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THE GEOMETRY OF A MODULI SPACE OF BUNDLES

ANDREI TELEMAN

Let X be a class VII surface with b2pXq ą 0. Following ideas developed in
previous articles, we study the moduli space

MX – Mpst
KX
pEq ,

where E is a differentiable rank 2 bundle on X with c2pEq “ 0, and detpEq “
KX , the underlying differentiable line bundle of the canonical line bundle KX . In
this article we are interested in the non-minimal case: assuming that the minimal
model of X is a primary Hopf surface, we prove that any point in the moduli
space is a line bundle extension, and we give explicit geometric descriptions of
MX for b2pXq P t1, 2u.

Our motivation comes from the classification theory of class VII surfaces.
Let X0 be a minimal class VII surface with positive b2 which is the deformation
in large of a family of blown up primary Hopf surfaces. In other words X0 is the
central fiber of a holomorphic family pXzqzPD, where Xz is a blown up primary
Hopf surface for any z ‰ 0. The classification of minimal class VII surfaces with
this property is still an open problem.

The moduli space MX0 associated with an unknown such surface X0 will
be “the limit” of the family pMXz qzPD‚ of moduli spaces associated with blown
up primary Hopf surfaces.
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1. INTRODUCTION

In this section we explain the notions, the terminology and the formalism
used in this article, and we present the main results and their motivation.

1.1. Moduli spaces of polystable bundles on Gauduchon surfaces

By surface we mean a compact, connected, complex manifold of dimension
2 [3]. It is well known ([26], [11], [12]) that a complex surface is Kählerian, i.e.
it admits a Kähler metric, if and only if b1pXq is even.

Let X be a complex surface. We will denote by KX the canonical line
bundle of X, i.e. the line bundle of holomorphic 2-forms. The Picard group
of X is the group of isomorphism classes of holomorphic line bundles on X;
it can be identified with H1pX,O˚Xq, has the natural structure of a complex
Lie group, and will be denoted by PicpXq. The first Chern class map defines
a group morphism

c1 : PicpXq Ñ H2pX,Zq
whose image is the Neron-Severi group

NSpXq– kerpH2pX,Zq Ñ H2pX,OXqq .

For a class c P NSpXq we denote by PiccpXq Ă PicpXq the fiber over c of the
morphism c1. The kernel Pic0pXq of this morphism is the identity component
of PicpXq; it can be identified with the quotient H1pX,OXq{2πiH

1pX,Zq, and
is compact if and only if b1pXq is even (see for instance [35, Appendix]).

A Hermitian metric g on X is called Gauduchon if ddcωg “ 0, where
ωg P A

1,1pXq is the Kähler form of g. An important result of Gauduchon [17]
states that any conformal class of Hermitian metrics contains such a metric, so
there is no obstruction to the existence of Gauduchon metrics. A Gauduchon
metric g on X gives a degree map

(1) degg : PicpXq Ñ R

defined by

deggprLsq “
ż

X
c1pL, hq ^ ωg ,

where h is a Hermitian metric on L, and c1pL, hq is the first Chern form of the
Chern connection associated with h. Since ddcωg “ 0, the right hand term in
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(1) is independent of h, so degg is well defined. The degree map is a morphism

of real Lie groups; it is a topological invariant (i.e. it vanishes on Pic0pXq) if
and only if b1pXq is even.

For a coherent sheaf F on X one defines

deggpFq– deggpdetpFqq ,

where detpFq is the determinant line bundle (invertible sheaf) of F (see [20]).

Definition 1.1. Let pX, gq be a complex surface endowed with a Gaudu-
chon metric. A holomorphic bundle E on X is called

1. stable, if, for any non-trivial coherent subsheaf F Ă E with torsion free
quotient, one has

1

rkpFq
deggpFq ă

1

rkpEq
deggpEq .

2. polystable, if it decomposes as a direct sum E “
Àk

i“1 Ei, where Ei are
stable bundles with 1

rkpEiqdeggpEiq “ 1
rkpEqdeggpEq.

The Kobayashi-Hitchin correspondence ([15], [14], [10], [21], [22]) states
that a holomorphic vector bundle E is polystable if and only if it admits a
Hermitian metric h such that the associated Chern connection Ah is Hermite-
Einstein.

Let pE, hq be a differentiable Hermitian vector bundle of rank r over
X. Fix a holomorphic structure D on the determinant line bundle detpEq.
We will denote by Mst

DpEq, M
pst
D pEq the moduli spaces of stable, respectively

polystable holomorphic structures on E inducing the fixed holomorphic struc-
ture D on detpEq, modulo the complex gauge group of SL-automorphisms of
E.

Note that Mst
DpEq has the natural structure of a complex space [22], but,

in the non-Kählerian framework, Mpst
D pEq is not always a complex space (see

[29], [32], [9] and the results in this article).

Let a be the Chern connection of the pair pD, detphqq, and let MASD
a pE, hq

(MASD
a pE, hq˚) be the moduli space of (respectively irreducible) projectively

ASD Hermitian connections on pE, hq inducing the fixed connection a on
detpEq, modulo the real gauge group of SU-automorphisms of E (see for in-
stance [29], [34] for details).

The Kobayashi-Hitchin correspondence can be reformulated in terms of
moduli spaces [22]: it gives a bijection

KH : MASD
a pEq »Ñ́Mpst

D pEq
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which restricts to a real analytic isomorphism MASD
a pEq˚ »

Ñ́Mst
DpEq. We will

endow Mpst
D pEq with the topology which makes KH a homeomorphism; this

topology is metrizable, because the instanton moduli space MASD
a pEq has this

property [14].
The complement

R – Mpst
D pEqzMst

DpEq
is the space of isomorphism classes of split polystable bundles in the moduli
space, and can be identified via the Kobayashi-Hitchin correspondence with
the space of reducible projectively ASD Hermitian connections on pE, hq. This
complement will be called the space of reductions in the moduli space.

Stability theory for bundles has been studied intensively on projective
algebraic surfaces: in this framework the theory found important applications
in 4-dimensional differential topology, for instance the first computation of
Donaldson invariants [15]. Moreover, in algebraic geometry we have classical
tools which, in many cases, allow a complete classification of bundles with fixed
topological invariants.

In the non-algebraic, and especially non-Kählerian framework, the situ-
ation is more difficult. A major difficulty is the appearance of non-filtrable
bundles, for which we do not have a general classification method (see section
1.4). However nowadays several explicit descriptions of moduli spaces of stable
and polystable bundles on non-Kählerian surfaces are known. We mention in
particular [4], [28], [22, Sections 6.3, 6.4], [1], [2], [5]–[6].

This article is concerned with certain moduli spaces of polystable bundles
on class VII surfaces which play an important role in our programme to com-
plete the classification of this class of surfaces up to deformation equivalence
[32], [34].

1.2. Class VII surfaces

We recall that, in the theory of complex surfaces [3], the class VII is the
class of surfaces X with b1pXq “ 1 and κpXq “ ´8. The former condition
is topological, and implies that such a surface is not Kählerian. The latter is
equivalent to the vanishing of h0pKbnX q, for all positive integers n.

Class VII surfaces are not classified yet. It is known [27] that any class
VII surface with b2 “ 0 is biholomorphic to either a Hopf surface, or an Inoue
surface, but the method of proof does not generalize to surfaces with positive b2.
We have an interesting class of “known” minimal class VII surfaces with b2 ą 0,
namely the Kato surfaces. By definition, a Kato surface is a minimal class VII
surface X with positive b2 which contains a global spherical shell, i.e. an
open submanifold which does not disconnect the surface, and is biholomorphic
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to a standard neighborhood of S3 in C2. Note that Kato surfaces are well
understood ([18], [19], [13] [35]).

The classification will be completed if the following fundamental conjec-
ture of the theory is proved:

Conjecture. Any minimal class VII surface with b2 ą 0 is a Kato
surface.

The conjecture has been proved for b2 “ 1 [29]. Note that all Kato
surfaces with fixed b2 are deformation equivalent, and they are deformations in
large of blown up primary Hopf surfaces; more precisely for any Kato surface X
there exists a proper holomorphic submersion p : X Ñ D such that p´1p0q » X,
and p´1pzq is a blown up primary Hopf surface for any z ‰ 0.

A weaker conjecture, which will solve the classification problem up to
deformation equivalence, states that any minimal class VII surface with b2 ą 0
is a deformation in large of blown up primary Hopf surfaces.

This weaker conjecture has been proved for b2 ď 3 (see [32], [34]) using
ideas introduced in [29]: For an unknown minimal class VII surface X one
studies geometric properties of the moduli space Mpst

KX pEq, where E is a rank
2 differentiable bundle on X with c2pEq “ 0, detpEq “ KX , where KX is the
underlying differentiable line bundle of the canonical holomorphic line bundle
KX .

In this article we will study the same moduli space, but on a surface
which is a blown up primary Hopf surface, hence a known surface. We believe
that the obtained results are useful for understanding Mpst

KX pEq on an unknown
class VII surface X which is a deformation in large of a family of blown up
primary Hopf surfaces.

1.3. Standard properties of class VII surfaces

In this section we explain briefly standard results on the intersection
form, Chern numbers, the Picard group and the Gauduchon degree of a class
VII surface.

Let X be a class VII surface. The condition κpXq “ 0 implies the van-
ishing of the geometric genus pgpXq – h0pKXq. Since X is non-Kählerian it
follows that b`pXq “ 0, so the intersection form

pH2pX,Zq{Torsq ˆ pH2pX,Zq{Torsq Ñ Z

of the underlying oriented, differentiable 4-manifold is negative definite. There-
fore, by Donaldson’s first theorem ([16], [14]), this intersection form is standard
over Z, i.e. there exists a basis pe1, . . . , ebq of H2pX,Zq{Tors (with b– b2pXq)
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such that ei ¨ ej “ ´δij . Using the fact that c1pKXq is a lift of w2pXq, one can
prove that there exists a basis pe1, . . . , ebq of H2pX,Zq{Tors such that

ei ¨ ej “ ´δij , c1pKXq ` Tors “
b
ÿ

i“1

ei .

A basis satisfying these two conditions is unique up to order, and will be called
a standard basis of H2pX,Zq{Tors.

In general, the second Chern number c2pXq of a complex surface coincides
with its topological Euler characteristic. For a class VII surface X we obtain
c2pXq “ b2pXq. On the other hand, for a class VII surface X we obtain
h1pOXq “ 1 (see for instance [35, Appendix]) which, together with pgpXq “ 0,
gives

(2) χpOXq “ 0 .

By the Noether formula we obtain the following formula for the Chern numbers:

(3) c2
1pXq “ ´c2pXq “ ´b2pXq .

Note also that, by Serre duality H0pKXq “ 0 implies H2pOXq “ 0, which
shows that on a class VII surface we have

(4) NSpXq “ H2pX,Zq .

In other words any class c P H2pX,Zq is the Chern class of a holomorphic line
bundle.

We also need an explicit description of the group Pic0pXq. Note first that,
for a class VII surface X, the canonical morphism H1pX,Cq Ñ H1pX,Oq is
an isomorphism ([29], [35]). Fixing an isomorphism β : H1pX,Zq{Tors Ñ Z,
we obtain associated isomorphisms γ : Z »

Ñ́ H1pX,Zq, γC : C »
Ñ́ H1pX,Cq

given by the universal coefficients formula, and also an induced isomorphism

γ̄C : C˚ “ C{2πiZ »
Ñ́ H1pX,Cq{2πiH1pX,Zq “ Pic0pXq.

Fix x0 P X. For ζ P C˚ the element γ̄Cpζq P Pic0pXq is the isomorphism class of
the flat line bundle Lζ associated with the representation ρζ : π1pX,x0q Ñ C˚
which corresponds to ζ via the composition

C˚ “ HompZ,C˚q β˚»
´́ Ñ́ HompH1pX,Zq{Tors,C˚q ãÑ

ãÑ HompH1pX,Zq,C˚q “ Hompπ1pX,x0q,C˚q.

Using the identification

C˚ Q ζ ÞÑ rLζs “ γ̄Cpζq P Pic0pXq ,
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the restriction to Pic0pXq of the degree map associated with a Gauduchon
metric g on X is given by

(5) deggpLζq “ νg ln |ζ| ,

where νg P R˚ is a constant depending smoothly on g, and whose sign is
independent of g [22]. We will choose the initial isomorphism β such that
νg ą 0, and with this choice the identification Pic0pXq » C˚ becomes canonical
(intrinsically associated with X).

1.4. Main results

We recall that a holomorphic rank r bundle E is filtrable if it admits a
filtration pEiq1ďiďr by coherent subsheaves such that rkpEiq “ i for 1 ď i ď r
(see [7, section 4.2]). On a projective surface any bundle is filtrable, but on
non-algebraic surfaces this is no longer true. This is a substantial difficulty in
understanding moduli spaces of bundles over non-algebraic surfaces, because
we have no general classification method for non-filtrable bundles.

Remark 1.2. Let E be a filtrable bundle of rank r “ 2 on a complex surface
X. Any rank 1 subsheaf of E is contained in a rank 1 subsheaf M Ă E with
torsion free quotient. Such a subsheaf M is invertible, and E{M is isomorphic
to LbIZ , where L is invertible and Z Ă X is a 0-dimensional locally complete
intersection. Therefore E fits in a short exact sequence of the form

0 ÑMÑ E Ñ Lb IZ Ñ 0 ,

where L, M are invertible sheaves, and Z Ă X is a 0-dimensional locally
complete intersection.

The main result of this article is (see section 2.2):

Theorem 2.7. Let X be complex surface whose minimal model is a pri-
mary Hopf surface. Let te1, . . . , ebu be a standard basis of H2pX,Zq. Then any
holomorphic rank 2 bundle E with c2pEq “ 0, detpEq » KX on X fits in a short
exact sequence of the form

(6) 0 Ñ KX b L_Ñ E Ñ LÑ 0 ,

where L is a line bundle on X with c1pLq “ eI –
ř

iPI ei for a subset I Ă
t1, . . . , bu. In particular any such bundle is filtrable.

Note that the conclusion of the theorem in not true on minimal class VII
surfaces. For instance, using the results of [29] one can prove:
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Example 1.3. Let X be an Enoki surface with b2 “ 1, and g be a Gaudu-
chon metric on X with deggpKXq ă 0. The moduli space Mpst

KX pEq can be
identified with a compact disk, whose boundary corresponds to the reduction
space R. The center of this disk corresponds to a twisted reduction [31, section
1.4], [32, section 1.3] which is not filtrable.

For the proof of Theorem 2.7 we make use of techniques developed by
Brussee in the algebraic framework. As in [8] we construct 2-bundles on a
blown up surface using an elementary transformation along the exceptional di-
visor. Brussee’s main result identifies the moduli stable of stable bundles (with
suitable topological invariants) over the blown up Ŷy of a projective algebraic
surface Y with a fiber bundle over a moduli space of stable bundles over the
original surface Y . Unfortunately such an identification cannot be obtained in
our (non-Kählerian) framework.

Let again X be a blown up primary Hopf surface. For any I Ă t1, . . . , bu,
any line bundle L with c1pLq “ eI and any extension class ε P Ext1pL,KbL_q “
H1pK b Lb´2q we obtain a rank 2 bundle E which is the central term of an
extension of the form (6) with extension class ε. Theorem 2.7 states that, on
blown up primary Hopf surfaces, all bundles E with c2pEq “ 0, detpEq » KX

can be obtained in this way. The result can be used to describe explicitly
the moduli space Mpst

K pEq at least for surfaces with small b2, but important
difficulties remain: first, one has to select the pairs pL, εq as above which give
a polystable bundle; second, one has to control isomorphisms between bundles
associated with different pairs. The main tool used here is [30, Proposition
4.8], which allows one to classify all line subbundles of the 2-bundle associated
with a given extension class.

We will illustrate the method and the difficulties in section 3, in which we
describe explicitly the moduli space on blown up Hopf surfaces with b2 P t1, 2u
under the assumption deggpKXq ă 0. This assumption is not restrictive: using
the construction of [22, p. 163], one obtains Gauduchon metrics on X for which
this inequality holds.

The case b2 “ 1 will be treated in detail. The final result is simple (see
Theorem 3.9): denoting by D the exceptional divisor, and putting ν – νg,
δ – deggpOXpDqq, the moduli space Mpst

KX pEq can be naturally identified with

the disk D̄p1 ` e´
δ
ν , 1 ´ e´

δ
ν q bounded by the ellipse Γp1 ` e´

δ
ν , 1 ´ e´

δ
ν q of

semi-axes p1 ` e´
δ
ν , 1 ´ e´

δ
ν q. The boundary of the disk corresponds to the

unique circle of reductions.

In the case b2 “ 2, the moduli space Mst
KX pEq can be identified with

the complement of an ellipse in the product Dp1 ` e´
δ
ν , 1 ´ e´

δ
ν q ˆ P1, and
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Mpst
KX pEq with the space obtained from D̄p1` e´

δ
ν , 1´ e´

δ
ν qˆP1 by collapsing

the fiber over each point z P Γp1 ` e´
δ
ν , 1 ´ e´

δ
ν q to a point pz (see Theorem

3.12, Proposition 3.13).

2. GENERAL RESULTS

2.1. Filtrable bundles

We start with the following theorem, which concerns 2-bundles E with
cQ1 pEq “ cQ1 pKXq on an arbitrary class VII surface X. The theorem states that
any such a bundle has c2 ě 0, and any such bundle with c2 “ 0 which is
filtrable is a line bundle extension of a very special type.

Theorem 2.1. Let X be a class VII surface, and pe1, . . . , ebq be a standard
basis of H2pX,Zq{Tors. Let E be a holomorphic rank 2 vector bundle on X with

c1pEq ` Tors “ c1pKXq ` Tors

in H2pX,Zq{Tors. Then

1. c2pEq ě 0.

2. Suppose that c2pEq “ 0, E is filtrable, and let M be a rank 1 subsheaf
of E with torsion free quotient (see Remark 1.2). Then L – E{M is
locally free, and c1pLq ` Tors “ eI –

ř

iPI ei for a subset I Ă t1, . . . , bu.
Therefore E fits in a short exact sequence

0 Ñ detpEq b L_Ñ E Ñ LÑ 0 ,

where L is an invertible sheaf with c1pLq ` Tors “ eI for a subset I Ă
t1, . . . , bu.

Proof. (1) Taking into account that χpOXq “ 0 (see section 1.3), the
Hirzebruch-Riemann-Roch theorem gives

χpEq “ 1

2
pc1pEq2 ´ 2c2pEqq ´

1

2
c1pEqc1pKXq “ ´c2pEq .

If c2pEq ă 0, we get χpEq ą 0, so h0pEq ą 0 or h2pEq “ h0pKX b E_q ą 0. In
both cases it follows that E is filtrable so, by Remark 1.2, it fits in an exact
sequence of the form

(7) 0 ÑMÑ E Ñ Lb IZ Ñ 0 ,

where Z Ă X is a 0-dimensional local complete intersection, and L, M are line
bundles. Put l̄ – c1pLq ` Tors, m̄ – c1pMq ` Tors, k̄ “ c1pKXq ` Tors. The
short exact sequence (7) gives

(8) l̄ ` m̄ “ k̄, l̄ ¨ m̄` |Z| “ c2pEq .
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Expanding with respect to pe1, . . . , ebq we obtain l̄ “
řb
i“1 xiei with xi P Z,

and (8) gives
b
ÿ

i“1

xipxi ´ 1q ` |Z| “ c2pEq .

But the left-hand side is non-negative, so the assumption c2pEq ă 0 leads to a
contradiction.

(2) By Remark 1.2 the quotient E{M is isomorphic to LbIZ , where L is
invertible and Z Ă X is a 0-dimensional local complete intersection. Therefore
we obtain a short exact sequence of the form (7). The same computation as
above gives

b
ÿ

i“1

xipxi ´ 1q ` |Z| “ 0 ,

so xi P t0, 1u for 1 ď i ď b, and Z “ H. On the other hand (7) gives
M “ detpEq b L_. Putting I – ti P t1, . . . , bu| xi “ 1u the claim is proved.

2.2. 2-Bundles on blown up surfaces

In this section we make use of complex geometric analogues of the tech-
niques developed in [8, section 2] for bundles on projective algebraic surfaces.
Note that Brussee’s main result ([8, Corollary 5]) cannot be extended to our
non-Kählerian framework.

Proposition 2.2. Let Y be a complex surface, y P Y and π : X Ñ Y be
the blow up at y with exceptional divisor D Ă X. Let L be a holomorphic line
bundle on Y , and E be a holomorphic 2-bundle on X with detpEq “ π˚pLqpDq.
One has

1. detpπ˚pEq__q » L.

2. c2pπ˚pEq__q “ c2pEq´ ph0pR1π˚pEqq`h0pQqq, where Q – π˚pEq__{π˚pEq.

Proof. (1) The restriction of the line bundles detpπ˚pEq__q and L to Y ztyu,
are isomorphic, so, by Hartogs theorem, they are isomorphic on Y .

(2) The Grothendieck-Riemann-Roch theorem for proper holomorphic mor-
phisms [24] gives:

(9) chpπ!EqtdpY q “ π˚
`

chpEqtdpXq
˘

.
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Let Y P H4pY,Zq, X P H4pX,Zq be the standard generators of H4pY,Zq,
H4pX,Zq (the Poincaré duals of the standard generators ofH0pY,Zq, H0pX,Zq).
Putting l – c1pLq, d– c1pOpDqq, the hypothesis detpEq “ π˚pLqpDq gives

c1pEq “ π˚plq ` d.

The Chern character of a 2-bundle F on Y with c1pF q “ l, c2pF q “ c2pEq is

(10) chpF q “ 2` l `
1

2
pl2 ´ 2c2pEqq .

Using the formulae

tdpXq “ π˚ptdpY qq ´
1

2
d, π˚pH2pY,Qqq ¨ d “ 0, d2 “ ´X ,

chpEq “ π˚pchpF qq ` d`
1

2
d2 ,

we obtain:

π˚
`

chpEqtdpXq
˘

“ π˚
`

chpEqpπ˚ptdpY qq´1

2
dq
˘

“ π˚pchpEqqtdpY q´
1

2
π˚

`

chpEqd
˘

“

“ chpF qtdpY q ´
1

2
YtdpY q `

1

2
Y “ chpF qtdpY q .

Formula (9) becomes:

(11) chpπ!pEqq “ chpF q .

On the other hand one has

chpπ!Eq “ chpπ˚pEqq ´ chpR1π˚pEqq .

The sheaf π˚pEq is torsion free, so its singularity set Z is 0-dimensional;
it fits in an exact sequence

0 Ñ π˚pEq Ñ π˚pEq__Ñ QÑ 0 ,

where Q is a torsion sheaf whose support is Z. This exact sequence gives:

chpπ˚pEqq “ chpπ˚pEq__q ´ chpQq .

For a torsion sheaf S on Y with 0-dimensional support, the Hirzebruch-Riemann-
Roch theorem for coherent sheaves [23] gives the general formula

chpSq “ ´c2pSq “ h0pSqY .

Therefore

chpπ˚pEq__q “ chpπ˚pEqq ` h0pQqY “ chpπ!Eq `
`

h0pR1π˚pEqq ` h0pQq
˘

Y “

“ chpF q `
`

h0pR1π˚pEqq ` h0pQq
˘

Y .

(12)
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By part (1) proved above we have c1pπ˚pEq__q “ l, so

(13) chpπ˚pEq__q “ 2` l `
1

2
pl2 ´ 2c2pπ˚pEq__qq .

Formulae (10), (13) (12) give (via the usual identification H4pY,Zq “ Zq:

c2pπ˚pEq__q “ c2pEq ´ ph0pR1π˚pEqq ` h0pQqq .

Corollary 2.3. Under the assumptions of Proposition 2.2, one has
detpπ˚pEq__q » L, and c2pπ˚pEq__q ď c2pEq with equality if only if R1π˚pEq “ 0
and π˚pEq is locally free.

Let Y be a complex surface, and π : X “ Ŷy Ñ Y be the blow up at
y P Y . Let F be a holomorphic rank 2 vector bundle on Y with detpFq “ L, let
w Ă Fpyq be a 1-dimensional linear subspace, and qw : Fpyq Ñ Qw – Fpyq{w
be the associated quotient. Lifting to X we obtain an epimorphism

qw,D : π˚pFqD “ OD b Fpyq Ñ OD bQw ,

so an epimorphism

qw,DpDq : π˚pFqpDqD “ OpDqD b Fpyq Ñ OpDqD bQw .

The kernel
Fw – kerpqwq

of the composition

π˚pFqpDq π˚pFqpDqD OpDqD bQw

qw

qw,DpDq

is locally free of rank 2, and comes with a canonical epimorphism

q1 : Fw Ñ kerpqw,DpDqq “ OpDqD b w

(see [9, section 6.1.1]). In the terminology of [9] the pair pFw, q1q is the ele-
mentary transformation of the pair pπ˚pFqpDq, qwq. The short exact sequence

0 Ñ Fw ãÑ π˚pFqpDq Ñ OpDqD bQw Ñ 0

gives

detpFwq “ detpπ˚pFqpDqqp´Dq “ π˚pdetpFqqpDq, c2pFwq “ c2pFq .

Using [9, Proposition 6.3] it follows that the restriction FwD fits in a short
exact sequence

0 Ñ OD bQw Ñ FwD Ñ OpDqD b w Ñ 0 .
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Note that OpDqDbw » ODp´1q, ODbQw » OD. Since Ext1pODp´1q,ODq “

H1pODp1qq vanishes, it follows that this exact sequence splits, so

FwD » OD ‘ODp´1q .

Proposition 2.4. Let Y be a complex surface, y P Y and π : X Ñ Y
be the blow up at y with exceptional divisor D Ă X. Let L be a holomorphic
bundle on Y , and E be a holomorphic 2-bundle on X with detpEq “ π˚pLqpDq.
If R1π˚pEq “ 0, then

1. ED » OD ‘ODp´1q.

2. π˚pEq is locally free.

3. Putting F – π˚pEq “ π˚pEq__, there exists w P PpFpyqq such that E »
Fw.

Proof. (1) One has detpEqD » π˚pLqpDqD “ OpDqD » ODp´1q. Let M
be the maximal destabilizing line bundle of ED, and

(14) 0 ÑM ãÑ ED
q
Ñ́ ED{MÑ 0

be the corresponding short exact sequence. Since M destabilizes ED and
degpEDq “ ´1, one has degpMq ě 0, so M » ODpkq with k ě 0. Denot-
ing by q the composition

E ED ED{M ,

q

q

one obtains the short exact sequence

(15) 0 Ñ U – kerpqq ãÑ E q
Ñ́ ED{MÑ 0 ,

which gives the exact sequence

R1π˚pEq Ñ R1π˚pED{Mq Ñ R2π˚pUq .

Since the all the fibers of π have dimension ď 1, we have R2π˚pUq “ 0, so the
hypothesis R1π˚pEq “ 0 implies R1π˚pED{Mq “ 0, where

ED{M » detpEDq bM_ » ODp´1´ kq.

But the stalk of R1π˚pED{Mq at y is

H1pED{Mq » H1pODp´1´ kqq » H0pODpk ´ 1qq_,

where for the last isomorphism we used Serre duality. Since k ě 0, we see
that the vanishing of this space implies k “ 0. Therefore in the exact sequence
(14) we have M » OD, ED{M » ODp´1q. Since Ext1

DpODp´1q,ODq “ 0, this
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short exact sequence splits, which proves the claim.

(2) The short exact sequence (15) gives the exact sequence

0 Ñ π˚pUq Ñ π˚pEq Ñ π˚pED{Mq .

Since ED{M » ODp´1q we obtain π˚pED{Mq “ 0, so π˚pUq “ π˚pEq. Using
again [9, section 6.1.1] it follows that U – kerpqq comes with an epimorphism
q1 : U Ñ kerpqq “M, the pair pU , q1q is the elementary transformation associ-
ated with the pair pE , qq, and the restriction UD fits in a short exact sequence
of the form

0 Ñ pED{Mqp´Dq Ñ UD ÑMÑ 0 .
We have pED{Mqp´Dq » OD, M » OD, so this short exact sequence splits,
and UD » O‘2

D . Therefore, by [25, Theorem] it follows that π˚pUq is locally
free, and the canonical morphism

π˚pπ˚pUqq Ñ U
is an isomorphism. Thus π˚pEq is locally free, too.

(3) [9, Proposition 6.3 (3)] gives an isomorphism kerpq1q » Ep´Dq. Tensorizing

with OpDq the short exact sequence 0 Ñ kerpq1q Ñ U q1
Ñ́ MÑ 0, and putting

F – π˚pUq “ π˚pEq, we obtain a short exact sequence

0 Ñ kerpq1qpDq » E Ñ π˚pFqpDq ÑMpDq » OpDqD Ñ 0.

It suffices to note that the kernel of any epimorphism π˚pFqD Ñ OD has the
form OD b w for a line w Ă Fpyq.

Proposition 2.5. Let Y be a class VII surface, y P Y , and π : X Ñ Y
be the blow up at y with exceptional divisor D Ă X. Let E be a holomorphic
2-bundle on X with c2pEq “ 0, detpEq “ KX . The sheaf F – π˚pEq is locally
free, has c2pFq “ 0, detpFq “ KY , and there exists w P PpFpyqq such that
E » Fw.

Proof. Note that detpEq “ π˚pKY qpDq so Corollary 2.3 applies with L “
KY . By this corollary the bundle F – π˚pEq__ on Y has detpFq “ KY , and
c2pFq ď c2pEq “ 0. By Theorem 2.1 (1) we have c2pFq “ 0 so, using Corollary
2.3 again, we obtain that R1π˚pEq “ 0 and π˚pEq is locally free. The claim
follows by Proposition 2.4.

Lemma 2.6. Let Y be a primary Hopf surface, and E be a holomorphic
2-bundle on Y with c2 “ 0, detpEq “ KY . Then E fits in a short exact sequence
of the form

0 Ñ KY b L_ Ñ E Ñ LÑ 0 ,
with c1pLq “ 0.
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Proof. Taking into account Theorem 2.1 (2), it suffices to prove that E
is filtrable. If E is not filtrable, it will be stable with respect to any Gaudu-
chon metric g on X. Therefore, fixing such a metric g, the Kobayashi-Hitchin
correspondence (see section 1.1) gives a Hermitian metric h on E such that
the associated Chern connection Ah on the underlying differentiable bundle E
is Hermite-Einstein. Since ∆pEq “ 4c2pEq ´ c2

1pEq “ 0, it follows that Ah is
projectively flat (see [34, Remark 1.4]). Let y0 P Y , γ : r0, 1s Ñ Y be a smooth
loop representing a generator of the fundamental group π1pY, y0q » Z, and
χγ P UpEy0 , hy0q be the holonomy automorphism along γ. Let w Ă Ey0 be the
line generated by an eigenvector of hγ . Therefore w is invariant with respect to
the whole holonomy group of Ah at y0. Applying to w parallel transport with
respect to Ah along smooth paths starting at y0, one obtains a line subbundle
M Ă E , which will be parallel with respect to Ah, in particular holomorphic.
This contradicts the assumption “E is not filtrable”.

Now we can prove our main result:

Theorem 2.7. Let X be a complex surface whose minimal model is a
primary Hopf surface. Let te1, . . . , ebu be a standard basis of H2pX,Zq. Then
any holomorphic rank 2 bundle E with c2pEq “ 0, detpEq » KX on X fits in a
short exact sequence of the form

0 Ñ KX b L_Ñ E Ñ LÑ 0 ,

where L is a line bundle on X with c1pLq “ eI for a subset I Ă t1, . . . , bu. In
particular any such bundle is filtrable.

Proof. Induction with respect to b2pXq: If b2pXq “ 0, X is a primary
Hopf surface, so the claim follows by Lemma 2.6.

If b2pXq ą 0, then X “ Ŷy for a surface Y whose minimal model is still
a primary Hopf surface, and one has b2pY q “ b2pXq ´ 1. By Proposition 2.5
we have E » Fw, where F – π˚pEq “ π˚pEq__ and w P PpFpyqq. Moreover, we
have detpFq “ KY , c2pFq “ 0 so, by induction, we know that F is filtrable.
Let j : M Ñ F be a sheaf monomorphism, where M is a line bundle on Y .
The image of the composition

π˚pMq
π˚pjq
´́´́Ñ π˚pFq Ñ π˚pFqpDq

is contained in kerpqwq “ Fw, so E is filtrable. The claim follows now from
Theorem 2.1 (2).
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2.3. Regularity results

We refer to [34, Propositions 2.6 (1)] for the following regularity result:

Theorem 2.8. Let pX, gq be a complex surface endowed with a Gaudu-
chon metric g such that deggpKXq ă 0. For any polystable holomorphic bundle
E on X one has H2pEnd0pEqq “ 0.

Corollary 2.9. Under the assumptions of Theorem 2.8, let E be a dif-
ferentiable vector bundle on X, and D a holomorphic structure on detpEq. The
moduli space Mst

DpEq is a smooth complex manifold.

Moreover, using the comparison theorem [34, Propositions 2.6 (2)], it
follows that, under the assumption deggpKXq ă 0, any reducible point in

MASD
a pEq “ Mpst

D pEq is regular in the sense of [34, Definition 1.3]. Using

this result one obtains an explicit topological description of Mpst
D pEq around

the reducible locus
R – Mpst

D pEqzMst
DpEq.

Let X be a class VII surface with b – b2pXq ą 0, and let pe1, . . . , ebq be a
standard basis of H2pX,Zq{Tors. The set

HX – tc P H2pX,Zq| DI Ă t1, . . . , bu, c` Tors “ eIu

comes with an obvious surjection p : HX Ñ Ppt1, . . . , buq which identifies the
power set Ppt1, . . . , buq with the quotient HX{Tors. The involution HX Ñ HX

given by c ÞÑ c̄ – c1pKXq ´ c lifts the involution I ÞÑ Ī – t1, . . . , buzI on
Ppt1, . . . , buq. Denote by HX the quotient of HX by the involution c ÞÑ c̄.

Recall that the (topological) cone of a topological space B is

CB – r0, 1s ˆBqL
t0u ˆB .

The vertex of the cone CB is the point vB P CB which corresponds to the
collapsed end t0u ˆB. With these preparations we can state (see [33] [34]):

Corollary 2.10. Let X be a class VII surface with b– b2pXq ą 0, and
g be a Gauduchon metric on X. Let E be a rank 2-bundle with c2pEq “ 0,
detpEq “ KX , and R be the reducible locus in Mpst

KX pEq. Then

1. One has a natural bijection HX
»
Ñ́ π0pRq.

2. The connected component Rtc,c̄u associated with an element tc, c̄u P HX
is homeomorphic to a circle.

3. Suppose deggpKqXq ă 0. For any connected component Rtc,c̄u Ă R there

exists an open neighborhood Utc,c̄u of Rtc,c̄u in Mpst
KX pEq, and a homeo-

morphism Rtc,c̄uˆCPb´1
C
Ñ Utc,c̄u which induces the obvious identification

Rtc,c̄u ˆ tvPb´1
C
u Ñ Rtc,c̄u.
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Remark 2.11. In the special case when H1pX,Zq » Z, for instance when
the minimal model of X is a Hopf surface or a Kato surface, one has Tors “ 0,
so p is a bijection. In this case we can identify HX with Ppt1, . . . , buq, and
HX with the quotient Ppt1, . . . , buq of Ppt1, . . . , buq by the involution I ÞÑ Ī.
Ppt1, . . . , buq is just the set of unordered two-term partitions of t1, . . . , bu.
Therefore in this case the circles of reductions in the moduli space are param-
eterized by unordered pairs tI, Īu.

We will denote by RI,Ī the circle associated with the unordered pair
tI, Īu.

3. EXAMPLES OF MODULI SPACES

In this section we give explicit geometric descriptions of the moduli space
MKX pEq for a blown up primary Hopf surface X with b2pXq P t1, 2u.

3.1. Mpst
KX pEq on blown up primary Hopf surfaces with b2 “ 1

Let Y be a primary Hopf surface of the form

(16) Y “ C2zt0uL
xfy , where fpz1, z2q “ pα1z1, α2z2q with |αi| ă 1 .

The images of the coordinate lines Cˆt0u, t0uˆC in Y are elliptic curves,
which will be denoted by C1, C2 respectively. One has a canonical isomorphism
KY » Op´C1 ´ C2q.

Recall that (see for instance [7, Theorem 2.7, 2.13, Proposition 2.26]):

Remark 3.1. Let Y be a primary Hopf surface of the form (16). The
following conditions are equivalent:

1. There exists pk1, k2q P Ną0 ˆ Ną0 such that αk11 “ αk22 .

2. apY q ą 0, where apY q is the algebraic dimension on Y .

3. There exists a non-constant meromorphic function on Y .

4. Y is an elliptic surface.

5. There exists a line bundle N on Y such that h0pN q ě 2.

In order to avoid technical (but unessential) complications, we will assume
that Y is not elliptic, so that h0pN q ď 1 for any line bundle N on Y . Moreover,
this assumption also implies that the only irreducible curves on Y are C1 and
C2.



386 A. Teleman 18

Fix a point y P Y zpC1 Y C2q, let π : X “ Ŷy Ñ Y be the blow up at y,
and D Ă Y be the exceptional divisor. We will denote by the same symbols
the lifts of the curves Ci to X. Put d– c1pOXpDqq “ c1pKXq.

Remark 3.2. The assignment pm,n1, n2q ÞÑ mD ` n1C1 ` n2C2 defines
a bijection between N3 and the set of effective divisors on X. In particular
H0pLq “ 0 for any line bundle on X with c1pLq P Ză0d.

Using the isomorphism KY » OY p´C1 ´ C2q we obtain

(17) KX » OXpD ´ C1 ´ C2q .

Denote by k, d P PicdpXq, ci P Pic0pXq the isomorphism classes of the
line bundles KX , OXpDq, OXpCiq respectively. Let g be a Gauduchon metric
on X, and

κ– deggpKXq , δ “ deggpOXpDqq , γi – deggpOXpCiqq .

Using [22, Proposition 1.3.5] we obtain δ ą 0, γi ą 0. Formula (17) implies

(18) k “ db c´1
1 b c´1

2 , κ “ δ ´ γ1 ´ γ2 .

By Theorem 2.7 we know that any rank 2-bundle E on X with c2pEq “ 0,
detpEq “ KX fits in a short exact sequence

(19) 0 Ñ KX b L_ i
Ñ́ E p

Ñ́ LÑ 0

with c1pLq P td, 0u. For fixed L, the extensions of the form (19) are classified
by elements in

Ext1pL,KX b L_q “ H1pKX b L´2q .
The Riemann-Roch and Serre duality theorems combined with formula (2)
give:

h1pKX b L´2q “ ´
1

2

`

c2
1pKX b L´2q´c1pKX b L´2qc1pKXq

˘

`

` h0pKX b L´2q ` h0pL2q .

Taking into account Remark 3.2, we obtain

(20) h1pKX b L´2q “

"

1` h0pL2q if c1pLq “ d
h0pKX b L´2q ` h0pL2q if c1pLq “ 0

.

The component PicdpXq of the Picard group comes with a natural invo-
lution ι : PicdpXq Ñ PicdpXq given by

ιplq– kb db l´1 ,

and whose fixed points are the two square roots l1, l2 of the equation l2 “ kbd.
Consider the analytic subset

A– tl “ rLs P PicdpXq| h0pL2 bK_Xp´Dqq ą 0u Ă PicdpXq .
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Note that

(21) AX ιpAq “ tl1, l2u .

Put B – Aztl1, l2u. Using Remark 3.2, it follows easily that this set is empty
when δ ď minpγ1, γ2q.

Proposition 3.3. Let l – rLs P PicdpXq with h0pL2q “ 0. Then

1. All non-trivial extensions of L by K b L_ are isomorphic.

2. Let E be a non-trivial extension of L by K b L_. Then

(a) E has a line subbundle L1 isomorphic to Lp´Dq, if and only if l R
ιpBq.

(b) For l R ιpBq the line subbundle L1 is unique. The corresponding
extension of KX bL1_» KX bL_pDq by L1 » Lp´Dq is split if and
only if l P B.

Proof. (1) Taking into account the hypothesis, formula (20) gives

dimpExt1pL,KX b L_qq “ 1 .

Recalling that the canonical C˚-action on the extension space of two bundles
does not change the isomorphism class of the central term, the claim follows.

(2) (a) Suppose first that E has a line subbundle isomorphic to Lp´Dq. In
other words there exists a bundle embedding j : Lp´Dq ãÑ E . We have to
prove that l R ιpBq. Consider the diagram

0 KX b L_ E L 0

Lp´Dq

i p

j

in which the horizontal row is the non-trivial extension defining E , and denote
by ε P H1pKX b L´2q the corresponding extension class.

If l P tl1, l2u we have l R ιpBq, so the claim is proved.
If l R tl1, l2u, then l is not a fixed point of ι, so Lp´Dq fi KX b L_.

Therefore j does not factorize through i (if it did factorize, the obtained mor-
phism Lp´Dq Ñ KX bL_ would be an isomorphism), so p ˝ j does not vanish.
Rescaling if necessary, we may suppose that p ˝ j is the canonical monomor-
phism Lp´Dq Ñ L, so j is a lift of this canonical monomorphism.

By [30, Proposition 4.8] this canonical sheaf monomorphism has a lift j
to E if and only if there exists σ P H0pKX b L´2pDqDq which is mapped to ε
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via the connecting morphism µ in the canonical exact sequence

0 Ñ H0pKX b L´2q Ñ H0pKX b L´2pDqq u
Ñ́ H0pKX b L´2pDqDq

µ
Ñ́

µ
Ñ́ H1pKX b L´2q Ñ . . .

(22)

If, by reductio ad absurdum l P ιpBq, then l P ιpAq, i.e. h0pKX b

L´2pDqq ą 0. This gives KX b L´2pDq » Opn1C1 ` n2C2q with ni P N,
and KX b L´2 » Op´D ` n1C1 ` n2C2q, which implies

h0pKX b L´2q “ 0 , h1pKX b L´2pDqq “ 1.

On the other hand c1pKX b L´2pDqq “ 0, so (since D is a projective line) we
get pKX b L´2pDqD » OD, and h0pKX b L´2pDqDq “ 1. This shows that in
the canonical exact sequence above u is an isomorphism, so µ vanishes. Since
ε ‰ 0 by assumption, it follows that ε cannot have a lift via µ.

Conversely, suppose that l R ιpBq. Therefore either l P tl1, l2u or l R ιpAq,
i.e. h0pKX b L´2pDqq “ 0. In the former case one has Kb L_» Lp´Dq, so it
suffices to take L1 – ipKbL_q. In the latter case it follows that the morphism
µ in (22) is an isomorphism. Therefore ε has a lift in σ P H0pKX bL´2pDqDq,
so the canonical monomorphism Lp´Dq Ñ L has a lift j : Lp´Dq Ñ E . Since
σ is nowhere vanishing (because pKX b L´2pDqD » OD), it follows by [30,
Proposition 4.8 (5)] that j is a bundle embedding.

(2)(b) Suppose l R ιpBq. We prove first the unicity of L1. We have two cases:

(i) l P tl1, l2u. Suppose by reductio ad absurdum that E admits a line subbundle
L1 » Lp´Dq which does not coincide with ipKX b L_Xq. We get a bundle
embedding j : Lp´Dq Ñ E with p ˝ j ‰ 0. As in the proof of (3)(a) we may
assume that p ˝ j is the canonical monomorphism Lp´Dq Ñ L. But in this
case KX b L´2pDq » OX , KX b L´2 » OXp´Dq, and the same method as
above shows that this canonical monomorphism does not admit a lift to E .

(ii) l R ιpAq. Since in this case l R tl1, l2u, any line subbundle L1 » Lp´Dq
of E is the image of a lift of the canonical monomorphism Lp´Dq Ñ L. The
difference of two such lifts belongs to

HompLp´Dq,KXbL_q “ H0ppLp´Dqq_bpKXbL_qq “ H0pKXbL´2pDqq “ 0 ,

which proves the claim.

It remains to prove that the obtained extension of KX bL1_ by L1 is split
if and only if l P B. Suppose l P B. We have

(23) HompKX b L_,Lp´Dq ‘ pKX b L_pDqqq “ pK_X b L2p´Dqq ‘OpDq .
The condition l P B is equivalent to K_X b L2p´Dq » OpCq, where C “

n1C1 ` n2C2 with pn1, n2q P N ˆ Nztp0, 0qu. Since C XD “ H, formula (23)
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shows that there exists a bundle embedding

KX b L_Ñ Lp´Dq ‘ pKX b L_pDqq ,
so the direct sum Lp´Dq ‘ pKX bL_pDqq can be written as an extension of L
by KX b L_, which must be non-trivial, because, since C ‰ H,

Lp´Dq ‘ pKX b L_pDqq fi pKX b L_q ‘ L .
Taking into account part (1) proved above, it follows

Lp´Dq ‘ pKX b L_pDqq » E .
Conversely, if E is a trivial extension of KXbL1_» KXbL_pDq by L1 » Lp´Dq,
there exists a bundle embedding KX bL_Ñ Lp´Dq‘pKX bL_pDqq, so, using
(23), we obtain H0pK_XbL2p´Dqq ‰ 0, so l P A. Moreover, l R tl1, l2u, because,
for l P tl1, l2u we know that L1 “ ipKXbL_q, so the extension associated with L1
can be identified with the initial extension defining E . But this initial extension
was non-trivial. Therefore l P Aztl1, l2u “ B.

Put

S – tl “ rLs P PicdpXq| l2 b k´1 b d´1 “ cn1
1 b c´n2

2 with pn1, n2q P N˚ ˆ N˚u.
Note that the sets tl1, l2u, B, ιpBq, S, ιpSq are pairwise disjoint. Using the
same method as in the proof of Proposition 3.3, we obtain:

Proposition 3.4. Let l – rLs P PicdpXq with h0pL2q “ 0, and E be a
non-trivial extension of L by KX b L_. Then

1. If l R tl1, l2u Y B Y ιpBq Y S Y ιpSq, E has exactly two line subbundles,
which are isomorphic to KX b L_ and Lp´Dq respectively.

2. If l P tl1, l2u Y ιpBq “ ιpAq, E has exactly one line subbundle which is
isomorphic to KX b L_.

3. Let l P S, and pn1, n2q P N˚ˆN˚ be such that l2b k´1bd´1 “ cn1
1 b c´n2

2 .
Then E has exactly three line subbundles, which are isomorphic to KX b

L_, Lp´Dq and Lp´n1C1q respectively.

4. Let l P ιpSq, and pn1, n2q P N˚ ˆ N˚ be such that l2 b k´1 b d´1 “

c´n1
1 bcn2

2 . Then E has exactly three line subbundles, which are isomorphic
to KX b L_, Lp´Dq and Lp´n2C2q respectively.

We can now prepare our geometric description of the moduli space. The
open subset

Ω –
 

l “ rLs P PicdpXq|
κ

2
ă degpLq ă κ

2
` δ

(

Ă PicdpXq

is ι-invariant, and contains the fixed point locus tl1, l2u of ι.
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Remark 3.5. Suppose deggpKXq ă 0. For any rLs P Ω one has h0pL2q “ 0.

Proof. If h0pL2q ą 0, Remark 3.2 gives L2 “ Op2D` n1C1 ` n2C2q with
ni P N, so deggpLq ě δ, which, under the assumption κ ă 0, contradicts the
second inequality in the definition of Ω.

Theorem 3.6. Suppose deggpKXq ă 0.

1. Let l – rLs P PicdpXq with h0pL2q “ 0, and E be a non-trivial extension
of L by KX b L_. E is stable if and only of l P ΩzB.

2. Let E be a holomorphic bundle on X with c2pEq “ 0, detpEq “ KX

which is stable. Then there exists rLs P ΩzB such that E is a non-trivial
extension of L by KX b L_.

Proof. (1) Suppose that E is stable. If l P B, E splits as a direct sum of
line bundles by Proposition 3.3 (2)(b), so it cannot be stable. Therefore l R B.
We now show that l P Ω. For l R ιpAq, E has two line subbundles isomorphic
to KX b L_, Lp´Dq respectively, and the stability condition corresponding to
these subsheaves gives

κ

2
ă degpLq ă κ

2
` δ ,

so l P Ω. Finally, if l P ιpAq, one has h0pKX b L´2pDqq ą 0, which gives

deggpLq ď
κ

2
`
δ

2
ă
κ

2
` δ .

On the other hand, the stability condition for the subbundle KXbL_Ñ E
gives κ

2 ă degpLq.

Conversely, let l P ΩzB. We prove that E is stable. By Theorem 2.1(2)
we know that any non-trivial subsheaf with torsion free quotient of E is a line
subbundle. Therefore, to check the stability condition it suffices to verify the
inequality required in Definition 1.1 for all line subbundles of E , which are
classified by Proposition 3.4. It is easy to see that none of these subbundles
destabilize E . Note that the condition deggpKXq ă 0 plays a crucial role in the
case l P S Y ιpSq.

(2) We know that E fits in an exact sequence of the form (19) with c1pLq P
t0, du. Since E is stable, this extension is non-trivial. We have three cases:

(i) c1pLq “ d, h0pL2q “ 0. In this case the claim follows from (1).

(ii) c1pLq “ 0. Since the extension is non-trivial, formula (20) gives
h0pKX b L´2q “ 1 or h0pL2q “ 1. The stability condition for the subbundle
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KXbL_Ñ E gives deggpKXbL´2q ă 0, so the first case is ruled out. Therefore
h0pL2q “ 1, and Lemma 3.7 stated below shows that E is also a non-trivial
extension of Li by K b L_i (for i P t1, 2u), where c1pLiq “ d, h0pL2

i q “ 0. The
claim follows from (1).

(iii) c1pLq “ d, h0pL2q “ 1. Since E is stable, it cannot be isomorphic to
a direct sum of line bundles, so, by Lemma 3.8 stated below, E is a non-trivial
extension of a line bundle L1 by K b L1_, where c1pL1q “ 0. The claim follows
from (2)(ii).

The proofs of Lemmata 3.7, 3.8 below follow the method used for Propo-
sition 3.3, so they will be omitted.

Lemma 3.7. Let rLs P Pic0pXq with h0pL2q “ 1, and n1, n2 P N be such
that L2 » Opn1C1 ` n2C2q. Let E be a non-trivial extension of L by K b L_.
Then E is also a non-trivial extension of KbL_ppni` 1qCiq by Lp´pni` 1qCiq
for i P t1, 2u.

Putting Li – K b L_ppni ` 1qCiq, one has c1pLiq “ d, h0pL2
i q “ 0.

Lemma 3.8. Let rLs P PicdpXq with h0pL2q “ 1, and n1, n2 P N be such
that L2 » Op2D` n1C1` n2C2q. Define the lines Λ, Λ1, Λ2 Ă H1pKbL2q by

Λ – impH0pK b L2pDqDq Ñ H1pK b L2qq ,

Λi – impH0pK b L2ppni ` 1qCiqpni`1qCiq Ñ H1pK b L2qq .
Let E be a non-trivial extension of L by K b L_, and let ε P H1pK b L2qzt0u
be the corresponding extension class.

1. If ε P Λ, then E » Lp´Dq ‘ pK b L_pDqq.

2. If ε P Λi, then E » Lp´pni ` 1qCiq ‘ pK b L_ppni ` 1qCiqq.

3. If ε P H1pK b L2qzpΛ Y Λ1 Y Λ2q, then E is a non-trivial extension of
K b L_ppn1 ` 1qC1 ` pn2 ` 1qC2q by Lp´pn1 ` 1qC1 ´ pn2 ` 1qC2q.

Recall (see section 1.3) that we defined a canonical identification

C˚ Q ζ »
Ñ́ rLζs P Pic0pXq

and, with respect to this identification, we have the identity deggpLζq “ ν ln |z|
for a positive constant ν “ νg depending smoothly on g. The map

F : PicdpXq Ñ Pic0pXq “ C˚, F plq “ kb l´1

is a biholomorphism and maps the pair pΩ, ιq on the pair pApe
κ
2ν
´ δ
ν , e

κ
2ν q, Iq,

where Ape
κ
2ν
´ δ
ν , e

κ
2ν q Ă C˚ is the annulus of biradius pe

κ
2ν
´ δ
ν , e

κ
2ν q, and I is the
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involution z ÞÑ pkb d´1qz´1. Denoting by Dpα, βq the interior of the compact
disk D̄pα, βq bounded by the ellipse Γpα, βq of semi-axes α, β, we obtain a
biholomorphism

Φ : ΩL
xιy

»
Ñ́ Dp1` e´

δ
ν , 1´ e´

δ
ν q

given explicitly by

(24) l ÞÑ µ´1e´
κ
2ν pkb l´1 ` d´1 b lq ,

where µ P S1 is a square root of kb d´1{|kb d´1|. Note that

|ΩXB| “ 2|tpn1, n2q P Nˆ Nztp0, 0qu| n1γ1 ` n2γ2 ă δu| ,

in particular this set is finite. Let R be the equivalence relation on ΩzB induced
by the xιy - congruence on Ω. The map

ΩzBL
R Ñ

ΩL
xιy

induced by the inclusion ΩzB ãÑ Ω is obviously a biholomorphism, because
any xιy - orbit in Ω intersects ΩzB. Therefore formula (24) also defines a bi-
holomorphism

Ψ : ΩzBL
R

»
Ñ́ Dp1` e´

δ
ν , 1´ e´

δ
ν q .

With these preparations we can prove:

Theorem 3.9. Suppose deggpKXq ă 0. For l “ rLs P Ω denote by El the
isomorphism type of a non-trivial extension of L by KX b L_ (see Proposition

3.3(1), Remark 3.5). The map ΩzB Q l
f
ÞÑ El PMst

KX pEq is holomorphic, sur-

jective, R-invariant, and induces a biholomorphism F : ΩzBL
R Ñ Mst

KX pEq.
The composition

F ˝Ψ´1 : Dp1` e´
δ
ν , 1´ e´

δ
ν q

»
Ñ́ Mst

KX pEq

is biholomorphic, and extends to a homeomorphism

D̄p1` e´
δ
ν , 1´ e´

δ
ν q

»
Ñ́ Mpst

KX pEq .

Proof. Let L be a Poincaré line bundle on PicdpXq ˆX. Therefore, for
any l P PicdpXq, the restriction Ll of L to the fiber tlu ˆX » X belongs to
the isomorphism class l. Denote by LΩ the restriction of L to ΩˆX.

Since Ω is Stein, we have H1ppΩ˚pp
˚
XpKXq b L ´2

Ω qq “ 0, so, using the
Leray spectral sequence associated with the coherent sheaf p˚XpKXqbL ´2

Ω and
the proper holomorphic map pΩ, it follows that the canonical morphism

(25) H1pp˚XpKXq bL ´2
Ω q Ñ H0pR1pΩ˚pp

˚
XpKXq bL ´2

Ω qq

is an isomorphism. By formula (20) and Remark 3.5, we have h1pKXbL´2
l q “ 1

for any l P Ω, so, by Grauert’s local freeness theorem, it follows that the sheaf
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R1pΩ˚pp
˚
XpKXq bL ´2

Ω q is invertible. Since H1pOΩq “ 0 (because Ω is Stein),
and H2pΩ,Zq “ 0, we obtain (using the cohomology exact sequence associated
with the exponential sequence) H1pO˚Ωq “ 0, so any holomorphic line bundle
on Ω is trivial. Therefore R1pΩ˚pp

˚
XpKXq b L ´2

Ω q has a nowhere vanishing
section σ. Let

Σ P H1pp˚XpKXq bL ´2
Ω q “ Ext1pLΩ, p

˚
XpKXq bL_

Ωq

be the pre-image of σ via the isomorphism (25), and

0 Ñ p˚XpKXq bL_

Ω Ñ E Ñ LΩ Ñ 0

be the associated extension. Regarding E |pΩzBqˆX as a holomorphic family of
stable bundles parameterized by ΩzB, we obtain a holomorphic map ΩzB Ñ

Mst
KX pEq which coincides with f ; indeed, the restriction El of E to tluˆX » X

is a non-trivial extension of Ll by KXbL_l , so it belongs to the isomorphism class
El. The surjectivity of f follows from Theorem 3.5 (2), and the R-invariance
from Proposition 3.3. Therefore f induces a holomorphic, surjective map

F : pΩzBq
L

R ÑMst
KX pEq .

We claim that F is injective. Indeed, if El1 » El2 , then El1 contains a line
subbundle isomorphic to KX bL_l2. By Proposition 3.4 this implies KX bL_l2 »
KX b L_l1, or KX b L_l2 » Ll1p´Dq. Therefore l2 “ l1 or l2 “ ιpl1q, so l1 R l2.

Therefore F is a holomorphic bijection between smooth complex mani-
folds, so it is a biholomorphism. The homeomorphic extension

D̄p1` e´
δ
ν , 1´ e´

δ
ν q

»
Ñ́ Mpst

KX pEq

of F ˝ Ψ´1 is constructed using elliptic semicontinuity, as in the proof of [29,
Proposition 4.4].

Remark 3.10. The obtained homeomorphism D̄p1`e´
δ
ν , 1´e´

δ
ν q

»
Ñ́ Mpst

KX pEq

maps the boundary Γp1` e´
δ
ν , 1´ e´

δ
ν q of the disk on the unique circle of re-

ductions R “ RH,t1u in the moduli space (see Remark 2.11). The result is

compatible with Corollary 2.10(3) which describes the topology of Mpst
KX pEq

around a circle of reductions.

Remark 3.11. For deggpKXq ą 0 the moduli space Mst
KX pEq contains the

isomorphism class of the nontrivial extension on KX by OX , and Mst
KX pEq is

singular at this point. This follows using the arguments of [29, Proposition 3.3
(5)]. This shows that the condition deggpKXq ă 0 is crucial in our regularity
Theorem 2.8.
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3.2. Mpst
KX pEq on blown up primary Hopf surfaces with b2 “ 2

Let now X “ Ŷy1,y2 be the blown up of a non-elliptic primary Hopf
surface Y of the form (16) at two distinct points y1, y2 which do not belong to
C1YC2. Let D1, D2 be the corresponding exceptional divisors, D – D1`D2,
di – c1pOXpDiqq, d– d1 ` d2, δi – deggpOXpDiqq, and δ – δ1 ` δ2.

We define the involution ι : PicdpXq Ñ PicdpXq, and the subsets Ω, B of
PicdpXq as in the case b2 “ 1. Let ζ 1, ζ2 be the images of the ι-fixed points l1,
l2 P Ω, and S be the image of ιpBq X Ω via the composition

Ω Ñ ΩL
xιy

Φ»
´́ Ñ Dp1` e´

δ
ν , 1´ e´

δ
ν q,

where Φ : ΩL
xιy

»
Ñ́ Dp1` e´

δ
ν , 1´ e´

δ
ν q is the biholomorphism given by (24).

The following statements give explicit geometric descriptions of the mod-
uli spaces Mst

KX pEq, Mpst
KX pEq in the case deggpKXq ă 0. The proofs use

the methods explained in detail in the previous section, combined with results
specific to the case b2 “ 2 [32].

Theorem 3.12. Suppose deggpKXq ă 0, δ1 ‰ δ2. There exists:

1. A divisor ∆ Ă Dp1` e´
δ
ν , 1´ e´

δ
ν q ˆ P1 such that the restriction

p|∆ : ∆ Ñ Dp1` e´
δ
ν , 1´ e´

δ
ν q

of the projection on the first factor is a flat finite map of degree 2 which
identifies Singp∆q with S and its ramification locus with tζ 1, ζ2u.

2. A lift Γ Ă ∆ of the ellipse Γpe´
δ1
ν ` e´

δ2
ν , |e´

δ1
ν ´ e´

δ2
ν |q via p|∆.

3. A biholomorphism

F :
`

Dp1` e´
δ
ν , 1´ e´

δ
ν q ˆ P1

˘

zΓ ÑMst
KX pEq

which maps

(a) the set
`

Dp1` e´
δ
ν , 1´ e´

δ
ν q ˆ P1

˘

z∆ onto the set of isomorphism
classes of stable extensions of the form (19) with c1pLq “ d.

(b) the set ∆zΓ onto the set of isomorphism classes of stable extensions
of the form (19) with c1pLq P td1, d2u.

To obtain Mpst
KX pEq we have to compactify Mst

KX pEq by adding two circles
of reductions. Using the notation introduced in Remark 2.11 we have:
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Proposition 3.13. Under the assumptions of Theorem 3.12, let Π be the

space obtained from D̄p1` e´
δ
ν , 1´ e´

δ
ν q ˆ P1 by collapsing the fiber tzu ˆ P1

over each point z P Γp1 ` e´
δ
ν , 1 ´ e´

δ
ν q to a point pz. Then F extends to a

homeomorphism Π ÑMpst
KX pEq which maps the ellipse

Γ1 – tpz| z P Γp1` e´
δ
ν , 1´ e´

δ
ν qu Ă Π

onto the circle of reductions RH,t1,2u, and the ellipse Γ Ă Π onto the circle of
reductions Rt1u,t2u.

Remark 3.14. The obtained descriptions of the moduli space Mst
KX pEq

for b2 P t1, 2u confirm the main result of [36], which states that, on any blown
up primary Hopf surface, this moduli space does not contain any compact
connected component.
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