) with
n; € N, so degg(ﬁ) > ¢, which, under the assumption x < 0, contradicts the
second inequality in the definition of €. O

THEOREM 3.6. Suppose deg,(Kx) < 0.

1. Let [ = [£] € Pic!(X) with h°(L?) = 0, and & be a non-trivial extension
of L by Kx ® LY. € is stable if and only of € Q\B.

2. Let € be a holomorphic bundle on X with c2(€) = 0, det(€) = Kx
which is stable. Then there exists [L] € Q\B such that £ is a non-trivial
extension of L by Kx ® L.

Proof. (1) Suppose that & is stable. If [ € B, £ splits as a direct sum of
line bundles by Proposition 3.3 (2)(b), so it cannot be stable. Therefore [ ¢ B.
We now show that [ € Q. For [ ¢ «(A), £ has two line subbundles isomorphic
to Kx ® L, L(—D) respectively, and the stability condition corresponding to
these subsheaves gives
g<deg(£) <g+5,
so [ € Q. Finally, if [ € ¢(A), one has h°(Kx ® £L~2(D)) > 0, which gives

K 0 K
<—+-<—-+456.
deg, (L) 5 15 < 2—1—6
On the other hand, the stability condition for the subbundle Kx®L" — &

gives § < deg(L).

Conversely, let [ € Q\B. We prove that £ is stable. By Theorem 2.1(2)
we know that any non-trivial subsheaf with torsion free quotient of £ is a line
subbundle. Therefore, to check the stability condition it suffices to verify the
inequality required in Definition 1.1 for all line subbundles of £, which are
classified by Proposition 3.4. It is easy to see that none of these subbundles
destabilize £. Note that the condition deg,(Kx) < 0 plays a crucial role in the
case [€ S U (9).

(2) We know that & fits in an exact sequence of the form (19) with ¢;(£) €
{0,d}. Since & is stable, this extension is non-trivial. We have three cases:

(i) c1(L) = d, h%(L?) = 0. In this case the claim follows from (1).

(ii) e¢1(£) = 0. Since the extension is non-trivial, formula (20) gives
RO(Kx ® £L72) = 1 or h°(£?) = 1. The stability condition for the subbundle
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Kx®L" — & gives degg (ICX®L_2) < 0, so the first case is ruled out. Therefore
R%(£?) = 1, and Lemma 3.7 stated below shows that £ is also a non-trivial
extension of £; by K ® L] (for i € {1,2}), where ¢;1(£;) = d, h°(L?) = 0. The
claim follows from (1).
(iii) e1(L) = d, h°(L?%) = 1. Since £ is stable, it cannot be isomorphic to
a direct sum of line bundles, so, by Lemma 3.8 stated below, £ is a non-trivial
extension of a line bundle £ by K ® £, where ¢1(L’) = 0. The claim follows
from (2)(ii).
O

The proofs of Lemmata 3.7, 3.8 below follow the method used for Propo-
sition 3.3, so they will be omitted.

LEMMA 3.7. Let [£] € Pic®(X) with h°(L%) = 1, and nq, na € N be such
that L2 ~ O(n1C1 + n2C3). Let £ be a non-trivial extension of L by K ® L.
Then & is also a non-trivial extension of KQ L ((n; +1)C;) by L(—(n; +1)C;)
forie{1,2}.

Putting L; = K ® L"((n; + 1)C;), one has c¢1(L;) = d, h°(L?) = 0.

LEMMA 3.8. Let [£] € Pic(X) with h%(L?) = 1, and ny, na € N be such
that £2 ~ O(2D + n1Cy + n2Cy). Define the lines A, A1, Ay ¢ H' (K ® L2) by

A =im(HYK® L£*(D)p) - HY(K® L?)),

Ay = im(HO (K ® L2((ns + 1)Ci) (n,11)c,) = H'(K® L?)).
Let € be a non-trivial extension of L by K ® LY, and let ¢ € H' (K ® £2)\{0}
be the corresponding extension class.

1. Ife€ A, then & ~ L(—D) ® (K ® L*(D)).
2. Ifee Aj, then & ~ L(—(n; + 1)C;) @ (K® L ((ni + 1)C)).

3. If e e HY{(K ® LY\(A U A1 U Ag), then € is a non-trivial extension of
K®L((n1 +1)Cy + (ng 4+ 1)C3) by L(—(n1 + 1)C1 — (ng + 1)Cy).

Recall (see section 1.3) that we defined a canonical identification
C* 3¢ [£L¢] € Pic’(X)

and, with respect to this identification, we have the identity deg, (L) = v In 2|
for a positive constant v = v, depending smoothly on g. The map

F:Pic(X) - Pic?(X) =C*, F(I) =t®1[!

o K
v

2oy ew), D),
), and [ is the

Q’l

is a biholomorphism and maps the pair (£2,:) on the pair (A(e
v, e

R . . . . Ko
where A(e2v ~v,e2v) < C* is the annulus of biradius (e2v " v
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involution z +— (E®0~1)z~!. Denoting by D(a, B) the interior of the compact
disk D(«, ) bounded by the ellipse I'(cr, ) of semi-axes o, 3, we obtain a
biholomorphism
Q ~ _9 _9

D /<L>—> D(1+e v,1l—e V)
given explicitly by
(24) [—p e 2 (I +07'Q10),
where € S! is a square root of E®071/|E®0!|. Note that

|Q N B| = 2|{(n1,n2) e N x N\{(0,0)H n1yr + noys < 5}| ,

in particular this set is finite. Let R be the equivalence relation on 2\ B induced
by the {¢)- congruence on 2. The map

DB/ =Y

induced by the inclusion Q\B <  is obviously a biholomorphism, because
any (ty-orbit in € intersects Q\B. Therefore formula (24) also defines a bi-
holomorphism

v 0B = pipe i1t

With these preparations we can prove:

THEOREM 3.9. Suppose deg,(Kx) < 0. For [ = [L] € Q denote by € the
isomorphism type of a non-trivial extension of L by Kx ® L (see Proposition
3.3(1), Remark 3.5). The map Q\B 3 (L € e M3t (E) is holomorphic, sur-
jective, R-invariant, and induces a biholomorphism F : Q\B/R — M%X(E)
The composition

FoU ' :Dl+e s, 1—ev)= M (E)
is biholomorphic, and extends to a homeomorphism

— _é _5y ~ pst
D(l+e v,1—e"v)= M (E).

Proof. Let .2 be a Poincaré line bundle on Pic?(X) x X. Therefore, for
any [ € Pic?(X), the restriction £; of .2 to the fiber {I} x X ~ X belongs to
the isomorphism class [. Denote by %, the restriction of .Z to 2 x X.

Since Q is Stein, we have H!(pa.(p(Kx) ® £5%)) = 0, so, using the
Leray spectral sequence associated with the coherent sheaf p% (Kx)®.2, 2 and
the proper holomorphic map pq, it follows that the canonical morphism

(25) H'(pk (Kx) ® £57%) — H°(R'pa«(pk (Kx) ® £5?))

is an isomorphism. By formula (20) and Remark 3.5, we have h! (Kx®L; %) = 1
for any [ € Q, so, by Grauert’s local freeness theorem, it follows that the sheaf
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Rl'pas(p% (Kx) ® Z5?) is invertible. Since H'(Og) = 0 (because  is Stein),
and H?(),Z) = 0, we obtain (using the cohomology exact sequence associated
with the exponential sequence) H(O&) = 0, so any holomorphic line bundle
on Q is trivial. Therefore R'po.(p% (Kx) ® £;?) has a nowhere vanishing
section o. Let

Y e H' (px (Kx) ® Z57%) = Ext! (Lo, pk (Kx) ® £5)
be the pre-image of o via the isomorphism (25), and
0-px(Kx)® Ly — & > La—0

be the associated extension. Regarding & \(Q\ B)xx as a holomorphic family of
stable bundles parameterized by Q\B, we obtain a holomorphic map Q\B —
M3t (E) which coincides with f; indeed, the restriction & of & to {I} x X ~ X
is a non-trivial extension of £; by Kx®L/, so it belongs to the isomorphism class
¢. The surjectivity of f follows from Theorem 3.5 (2), and the R-invariance
from Proposition 3.3. Therefore f induces a holomorphic, surjective map

F QB At (B).

We claim that F' is injective. Indeed, if &, ~ &,, then &, contains a line
subbundle isomorphic to Kx ® L. By Proposition 3.4 this implies Kx ® L, ~
Kx®L{, or Kx @ L, ~ Ly, (—D). Therefore lo =l or Iy = ¢(l1), so [; R lo.

Therefore F' is a holomorphic bijection between smooth complex mani-
folds, so it is a biholomorphism. The homeomorphic extension

= _3 _5 ~ pst
D(l+e v,1—ev)—= My (E)

of F oW1 is constructed using elliptic semicontinuity, as in the proof of [29,
Proposition 4.4].

Remark 3.10. The obtained homeomorphism D(l—l—e_g, 1—e_g) — M%S;{ (E)

maps the boundary I'(1 + e_%, 1-— 6_%) of the disk on the unique circle of re-
ductions R = Rg (1} in the moduli space (see Remark 2.11). The result is
compatible with Corollary 2.10(3) which describes the topology of M%S;(E)
around a circle of reductions.

Remark 3.11. For deg,(Kx) > 0 the moduli space M3, (E) contains the
isomorphism class of the nontrivial extension on x by Ox, and M%X(E) is
singular at this point. This follows using the arguments of [29, Proposition 3.3
(5)]. This shows that the condition deg,(Kx) < 0 is crucial in our regularity
Theorem 2.8.

O]
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3.2. M%S;(E) on blown up primary Hopf surfaces with by = 2

Let now X = }Afyhyz be the blown up of a non-elliptic primary Hopf
surface Y of the form (16) at two distinct points y1, y2 which do not belong to
C1u Cy. Let Dy, D5 be the corresponding exceptional divisors, D := D + Do,
dz‘ = Cl(Ox(Di)), d:= dl + dg, 51 = degg((’)X(Di)), and § == (51 + (52.

We define the involution ¢ : Pic?(X) — Pic?(X), and the subsets Q, B of
Pic?(X) as in the case by = 1. Let ¢’, ¢” be the images of the i-fixed points [,
[” € Q, and S be the image of «(B) n  via the composition

~ _s _s
Q—)Q/<L>L) (1"‘6 V7]__6 1/)7

where O : Q/<L> — D(1+ 67%, 1-— 67%) is the biholomorphism given by (24).

The following statements give explicit geometric descriptions of the mod-
uli spaces M3t (E), M%S; (E) in the case deg,(Kx) < 0. The proofs use
the methods explained in detail in the previous section, combined with results
specific to the case by = 2 [32].

THEOREM 3.12. Suppose deg (Kx) <0, 61 # 2. There erists:

1. A divisor A < D(1 + e_%, 1-— e‘g) x P! such that the restriction
pla: A — D1+ e_g, 1— e_%)

of the projection on the first factor is a flat finite map of degree 2 which
identifies Sing(A) with S and its ramification locus with {¢’, ¢"}.

5o 51 5

2. A lift T' < A of the ellipse I‘((fé71 te v, le" v —e v |) via pla.
3. A biholomorphism
§:(D(1+e7,1— %) x PO\L - Mt (B)
which maps

(a) the set (D(1 + e_%, 1-— e‘g) x PY\A onto the set of isomorphism
classes of stable extensions of the form (19) with c¢;(L£) = d.
(b) the set A\I" onto the set of isomorphism classes of stable extensions

of the form (19) with c¢1(L) € {dy,d2}.

To obtain My (E) we have to compactify Mt (E) by adding two circles
X X
of reductions. Using the notation introduced in Remark 2.11 we have:
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PropoOSITION 3.13. Under the assumptions of Theorem 3.12, let 11 be the
_ S )
space obtained from D(1 + e v,1—e v) x P! by collapsing the fiber {z} x P!
over each point z € T'(1 + efg, 1- efg) to a point p,. Then § extends to a
homeomorphism II — M%S; (E) which maps the ellipse
"= {p.| zeT(l+e v, 1—e )} I

onto the circle of reductions Ry (1,2y, and the ellipse I' < I onto the circle of
reductions Ry} (2}-

Remark 3.14. The obtained descriptions of the moduli space M%X(E)
for by € {1, 2} confirm the main result of [36], which states that, on any blown
up primary Hopf surface, this moduli space does not contain any compact
connected component.
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